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Abstract. This paper investigates the stability and evolution of the
world stage of global science at the city level by analyzing changes in co-
authorship network centrality rankings over time. Driven by the problem
that there exists no consensus in the literature on how the spatial unit
“city” should be defined, we first propose a new approach to delineate
so-called scientific cities. On a high-quality Web of Science dataset of
21.5 million publications over the period 2008–2020, we study changes
in centrality rankings of subsequent 3-year time-slices of scientific city
co-authorship networks at various levels of impact. We find that, over
the years, the world stage of global science has become more stable.
Additionally, by means of a comparison with degree respecting rewired
networks we reveal how new co-authorships between authors from previ-
ously unconnected cities more often connect ‘close’ cities in the network
periphery.

Keywords: Scientific co-authorship networks · Scientific cities · City
networks · Temporal networks · Rank correlation

1 Introduction

A prevalent way of studying the global science system, is to produce rankings.
This may involve rankings of universities based on, for example, publications, sci-
entific impact, collaboration, open access and gender balance in order to “assess
university performance on the global stage” [15,17]. It could involve ranking
authors based on, for example: fractionally counted citations [3], the h-index [8],
or PageRank in co-citation networks [10]. Or it may involve ranking geographical
areas such as countries or cities based on, for example, scientific output [2,6] or
domestic vs. international co-authorship [11]. In short, there are many ‘levels’ at
which rankings are produced as part of the study of the science system. In this
work, we consider rankings at the city level. However, there exists no consensus
in the literature on how the spatial unit “city” should be defined [9]. Therefore,
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we propose a new approach to delineate scientific cities, agglomerations of cities
within a small radius based on geo-located addresses on scientific publications.

Related work on the science system often considers measures that are directly
computable for a given entity, such as their scientific output, scientific impact,
etc. [2,3,6,8,11,15]. These directly computable measures usually say little about
what position the entity takes within the global science system. Instead, in this
work we rank based on the position of the nodes in the co-authorship network
underlying the science system, in particular using network centrality measures.
We do so with the goal of establishing which cities take a ‘central’ role on the
world stage of global science, similar to, e.g., related work by Ding et al. [10].

In this paper, we study changes in centrality rankings in co-authorship net-
works over time, where our nodes are cities rather than authors and edges denote
co-authorship between these cities. By studying the change in centrality rank-
ings we shed light on the stability of the network over time. In particular, we
aim to study the stability of the co-authorship networks over time at various
levels of ‘prominence’, measured through publication impact in terms of cita-
tions received. To this end, we measure the change in network-based rankings
that occurs for three co-authorship network variants covering: all publications,
the top 10% and the top 1% highly cited publications. Furthermore, we aim to
validate the significance of the observed changes in rankings by comparing the
changes in these evolving ‘real-world’ networks to changes that occur when the
rewiring is performed in a random manner. However, because a sensible rewiring
is non trivial, we propose a new suitable approach to generating rewired net-
works.

We extract evolving co-authorship networks of scientific cities from a large
and high-quality dataset (21.5 million publications with complete author affil-
iation linkages and geolocation information for the period 2008–2020). With
these networks we show that the world stage of global science has become more
stable, and by extension the city co-authorship networks less prone to struc-
tural change, over the years. Additionally, we show that city networks follow the
expected pattern of more often establishing new co-authorship relations with
‘close’ cities than ‘distant’ cities. Finally, we conclude that, compared to our
null model, changes in the network more often occur in the periphery.

In short, we do the following: (1) we propose a new approach to delineating
scientific cities; (2) we study changes in various network centrality rankings over
time at various levels of ‘prominence’ to study the ‘world stage of global science’;
and (3) we propose a new rewiring null model and determine the significance of
the observed changes in centrality rankings by comparing with this null model.

The remainder of this paper is structured as follows. In Sect. 2 we present our
basic network notation and define various network centrality measures and rank
correlation measures used in our experiments. Then, in Sect. 3 we discuss how the
co-authorship networks were extracted and how we generate randomly rewired
networks. Next, the experimental setup, results and limitations are discussed in
Sect. 4. Finally, in Sect. 5 we summarize and conclude.
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2 Definitions, Measures and Background

In this section we provide basic network notation and terminology in Sect. 2.1,
define centrality measures for ranking vertices in Sect. 2.2 and specify correlation
measures to compare those rankings in Sect. 2.3.

2.1 Network Notation and Definitions

In this paper, we study city co-authorship networks which model scientific cities
as nodes and co-authorship on scientific publications by authors from different
cities as edges (see Sects. 3.2–3.4 for more details on the specific data used as
input). Because the scientific co-authorship relation is an undirected relation, we
model networks in this study using an undirected graph G = (V,E, ω), with V
the set of vertices or nodes, E the set of edges {u, v} with u, v ∈ V , and weight
function ω. We use n = |V | and m = |E|. No self-loops and no parallel edges
are assumed. For weighted graphs, edge weights are a function of the connected
nodes, denoted ω(u, v), with ω(u, v) > 0 iff {u, v} ∈ E and ω(u, v) = 0 iff
{u, v} /∈ E. For unweighted graphs, ω(u, v) = 1 for all {u, v} ∈ E. We define a
θ-minimum-weight graph G≥θ(V,E′) as the unweighted graph induced from a
weighted graph G where (u, v) ∈ E′ iff ω(u, v) ≥ θ.

Let u � v denote the existence of a path between nodes u, v ∈ V . We call
H = (V ′ ⊆ V, {{u, v} : u, v ∈ V ′ ∧ {u, v} ∈ E}) a connected component when for
all u, v ∈ V ′ it holds that u � v, i.e., all nodes are reachable from every other
node. The largest connected component in a graph, in terms of nodes, is referred
to as the giant component.

The distance between two nodes is denoted as dG(u, v) (with u, v ∈ V ) and
indicates the length of a shortest path, i.e., a path where the sum of the weights
of the edges in the path u � v in graph G is minimal. We define the distance
between a node and itself as zero, i.e., dG(u, u) = 0. The number of shortest
paths connecting u, v ∈ V is denoted by σuv, with the number of shortest paths
including node w ∈ V \ {u, v} denoted by σuv(w).

The neighborhood NG(v) of a node v ∈ V is defined as the set of nodes to
which v links, i.e., NG(v) = {w ∈ V : (v, w) ∈ E}. The degree of a node equals
the size of its neighborhood, i.e., degG(v) = |NG(v)|.

Because we want to study the change in rankings over time, we can accom-
plish this by considering a series of static time-slices, i.e., static networks covering
only a few successive years of data. The extraction of these time-slices given our
data is discussed in Sect. 3.4.

2.2 Ranking Measures

In this work we determine the rankings of nodes based on various centrality
measures. Specifically, we consider degree, eigenvector, closeness and between-
ness centrality. Below we define each of these diverse measures and provide the
rationale of high (or low) rankings for cities, with respect to the role these nodes
play within the structure of the scientific city co-authorship networks.
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Degree Centrality. Degree centrality assumes that those nodes with connec-
tions to more neighbors are more central. In city co-authorship networks, a high
rank translates to co-authorships with many different cities. It is defined as.

dcG(u) =
deg(u)
n − 1

(1)

Eigenvector Centrality. Eigenvector centrality is based on the idea that an
actor is more central if it is connected to many actors that are central them-
selves [13]. As such, it considers not only the number of adjacent vertices, but
also their value of centrality. It can be computed by iteratively setting the eigen-
value (EV (u)) of all nodes u ∈ V to the average of its neighbors, where the
initial values of EV (u) are proportional to the degrees of the nodes, normalizing
after each step.

ecG(u) = EV (u) (2)

In scientific city co-authorship networks, a high rank indicates that said city
forms co-authorships with cities that co-author with many other cities.

Closeness Centrality. Closeness centrality is a measure of how close a ver-
tex is to all other vertices in the graph. As we will be dealing only with the
giant component of undirected networks in our experiments, we can employ the
simplest version of this measure, as first introduced by Bavelas [1], defined as
follows.

ccG(u) =
n − 1

∑
v∈V dG(u, v)

(3)

In other words, the closeness centrality of u is the inverse of the average (shortest-
path) distance from u to any other vertex in the graph. In our city networks,
highly ranked cities are the cities who require the fewest ‘intermediary cities’ for
establishing co-authorships with every other city in the network, i.e., the world.

Betweenness Centrality. Betweenness centrality is a measure of the ratio of
shortest paths a node lies on [4]. In other words, it measures the extent to which
shortest paths pass through a specific node. It is defined as follows.

bcG(u) =
∑

u∈V \{s,t}

σst(u)
σst

(4)

In city co-authorship networks, lying on a shortest path connecting two cities
indicates that establishing a co-authorship between those cities may most easily
be accomplished through an introduction or collaboration with your city. As
such, highly ranked cities may form an important factor in brokering new co-
authorships between ‘distant’ cities.
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2.3 Rank Comparison Measures

In order to systematically compare two rankings of nodes in evolving networks,
a measure is required that can express their (in)equality in one normalized num-
ber. Two correlation-based measures suited to this task are the Spearman and
Kendall rank correlations. The advantage of applying the Spearman rank corre-
lation is that the exact difference in ranking between all pairs of nodes in both
rankings is taken into account [14]. On the contrary, Kendall’s Tau correlation
considers only the extent to which the pairs of nodes are identically ordered.

3 Materials and Methods

In this section we first discuss the bibliographic database from which we extract
our co-authorship networks in Sect. 3.1. Then, Sect. 3.2 describes our new app-
roach for the delineation of the scientific city agglomerations, i.e., our nodes.
Section 3.3 discusses the publication sets and counting methods used to com-
pute the edge weights. Next, we describe how we obtain our final co-authorship
network time-slices in Sect. 3.4. Finally, in Sect. 3.5 we explain how we generated
the random networks.

3.1 Bibliographic Database

Our analysis is based on Clarivate’s Web of Science database (WoS). Specifically,
we use the in-house version of WoS at the Centre for Science and Technology
Studies (CWTS) at Leiden University from April 2021. This version of WoS has
been enriched with its own: citation matching; assignment of publications to uni-
versities and organizations in a consistent and accurate manner [15]; geocoding
of the author addresses; and improved author disambiguation [5].

We consider publications published in 2008–2020 categorized as Article,
Review, Letter or Proceeding Paper. Publications with missing author-affiliation
linkages or missing both geolocation and organization information are excluded.
This leaves 21.5 million publications (87.2% of total), covering 196 countries.

3.2 Delineation of Scientific City Agglomerations - Nodes

Csomós [9] discussed the various challenges of spatial scientometrics focusing on
the city level. One of these challenges is that there exists no consensus in the
literature on how the spatial unit “city” should be defined and how metropolitan
areas should be delineated.

Our approach to constructing a set of urban agglomerations (cities) most
closely matches that described by Maisonobe et al. [12]. However, whereas their
approach agglomerates to metropolitan areas the size of world cities, we instead
agglomerate to smaller clusters of research localities, which we call scientific
cities. Here, we rely on the observations of Bornmann and de Moya-Anegón [2]
and Catini et al. [6] that “institutions are frequently spatially clustered in larger
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cities” and that “research institutions involved in scientific and technological
production” are generally located close to each other and produce well-outlined
research clusters within cities. As such, we segregate world cities with multiple
research clusters such that, as long as research clusters are spatially further than
eight kilometers apart, each research cluster is considered its own scientific city.
This approach allows us to create globally comparable geographical entities, sim-
ilar to [12], whilst still delineating between distinct cities in notoriously difficult
regions for agglomeration such as “de Randstad” in the Netherlands (Amster-
dam, Leiden, The Hague, Delft etc.). We found this eight kilometer radius to
work well throughout most regions of the world. One clear exception, that can be
considered a limitation of this approach, is that Chinese cities, such as Beijing,
do not appear to allow for segregation into research clusters as the addresses
listed on such publications tend to be at the municipality level, which in the
case of Beijing covers approximately 16,000 km2 [9]. As such, these cities may
come to have an advantage with respect to its scientific output over other world
cities for which we are able to delineate multiple scientific cities.

To reduce the number cities with very low scientific output in our set of scien-
tific agglomerations, we merged cities with fewer than ten publications into the
closest scientific agglomeration with more than a hundred publications (within
30 km). In the end we are left with 16,619 distinct cities, with co-authorships
forming 2,084,123 distinct city pairs. These distinct cities and city pairs form
respectively the (potential) nodes and edges of our networks.

3.3 Publication Sets and Counting Methods - Edge Weights

Recall that we aim to understand differences between all scientific publishing
activity and high impact publishing activity. As such, edges and their weights
are determined based on three different publication sets:

1. all, the full publication set;
2. hcp10, consisting only of the top 10% highly cited publications; and
3. hcp1, consisting only of the top 1% highly cited publications.

The highly cited publication sets are determined by ranking publications within
each respective publication year and Web of Science subject category [7]. The
publications are ranked by the number of citations they received in the first
three years after publication excluding self-citations, where ties are broken by the
number of self-citations. By ranking separately for publication years we are able
to determine edge weights for each respective year, thus allowing the creation of
network time-slices. Additionally, we rank each WoS subject category separately,
because different scientific fields have different citation practices and the WoS
subject categories can be used as a proxy for scientific fields. If we were to rank
irrespective of field, we would erroneously select too many publications from
certain fields that receive on average more citations per publication than in
other fields, such as Biochemistry & Molecular Biology [16].

Deciding on the right counting method for a given purpose was another
challenge highlighted by Csomós [9]. For example, when comparing the scientific
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output of cities it may be desirable to count a publication that involves multiple
cities fractionally towards each city. Traditionally fractional counting assigns
equal size parts of the publication to each city. Here, we use the completeness of
the author-affiliation linkages in our data to perform fractional counting based
on the number of authors linked to each scientific city. Hereby, we aim to assign
fractions representing the expected contribution of each city or city-pair.

In this study we use city-pair fractional counting for determining the edge
weights. Let nai,j indicate the number of authors on a publication i linked to
scientific city j and let C be the set of contributing cities. The fraction of pub-
lication i assigned to city pair a, b ∈ C is then determined by nai,a·nai,b∑

j,k∈C nai,j ·nai,k
.

3.4 Network Formation

We are now ready to extract the various co-authorship network time-slices. Due
to variations in the time between conducting research and the publication of that
research, there exist minute annual fluctuations in scientific activity. A common
approach to account for these fluctuations is to compute a normalized or moving
average over a span of three years [11]. Therefore, the 11 time-slices we extracted
each covers three years, respectively 2008–2010, 2009–2011, . . ., 2018–2020.

For each time-slice and publication set, edge weights are determined using
city-pair fractional counting (see Sect. 3.3). Next, we retain only those edges
with a summed weight of more than one per million total publications in that
time-slice, i.e., we obtain the θ-minimum-weight graphs with θ = #publications

1,000,000 .
As such, we exclude edges representing city collaborations that we deem too
weak, while accounting for the overall increase in the number of publications
per year in general. Finally, we reduce the networks to their giant components.
Some basic statistics of the resulting networks are given in Table 1.

Table 1. Basic network statistics (see Sect. 3.4 and 4.1 for details)

Time-slice θ all hcp10 hcp1

n m avg deg n m avg deg n m avg deg

2008–2010 3.56 5,870 71,051 24.2 1,719 10,991 12.8 324 749 4.6

2009–2011 3.75 5,920 72,346 24.4 1,740 11,023 12.7 321 748 4.7

2010–2012 3.96 5,927 72,919 24.6 1,767 10,971 12.4 316 743 4.7

2011–2013 4.27 5,820 71,995 24.7 1,727 10,764 12.5 311 735 4.7

2012–2014 4.60 5,822 72,194 24.8 1,728 10,670 12.3 303 697 4.6

2013–2015 4.97 5,845 72,696 24.9 1,741 10,771 12.4 313 726 4.6

2014–2016 5.37 5,811 71,774 24.7 1,678 10,492 12.5 301 704 4.7

2015–2017 5.72 5,708 71,240 25.0 1,707 10,305 12.1 287 694 4.8

2016–2018 6.01 5,709 71,229 25.0 n/a n/a n/a n/a n/a n/a

2017–2019 6.18 5,700 72,049 25.3 n/a n/a n/a n/a n/a n/a

2018–2020 6.32 5,723 73,433 25.6 n/a n/a n/a n/a n/a n/a
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3.5 Evolving Degree Respecting Rewired Networks

In order to better understand the changes observed in the centrality rankings
between subsequent time-slices, we want to compare these changes to those
observed if the network rewiring was done randomly. The procedure of gen-
erating these networks (see Algorithm 1) involves rewiring a previous time-slice
with an equal number of edge removals (lines 2–7) and edge additions (lines
8–21) as performed in the evolution of the real-world network to the subsequent
time-slice. During this procedure we aim to retain the degree distribution of
the real-world time-slices as close as possible (lines 5 and 13–17). As such, a
comparison with this null model highlights where in the city co-authorship net-
works (core, periphery, etc.) many real-world structural changes occur. We call
these networks evolving degree respecting rewired networks (EDRR). Note, that
robustness checks for the constants used in Algorithm 1 will be performed in
future work.

Algorithm 1: Algorithm for generating an EDRR network
Input: Previous time-slice Gp = (Vp, Ep) and current time-slice Gc = (Vc, Ec)
Output: EDRR network Gr

1 Gr ← Gp

2 for (u, v) ∈ Ep and (u, v) /∈ Ec do
3 Eposs ← {}; r ← 0.1
4 while Eposs = ∅ do
5 Eposs ← {(s, t) : (s, t) ∈ Gr ∧ (1 − r) · degGp(u) ≤ degGr (s) ≤

(1 + r) · degGp(u) ∧ (1 − r) · degGp(v) ≤ degGr (t) ≤ (1 + r) · degGp(v)}
6 r ← r · 2
7 er ← random element from Eposs; Gr ← Gr \ er

8 n new ← [udegGc (u)for all u ∈ Vc, u /∈ Vp]
9 for (u, v) ∈ Ec and (u, v) /∈ Ep do

10 Eposs ← {}; r ← 0.1
11 while Eposs = ∅ do
12 if degGp(u) = 0 then
13 Eposs ← {(s, t) : (s, t) /∈ Gr ∧ s ∈ n new ∧

(1 − r) · degGp(v) ≤ degGr (t) ≤ (1 + r) · degGp(v)}
14 else if degGp(v) = 0 then
15 Eposs ← {(s, t) : (s, t) /∈ Gr ∧ t ∈ n new ∧

(1 − r) · degGp(u) ≤ degGr (s) ≤ (1 + r) · degGp(u)}
16 else
17 Eposs ← {(s, t) : (s, t) /∈ Gr ∧ (1 − r) · degGp(u) ≤ degGr (s) ≤

(1+ r) · degGp(u)∧ (1− r) · degGp(v) ≤ degGr (t) ≤ (1+ r) · degGp(v)}
18 r ← r · 2
19 er = (ur, vr) ← random element from Eposs; Gr ← Gr ∪ er
20 n new ← n new \ {ur, vr}
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4 Results

In this section we discuss our experimental setup, results and limitations.

4.1 Experimental Setup

For each centrality measure (see Sect. 2.2) and impact level, we include in the
rankings only those cities that occur in all time-slices. Additionally, for the full
publication set (all) we consider for each time-slice only the top 2000 cities. This
ensures that cities that do not play a ‘central’ role in the networks, i.e., that are
not of direct importance to the world stage of global science, are excluded. As
such, it mirrors the natural filtering that occurs for the hcp publication sets. By
correlating centrality rankings of the more central cities, observed changes and
differences are more relevant for understanding the world stage of global science.

Because we use three years of citations after publication for determining the
hcp publication sets, the last three time-slices (2016–2018, 2017–2019 and 2018–
2020) are excluded from the from the analysis for hcp10 and hcp1. For this same
reason, statistics on these time-slices are excluded from Table 1.

4.2 Centrality Changes over Time at Various Levels of Impact

Figure 1 shows the correlations between subsequent time-slices for each publica-
tion set and for the four centrality measures under consideration. For all four
measures we see that the correlations for all are slowly but steadily rising. This
tells us that over the years the full world stage of global science has become
increasingly more stable, suggesting the city co-authorship network has become
less prone to structural change. Most ‘stabilisation’ appears to have occurred
between 2009 and 2015 (time-slices 08–10 and 14–16) and is most pronounced
for betweenness centrality. Thus, annual changes in the city co-authorship net-
work have had an increasingly diminished effect on shortest paths in the network.
A pessimistic interpretation of this observation may be that fewer ‘meaningful’
bridging collaborations appear to be formed between ‘distant’ (clusters of) cities.

In Fig. 1 we observe lower correlations for publication sets representing rela-
tively higher impact. A (partial) explanation for this can be found in the nature
of the construction of the hcp networks as well as in their respective size and
average degree (see Table 1). Because the same θ value is used for each publi-
cation set, it is significantly harder for a city co-authorship relation in hcp1 to
be considered ‘meaningful’ than in all since there are a hundred times fewer
total publications. As a result, it is to be expected that the ‘core’ of the city co-
authorship network is more significantly affected on a yearly basis, which in turn
affects the rankings. Furthermore, because the average degree for hcp1 networks
is quite low, relatively weak co-authorships that connect ‘distant’ (clusters of)
cities are more likely to (dis)appear from the hcp networks without alternative
short paths connecting them, thereby significantly impacting the rankings for
centrality measures such as closeness and betweenness. Indeed, we see especially
large fluctuations in the trend of correlations for betweenness centrality for hcp1.



Scientific City Networks 151

Fig. 1. Rank correlations of subsequent time-slices at varying levels of impact.

4.3 Real-World Rank Correlation vs. Null Model

When comparing with randomly generated networks, sufficient random networks
are required to establish meaningful differences between the random and real-
world networks. Therefore, we generated 100 EDRR networks, using the process
described in Sect. 3.5, for each publication set and time-slice (except the first).
For each EDRR network we computed the correlation between the rankings
for that EDRR network and the real-world network of the previous time-slice.
Figure 2 shows the real-world correlation alongside the mean and the error range
defined by the standard deviation (sd-range) of the correlations for each set of
EDRR networks. Because we expect confounding effects from our EDRR network
generation procedure and it is a local measure, degree centrality is excluded.

For eigenvector centrality we observe that the real-world correlations often
lie within the sd-range of the EDRR correlations for both the Spearman and
Kendall’s Tau correlations. Although Kendall’s Tau correlation for all is almost
consistently above random, the difference can hardly be called significant.

For closeness centrality we see that all publication sets have Kendall’s Tau
correlations that are almost consistently above random, while the Spearman cor-
relations are around, above and below random at times. However, the trends of
the Spearman and Kendall’s Tau correlations have similar shapes. This implies
that while the real-world networks observe fewer changes in the order of pairs of
nodes than the EDRR networks, this difference is negated by the exact difference
in the rankings. In other words, the real-world city networks observe many but
relatively small changes in rank while the EDRR networks observe more sub-
stantial changes in rank, i.e., the EDRR networks more often remove/add edges
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connecting otherwise ‘distant’ clusters of cities while the real-world networks
remove/add edges between cities that are otherwise already considered ‘close’.
In short, the real-world city networks follow the expected pattern of more often
establishing new co-authorship relations with ‘close’ cities than ‘distant’.

For betweenness centrality we observe a similar trend as for closeness cen-
trality. Especially for hcp10 the difference between the real-world Kendall’s Tau
correlation and random is far more significant than it was for closeness. As
such, changes in the real-world networks appear to have far less influence on
the betweenness centrality than in the EDRR networks. This may imply that
more of the annual real-world city network rewiring occurs in the periphery. This
inference is further supported by the fact that the differences are smaller for the
full publication set for which most periphery nodes are likely already excluded
from the analysis. As such, the real-world removal and addition of edges impacts
the shortest paths between all pairs of cities less than random.

Fig. 2. Rank correlations of subsequent time-slices comparing the real-world network
results against the mean and sd-range of EDRR networks.

4.4 Limitations

An important limitation of this work is that we focus entirely on unweighted
networks, generated from weighted networks using thresholds. When studying
the co-authorship between cities, the ideal edge weight should represent the ease
with which a co-authorship between cities is formed. Although we have a frac-
tional publication output associated with each edge, this weight is likely a poor
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representation of the ease of co-authorship formation. Since there is no simple
numerical computation of ‘the ease of forming a co-authorship’ based on existing
scientometric data, we instead use θ-minimum-weight graphs to establish a min-
imum co-authored scientific output for a relation to be considered ‘meaningful’.

5 Conclusions

In this paper we investigated the stability and evolution of the world stage
of global science at the city level by analyzing changes in network centrality
rankings over time. First, we proposed an approach for delineating scientific
cities and extracted 3-year time-slices of scientific city co-authorship networks
from Web of Science at various levels of impact. Comparing correlations between
centrality rankings of subsequent time-slices, we determined that the world stage
of global science has become more stable over time. We proposed a new rewiring
procedure to generate so-called EDRR networks in order to determine significant
real-world rank correlations compared to a sensible null model. We found that
closeness and betweenness centrality rankings were more stable for the real-world
networks, implying that new co-authorships between authors from previously
unconnected cities more often connect ‘close’ cities in the network periphery.
Having established a systematic method of comparing centrality rankings over
time, we want to find more substantive insights for specific cities in future work.
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