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Abstract

1. Accurate predictions of the abundance of migrating birds are important to avoid

aerial conflicts of birds, for example, with aviation or wind power installations.

2. Here we develop a predictive model, using bird migration intensity extracted from

operational weather data. We compare baseline phenological models to mod-

els incorporating both local and remote weather conditions using an ensemble

approach. Single models are compared to ensemble models (average prediction

of top 10 models). The models were evaluated by omitting single years from our

10-year dataset.

3. In general, we find that wind conditions, in addition to seasonal and diurnal dynam-

ics, are key for accurate predictions. The spring and fall migratory seasons differ,

both with respect to the selected environmental variables and the contribution

of the environmental model compared to the phenological model. In fall, the

accumulation of migrants due to strong headwinds is an important predictor of

migration.

4. Because of the lower daily variation in migration intensity in spring, the phenolog-

ical model performs better compared to fall. In fall, weather conditions contribute

more to accurate predictions of migration intensity than in spring.

5. Overall, the ensemble approach produces more accurate predictions outperform-

ing specific environmentalmodels.We therefore recommend that ensemblemodels

be used in operational settings such as flight planning to reduce bird aircraft

collisions during intense birdmigration.
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1 INTRODUCTION

Each spring and fall, billions of birds migrate between breeding

and non-breeding ranges all over the globe (Dokter et al., 2018;

Nussbaumer et al., 2020). During their migratory movements, birds

encounter diverse anthropogenic activities that have direct conse-

quences for migrants and humans. Artificial lights can attract birds

and thus influence migration routes (Van Doren et al., 2017). Migrants

may collide with tall structures such as higher buildings, power lines

and wind turbines, resulting in mortality (Loss et al., 2014). Or birds

may avoid large wind parks resulting in increased flight costs. Colli-

sions between birds and aircraft can also have direct consequences

for human safety, especially during take-off or low-level flights (Van

Gasteren et al., 2019). To reduce the impact of these human–wildlife

conflicts, there is a strong interest in predicting temporal patterns

of migration (Shamoun-Baranes et al., 2017). Predictions can be used

to inform policy related to light pollution, temporary shutdown of

wind turbines or temporary changes in aviation planning (e.g. halting

take-off or landing, changing altitude or holding exercises). Accurate

predictions are thus of acute interest.

To accurately predict migration, insights into the major drivers of

migration are needed. The most frequently used drivers for mod-

elling migration intensity fall into two major categories: phenological

trends and weather (Erni et al., 2002; Van Belle et al., 2007). Sea-

sonal timing of the annual cycle driven by, for example, day length,

is considered one of the key factors influencing the general timing of

migration (Gwinner & Helm, 2003). Ultimately birds aim to synchro-

nize migration with peaks in resource availability. Seasonal timing may

therefore differ among species and regions. In addition, diurnal pat-

terns are also known to influence migration activity. Migratory species

are often categorized as diurnal or nocturnal. For example, passerines,

one of the most abundant migrant groups, predominantly migrate dur-

ing the night. Thus circadian migratory trends relate to sunrise and

sunset.

Besides phenological trends, the weather has been shown to influ-

ence migratory behaviour and thus the number of birds passing an

area (Alerstam, 1978; Richardson, 1990). Wind can influence ground

speeds, airspeeds, flight routes and flight altitudes of birds during

migration, supporting or impeding flight (Liechti, 2006). Advantageous

wind conditionsmake it possible to increase the distance coveredwith-

out increasing the flight speed (Safi et al., 2013). Therefore, birds are

more likely tomigrate under these conditions (Åkesson&Hedenström,

2000). Precipitation has been found to correlate negativelywithmigra-

tion intensity and departure decisions (Erni et al., 2002; Richardson,

1990). Other variables can relate to weather systems or a set of com-

bined weather conditions (air pressure and change in air pressure) and

temperature (Manola et al., 2020). To summarize, a range of weather

variables have been related tomigratory intensity and used for predic-

tions of migration (Alerstam, 1978; Van Belle et al., 2007; Van Doren &

Horton, 2018).

Predictive models should also account for differences in migratory

dynamics and processes between seasons. There are several reasons

migration may differ between spring and fall. The intrinsic motivation

influencing migratory behaviour may differ among seasons. In spring,

birds are thought to have a competitive advantage by arriving ear-

lier in the breeding area. Several studies found a higher migration

speed in spring compared to fall (Horton et al., 2016; Nilsson et al.,

2013), although seasonal weather patterns can partially explain these

differences (Kemp et al., 2010). Additionally, the demographic compo-

sition of individuals differs between fall and spring and thus potentially

the response to external factors. In fall, there is a higher proportion

of inexperienced birds which might respond differently to weather.

Furthermore, weather patterns differ between seasons (Kemp et al.,

2010). This means birds might have different selectivity for favourable

conditions in different seasons.

To develop successful predictive models, one needs observations

of migrating birds. Observations of migratory intensity should cover

multiple years to separate phenological trends in bird migration from

weather effects. This is desirable as weather conditions differ among

years, and predictions should be independent of the specific conditions

in 1 year (Van Belle et al., 2007). A weather radar is a powerful tool to

remotely, continuously and systematically quantifymigration densities

above given airspace (Dokter et al., 2011), and for several countries

data archives are available to enable the analysis of several years of

data. It has been shown that measurements from the weather radar

are a strong correlate of bird strikes in civil aviation (Nilsson et al.,

2021). Another advantage is that weather radars cover a larger area

compared to visual observations and dedicated bird radars. They thus

provide insight into the trends of migration across a larger region.

To gain insight and confidence into the predictions of migration, it

is important to understand the biological basis of the prediction. For

various machine learning techniques, these insights might be harder

to provide (James et al., 2013), although interpretable and explainable

machine learning is a quickly developing and active field of research

(Roscher et al., 2020). Inmost statisticalmodelling techniques, the rela-

tions between environmental conditions and the final predictions are

easier to explore and understand.

The aim of this study is to develop predictive models for bird migra-

tion in spring and fall which will be used to structure flight planning

and reduce the impact of bird strikes on military aviation. These mod-

els will be used to issue BirdTAMs (Bird-notice-to AirMen) for aviation

(Van Gasteren et al., 2019). BirdTAMs range from one to eight and

correspond to a vertically integrated per density of birds per km2

or density per altitudinal bin (per km3). From level five warnings are

issued, and from level seven onward flight restrictions are issued up

to heights where levels drop below five. We want to emphasize pre-

dicting moments of peak migration as these have the highest impact

on flight safety. We use long-term migration intensity data extracted

fromweather radar. Given the range of possible environmental factors

influencing migration intensity, one combined environmental model

could result in overfitting. Overfitting can be solved by creating an

ensemble of models or model average. By combining results from

multiple smaller models into one aggregated prediction, the predic-

tion error is reduced (Dormann et al., 2018). For such an ensemble

model, the recommendation is to use omitted data for the evaluation

of the performance.
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We apply a two-step modelling approach; we first develop a pheno-

logical model to represent the seasonal and daily long-term migration

dynamics and then test the added value of including weather vari-

ables. To evaluate model performance, we iteratively omit four single

years for which we calculate predictions. We evaluate these predic-

tions recognizing that phenological trends are part of the expectation,

andwe compare phenologicalmodels tomodels including environmen-

tal variables. For estimating the benefits of ensemble modelling, we

compare singlemodelswith predictionsmadewith an ensemblemodel.

We investigate changes in both the prediction accuracy and the con-

sistency of the predictions, while doing so we investigate differences

between spring and fall. Finally, we discuss the benefits and limita-

tions of using an ensemble prediction for aviation safety and other

potential applications.

2 METHODS AND MATERIALS

Several environmental conditions have been suggested to correlate

with the number of migrants. Some of the most frequently used vari-

ables are wind conditions, occurrence and abundance of rain, surface

pressure and air temperature (Alerstam, 1978; Van Belle et al., 2007;

Van Doren & Horton, 2018). Therefore, selecting the optimal com-

bination of environmental independent variables is a complex and

important task. Identifying an optimal set of environmental variables

simplifies implementing an operational model. To evaluate the perfor-

mance of models based on various environmental conditions, we use

model selection using a separate testing dataset. The results of this

are used to identify the best performing model (for schematic model

illustration see Supporting Information Section 1). Simultaneously, we

average the topmodels to create an ensemble of models.

2.1 Bird densities

To model the migration intensity, we rely on vertically integrated den-

sity (birds∕km2) estimates derived from weather radar using a radar

cross section of 11 cm2 per bird (Dokter et al., 2011). The data were

extracted from 2008 to 2019, the years 2012 and 2013 were omit-

ted because of poor performance in separating rain from birds in these

years. At least, an additional period with the combined length of 43.3

days would need to be filtered out for those 2 years compared to

the 21.6 days in total filtered now. Spring season was defined from

15 February until 30 April and fall from 1 August until 30 Novem-

ber. We combine data from two C-band radars in the Netherlands

successively deployed in close proximity (before October 2016, De

Bilt, ODIM: NLDBL, longitude/latitude: 5.178◦, 52.102◦; after October

2016, Herwijnen, ODIM: NLHRW, longitude/latitude: 5.138◦, 51.837◦).

The distance between these radars is 29.6 km, and they cover the

same central (flat) area of the Netherlands (Supporting Information

Section 2). Both radars observed at a 5-min interval. We calculate the

vertically integrated bird density using the software package vol2bird

within a range between 5 and 25 km from the radar (Dokter et al.,

2011). For quality control, vertical profile time series of peak nights

were visually inspected, omitting periods of rain and other non-bird

reflections that were not filtered out by vol2bird. Combined 149.1 h

(distributed across 32 distinct time periods) of data were omitted in

spring and 368.8 h (across 43 periods) in fall. For vertical integra-

tion, the lowest altitudinal bin, between 0 and 200 m, was omitted as

birds were identified inconsistently at this height and for our purpose

of flight safety this range is less important. In total, the dataset con-

tains 193,731 records in spring of vertically integrated densities for 5

min intervals and 323,166 records in fall (with a range of, respectively,

12,121–21,465 and 28,369–34,647 per year).

2.2 Environmental conditions

We annotate every 5-min radar measurement of bird density with

environmental conditions, in three different categories: local weather,

remoteweather and an index for the accumulation of birds due to poor

weather conditions (Table 1). Because we develop a model with the

explicit purpose of predictive modelling, we opt to not include mea-

surements of the past migration densities in our approach for two

reasons. First, they are not always available, for example, when there

is maintenance on the weather radars. Second, as a prediction hori-

zon of 2–3 days (to allow for planning of mitigation) is required there

will be no information available for bird densities in the intermediate

period. This means if recent bird densities were included in the model

as predictors they would need to be predicted themselves. This would

reduce the value of these measurements for predictive purposes, and

therefore they are not included.

Weather conditions were linearly interpolated in time from the

ECMWF ERA5 dataset (Hersbach et al., 2020). We extracted data

from the location of the radar site and the conditions at locations

where birds could depart from. The local conditions were averaged

in a circle with a radius of 25 km around the radar at the surface

level and linearly interpolated from pressure level data to the aver-

age in an altitude range from 400 to 1000 m as most migration in

both seasons is concentrated below 1000 m. In spring, we selected

two departure locations reflecting two streams of migration through

the Netherlands: the south-east of the United Kingdom and the north-

west coast of France (Supporting Information Section 2; Bradarić et al.,

2020). For these locations, we averaged weather conditions in a cir-

cle with a radius of 75 km. In fall, we selected four departure locations

in Norway, Sweden, Denmark and north-east Germany. For all remote

locations, we averaged surface pressure and 10 m wind conditions

interpolated in time for the 90-min following sunrise or sunset to

reflect the departure period throughout the day and night. We do not

use environmental data from times later in the night for those remote

locations.Wealways includebotheast-west andnorth-southwindcon-

ditions at the same time to allow the model to describe any wind

condition.

Periods of unfavourable migratory conditions can cause an accu-

mulation of migrants that would have departed weather conditions

permitting. This leads to an especially high number of migrants during
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TABLE 1 The environmental variables included in the ensemblemodel.

Description Season Location Springweights Fall weights

Wind at 10m (NS and EW) Both Local 10 (5–13%) 8 (7–9%)

Wind at 100m (NS and EW) Both Local 8 (4–15%) 9 (5–10%)

Wind at height (NS and EW, 400–1000m) Both Local 17 (13–21%) 9 (5–18%)

Cloud cover Both Local 2 (2–5%) 1 (1–2%)

Precipitation rate Both Local 6 (6–10%) 7 (6–8%)

Surface temperature Both Local 9 (5–18%) 1 (1–6%)

Temperature at height (400–1000m) Both Local 34 (16–35%) 1 (1–7%)

Pressure Both Local 1 (0–5%) 3 (3–4%)

24-h change in surface pressure Both Local 0 (1–3%) 8 (6–16%)

Sun angle Both Local 16 (13–16%) 9 (4–9%)

Sun angle change Both Local 13 (10–13%) 4 (5–11%)

Accumulation to cloud cover Both Local 5 (3–5%) 2 (2–4%)

Accumulation to rain Both Local 2 (0–4%) 3 (1–8%)

Accumulation to unfavourable wind Both Local 4 (0–7%) 1 (0–1%)

Accumulation to unfavourable wind and rain Both Local 4 (1–3%) 3 (1–7%)

Change in accumulation due to cloud cover Both Local 3 (0–4%) 1 (1–2%)

Change in accumulation due to rain Both Local 2 (0–2%) 3 (1–5%)

Change in accumulation due to unfavourable wind Both Local 9 (10–16%) 41 (28–44%)

Change in accumulation due to unfavourable wind and rain Both Local 4 (3–7%) 28 (15–31%)

Pressure Norway Fall Remote 7 (3–13%)

Pressure Germany Fall Remote 3 (0–2%)

Pressure Denmark Fall Remote 8 (3–12%)

Pressure Sweden Fall Remote 4 (3–7%)

Pressure France Spring Remote 1 (0–5%)

Pressure United Kingdom Spring Remote 0 (0–2%)

Surface windNorway (NS and EW) Fall Remote 0 (0–1%)

Surface wind Germany (NS and EW) Fall Remote 3 (1–6%)

Surface windDenmark (NS and EW) Fall Remote 1 (0–3%)

Surface wind Sweden (NS and EW) Fall Remote 0 (0–1%)

Surface wind France (NS and EW) Spring Remote 2 (1–3%)

Surface wind United Kingdom (NS and EW) Spring Remote 14 (5–10%)

Note: The rightmost two columns represented the summed weights for spring and fall of the ensemble models, where these variables occur in. Between

brackets, we report the range of weight for the four datasets where 1 year has been omitted. Values between 5–10% have been highlighted in grey, 10–20%

in light red and the highest values in red. For wind, we always included both the north-south and east-west components together.

the first days after environmental conditions improve. To capture this

effect, we calculate an index for the hypothetical number of birds ready

to depart, according to Erni et al. (2002), for day and night separately.

This work requires a binary definition of whether the average condi-

tionsperdayornightwere favourableornot formigration.Weselected

three different environmental variables for unfavourable conditions to

calculate three different accumulation variables. We suppose migra-

tion would cease when: (1) headwinds along the average migration

direction (spring: 57◦, fall: 229.3◦, for full dataset) would significantly

hinder migration (over 7 m∕s; Kemp, 2012), (2) when rain exceeds an

average of 1 mm∕d or (3) when the average total cloud cover exceeds

0.9 1∕h. These thresholds have been identified by comparing the dis-

tribution of environmental conditions for the top 10% of migratory

nights and the lower 50%of nights.We add a fourth accumulation vari-

able, representing the combined conditions when either rain or wind

prevented migration. We explored accumulation indexes based on five

different fractions in initialmodels. A fraction of 𝜃 = 3∕4 performed best

in these exploratory models; therefore, this was used for the fraction

of birds that carry over from the previous nights while accumulating.

As the work of Erni et al. (2002) calculates an index for the number of

birds ready to depart, we furthermore include the time derivative rep-

resenting the birds that are departing. The change in accumulation is

calculated as the difference in accumulation between the current with

the previous day or night.
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2.3 Modelling

To describe the migration density, we use generalized additive mod-

els with a quasi-Poisson distribution family (Wood et al., 2015). These

models do not assume a specific relationship between the indepen-

dent variables and the dependent variable. By using the quasi-Poisson

error family with a log link function, we account for the distribution

of the density data, with only positive values and a higher variance at

higher values.

We first fit a model that captures the general phenological trends

in migration. This model comprises a tensor spline comprising three

variables: day of the year, allowing to capture seasonal trends, solar

elevation to capture circadian effects relative to sunset and sunrise

and time derivative of solar elevation to distinguish between sunset

and sunrise (calculated using a numerical derivation over the surround-

ing minute (rad∕min)). We implement seasonal trends this way as it is

easier for the model to capture effects relative to sunset and sunrise

compared to using time of day as an independent variable.

To emphasize accurate prediction of peak migration, we introduce

weighting of the residuals for deviance calculations while fitting and

evaluating themodels:

weight = 1 + bird density0.75. (1)

Weighing in this way is equivalent to an observation being made as

many times as the weighing factor. The weighting scheme was decided

on by inspecting the phenological models and balancing the ability of

the model to capture peak periods while not emphasizing migration

peaks that occur in single years (e.g. 3–4 October 2016; Supporting

Information Sections 3 and 6.2.3). We use this weighting throughout

our analysis both while fitting themodels andwhile evaluating them.

Using the phenological model as a basis, we fit models that include

environmental variables. Each model consists of a tensor spline with

the predictions of the phenological model, representing the expected

seasonalmigration, togetherwith oneenvironmental variable or a pair-

wise combination of two variables (Table 1). Variables related to the

solar position were included to capture interactions between the time

of day and environmental conditions.Weexclude interactions between

conditions at different remote sites as these seem biologically irrel-

evant and interactions between different wind conditions as these

would result in high-dimensional models. This procedure results in 261

different environmental models in spring and 335 in fall. These num-

bers vary per season as the number of remote locations included in the

models differs.

To identify the best model from these different environmental

models, we use cross-validations. The dataset was split 10 times for

cross-validation datasets with a 70:30 division. We excluded regular

spaced continuous sections from the time-ordered data for cross-

validation to avoid the influence of temporal correlations. For each

environmental model, we calculate the deviance by the sum of squares

to the excluded 30% of data. Using these deviances, we have two

strategies to select models for final predictions that we compare,

either select the best performing model or select the top 10 models

for each cross-validation. To calculate final predictions, we compare

both strategies.

We investigated the importance of the various environmental

predictors by exploring how frequently they get selected in the cross-

validations. By investigating the percentage of models where variables

occur in, we summarize which environmental conditions contribute

most. The range indicates the variability in this measure for the four

datasets where a year has been omitted.

2.4 Prediction evaluation

To evaluate the overall performance of our approach, we omit single

years from our dataset. We selected 2009, 2014, 2016, and 2019, as

these are distributed over the study period. Predictions of the ensem-

ble model and models that have been performing best in at least one

cross-validation aremade for these single omitted years, anddeviances

of predictions are calculated. This allows for to evaluate the model

independently of the data used for model development (Dormann

et al., 2018). To put these deviances in context, we calculate the ratio

between these deviances and the deviance calculated from predic-

tions based on the phenological model only. This evaluation allows to

investigate the added value of including weather and accumulation

input compared to the base expectation of the phenological model.We

furthermore explore receiver operating characteristic (ROC) curves

to visualize the predictive performance for BirdTAM density thresh-

olds (10, 20, 40 birds∕km2) of the phenological and ensemble model

(Fawcett, 2006).

3 RESULTS

The phenological model, when applied to the full dataset captures the

seasonal and diurnal trends of migration (Figure 1). Both seasons show

a high density of birds just after civil dusk as well as civil dawn in fall.

The seasonal timing of these peaks occurs in the second half of March

in spring and at the beginning ofOctober during fall. The peak ofmigra-

tion is higher in fall compared to spring. Another noticeable feature is

the high density of migrants just before midnight in spring (Figure 1a).

When fitting a gamma distribution to the nightly mean density for the

peak periods (second half of March, first half of October), we find that

the means for fall nights are more spread (spring: 𝛼 = 1.57 𝛽 = 0.17;

fall: 𝛼 = 1.12 𝛽 = 0.11). We used a gamma distribution as it fits the

skewed nature of the data.

The environmental conditions make it possible to describe times

with higher and lower migration intensities than expected based on

the phenological model alone (Figure 2). By exploring weights in the

ensemble, we investigate the importance of environmental conditions

(Table 1). Wind conditions are represented in 51% (35–62%) of the

total ensembleweight in spring and30% (25–38%) of theweight in fall.

In spring wind conditions in the United Kingdom turn out to be impor-

tant, contributing 14% (5–10%) of all weights. Other important factors

are the accumulation variables, which are included in 33% (23–39%) of
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6 of 10 KRANSTAUBER ET AL.

F IGURE 1 The seasonal migration trends as fitted over all the data. The phenological trends are visualized over time of year and time of day.
Themodel is fitted as a function of time of year, solar elevation and the time derivative of solar elevation. The peaks of migration after civil dusk
and dawn (white line) are visible during the peakmigratory periods at the end ofMarch and the beginning of October

F IGURE 2 An example of the predictivemodel applied to the omittedOctober data of the year 2016. The orange line is the observed density.
The purple line is the prediction by the phenological model, while the dark blue line corresponds to the ensemblemodel. Grey lines correspond to
single environmental models
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F IGURE 3 The performance of the different modelling strategies compared to the phenological model. Colours correspond to the different
years for which data have been omitted. (a, c) Deviance ratios below one show that the environmental model performed better than the
phenological model. The black point shows the geometric mean. The ensemblemodels on the right side have a lower deviance ratio and thus
perform better. For the single models, there aremultiple points per year, as different models performed best in each of the 10 cross validations. (b,
d) The ROC curves for the ensemblemodels predicting a threshold of 10 birds∕km2. Curves are plotted both for the phenological (pale colours)
and environmental model (bold colour). The black line is the average between the different ROC curves. Using these plots, we can identify the
effectiveness of themodel for identifying high-density migration events (e.g. in fall with the right threshold in the environmental model 75% of the
occurrences of more than 10 birds∕km2 can be identified while only in 10% of fall cases with a low density of migrants the warning is raised, that
is false negatives/positives)

the spring models and 68% (59–71%) of the fall models. Most of these

are thederivative of the accumulation, respectively, 18% (17–25%) and

66% (56–65%) of the total weight. All combined remote conditions

get weighted less in spring (17% (6–19%)) compared to fall (26% (16–

37%)). Surface pressure and the 24-h change in surface pressure either

remote or local occur hardly in the spring models (1% (1–8%)), while

they aremore common in fall (29% (22–43%)).

The average performance of the ensemble model, measured as

the improvement over the phenological model, is better than the sin-

gle environmental model (Figure 3). Furthermore, the variation in

performance between the models that were best in one of the cross-

validations compared to the ensemble is much higher. On several

occasions, single models perform even worse than the phenological

model, which is a sign of over-fitting. In contrast, the ensemble mod-

els always perform better than the phenological model. The average

deviance ratio for the ensemble model in fall is lower compared to

spring, indicating that environmental variables contribute more to

accurate predictions in fall. The more accurate predictions of the

ensemble model in fall compared to spring are also seen in the ROC

curves for predicting thresholds of migratory intensity (Figure 3; Sup-

porting Information Section 4). In spring, the difference between the

ensemble models and phenological models is lower and the area under

the curve is lower (Figure 3b,d).

Performance characteristics can also be used to identify how fre-

quently warnings (BirdTAM > 5) for aviation safety would be raised,

to do this we use ROC curves. Using the criterion that 75% of the

time (i.e. of the 5-min observations) where the bird density exceeds

10 birds∕km2 should be correctly identified (true positive fraction), we

calculate the percentage of time thewarning should be raised using the

ensemble model. In spring that would be 23.9% of the time and in fall

14.5% of the time. The spring warning period is considerably longer

compared to fall; this relates to the difference in model performance

(Figure 3; Supporting Information Section 4). Furthermore, the num-

ber of false positives also relates to the rarity that the threshold is
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8 of 10 KRANSTAUBER ET AL.

exceeded in the observed data (11.1% of the time in spring and 7.4%

of the time in fall).

4 DISCUSSION

Based on our findings, we recommend an ensemble model over sin-

gle models when considering predictive applications such as providing

warnings for aviation flight planning. The average performance is bet-

ter, and the performance is less variable.Wind conditions are the most

important contributor to environmental models. This contribution is

through the accumulation of birds and direct effects.

In contrast to othermodels (VanBelle et al., 2007;VanDoren&Hor-

ton, 2018), we model both seasons separately to be able to compare

them. There are large differences between spring and fall both in the

prediction quality and the selected environmental variables. This war-

rants modelling the seasons as separate processes. These differences

are already noticeable in the phenological model and to some extent

can be explained by regional migration dynamics. The midnight peak in

spring, for example, likely relates to migrants arriving from the United

Kingdom, several hours after departure (Figure1;Bradarić et al., 2020).

To investigate this further,we take a detailed look at the averagemigra-

tion directions between the 10th and 25th of March for times with a

high density ofmigrants (20 birds∕km2). This ismore northerly (20:00–

21:00 UTC, 57.1◦) at the beginning of the night compared to later in

the night (23:00–00:00 UTC, 72.7◦) when migrants with a more east-

erly direction from the United Kingdom arrive. Response to weather

also differs among seasons. In spring, air temperature at elevation is

an important variable (Table 1). This corresponds to earlier findings in

the United States for spring migration (Van Doren & Horton, 2018). In

fall, there is high importance of the accumulation of variables. This can

be explained by the poorer migratory conditions in fall where fewer

days are suitable for migration (Kemp et al., 2010) which results in

higher variability of the density of migrants between days. This means

that environmental models have a larger impact in the fall compared to

spring (Figure 3). It is important to realize that the phenological model

also implicitly captured regional climatic trends which influence phe-

nology. Small differences between theperformanceof thephenological

and environmental models can have consequences for application too

as the phenological model does not change between years. The pheno-

logical model can be used for planning of downtime and maintenance

weeks or even years ahead as it provides a long-term expectation of

periods of highmigration densities.

By exploring the deviation between the predictions and observa-

tions for omitted years, it is possible to explore possible improvements.

On the night of 3–4 October 2016, there is a migration peak that

is not predicted accurately (Figure 2). However, when looking at the

source data (Supporting Information Section 5), this night has excep-

tional migration densities across a large proportion of western Europe

(Nilsson et al., 2019). On no other night of the 10-year dataset, amigra-

tory peak of thismagnitude occurred (Supporting Information Sections

5 and 6); and only if similar peaks are part of the training data, we can

expect that such peaks are predicted well. Another exceptional event

is the high density of migrants in the second half of April 2019 (Sup-

porting Information Sections 5 and 6). We think this relates to the

ongoing easterly wind in this period displacing migrants that would

normally migrate through Germany (see Lensink (2002)). To capture

these effects, additional variables such as the accumulation of east-

erly winds can be helpful. These once in 10-year events show the

importance of long training datasets and the necessity for suitable data

archives (Shamoun-Baranes et al., 2021).

Earlier predictive models are a powerful tool for planning military

aviation exercises (Van Gasteren et al., 2019). These models were

based on two air defence radars, while a network of weather radars

in north-west Europe is currently used to issue BirdTAMs. By improv-

ing on existing models through expanding the training dataset, and the

environmental data used we expect these models to be of a higher

value because they are basedon the samedata source (weather radars)

and a 10-year long dataset. From studying the model, we gain ecologi-

cal insight into the differences between spring and fall. Understanding

the difference helps us improve on the models and improve future

predictions. Similar models could also be valuable for civil aviation to

support decisions (Nilsson et al., 2021) and to support shutdown or

curtailment decisions for wind turbines (Marques et al., 2014).

The experiences from these predictive models are not unique to

predictingmigration formilitary aviation. Similar structural differences

between seasons and selectionof environmental variables are likely for

models specific to predictingmigrationwith the aim tomitigate the risk

of birds colliding with wind turbines. Understanding the structure of

the predictability, for example the quality of a phenological model, can

be important for planning of replacement capacity whenwind turbines

are shut down.
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