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Chapter 8

Development and internal
validation of machine learning
algorithms for preoperative
survival prediction of extrem-
ity metastatic disease.

Q.C.B.S. Thio, A.V. Karhade, B.J.J. Bindels, P.T. Ogink, J.A.M. Bramer, M.L. Fer-
rone, S.A. Lozano Calderón, K.A. Raskin, J.H. Schwab.
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Abstract

Background

A preoperative estimation of survival is critical for deciding on the operative manage-
ment of metastatic bone disease of the extremities. Several tools have been developed
for this purpose, but there is room for improvement. Machine learning is an increas-
ingly popular and flexible method of prediction model building based on a data set.
It raises some skepticism, however, because of the complex structure of these models.
The purposes of this study were (1) to develop machine learning algorithms for 90-day
and 1-year survival in patients who received surgical treatment for a bone metasta-
sis of the extremity, and (2) to use these algorithms to identify those clinical factors
(demographic, treatment related, or surgical) that are most closely associated with
survival after surgery in these patients.

Methods

All 1090 patients who underwent surgical treatment for a long-bone metastasis at
two institutions between 1999 and 2017 were included in this retrospective study.
The median age of the patients in the cohort was 63 years (interquartile range [IQR]
54 to 72 years), 56% of patients (610 of 1090) were female, and the median BMI
was 27 kg/m2 (IQR 23 to 30 kg/m2). The most affected location was the femur
(70%), followed by the humerus (22%). The most common primary tumors were breast
(24%) and lung (23%). Intramedullary nailing was the most commonly performed type
of surgery (58%), followed by endoprosthetic reconstruction (22%), and plate screw
fixation (14%). Missing data were imputed using the missForest methods. Features
were selected by random forest algorithms, and five different models were developed
on the training set (80% of the data): stochastic gradient boosting, random forest,
support vector machine, neural network, and penalized logistic regression. These
models were chosen as a result of their classification capability in binary datasets.
Model performance was assessed on both the training set and the validation set (20%
of the data) by discrimination, calibration, and overall performance.

Results

We found no differences among the five models for discrimination, with an area under
the curve ranging from 0.86 to 0.87. All models were well calibrated, with intercepts
ranging from -0.03 to 0.08 and slopes ranging from 1.03 to 1.12. Brier scores ranged
from 0.13 to 0.14. The stochastic gradient boosting model was chosen to be deployed
as freely available web-based application and explanations on both a global and an
individual level were provided. For 90-day survival, the three most important factors
associated with poorer survivorship were lower albumin level, higher neutrophil-to-
lymphocyte ratio, and rapid growth primary tumor. For 1-year survival, the three
most important factors associated with poorer survivorship were lower albumin level,
rapid growth primary tumor, and lower hemoglobin level.
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Conclusions

Although the final models must be externally validated, the algorithms showed good
performance on internal validation. The final models have been incorporated into a
freely accessible web application that can be found at https://sorg-apps.shinyapps.io/
extremitymetssurvival/. Pending external validation, clinicians may use this tool to
predict survival for their individual patients to help in shared treatment decision mak-
ing.

Level of Evidence Level III, therapeutic study.
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8.1 Introduction

The incidence of cancer grows annually; approximately 14 million patients were diag-
nosed with the disease in 2012,1 and approximately 18 million were diagnosed in 2018.2

Simultaneously, the survival rates of patients with cancer have increased because of
improved treatment options, including those for metastatic cancer. Three cancers
with the highest incidence, namely prostate, lung, and breast cancer, have a high
propensity to metastasize to bone.3,4 It is therefore expected that both the incidence
and prevalence of metastatic bone disease will increase. Bone metastases can lead to
pathologic fractures and can dramatically decrease a patient’s quality of life, caus-
ing pain and immobility.5 Because metastatic cancer is generally deemed incurable,
treatment is intended to treat the symptoms and maintain quality of life. Treatment
options for these patients include systemic therapy, radiotherapy, and surgery. Deter-
mination of operative management is influenced by estimated survival.6 In patients
with bone metastases of the extremities, two survival thresholds are generally consid-
ered important: 90 days and 1 year.7 Patients who are not expected to live beyond 90
days usually will not benefit from surgery, while patients who live beyond 1 year will
benefit from more-invasive and enduring reconstruction procedures.6

Several prognostic models have been developed in the past decades to help physi-
cians in their estimations for patients with bone metastases of the extremities.7–12

These models range from simple scoring systems to more complex machine learning
algorithms. Although these models perform well, it is necessary to keep modifying
and optimizing them, particularly because new prognostic factors are continuously
being investigated and more-advanced machine learning techniques now can be used
for both prediction and explanation. Machine learning is a subset of computer science
and statistics. It is capable of handling large amounts of data and recognizing complex
combinations of predictors for a certain outcome by using modern computational and
mathematic algorithms.13,14 So far, a limited number of studies have used machine
learning to develop prognostic models for patients with a bone metastasis of the ex-
tremities,7,10 and only a few machine learning algorithms have been explored for that
purpose. We recently explored different machine learning algorithms for the survival
prediction of patients suffering from chondrosarcoma,15,16 using a similar methodol-
ogy for model development and performance assessment as the current study. One
of the main disadvantages of machine learning algorithms is the so-called “black box
problem”; we are able to observe the data we enter into the computer as well as the
output the algorithms give us, but what happens in between sometimes is unclear.
In this study, we aimed to address these drawbacks while preserving the predictive
performance of the resulting algorithms.

Therefore, the primary purpose of this study was to develop machine learning
algorithms for 90-day and 1-year survival in patients who received surgical treatment
for a bone metastasis of the extremity. Our secondary aim was to use these algorithms
to identify those clinical factors (demographic, treatment related, or surgical) that are
most closely associated with survival after surgery in these patients.
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8.2 Materials and Methods

Study Design and Population

This study was performed according to the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis17 and the Strengthening the
Reporting of Observational Studies in Epidemiology18 guidelines.

All 1090 patients 18 years and older who underwent surgical treatment for a long-
bone metastasis at the Massachusetts General Hospital and the Brigham and Women’s
Hospital between 1999 and 2017 were included in this retrospective study. Surgical
treatment consisted of intramedullary nailing, endoprosthetic reconstruction, plate
screw fixation or dynamic hip screw. Patients were excluded if the first surgical treat-
ment of the long-bone metastasis was not performed at one of these institutions. If a
patient received multiple surgical procedures for a long-bone metastasis, only the first
procedure was included. In general, the decision to operate or not was based on the
health of the patient and the patient’s wishes. Patients who were expected to have a
long survival were treated with more durable and invasive procedures than patients
who were not expected to have a long survival.

Explanatory Variables and Outcome

We reviewed operative notes, medical records, radiology reports, and pathology re-
ports to record the following variables: age; sex; BMI (kg/m2); any Charlson co-
morbidity in addition to metastatic cancer; primary tumor type;9 the Eastern Co-
operative Oncology Group score; tumor location; the presence of a pathologic frac-
ture, other bone metastases, spine metastases, visceral metastases, brain metastases;
and previous systemic therapy and local radiation. Preoperative laboratory fac-
tors were the hemoglobin level (g/dL), white blood cell count (x103/ µL), platelet
count (x103/µL), absolute lymphocyte count (x103/µL), absolute neutrophil count
(x103/µL), neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte count, albumin level
(g/dL), and alkaline phosphatase (IU/L), calcium (mg/dL), creatinine (mg/dL), and
sodium (mg/dL) levels.

The primary outcome of interest was overall survival, and this was verified from
the medical records or the Social Security Death Index.19

Missing Data

Missing data were imputed using the missForest methods.20 This was performed for
variables with less than 30% of missing data: BMI: 237 (22%); hemoglobin level:
146 (13%); white blood cell count: 146 (13%); platelet count: 146 (13%); absolute
lymphocyte count: 326 (30%); absolute neutrophil count: 322 (30%); albumin level:
320 (30%); alkaline phosphatase level: 316 (29%); calcium level: 200 (18%); creatinine
level: 66 (15%); and sodium level: 199 (18%). Variables with more than 30% of
missing data were dropped.

Baseline Characteristics

The median patient age in the cohort was 63.0 years (interquartile range [IQR] 54.0
to 72.0 years), and 56% of patients (610 of 1090) were female (Table 8.1). The median
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BMI was 26.6 kg/m2 (IQR 23.2 to 30.3 kg/m2). As for the primary tumor category,
43% of the patients (460 of 1090) were in the slow-growth group, 34% (367 of 1090)
were in the rapid-growth group, and 24% (263 of 1090) were in the moderate-growth
group (Supplementary Table 8.1; supplemental materials are available with the online
version of CORR®). The primary tumor categories were classified as per Katagiri et
al.9 (Supplementary Table 8.2; supplemental materials are available with the online
version of CORR®). In all, 55% of patients (595 of 1090) had pathologic fractures.
Eastern Cooperative Oncology Group scores were available for 39% of patients (422
of 1090), of whom 85% (360 of 422) had an Eastern Cooperative Oncology Group
score of 0 to 2. The lower extremity was affected in 77% of the patients. Fifty-eight
percent of patients (637 of 1090) were treated with intramedullary nailing, followed
by endoprosthetic reconstruction in 22% of patients (241 of 1090), and plate-screw
fixation in 14% (155 of 1090). Overall, 78% of patients (845 of 1090) had other bone
metastases, and 57% (626 of 1090) had spinal metastases. Visceral metastases were
present in 45% of patients (487 of 1090) and brain metastases occurred in 16% (175
of 1090). Thirty-eight patients were lost to follow-up within 90 days, sixty-nine were
lost to follow-up within 1 year. Twenty-nine percent of the 1052 patients (305) died
within 90 days, and 62% (1031) died within 1 year.

Model Development

Variables were selected for the algorithms by 10-fold cross-validation of random forest
algorithms.21,22 Random forest algorithms repeatedly select random features to build
models.21 Tenfold cross-validation entails that the data is split into 10 groups; each
model is trained in nine groups and tested in the tenth.22 This process is repeated until
every group has been used for testing. The combination of random forest algorithms
and 10-fold cross-validation enables us to find the optimal subset of features while
keeping the variance of model performance low and avoiding overfitting.

The algorithms chosen for this study, stochastic gradient boosting, random forest,
support vector machine, neural network, and penalized logistic regression, were based
on a previous study’s method.23 They are commonly used algorithms and are suitable
for binary classification. All five algorithms have their separate way of classifying
the data. Both stochastic gradient boosting and random forest algorithms are tree-
based, in which outputs of individual decision trees are combined. For stochastic
gradient boosting models, these individual trees are developed sequentially. Each tree
“learns” from the previous tree, and redistributes the weight of the accurately and
wrongly classified data. By giving less weight to the accurately classified data and
more weight to the wrongly classified data, each tree will improve after reclassifying
the data until further improvement is not possible. All trees combined will then give
the final prediction. In random forest models each tree is independently developed
with random feature subsets. All these different trees will then “vote” to form the
final prediction model. The fundamental concept behind this is the wisdom of the
crowds: all the uncorrelated models combined will outperform a single model. Support
vector machines are kernel-based algorithms looking to define a hyperplane that best
divides the dataset into two classes.24 Simply said, a hyperplane can be imagined as
a line that separates and classifies a set of data. The further the data points are from
the hyperplane, the more certain it is they are correctly classified. Support vector
machines classify data into higher dimensions, by which the line becomes 3-D and is
no longer a line but a plane. Neural networks are modeled after the human brain
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Table 8.1: Baseline characteristics of the study population.

Variable n = 1090

Age (years)a 63.0 (54.0-72.0)
Female sex 56% (610)
BMI (kg/m2)a 26.6 (23.2-30.3)
Other Charlson comorbidity 54% (584)
Primary tumor type

Slow growth 42% (460)
Moderate growth 24% (263)
Rapid growth 34% (367)
Pathologic fracture 55% (594)

ECOG
0-2 85% (360)
3-4 15% (62)

Tumor location
Upper extremity 23% (255)
Lower extremity 77% (835)

Other bone metastases 78% (845)
Spine metastases 57% (626)
Visceral metastases 45% (487)
Brain metastases 16% (175)
Previous systemic therapy 62% (676)
Local radiation 18% (194)
Hemoglobin level (g/dL)a 11.2 (10.1-12.6)
White blood cell count (x103/µL)a 7.29 (5.18-9.90)
Platelet count (x103/µL)a 251 (184-332)
Absolute lymphocyte count (x103/µL)a 1.00 (0.64-1.53)
Absolute neutrophil count (x103/µL)a 5.47 (3.73-7.83)
Neutrophil-to-lymphocyte ratioa 5.33 (3.12-8.64)
Platelet-to-lymphocyte ratioa 234.3 (157.9-374.1)
Albumin level (g/dL)a 3.70 (3.20-4.10)
Alkaline phosphatase level (IU/L)a 101 (74-146)
Calcium (mg/dL)a 9.20 (8.70-9.70)
Creatinine (mg/dL)a 0.80 (0.65-1.10)
Sodium (mg/dL)a 138 (136-140)

Ninety-day mortality 29% (305)
One-year mortality 62% (639)

aData are presented as median (range).
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and consist of input and output layers that are connected with a certain weight via
one or multiple hidden layers. They are capable of recognizing patterns from the
data and learn from it. Penalized logistic regression models impose a “penalty” to a
logistic models for having too many variables. There are two ways to do that: With
ridge regression all the predictors are kept but the coefficients of minor predictors are
lowered close to zero. Lasso regression eliminates the minor predictors by setting their
coefficients to 0. The elastic-net penalized logistic regression combines ridge regression
and lasso regression to find a reduced set of variables for an optimal performing model.

The data were divided into a training set (80%) and a validation set (20%). The
training set was used to develop the models, while the validation set was used to
internally validate the models.

Assessment of Model Performance

After the model was developed, its performance was assessed on both the training
set by means of 10-fold cross-validation and the validation set. Performance metrics
included discrimination (area under the curve), calibration (intercept and slope), and
Brier score. The area under the curve ranged from 0.50 to 1.0, with 0.50 indicating
pure chance and 1.0 indicating the highest discriminating score. Graphically, discrim-
ination is visualized with receiver operating characteristic curve plots. Calibration
indicates agreement between the predicted outcome and the actual outcome, and per-
fect calibration has an intercept of 0 and a slope of 1.25,26 The Brier score refers to
overall performance, with 0 as a perfect Brier score. However, the prevalence of the
outcome must be considered; therefore, the Brier score of the null model was also
calculated by assigning a probability equal to the prevalence of the outcome to each
patient.25,27 Decision curves were then plotted for the 90-day and 1-year prediction
models. A decision curve analysis is a way of evaluating the net benefit of a model
across a range of different threshold probabilities.28 The user of the model can decide
which threshold is important and determine if the model is valuable at that threshold
and see what the predicted net benefit would be.

Model Explanations

The final prediction models were explained by visualizing the included features of
the models with their weighted importance.29 These plots give a global estimation of
the models. Partial-dependence plots were created to reflect the association between
continuous variables and the outcome.30 Additionally, for individual patients, an ex-
planation of the contribution of the different features to the outcome was given and
shown with illustrative examples.

Internet Application

The stochastic gradient boosting model was chosen as the final model for both 90-day
and 1-year survival prediction. These models were deployed as a freely accessible inter-
net application and can be found at https://sorg-apps.shinyapps.io/extremitymetssurvival/.
Anaconda Distribution (Continuum Analytics, Austin, TX, USA) with RStudio (Ver-
sion 1.0.153, Boston, MA, USA), Python Version 3.6 (Python Software Foundation,
Wilmington, DE, USA), and StataCorp 2013 (Stata Statistical Software: Release 13;
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StataCorp LP, College Station, TX, USA) were used for analyzing data, creating the
model, and developing the internet application.

8.3 Results

Development and Performance of the Machine Learning Algo-
rithms

The factors associated with 90-day survival were albumin level, neutrophil-to-lymphocyte
ratio, primary tumor group, alkaline phosphatase level, hemoglobin level, calcium level,
absolute neutrophil count, white blood cell count, age, and platelet count. The vari-
ables selected for 1-year survival were albumin level, primary tumor type, hemoglobin
level, neutrophil-to-lymphocyte ratio, alkaline phosphatase level, absolute lymphocyte
count, presence of visceral metastases, sodium level, platelet-to-lymphocyte ratio, and
age.

The five models showed no difference in discrimination, with an area under the
curve of 0.86 for the random forest (95% CI 0.85 to 0.88), support vector machine
(95% CI 0.84 to 0.87), and penalized logistic regression models (95% CI 0.85 to 0.87)
and an area under the curve of 0.87 for stochastic gradient boosting (95% CI 0.86 to
0.88) and the neural network models (95% CI 0.84 to 0.87) (Table 8.2). No difference
was found in calibration between the models, with intercepts ranging from -0.03 to
0.08 and slopes ranging from 1.03 to 1.12. Brier scores were 0.13 for the stochastic
gradient boosting and random forest models and 0.14 for the support vector machine,
neural network, and penalized logistic regression models. The null-model Brier score
was 0.21. In the validation set, the discriminating performance ranged from an area
under the curve of 0.85 for support vector machine and neural network to an area under
the curve of 0.87 for stochastic gradient boosting (Table 8.3). Calibration intercepts
ranged from 0.01 to 0.13 and calibration slopes ranged from 1.02 to 1.09. Brier scores
for all five models were 0.13 compared with the null-model Brier score of 0.21.

Clinical Factors Associated with Survival

The most important factors associated with a greater risk of 90-day mortality were
lower albumin level, higher neutrophil-to-lymphocyte ratio, and rapid growth primary
tumor (Figure 8.1A-D). Scaled from 0 to 100, the relative importance of albumin level
was 100, of neutrophil-to-lymphocyte ratio around 75 and of primary tumor category
around 40. For all predicted probabilities, the model showed greater standardized net
benefit relative to changes in management decision based on all patients or no patients
(Figure 8.2). Partial dependence plots for the continuous variables of albumin level,
neutrophil-to-lymphocyte ratio, calcium level, and hemoglobin level show the relation-
ships between the input variables and the algorithm outputs for the different models
(Figure 8.3). The variable input is shown on the x-axis while the algorithm output is
shown on the y-axis. The ability of the stochastic gradient boosting model to display
non-linear relationships between the variables and the predicted probability compared
with the neural network and penalized logistic regression models was noticeable. In
those two models, higher albumin and hemoglobin levels were linearly associated with
a higher predicted probability, while a higher neutrophil-to-lymphocyte ratio and cal-
cium level were linearly associated with lower predicted probabilities. The stochastic

119



Table 8.2: Discrimination and calibration of algorithms on repeated cross-validation
of the training set, n = 873, mean (95%Baseline characteristics CI)

Metric

Stochastic
Gradient
Boosting

Random
Forest

Support
Vector
Machine

Neural
Network

Penalized
Logistic
Regression

Ninety-day mortality

AUC 0.87
(0.86-0.88)

0.86
(0.85-0.88)

0.86
(0.84-0.87)

0.87
(0.84-0.87)

0.86
(0.85-0.87)

Intercept 0.01
(-0.06 to 0.08)

0.01
(-0.06 to 0.07)

0.08
(-0.03 to 0.20)

-0.03
(-0.10 to 0.04)

0.04
(-0.05 to 0.13)

Slope 1.04
(0.96-1.12)

1.12
(1.01-1.23)

1.13
(1.00-1.27)

1.03
(0.94-1.11)

1.08
(0.97-1.20)

Briera 0.13
(0.12-0.14)

0.13
(0.13-0.14)

0.14
(0.13-0.14)

0.14
(0.13-0.15)

0.14
(0.13-0.14)

One-year mortality

AUC 0.85
(0.83-0.86)

0.85
(0.83-0.86)

0.85
(0.83-0.86)

0.85
(0.84-0.86)

0.85
(0.83-0.86)

Intercept -0.04
(-0.12 to 0.03)

-0.12
(-0.19 to 0.04)

-0.03
(-0.10 to 0.05)

0.05
(-0.02 to 0.13)

0.02
(-0.05 to 0.09)

Slope 1.12
(1.02-1.21)

1.41
(1.29-1.53)

1.16
(1.03-1.28)

0.87
(0.81-0.94)

0.94
(0.84-1.05)

Brierb 0.16
(0.15-0.16)

0.16
(0.15-0.16)

0.15
(0.15-0.16)

0.15
(0.15-0.16)

0.15
(0.15-0.16)

aNinety-day mortality null-model Brier score = 0.21.
bOne-year mortality null-model Brier score = 0.24.
AUC = area under the receiver operating characteristic curve.
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gradient boosting model showed that levels under or above certain thresholds did not
affect the predicted probability. For instance, for the albumin level, between 3 g/dL
and 4 g/dL, an increase in the predicted probability was seen, while above and below
that level, there was a plateau. Similar relationships were observed for the hemoglobin
level.

The most important factors associated with a greater risk of 1-year mortality for
the stochastic gradient boosting model were lower albumin level, rapid growth primary
tumor, and lower hemoglobin level (Figure 8.1). The relative importance of albumin
level was 100, for primary tumor category it was around 80 and for hemoglobin level it
was around 70. For all predicted probabilities, the model showed greater standardized
net benefit relative to change in management decision based on all patients or no
patients (Figure 8.2A-D).

An example of the 90-day mortality prediction shows which factors lead to a 90-day
mortality probability of 49% (Figure 8.4).

Table 8.3: Discrimination and calibration of algorithms in the holdout set, n = 217

Metric

Stochastic
Gradient
Boosting

Random
Forest

Support
Vector
Machine

Neural
Network

Penalized
Logistic
Regression

Ninety-day mortality

AUC 0.87 0.86 0.85 0.85 0.86
Intercept 0.06 0.02 0.13 0.01 0.06
Slope 1.03 1.08 1.09 1.02 1.03
Briera 0.13 0.13 0.13 0.13 0.13

One-year mortality

AUC 0.81 0.81 0.80 0.80 0.79
Intercept 0.09 -0.01 0.05 0.09 0.08
Slope 0.85 1.10 0.81 0.69 0.73

Brierb 0.18 0.17 0.18 0.18 0.18
aNinety-day mortality null-model Brier score = 0.21.
bOne-year mortality null-model Brier score = 0.24.
AUC = area under the receiver operating characteristic curve.
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Figure 8.1: This image shows receiver operating characteristic curves for stochastic
gradient boosting for (A) 90-day and (B) 1-year survival and overall feature importance
for (C) 90-day and (D) 1-year survival. It represents the capability of the model of
distinguishing between classes; AUC = area under the curve.
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Figure 8.2: Calibration plots for stochastic gradient boosting with 95% confidence
intervals are shown for (A) 90-day and (B) 1-year survival and decision curve analysis
plots are shown for (C) 90-day and (D) 1-year survival. The calibration plot visualizes
how accurate the predictions are over different probabilities. The diagonal red line
represents the optimal calibration; the closer the line of the model, the more accurate
the prediction.
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Figure 8.3: This figure shows partial dependence plots for 90-day mortality by model
for (A) albumin level (g/dL), (B) neutrophil-to-lymphocyte ratio, (C) calcium level
(mg/dL), and (D) hemoglobin level (g/dL). These plots show the relationship between
input variables and the outputs of the different machine learning algorithms over the
range of the input variables. For example, the albumin plot shows that the stochastic
gradient boosting model has a constant output with albumin levels below 3 g/dL and
levels above 4 g/dL. Between these levels there is a turning point in which the output
rapidly increases. The neural networks model and the penalized logistic regression
model show a more linear association between the input and the output; SGM =
stochastic gradient boosting model, NN = neural networks model, PLR = penalized
logistic regression model.
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Figure 8.4: An example of the 90-day survival prediction of a selected patient is
shown here. This patient is a 54-year-old man with a rapid-growth primary tumor
without visceral or brain metastases. He previously received systemic therapy. His
laboratory values were as follows: hemoglobin level of 11.0 g/dL, platelet count of
375 x103/µL, absolute lymphocyte count of 1.16 x103/µL, absolute neutrophil count
of 10.8 x103/µL, creatinine of level of 2 mg/dL, white blood cell count of 8 x103/µL,
albumin level of 3.5 g/dL, alkaline phosphatase level of 89 IU/L, sodium level of 135
mg/dL, and calcium level of 9 mg/dL. Factors that support survival are visualized by
the green bar. These are his alkaline phosphatase level, his age, his platelet count,
and his calcium level. Factors that contradict survival are visualized by the red bars,
which represent his neutrophil-to-lymphocyte ratio, his primary tumor histology, and
his hemoglobin level. The prediction model shows a 90-day survival probability of
49%.
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8.4 Discussion

In the past decades, different prognostic models ranging from classic scoring models
to machine learning algorithms have been developed to predict mortality at different
time points in patients who undergo surgical treatment of a bone metastasis of the
extremity.7–12 Frequently updating and improving these models is important because
new prognostic markers such as the neutrophil-to-lymphocyte ratio are continuously
being identified.15 More importantly, machine learning techniques are also improv-
ing, with recent advances in the ability to explain the transformation function that
is applied to the inputs of the model to generate the outputs. This transparency al-
lows for an increased understanding of the models while continuing to build models
that can capture complex relationships between predictors. In this study we devel-
oped machine learning algorithms to estimate survival in patients with a metastasis
of the extremity. The models showed good performance and can be accessed through:
https://sorg-apps.shinyapps.io/extremitymetssurvival/. Global and individual expla-
nations are provided there.

This study has several limitations. First, the developed models have not been ex-
ternally validated. External validation is a crucial step in using the models in daily
practice and this is an avenue for future research. However, we did validate our mod-
els internally with a validation set containing data that was not used for the model
development. Second, this is a retrospective study and only patients who were surgi-
cally treated were included. Prospective validation is needed to assess the validity of
the models. We were unable to include the Eastern Cooperative Oncology Group or
Karnofsky scores because most patients did not have these scores recorded preopera-
tively. These performance scores have been used in many previous models.9,11,12,31–34

Future studies should aim to include these factors and determine if they improve algo-
rithm performance. Fourth, the patients in this study were from one geographic area
in the United States. The algorithms may therefore apply mainly to patients in urban
areas in the United States and perhaps Western Europe, where decisions to surgically
treat these patients are approached in a similar fashion and with similar healthcare
support systems. It remains to be determined if the models have similar performance
in different populations.

In this study, we developed prediction models for 90-day and 1-year survival in pa-
tients, using five different machine learning techniques. For 90-day survival, the follow-
ing factors were included as predictors associated with a greater risk of death: lower al-
bumin level, higher neutrophil-to-lymphocyte ratio, higher alkaline phosphatase level,
lower hemoglobin level, higher calcium level, higher absolute neutrophil count, higher
white blood cell count, higher age, and lower platelet count. For 1-year survival,
those factors were lower albumin level, lower hemoglobin level, higher neutrophil-to-
lymphocyte ratio, higher alkaline phosphatase level, lower absolute lymphocyte count,
lower sodium level, and higher platelet-to-lymphocyte ratio. We assessed predictive
performance with discrimination, calibration, overall performance with the Brier score
and a decision curve analysis. Assessing model performance is an important step in
developing prediction models to determine the quality of the model.26 Most previous
studies8,9,11,32–34 did not report discrimination with c-statistics or areas under the
curve, which makes it difficult to assess the discriminating capabilities of the models.
An easy-to-use prognostic model was developed by means of a flow chart for 1520 pa-
tients with symptomatic bone metastases.12 The authors reported a c-statistic of 0.70
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but did not use no other performance metrics such as calibration. Others developed
a classic scoring algorithm, nomogram, and boosting algorithm for 927 patients sur-
gically treated for a bone metastasis of the extremities and achieved areas under the
curve on the testing set of 0.70, 0.75, and 0.75, respectively, at 90 days and 0.68, 0.73,
and 0.72, respectively, at 1 year.10 A c-statistic says something about the capability
of a model to discriminate between the two outcomes (death or survival). It ranges
from 0.5 (no discrimination, equal to a coin toss) to 1.0. The closer to 1.0, the better
the discrimination. They also did not report using any other performance metrics.
A Bayesian belief network model was developed by another research group for 189
patients who were treated for a bone metastasis of the extremities at 90 days and 1
year.7 On external validation of a set of 815 patients, areas under the curve of 0.79
and 0.76 were achieved for 90 days and 1 year, respectively.35 Again, no other metrics
were described to assess performance.

For the stochastic gradient boosting algorithm, which we used as the web-based
application, the stochastic gradient boosting algorithm, the most important factors
associated with a greater risk of 90-day mortality were lower albumin level, higher
neutrophil-to-lymphocyte ratio, and rapid growth primary tumor. For 1-year mor-
tality, the most important factors were lower albumin level, rapid growth primary
tumor, and lower hemoglobin level. While primary tumor histology is incorporated
in all previous models as important predictor,7–12 most of them did not fully assess
the laboratory factors identified as important predictors in the current study. Some
studies have included the hemoglobin level,7,10,11,33,36 absolute lymphocyte count,7,36

and a combination of C-reactive protein, lactate dehydrogenase, albumin level, platelet
count, calcium level, and bilirubin level.9 Ideally, prospective studies should seek to
confirm the importance of laboratory factors, possibly in a non-surgical cohort.

Previous studies that sought to evaluate factors associated with overall survival of
patients with metastatic bone disease in the extremities were extremely important in
introducing machine learning and demonstrating the external validation of machine
learning techniques in independent samples.7,10 Our work extends these previous stud-
ies by incorporating new factors recently identified to be associated with survival in
metastatic bone disease in the extremities and integrating explanations of machine
learning algorithms into accessible interfaces for clinicians. We provide an accessible
tool for clinicians to help them in their daily practice when they deal with surgical
decision making for a patient with a metastasis of the extremity. The tool can be
found here: https://sorg-apps.shinyapps.io/extremitymetssurvival/. The model ex-
planations both on a global level and an individual level give clinicians more insight
than predicted probabilities alone. Having some understanding about which factors
are associated with outcome and how they are linked, both in general and for a specific
patient, may help clinicians trust the models and help them better inform patients.

It is important to realize that the decision to operate or not is a difficult one and
should not solely be based on the outcome of the prediction models. The patients’
surgeon should discuss the options with the patient (and family), explaining the pros
and cons of proceeding with surgery/deciding not to have surgery. Survival time is
only one of the aspects that should be considered and our prediction models help
the surgeon to estimate that. Unlike most previous models,7–12 we used multiple
important performance metrics which showed that our models performed well.
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Conclusions

We successfully developed machine learning models to predict 90-day and 1-year sur-
vival in patients with bone metastases of the extremities. The final models must be
externally validated and future studies must assess the performance of these algorithms
in other populations. The final models have been incorporated into a freely accessi-
ble web application that can be found at https://sorg-apps.shinyapps.io/extremitymets
survival/. The values entered in the digital application are placeholders that clinicians
can modify based on the individual characteristics of the patient. After inputting
values, clinicians have access to the predicted probabilities and can further examine
the explanations for these predicted probabilities. Pending external validation, clini-
cians may use this tool to aid preoperative shared decision making for patients with
extremity metastatic bone disease.
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8.5 Supplemental Digital Content

Table 1: Primary tumor types

Primary N = 1090
Lung 23% (247)
Breast 24% (257)
Myeloma 115% (62)
Renal 111% (17)
Prostate 5% (58)
Lymphoma 4% (44)
Melanoma 3% (30)
Visceral 2% (25)
Esophageal 2% (24)
Colon 2% (18)
Head and neck 2% (18)
Thyroid 2% (18)
Other 2% (16)
Unknown 2% (16)
Sarcoma 1% (14)
Other gynecological 1% (13)
Other urological 1% (13)

Table 2: Primary tumor classification as per Katagiri et al*.

Group Primary tumor histology
Slow growth
(Group 1)

Hormone dependent breast cancer, hormone dependent prostate
cancer, malignant lymphoma, malignant myeloma, thyroid cancer.

Moderate
growth
(Group 2)

Non-small cell lung cancer with molecularly targeted therapy, hor-
mone independent breast cancer, hormone independent prostate
cancer, renal cell carcinoma, sarcoma, other gynecological cancer,
others.

Rapid
growth
(Group 3)

Other lung cancer, colon and rectal cancer, gastric cancer, hep-
atocellular carcinoma, pancreatic cancer, head and neck cancer,
other urological cancer, esophageal cancer, malignant melanoma,
gallbladder cancer, cervical cancer, unknown origin.
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