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Chapter 1

Introduction

Our environment is constantly changing, and nothing is set in stone. This chal-
lenges known and preconceived assumptions, given that they are no longer enough
to describe our environment. For example, when a new species is discovered, our
scientific knowledge needs to incorporate this discovery and make associations
with existing species. Models of our environment must, therefore, encompass the
ability to generalize beyond fixed assumptions. Such generalization abilities favor
a more robust understanding and interpretation of our changing environment.

Similarity associations with what is already familiar helps to cope with our
changing environment [Bar, 2009]. Indeed, digesting a completely new concept
without any mechanism to rely on prior knowledge can be overwhelming and
inefficient. When encountering an unseen situation, we should then ask and learn
to answer the question “what is this like?”. There exists, however, a trade-off on
how much we should rely on similarity associations to avoid being biased towards
scenarios previously encountered. When an artist releases a new creation, it is
always helpful to know to which art movement it belongs to and how it relates
to existing creations in the art scene. Making these associations better helps to
ascertain the motivation and impact of the new creation. Still, depending too
much on these associations can damage judgement and lead to misinterpretations
that would be unfair to the artwork.

In the computer vision context of this thesis, where machines make sense
of images, similarity associations among images amount, nowadays, to learning
an embedding space. Images exhibit a very high variability, and computing a
similarity metric in this high-dimensional image space can lead to erroneous in-
terpretations, originating from the curse of dimensionality [Goodfellow et al.,
2016]. It becomes more adequate to learn a mapping function from the image
space to a lower-dimensional space to build and infuse similarity associations. If
two images refer to the same concept, they should then be close to each other in
the embedding space, regardless of their appearances, properties, or backgrounds.
Distances in the embedding space then act as a similarity association metric and
should be robust to potential adverse biases that may arise in images.
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(a) A dog and a plush dog (b) Coffees with different (¢c) Hands with different
refer to the same concept levels of milk refer to the skin colors refer to the same
dog. same concept coffee. concept hand.

Figure 1.1: Appearance changes for a similar concept. Computer vision
models should not be affected by appearance changes, and assimilate the fact
that different appearances, attributes or properties refer to the same concept. In
this thesis, we learn visual similarities to cope robustly with biases originating
from these appearance changes. From left to right, photos by Camille Paralisan,
Nathan Dumlao, and Shane Rounce on Unsplash (Unsplash license).

Learning visual similarities opens the door for novel opportunities and a differ-
ent reasoning in categorization tasks. Instead of categorizing images into a fixed
set of labels, visual similarities strive to learn semantically meaningful image as-
sociations through an embedding space. Consider Figure 1.1, which illustrates
three examples where different appearances correspond to similar concepts. Fig-
ure 1.1a depicts two dogs with different forms: one is a life form while the other
one is a plush toy. Even though they correspond to two very different domains,
they still refer to the same concept dog. In this context, it is necessary to under-
stand that different mediums or domains of representation can convey a similar
message. Figure 1.1b showcases various coffee types, where the level of milk acts
as an attribute of the concept coffee. While the level of milk modifies the visual
appearance, all depicted cups remain coffee cups. In other words, these images
exhibit a high variance in terms of the milk amount but should still be similar to
each other as they refer to the same concept coffee. Different compositions can
then refer to a similar concept. Furthermore, no sufficient description exists to
encompass all variations that define a category [Wittgenstein, 1953]. There will
always be exceptions to the definition, as a barista could come up with a new way
to make coffee or a new drink that contains coffee. This requires an ability to gen-
eralize to unseen compositions or unseen concepts, given the similarities with seen
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Figure 1.2: Methods for learning visual similarities. A common solution
relies on pairwise (a) or triplet (b) comparisons, where an anchor representation
is compared with a positive (same shape) or a negative (different shape) represen-
tation. If the comparison is positive, they should be pulled together; otherwise,
they should be pushed away from each other. One hurdle is the need for sam-
pling positive and negative samples. In this thesis, we instead rely on prototype
comparisons (c), where the anchor is compared with prototype representations
in the embedding space (dotted shape). This removes the need for sampling and
enables learning visual similarities with novel and robust properties.

ones. Figure 1.1c portrays the diversity in human skin color. When a protected
attribute — such as skin color, age or gender — is present, it becomes necessary
to ensure computer vision models do not suffer from algorithmic bias. Indeed,
they shouldn’t reproduce or amplify social biases present in the training dataset.
Predictions should be fair and mitigate potential discrimination that may arise.
This notably translates into having similar representations when referring to the
same concept, regardless of the variation in protected attribute values.

The main challenge in learning visual similarities resides in deriving an objec-
tive function to learn a mapping function from the image space to the embedding
space that is robust to biases. A common solution is to rely on pairwise [Chopra
et al., 2005, Hadsell et al., 2006] (Figure 1.2a) or triplet [Schroff et al., 2015] (Fig-
ure 1.2b) comparisons, where an anchor image is compared to either a positive or
a negative sample, or both, in the embedding space. Such an objective requires a
sampling step, which limits the versatility of the training procedure as it can get
quite convoluted when multiple similarities need to be taken into account. Fur-
thermore, a bag of tricks is usually needed to facilitate the training and improve
performance [Hermans et al., 2017]. We instead rely on prototype theory [Rosch,
1978], a theory in cognitive psychology which assumes that there exist central
members of every category. These central members, referred to as prototypes,
better capture the definition of a concept as they are easier and faster to recog-
nize. In the visual similarity context, this amounts to learning or defining vector
representation in the embedding, which acts as a prototype representation for ev-
ery category (Figure 1.2c). Learning a meaningful embedding space then consists
in mapping images of a similar concept to their corresponding prototype, which
makes the training procedure much simpler compared with pairwise or triplet
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comparisons. Indeed, the sampling step is now removed as prototypes provide
a global view of all categories for comparisons. Different variations of prototype
representations can also be derived to robustify the embedding space. For exam-
ple, prototypes can be fixed to leverage inductive priors, or learned as any other
parameters of the model to provide freedom for arranging the embedding space.

In this thesis, we rely on the learning of visual similarities to robustly cope with
different appearance changes for a similar concept. We explore how learning
visual similarities can benefit computer vision models, which need to work across
domains, generalize to seen and unseen attribute compositions or categories, and
overcome algorithmic bias. We formulate the following main research question:

How to learn visual similarities robust to bias?

In Chapter 2, we investigate the recognition of categories across domains.
When learning a model for object classification or retrieval, a domain bias arises
from the gap in the different domain representations. For example, the repre-
sentation of a “dog” differs among photographs, paintings on a canvas, or pencil
drawings. We formulate the following question:

How to learn visual similarities robust to domain bias?

Where previous works address this domain bias via a domain adaptation loss
to make features domain invariant (e.g., Shen et al. [2018], Yelamarthi et al.
[2018]), we propose to learn domain-specific mapping functions to a common em-
bedding space. The embedding space corresponds to a visual similarity space
with a pre-trained semantic meaning where every category is represented by the
word vector of its name. In other words, we fix the category prototype to a word
vector representation. Training then consists of pulling inputs to their correspond-
ing representation and pushing them away from other class representations with
a cosine embedding loss. Experimentally, we confirm that a common embedding
space benefits standard cross-domain search tasks with two domains. Further-
more, we show how this approach can open the search to multiple domains with
novel search scenarios, which would have been intractable with previous methods.
We conclude that relying on a visual similarity space common to all domains is
an effective approach to bridge the domain bias.

In Chapter 3, we study the retrieval of specific attribute combinations for
multiple categories. Designers create new products by composing attributes and
categories. For example a new fashionable “vest” could be one with oversized
shoulderpads and pastel colors attributes. We pose the research question:

How to learn visual similarities robust to compositional bias?



Products exhibit multiple similarities. Indeed, products are instances of par-
ticular categories while attributes characterize their visual properties. When
searching for specific products, the visual representations need to capture in-
stance, category and attribute similarities to retrieve seen and unseen product
compositions. Where previous works usually address these similarities individ-
ually (e.g., Frome et al. [2007], Kovashka et al. [2012], Song et al. [2016]), we
integrate them altogether in an embedding space in an interrelated manner for
product search. Training relies on a diverse supervision of instance, category and
attribute labels for every visual sample. Every label has its own similarity loss
function where interrelatedness is handled by spanning similarity comparisons
either only in a single subspace or multiple ones. The evaluation reveals the im-
portance of every similarity for retrieving product composition: attributes matter
more for clothes images while categories are more important for car images. Fur-
thermore, having such an interrelated visual similarity space with diverse labels
enables the exploration of product trends to discover typical, atypical and eclec-
tic products. We conclude that modeling the interrelation of instance, category
and attribute through visual similarities facilitates the search of seen and unseen
product compositions.

In Chapter 4, we investigate how to recognize novel categories without damp-
ening the ability to recognize the ones seen during training. Image classifier
exhibit a confidence bias as predictions tend to be overconfident towards the
categories seen during training. In return, when shown a sample of an unseen
category, the classifier most likely predicts it as a seen class. We formulate the
research question:

How to learn visual similarities robust to confidence bias?

Scientists regularly discover new species. One way to describe them is to de-
fine a common set of characteristics common to all species but still discriminative
enough to distinguish them. For example, while both “horses” and “zebras” have
hoofed feet, long heads and manes, a “zebra” differs by the striped coat. We can
then rely on this common set of characteristics to recognize new categories. How-
ever, relying too much on this set of characteristics for classification hurts the
performance of existing models in generalized zero-shot learning. Where previous
works address this bias by separating the classification for seen and unseen cate-
gories (e.g., Atzmon and Chechik [2019], Liu et al. [2018]), we consider both jointly
to address the confidence bias. We map inputs to a label embedding space where
every category is represented by a fixed attribute vector. Visual similarity then
consists in mapping inputs close to their corresponding attribute representation.
We control the confidence of seen and unseen with temperature and a bidirectional
entropy regularization of the probabilities. The evaluation shows the effectiveness
of our approach to mitigate the confidence bias for several existing models, and
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such for characteristics described via attributes or sentences. Furthermore, we
show that the confidence bias is also dataset-dependent as not all datasets suffer
to the same extent. We conclude that addressing the confidence bias with visual
similarities benefits existing models in generalized zero-shot learning.

In Chapter 5, we address adverse predictions in image classifiers. As society
becomes aware of new potential harms, models should also be assessed to un-
derstand whether their predictions can result in adverse decisions. For example
while more women tend to wear “earrings” than men, an image classifier should
not rely on the gender of the person to detect the presence of “earrings” in facial
portraits. We pose the research question:

How to learn visual similarities robust to algorithmic bias?

The presence of spurious correlations creates an algorithm bias and they
should be identified, mitigated, and measured in image classifiers to avoid any po-
tential discrimination or amplification of biases. Where previous works consider
either the feature space (e.g., Alvi et al. [2018]) or the label space (e.g., Wang et al.
[2020D)) for algorithmic bias, we show that both matter for bias identification and
mitigation. We identify a bias direction in the feature space, which indicates that
common classifiers encode the bias implicitly. We mitigate the algorithmic bias
by creating separate discriminative label embedding spaces for binary protected
attributes. During training, inputs are mapped to their specific and separate
embedding space, and visual similarities to their corresponding latent class repre-
sentation are maximized with a cosine embedding loss. Once trained, we further
apply a bias removal operation in the feature space. Experimentally, we show the
effectiveness of our approach for algorithmic bias mitigation in both multi-class
and multi-label classifications. We conclude that reducing the bias direction in
the feature space, as well as deriving label embedding spaces for classification
helps in mitigating the algorithmic bias from spurious correlations.

Tackling different biases through visual similarities makes computer vision
models more robust. This is a step towards models able to adapt constantly to
changing environment where changes can arise through multiple forms.
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Chapter 2

Open Cross-Domain Visual Search

2.1 Introduction

This chapter aims for visual category search across domains. The task is to re-
trieve visual examples from a specific category in one domain, given a query from
another domain. For example, we may want to retrieve images of an “airplane”
from a quickly-drawn sketch. Cross-domain visual search has made considerable
progress, showing the possibility to retrieve natural images [Eitz et al., 2010,
Sangkloy et al., 2016] or 3D shapes [Li et al., 2013, 2014a,b] from sketches. Dif-
ferent from existing works, which emphasize retrieval from a single source domain
to a single target domain, we open the search beyond two domains. The moti-
vation for a search among many domains is that in practice, categories come in
many forms [Li et al., 2017, Peng et al., 2019, Wilber et al., 2017]. Hence, we
may have queries from several source domains, or want to search with any possi-
ble combination of source and target domains. For example, we may now want to
combine a sketch and a clipart of an “airplane” to retrieve photograph samples, or
use a clipart of an “airplane” to retrieve 3D shapes. In this chapter, we strive for
such an open setting: we visually search for categories from any source domain to
any target domain, with the ability to search from and within multiple domains
simultaneously.

Within cross-domain visual search, an important challenge is the gap between
source and target domains [Chen et al., 2019, Dey et al., 2019, Dutta and Akata,
2019, Shen et al., 2018, Xie et al., 2017, Yelamarthi et al., 2018]. Given the
inherent difference in representations, reducing the domain gap is an intuitive
solution. Both Shen et al. [2018] and Yelamarthi et al. [2018] have highlighted
the importance of domain adaptation losses for cross-domain search, especially
when searching for unseen categories. Yet, relying on domain adaptation methods

Published in Computer Vision and Image Understanding, 200:103045. [Thong et al., 2020]
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Sketch
ConvNet

Clipart Common

ConvNet semantic ConvNet
space

Figure 2.1: Open cross-domain visual search. We search for categories from
any number of source domains to any number of target domains. Mapping exam-
ples to a common semantic space enables any possible combinations of domains
when searching for categories.

makes the search unsuited for an open setting by design, due to the requirement
of pairwise domain training. As a consequence, opening the search to many
domains creates new challenges as (i) all domains should to be mapped to a unique
embedding space, and (i7) new domains should be able to be added continuously
in an efficient fashion. We address the challenges of open cross-domain visual
search.

Inspired by recent works on prototype-based embedding spaces [Movshovitz-
Attias et al., 2017, Snell et al., 2017, Wen et al., 2016], we introduce prototype
learners for cross-domain visual search in an open setting. Prototype learning
has shown to simplify model training and improve performance for image re-
trieval [Movshovitz-Attias et al., 2017, Wen et al., 2016] and classification [Snell
et al., 2017] problems in a low-shot setting. In this work, we leverage prototype
learners to perform visual search across multiple domains simultaneously. We
define prototypes to unite all domains. Inputs from every domain are mapped to
a common semantic space, where every learner is domain-specific and is trained
separately. During training, the semantic space is defined by categorical pro-
totypes, corresponding to word embeddings of category names. Learning then
consists of regressing inputs to their corresponding categorical prototype in this
common semantic space, as illustrated in Figure 2.1. Query representations for
search are further refined with neighbours from other domains through a spherical
linear interpolation operation. Once trained, the proposed formulation allows us
to search among any pair of domains. Since all domains are now aligned in the
common semantic space, this enables a search from multiple source domains or in
multiple target domains. Lastly, new domains can be added on-the-fly, without
retraining previous models.

Empirically, we first demonstrate the ability to perform open cross-domain vi-
sual search, highlighting new applications and search possibilities, i.e. (i) a search
between any pair of source and target domains without hassle; (i7) a search from
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multiple source domains; and (7i) a search in multiple target domains. Second,
while designed for the open cross-domain setting, our approach also works in the
conventional closed settings, allowing for comparisons to current approaches. We
compare to sketch-based image and 3D shape retrieval, usually considered sepa-
rately in the literature. We show the versatility of our approach to handle them.
Across three well-established tasks totalling seven benchmarks, we obtain state-
of-the-art results, highlighting the effectiveness of focusing solely on the semantic
space for cross-domain search.

Contributions. Our main contribution is the introduction of open cross-domain
visual search. We open the search to many domains, with the ability to retrieve
categories from and among any number of domains. To achieve this, we introduce
a simple prototype learner for each domain to learn a common semantic space
efficiently. Empirically, solely relying on semantic prototypes turns into an effec-
tive solution for cross-domain visual search in both newly proposed open settings
and existing closed settings. All code and setups are released to foster further
research in open cross-domain visual search®.

2.2 Related work

We first cover related work in cross-domain search, where a large body of works
focuses on retrieving natural images or 3D shapes from sketches. We then review
relevant work addressing multiple domains and on how to learn semantic spaces
with prototype learners.

Cross-domain image search. Sketch-based image retrieval has been a topic
of vision community interest for a long time [Jacobs et al., 1995, Kato, 1992].
The seminal work of Eitz et al. [2010] established the first benchmark for its
evaluation, which led to the construction of common descriptors for sketches and
images, such as bag-of-features [Eitz et al., 2010], bag-of-regions [Hu et al., 2011],
histogram of oriented gradients [Hu and Collomosse, 2013], or specialized descrip-
tors for edges [Saavedra, 2014]. With the resurgence of convolutional networks,
the dominant approach has shifted towards the learning of a joint semantic space
of sketches and images. Qi et al. [2016] learn a joint embedding with a Siamese
network while Bui et al. [2017] rely on a triplet network. Bui et al. [2018] add
a classification head with a multi-stage training to make features even more dis-
criminative. In all these works, the semantic spaces model categories implicitly,
as they rely on sample-based methods such as the Siamese [Chopra et al., 2005,
Hadsell et al., 2006] or triplet [Schroff et al., 2015, Weinberger and Saul, 2009
losses to learn cross-domain visual similarities. In this chapter, we explicitly de-
fine semantic representations for every category in the embedding space. This

1Source code is available at https://github.com/twuilliam/open-search
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removes the need for sampling and mining of cross-domain pairs, resulting in a
much simpler training procedure.

Sketch-based image retrieval is also considered as a zero-shot learning prob-
lem [Shen et al., 2018, Yelamarthi et al., 2018]. In this context, a common
approach is to bridge the domain gap between sketches and images. Shen et al.
[2018] fuse sketch and image representations with a Kronecker product, while
Yelamarthi et al. [2018] introduce domain confusion with generative models to
produce domain-agnostic features. Dey et al. [2019] combine gradient reversal
layers with metric learning losses to extract the mutual information from both
domains. Dutta and Akata [2019] tie the semantic space with visual features from
both domains by learning to generate them while Dutta and Biswas [2019] prefer
to separate them explicitly. Alternatively, Liu et al. [2019] preserve the knowl-
edge from a pre-trained model to avoid features to drift away during training.
Hu et al. [2018a] have also explored how to synthesize classifiers derived from
sketches for few-shot image classification. By focusing on domain adaptation,
current approaches are optimized to map from a single specific source domain to
a single specific target domain. Instead, we consider cross-modal image search
from any number of source domains to any number of target domains.

Cross-domain 3D shape search. Searching for 3D shapes from a sketch has
been accelerated by the SHREC challenges [Li et al., 2013, 2014a,b]. A common
approach is to transform the 3D shape search into an image search problem by
projecting the unaligned 3D shape into multiple 2D views [Su et al., 2015]. In this
regard, the main methodological approach is to learn a joint embedding space of
sketches and 2D view renderings of the unaligned 3D shapes. Wang et al. [2015]
map both sketches and shapes in a similar feature space with a Siamese network,
while Tasse and Dodgson [2016] learn to regress to a semantic space with a ranking
loss. Dai et al. [2017] correlate both sketch and 3D shape representations to bridge
the domain gap. Xie et al. [2017] employ the Wasserstein distance to create a
barycentric representation of shapes. Qi et al. [2018] apply loss functions on
the probabilistic label space rather than the feature space. Chen et al. [2019]
propose an advanced sampling of 2D views for the unaligned shapes. Learning
cross-domain visual similarities with Siamese or triplet losses typically requires a
multi-stage training or negative sampling schemes. A prototype learner removes
this requirement, and enables the addition of new domains without the need for
retraining existing models.

Searching beyond two domains. Using multiple domains has been investi-
gated in unsupervised domain adaptation [Csurka, 2017, Peng et al., 2017] and
unsupervised domain generalization [Blanchard et al., 2011], where the task is to
classify unlabeled target samples by learning a classifier on labeled source samples.
As such, Peng et al. [2019] illustrate how challenging classification becomes when
multiple domains are considered. A new challenge then arises as classifiers have
to be designed to benefit from the inherent gap among multiple domains [Carlucci
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et al., 2019, Dou et al., 2019, Peng et al., 2019, Xu et al., 2018, Zhuo et al., 2019].
In this chapter, we focus on a different multi-domain task: we consider cross-
domain retrieval where category labels are present for both source and target
domains, and where the main challenge is to learn a common embedding space
for all domains.

Prototype learners. Learning metric spaces with prototypes for image retrieval
[Deng et al., 2019, Liu et al., 2017b, Movshovitz-Attias et al., 2017, Snell et al.,
2017, Sohn, 2016, Wang et al., 2018, Wen et al., 2016, Zhai and Wu, 2019] and
classification [Chintala et al., 2017, Mensink et al., 2013, Mettes et al., 2019, Snell
et al., 2017] provides a simpler alternative to common contrastive [Chopra et al.,
2005, Hadsell et al., 2006] or triplet [Schroff et al., 2015, Weinberger and Saul,
2009] loss functions. One line of work learns to regress to moving prototypical
representations. Depending on the task, such prototypes can correspond to cen-
ter [Wen et al., 2016], proxy [Movshovitz-Attias et al., 2017, Zhai and Wu, 2019],
or support [Ren et al., 2018, Snell et al., 2017] representations. While the distance
measure usually relies on a cosine or Euclidean distance, a margin has also been
introduced in the distance measure [Deng et al., 2019, Liu et al., 2017b, Wang
et al., 2018]. Another line of work regresses to fixed prototypical representations
to avoid the simultaneous learning of prototypes and model parameters. Exam-
ples of fixed representations include class means [Mensink et al., 2013], one-hot
representations [Chintala et al., 2017], or separated representations [Mettes et al.,
2019]. We build on the latter approach for open cross-domain visual search. We
formulate semantic prototypes to align examples from many domains simultane-
ously. Categories are represented by fixed semantic prototypes in the embedding
space. We then define a prototype learner for every domain to map visual inputs
to the common space where open cross-domain search occurs.

2.3 Method

2.3.1 Problem formulation

Figure 2.2 illustrates the search scenarios for open cross-domain search. While
the closed cross-domain setting focuses on one pre-defined source s and one pre-
defined target t, the open cross-domain setting searches for categories from any
source domain s to any target domain t;. As multiple domains now become
available, this opens the door for combining multiple domains at both source
and target positions. Thus, the main difference between the closed setting and
the open setting lies in the ability to leverage multiple domains for categorical
cross-domain visual search.

Formally, let D denote the set of all domains to be considered. Rather than
making an explicit split of a dataset into source and target, we consider a large

combined visual collection T = {(x%,y,)}Y_,, where x¢ € Z,; denotes an input



14 Chapter 2. Open Cross-Domain Visual Search

.

.

d

:

;

:

;

o o<
K
:
:
:
o4
R

(a) one source to one target any source to any target
| - L{-

(¢) many sources to any target (d) any source to many targets

Figure 2.2: Open cross-domain visual search configurations. Cross-domain
image search focuses on mapping (a) from one fixed source to one fixed target
domain. In this chapter, we consider an open domain setting with K available
domains. We search (b) from any source to any target domain, (c¢) from multiple
source domains to any target domain, and (d) from any source domain to multiple
target domains.

example from a visual domain d € D of category vy, € Y. In other words, ) is
common and shared among all domains D but is depicted differently from domain
d; to domain d;, with @ # j.

Categorical search consists in using a sample query x% from domain d; to
retrieve samples of the same category y in the gallery of domain d;. If i # j, this
corresponds to a cross-domain categorical search as the search occurs across two
different domains. A closed setting only considers |D| = 2, i.e. with a pre-defined
source domain and a pre-defined target domain. We define the open setting as
comprising |D| > 2. This stimulates novel search configurations. For example,
we may want to combine two queries (xd x4i ') of two different domains i # j to
search in the gallery of a third domain k. Conversely, given a sample query x%,
we can search in the combined gallery of multiple domains.

2.3.2 Proposed approach

We pose open domain visual search as projecting any number of heterogeneous
domains to prototypes on a common and shared hyperspherical semantic space.
First, we outline how to represent categories in the semantic embedding space.
Second, we propose a mapping function for every domain to the common semantic
embedding space. Third, we outline how open cross-domain search occurs.
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Categorical prototypes. We leverage the concept of prototypes to represent
categories in a common semantic space. Every category is represented by a unique
real-valued vector, corresponding to a categorical prototype. Hence, the objective
is to align examples, coming from different domains but with the same category
label, to the same categorical prototype in the semantic space. For every category
y € Y, we denote its prototype on the semantic space as ¢(y) € SP~! for a D-
dimensional hypersphere. Relying on semantic relations enables to search for un-
seen classes using models trained on seen categories [Frome et al., 2013, Palatucci
et al., 2009]. In this work, we opt for word embeddings, e.g., word2vec [Mikolov
et al., 2013] or GloVe [Pennington et al., 2014], to represent categories, as these
embeddings adhere to the semantic relation property.

Mapping domains to categories. For every domain d € D, we learn a sep-
arate mapping function f; € SP~! to the common and shared semantic space.
Separate mapping functions are not only easy to train, they also enable us to
incorporate new domains over time. Indeed, we only have to train the mapping
of the new incoming domain without retraining previous mapping functions of ex-
isting domains. The mapping function is formulated as a convolutional network
followed by an f5-normalization on the D-dimensional network outputs.

We propose the following function to map an example x? of domain d to its
categorical prototype ¢(y) in the common semantic space:

exp < —5- C(fd(xd)7 (15(9)))
Syey e (= s c(falxt), o))

plylx?,d) = , (2.1)

where s € R, denotes a scaling factor, inversely equivalent to the tempera-
ture [Hinton et al., 2014]. Intuitively, the scaling controls how samples are spread
around categorical prototypes. c(+,-) is defined as the cosine distance:

c(fa(x?), o(y)) = 1= < fa(x"), 8(y) >, (2.2)

where <., -> is the dot product. As both f;(x) and ¢(y) lie on the hypersphere
SP~1 they have a unit norm. Finally, learning every mapping function f; is done
by minimizing the cross-entropy loss over the training set:

N
1 d
L=-+ Z log p(yn|;, ). (2.3)

In our approach, the representations of the categorical prototypes remain unal-
tered. Hence, we only take the partial derivative with respect to the mapping
function parameters. When training the mapping function f; for domain d, only
examples x? of domain d are used as inputs.
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Figure 2.3: Cross-domain query refinement. (a) Ideally, the neighborhood of
the query (star) is only close to examples from the same category. (b) In reality,
variability causes noise in the semantic space. Hence, the query might also be
close to samples from other categories. (¢) We tackle this variability by refining
the query representation.

Searching across open domains. In the search evaluation phase, similarity
between source and target samples is measured with the cosine distance in the
shared semantic space. Given one or more queries from different source domains,
we first project all queries to the shared semantic space and average their positions
into a single vector. Then, we compute the distance to all target examples to rank
them with respect to the source query. As all domains map to the same common
semantic space, domains can straightforwardly be combined either to search with
queries from multiple domains or to search within a gallery of multiple domains.

2.3.3 Refining queries across domains

With our approach, a source query is close to target examples from the same
category, regardless of the domains of the query and target examples. In practice,
inherent variability in the hyperspherical semantic space can cause noise in the
similarity measures. We then propose to refine the initial query representation
using a nearby example from the target domain, as illustrated in Figure 2.3.

We refine the query representation py by performing a spherical linear inter-
polation with a relevant representation p;. The refined representation p is:

sin ((1 — \)Q) sin (AQ)

Do + P1, (2.4)

ﬁ(poapﬂ)\) -

sin € sin 2

where © = arccos (py - p1) and A € [0,1] controls the amount of mixture in the
refinement process. The higher the value of lambda is, the further away the refined
representation is from the original representation py. Intuitively, the refinement
performs a weighted signal averaging to reduce the noise present in the initial
representation. In retrieval, we set p; as the l-nearest neighbour of py in the
target set. This mixture doesn’t require any label and relies on the fact that the
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recall at one is usually very high. In classification, p; is the word embedding of
the category name.

2.4 Open cross-domain visual search

In the first set of experiments, we demonstrate the ability to perform open cross-
domain visual search in three ways. We note that this is a new setting, making
direct comparisons to existing works infeasible. First, we demonstrate how we
can search from any source to any target domain without hassle. Second, we
show the potential and positive effect of searching from multiple source domains
for any target domain. Third, we exhibit the possibility of searching in multiple
target domains simultaneously.

Setup. We evaluate on the recently introduced DomainNet [Peng et al., 2019],
which contains 596,006 images from 345 classes. Images are gathered from six
visual domains: clipart, infograph, painting, pencil, photo and sketch. We consider
retrieval in zero- and many-shot evaluations: (7) in the zero-shot evaluation,
Y is split into Viain and Vieq, With Viain N Viest = 0, i.e., categories to be
searched during inference have not been seen during training; (i) the many-shot
evaluation uses the same categories during both training and testing. The zero-
shot evaluation randomly splits samples into 300 training and 45 testing classes.
Following the zero-shot learning good practices in Xian et al. [2018a], we have
verified the presence of the 345 categories of DomainNet [Peng et al., 2019] in
ImageNet [Russakovsky et al., 2015], where we identify 188 separate categories.
From this list of separate categories, we randomly sample 45 zero-shot categories
with at least 40 samples per class in every domain. The many-shot evaluation
follows the original splits from Peng et al. [2019]. We report the mean average
precision (mAP@all).

Implementation details. Throughout the paper and unless stated otherwise,
we use SE-ResNet50 [Hu et al., 2018b] pre-trained on ImageNet [Russakovsky
et al., 2015] as a backbone, and word2vec trained on a Google News corpus
[Mikolov et al., 2013] as the common semantic space. We remove the final clas-
sifier layer of SE-ResNet50, and replace it with a fully-connected layer of size
D = 300 initialized with random weights. The new layer is followed by a linear
activation and batch normalization [loffe and Szegedy, 2015]. We optimize the
loss in Equation 2.3 with Nesterov momentum [Sutskever et al., 2013] by setting
the coefficient to 0.9. We apply a learning rate of le—4 with cosine annealing
without warm restarts [Loshchilov and Hutter, 2017] and a batch size of 128. We
use a scaling factor s of 20, and decrease it to 10 for Sections 2.5.2 and 2.5.3.
We set A = 0.7 when evaluating on unseen classes (i.e., zero-shot and few-shot
evaluations) and to 0.4 when evaluating on seen classes (i.e., many-shot evalua-
tion). The implementation rests on the Pytorch [Paszke et al., 2019] framework
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Figure 2.4: Demonstration 1 for visual search from any source (columns) to any
target (rows) domain in mAP@all. Our approach can perform 36 cross-domain
searches for both (a) zero-shot evaluation, and (b) many-shot evaluation, without
any modifications as we bypass the need to align domains.

and image similarities are computed with the Faiss [Johnson et al., 2017] library.
Word embeddings of class names are extracted with the Gensim [Rehufek and
Sojka, 2010] library.

2.4.1 From any source to any target domain

First, we demonstrate how searching from any source to any target domain in an
open setting is trivially enabled by our approach. Figure 2.4 shows the result of
72 cross-domain search evaluations; corresponding to all six cross-domain pairs
for both zero- and many-shot evaluations. In our formulation, such an exhaus-
tive evaluation is enabled by training only six models, one for every domain. For
comparison, a domain adaptation approach —the standard in current cross-domain
search methods— requires a pair-wise training of all available domain combina-
tions. Moreover, our formulation allows for an easy integration of new domains,
as only the mapping from a new visual domain to the shared semantic space
needs to be trained. While approaches based on pair-wise training scale with a
quadratic complexity to the number of domains, we scale linearly.

In the zero-shot evaluation with an evaluation on the unseen classes (Fig-
ure 2.4a), the photograph domain provides the most effective search whether used
as source or target. One reason is the number of available images, which is up to
four times larger than other domains. On the other hand, infographs and sketches
are very diverse in terms of scale and visual representations, which induces a much
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target domain zero-shot many-shot
SAKE This work SAKE  This work
clipart 0.199 0.236 0.268 0.373
infograph 0.080 0.083 0.097 0.131
painting 0.118 0.142 0.203 0.317
pencil 0.181 0.214 0.230 0.328
photo 0.206 0.240 0.358 0.496

Table 2.1: Visual search from sketches as a source to any target domain
comparison with SAKE [Liu et al., 2019] in mAP@all. Our formulation achieves
competitive results in both zero- and many-shot evaluations.

more difficult search.

In the many-shot evaluation with an evaluation on all classes (Figure 2.4b),
the photograph domain exhibits a similar behaviour. Though, in this case the
search performance for sketches is at the same level as other considered domains,
such as clipart, painting or pencil. Seeing all classes helps the prototype learner
to better grasp the variability in sketches. The infograph domain remains the
most challenging. We conclude from the first demonstration that search from
any source to any target domain is not only feasible with our approach, it can be
done easily for both zero- and many-shot evaluations since we bypass the need to
align different domains.

We quantitatively compare with the state-of-the-art SAKE [Liu et al., 2019]
on zero-shot sketch-based image retrieval. We run SAKE from the original source
code provided by the authors. Table 2.1 presents the results when considering
sketches as the source domain and retrieving images in any of the other domains.
SAKE has been proposed with a zero-shot evaluation design from the start, which
makes it strong in this setting. Indeed, results are close, we only observe an im-
provement of 0.3% (infograph) up to 3.7% (clipart). When the evaluation focuses
on a large number of categories, we notice higher gains from 3.4% (infograph)
up to 13.8% (photograph) in the many-shot evaluation. Our embedding space is
better partitioned for all categories thanks to the semantic prototypes. Overall,
our formulation provides competitive performance in both zero- and many-shot
evaluations with a simpler training.

Finally, we also assess the importance of the proposed refinement module of
Equation 2.4. Figure 2.5 illustrates the effect of our cross-domain prototypical
refinement when searching in any target domain from the sketch domain. We
create a mixture between the sketch query (A = 0) and its nearest neighbour
in the gallery (A = 1) for retrieval. For both zero- and many-shot evaluations,
refining the representations improves the performance. We observe a need for a
lower mixture for the many-shot evaluation, as classes are all seen during training
compared to the zero-shot evaluation. Refining the representations helps to bridge
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Figure 2.5: Ablation on cross-domain query refinement on DomainNet,
with sketches as a source. Refining the source representation always improves
the retrieval performance.

the inherent cross-domain gap.

2.4.2 From multiple sources to any target domain

Second, we demonstrate the potential to search from multiple source domains.
Due to the generic nature of our approach, we are not restricted to search from
a single source. We show that a multi-source search benefits the search in any
target domain.

For this experiment, we start from the sketch domain as a source and inves-
tigate the effect of including queries from the most effective source (photographs)
and the least effective source (infographs). Table 2.2a highlights the positive ef-
fect of searching with an additional domain, rather than a single source domain.
When using multiple sources, we simply average the positions in the common se-
mantic space. For fairness, we also evaluate search using two sketches. Across all
settings, we find that searching from multiple queries improves relative to using
one single sketch query. In the zero-shot evaluation, including infographs and
photographs improves upon sketch-based search only. In the many-shot evalua-
tion, including infographs improves upon search by one sketch, but not by two
sketches, which is not surprising given the low scores for infographs individu-
ally. Photographs with sketches obtain the highest scores, regardless of the target
domain or the evaluation setting.

We also consider a more challenging multi-source search scenario where we
search from the most informative source (photograph) and one of the least infor-
mative sources (infograph or sketch). Table 2.2b confirms the positive effect of
searching with an additional domain. Adding infographs only improves the re-
sults marginally. Performance can even decrease when searching within one of the
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target domain zero-shot many-shot
sk+sk sk+in sk+ph sk+sk sk+in sk+ph
clipart +.057 +.072 +.211 +.097 +.036 +.178
infograph +.018 +.067 +.107 +.031 +.002 +.075
painting +.035 +.080 +.186 +.079 +.029 +.154
pencil +.054 +.060 +.154 +.083 +.043 +.156
photo +.064 +.112 +.328 +.127 +4.049 +.185

(a) Improving the less informative sketch representations

target domain zero-shot many-shot
ph+ph ph+in ph+sk ph+ph ph+in ph+sk
clipart +.070 +.012 +4.048 +4.075 +.002 +.067
infograph +.029 -.035 +.005 +4.027 -.062 +.018
painting +.052 +4.011 +4.008 +4.061 +.004 +.049
pencil +.054 +.012 +4.037 +4.066 +.000 +.057
sketch +.041 +4.001 +.202 +.075 -.013 -.030

(b) Improving the more informative photograph representations

Table 2.2: Demonstration 2 for visual search from multiple sources to any
target domain (absolute improvement in mAP@all). In our approach, searching
from multiple sources is as easy as using a single source, as we only have to average
their positions in the common semantic space. Searching (a) from multiple diverse
domains is preferred when the source is less informative, while (b) more examples
from the same domain are preferred when the source is more informative.

least informative domains, because the combination creates a destructive noise
that moves the initial representation to a wrong direction. Adding sketches can
benefit searching within sketches when the uncertainty is high, as in a zero-shot
evaluation, but slightly decreases the score when the uncertainty is low, as in a
many-shot evaluation. In the other target domains, sketches are much more ef-
fective than infographs when added to photographs. Though, the improvement is
lower than searching from two photographs. When searching from an informative
source domain, combining it with itself improves more than a combination with
a less informative domain for both zero- and many-shot evaluations.

This demonstration shows the potential of searching from multiple sources. It
is better to diversify the search by using multiple diverse domains when the source
is less informative while more queries from the same domain are preferred when
the source is more informative. Similar to the first demonstration, this evaluation
is a trivial extension to our approach, as we only have to average positions in the
shared semantic space, regardless of the domain the examples come from.
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Figure 2.6: Demonstration 3 for visual search from any source to multiple target
domains. Correct results are in green, incorrect in red. For abstract categories
such as “sun”, abstract domains such as clipart or pencil drawings tend to be
retrieved first. When sketches are more ambiguous such as “shoe”, some retrieved

results are incorrect but resemble the shape.

2.4.3 From any source to multiple target domains

Third, we demonstrate our ability to search in multiple domains simultaneously.
This setting has potential applications for example in untargeted portfolio brows-
ing, where a user may want to explore all possible visual expressions of a category.
Exploring in multiple domains also highlights whether certain categories have a
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preference towards specific domains, which offers an insight on how to best depict
those categories. Note that this setting can also be easily extended to include also
multiple domains as a source. For the sake of clarity, we use sketch as the source
domain and search in the other five domains in a many-shot evaluation.

Figure 2.6 provides qualitative results for eight sketches from different cat-
egories. We first observe that the results come from multiple target domains,
without being explicitly told to do so. We do not need to align results from dif-
ferent target domains, since we measure distance in the common semantic space.
For categories such as “sun”, we have a bias towards retrieving abstract depic-
tions, such as pencil drawings and cliparts, as the “sun” is a category with a
clear abstract representation. “Castle” on the other hand has a bias towards
both distinct cliparts, as well as photographs and paintings. In both cases, all
top results are relevant. For categories with more ambiguous sketches, such as
“river” or “calculator”, retrieved examples resemble the shape of the provided
sketch, but do not match the category. Overall, we conclude that searching in
multiple domains is not only trivial in our approach, but is also an indicator of
the presence of preferential domains for depicting categories.

We also quantitatively measure the retrieval performance when searching from
sketches to the other five target domains simultaneously. When computing the
mAP@100, we obtain a score of 0.565. Though, this measure does not take into
account the differences and diversity among domains, as it considers all of them
as similar. As such, we report the intent-aware mAP [Agrawal et al., 2009].
Extending the mAP to an intent-aware formulation provides an estimate of the
result diversity by: (i) computing the mAP per domain, and (ii) summing them
with a weighting that corresponds to the occurrences of every category within
each domain. Figure 2.7 shows the per domain and intent-aware mAP@100. The
photograph-mAP@100 is the highest score, which indicates correct photographs
are in the top-ranked results compared with other target domains. The infograph-
mAP@100 obtains the lowest score, which means that there are very few correct
infographs in the top-ranked results. When the differences among domains are
taken into consideration, the intent-aware mAP@100 results in 0.224. In a search
within multiple domains, the informativeness of each domain influences the top-
ranked results.
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2.5 Closed cross-domain visual search

2.5.1 Zero-shot sketch-based image retrieval

Setup. Zero-shot sketch-based image retrieval focuses on retrieving natural im-
ages (target domain) from a sketch query (source domain). We evaluate on two
datasets. TU-Berlin Extended [Eitz et al., 2012, Zhang et al., 2016] contains
20,000 sketches and 204,070 images from 250 classes. Following Shen et al. [2018],
we select 220 classes for training and 30 classes for testing. Sketchy Extended [Liu
et al., 2017a, Sangkloy et al., 2016] contains 75,481 sketches and 73,002 images
from 125 classes. Similarly, following Shen et al. [2018], we select 100 classes for
training and 25 classes for testing. For fair comparison with Liu et al. [2019], we
select the same unseen classes for both datasets. Following recent works [Dutta
and Akata, 2019, Liu et al., 2019, Shen et al., 2018], we report the mAP@all and
the precision at 100 (prec@100) scores.

Our approach is geared towards open cross-domain visual search, as demon-
strated in the previous section. To get insight in the effectiveness of our approach
for cross-domain visual search in general, we also perform an extensive compar-
ative evaluation on standard cross-domain settings, which search between two
domains. In total, we compare on three of the most popular cross-domain search
tasks, namely zero-shot sketch-based image retrieval [Sangkloy et al., 2016, Shen
et al., 2018], few-shot sketch-based image classification [Hu et al., 2018a], and
many-shot sketch-based 3D shape retrieval [Li et al., 2013, 2014b]. For our ap-
proach, we simply train one mapping function for the source domain, and one
for the target domain using the examples provided during training. Below, we
present each comparison separately.

Results. Table 2.3a compares to six state-of-the-art baselines on both datasets.
Baselines mostly focus on bridging the domain gap between sketches and natural
images with domain adaptation losses [Ganin et al., 2016, Gonzalez-Garcia et al.,
2018]. On Sketchy Extended, our approach outperforms other baselines. On
TU-Berlin Extended, we obtain the highest mAP@all score, while the recently
introduced SAKE by Liu et al. [2019] obtains a higher prec@100 score. SAKE is
better at grouping images from the same category together thanks to the preser-
vation module that produces tightly distributed representations. Our method is
better at retrieving relevant images in the first ranks as the refinement module
reduces the noise in the query representations.

Following previous work in zero-shot sketch-based image retrieval [Dutta and
Akata, 2019, Liu et al., 2019, Lu et al., 2018, Shen et al., 2018], we also re-
port the retrieval performance on binary representations. As previously proposed
in [Dutta and Akata, 2019, Liu et al., 2019], real-valued representations are pro-
jected to a low-dimensional space and quantized with iterative quantization [Gong
et al., 2012]. We compute the transformation on the training set and apply it on
both sketch and image testing sets. Note that we first refine the representations,



2.5. Closed cross-domain visual search 25

TU-Berlin Extended Sketchy Extended

Method mAP@all prec@100 mAP@all prec@100
EMS [Lu et al., 2018] 0.259 0.369 n/a n/a
CAAE [Yelamarthi et al., 2018] n/a n/a 0.196 0.284
ADS [Dey et al., 2019] 0.110 n/a 0.369 n/a
SEM-PCYC [Dutta and Akata, 2019] 0.297 0.426 0.349 0.463
SG [Dutta and Biswas, 2019] 0.254 0.355 0.376 0.484
SAKE [Liu et al., 2019] 0.475 0.599 0.547 0.692
This work 0.517 0.557 0.649 0.708
(a) Real-valued representations
Method TU-Berlin Extended Sketchy Extended
Lo mAP@all prec@100 mAP@Qall prec@100
EMS [Lu et al., 2018] 0.165 0.252 n/a n/a
ZSIH [Shen et al., 2018] 0.220 0.291 0.254 0.340
SEM-PCYC [Dutta and Akata, 2019]  0.293 0.392 0.344 0.399
SAKE [Liu et al., 2019] 0.359 0.481 0.364 0.487
This work 0.404 0.517 0.466 0.618
(b) Binary representations
Method TU-Berlin Extended Sketchy Extended
mAP@all prec@100 mAP@all prec@100
ZSTH [Shen et al., 2018] 0.142 0.218 0.219 0.296
SEM-PCYC [Dutta and Akata, 2019] 0.192 0.298 0.307 0.364
SG [Dutta and Biswas, 2019] 0.149 0.226 0.331 0.381
This work 0.211 0.224 0.397 0.421

(c) Generalized setting

Table 2.3: Comparison 1 to zero-shot sketch-based image retrieval on TU-
Berlin Extended and Sketchy Extended. Aligning solely the semantics improves
cross-domain image retrieval.

then apply iterative quantization. Table 2.3b compares the proposed formulation
with binary representations of 64 dimensions. Compared to real-valued represen-
tations in Table 2.3a, we notice a higher drop in the mAP®@all score compared
to prec@100 score. Compared to other baselines, our semantic space based on
word embeddings better preserves the information when compressed to a low-
dimensional space.

As recently introduced by Dutta and Akata [2019], we also evaluate on a gen-
eralized setting in Table 2.3c, where the gallery set also includes images from seen
classes. Following their protocol, we reserve 20% of the samples from the seen
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Figure 2.8: Scaling hyper-parameter ablation. We evaluate the scaling of the
softmax function. s = 20 yields the best results for both datasets, especially for
the mAP®@all score.

classes for evaluation and use VGG16 [Simonyan and Zisserman, 2014] in this
experiment for fair comparison. On Sketchy Extended, our approach also outper-
forms other baselines. On TU-Berlin Extended, we obtain the highest mAP@all
score, while SEM-PCYC by Dutta and Akata [2019] obtains a higher prec@100
score. Similar to the zero-shot evaluation, our method is better at ranking images
than grouping them together. Overall, focusing solely on semantic alignment out-
performs alternatives on domain adaption or knowledge preservation across three
different settings derived from two datasets.

To understand the effect of the distance scaling hyper-parameter defined in
Equation 2.1, we vary its value on both datasets in Figure 2.8. We observe the
same behaviour on both datasets. When s = 1 as in a common softmax function,
it yields the lowest results. A higher scaling helps to narrow the probability
distribution, resulting in a better retrieval performance. There is a tipping point
around s = 20, after which performance decreases. Calibrating the softmax with
a high distance scaling factor improves the retrieval performance.

Qualitative analysis. To understand which sketches trigger the performance of
natural image retrieval, we provide several qualitative sketch queries with their
top retrieved images in Figure 2.9. Our approach works well for typical sketches
of categories. For example, the “cup” or “parrot” sketches exhibit a typical defi-
nition of their respective categories. In return, the search is very effective despite
the variation in image appearance and viewpoints. Results degrade when sketches
are ambiguous or in non-canonical views. For example, the “tree” sketch can eas-
ily be confused with the smoke ring of a “volcano” or the shape of a “windmill”.
Typical shape drawings of sketches matter for zero-shot image retrieval.
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Figure 2.9: Qualitative analysis of zero-shot sketch-based image retrieval. We
show eight sketches of Sketchy Extended, with correct retrievals in green, incorrect
in red. For typical sketches (e.g., “cup”), the closest images are from the same
category. For ambiguous sketches (e.g., “tree”) or non-canonical views (e.g.,
“butterfly”), our approach struggles.

2.5.2 Few-shot sketch-based image classification

Setup. Few-shot sketch-based image classification focuses on classifying natural
images from one or a few labeled sketches. The few-shot categories have not been
observed during training. Different from the zero-shot retrieval scenario, the
few-shot classification evaluation has access to the labels of the unseen classes
in the evaluation phase. For example, this comes through the form of sketches
or word embeddings. We report results on the Sketchy Erxtended dataset [Liu
et al., 2017a, Sangkloy et al., 2016]. For fair comparison with Hu et al. [2018a],
we subsample the Sketchy Extended to match the size of their private split. We
select the same 115 classes for training and 10 classes for testing. We also rely
on VGG19 [Simonyan and Zisserman, 2014] as a backbone. We evaluate the
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sketch image
Method w2v one-shot  five-shot one-shot  five-shot
M2M [Hu et al., 2018a] n/a n/a 79.93 n/a 93.55
F2M [Hu et al., 2018a]  35.90 68.16 83.01 84.12 93.89
This work 80.39 82.19 85.13 90.63 94.63

Table 2.4: Comparison 2 to few-shot sketch-based image classification on a sub-
sampled Sketchy Extended (multi-class accuracy). Our metric learning approach
outperforms model regression approaches.

performance with the multi-class accuracy. Classification is done by measuring
the distance to the class prototypes. Following Hu et al. [2018a], we evaluate on
three different modes by setting the prototypes of the unseen classes to: (i) word
vectors (w2v), (ii) one or five sketch representations, and (iii) one or five image
representations. The latter is considered as an upper-bound of this cross-domain
task. Following Hu et al. [2018a], the model is trained once and we report the
average classification accuracy over 500 runs with different sets of sketches or
images in the few-shot evaluation.

Results. Table 2.4 compares our formulation to two baselines introduced by
Hu et al. [2018a]: M2M regresses weights for natural image classification from
the weights of the sketch classifier while F2M regresses weights from sketch rep-
resentations. For the first evaluation mode, we obtain an accuracy of 76.73%,
compared to 35.90%, which reiterates the importance of a semantic alignment
for categorical cross-domain search. In the few-shot evaluation, the biggest rela-
tive improvement is achieved in the one-shot evaluation. It is also interesting to
compare the w2v and one-shot sketch evaluation modes. As the one-shot sketch
exhibits a higher score, it means that sketch representations capture visual details
that cannot be described with word representations only. Our approach is also
effective for cross-domain classification, especially with low shots.

Qualitative analysis. To understand how to best employ our approach for few-
shot sketch-based image classification, we provide the most and least effective
sketches for image classification in Figure 2.10. Since categories are condensed
to a single prototypical sketch, our approach desires sketches with details and in
canonical configurations. Results are degraded when such assertions are not met.
For example, Figure 2.10a shows a well sketched “cat” in one of the canonical po-
sitions while Figure 2.10b exhibits a “cat” without any whiskers and in a strange
view as we only see the face. Another important assertions is the sketch sepa-
rability. For example, the “airplane” sketch in Figure 2.10b could be confused
with a “knife”. Appearance, viewpoint and separability matter when relying on
sketches for few-shot image classification.
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(b) Least effective set of sketches (43.82% accuracy).

Figure 2.10: Qualitative analysis of few-shot sketch-based image classification
on a subsampled Sketchy Extended. (a) Since our approach condenses examples
of category to a single prototype in the shared space, we obtain high scores when
source sketches are detailed and in canonical views (e.g., “deer” or “couch”). (b)
The accuracy decreases when sketches are drawn badly (e.g., “airplane”), or in
non-canonical views (e.g., “car” or “cat”).

2.5.3 Many-shot sketch-based 3D shape retrieval

Setup. Sketch-based 3D shape retrieval focuses on retrieving 3D shape models
from a sketch query, where both training and testing samples share the same set of
classes. We evaluate on three datasets. SHREC13 [Li et al., 2013] is constructed
from the TU-Berlin [Eitz et al., 2012] and Princeton Shape Benchmark [Shi-
lane et al., 2004] datasets, resulting in 7,200 sketches and 1,258 3D shapes from
90 classes. The training set contains 50 sketches per class, the testing set 30.
SHREC1/ [Li et al., 2014b] contains more 3D shapes and more classes, result-
ing in 13,680 sketches and 8,987 3D shapes from 171 classes. The training and
testing splits of sketches follow the same protocol as SHREC13. We also report
on Part-SHREC1/ [Qi et al., 2018], which contains 3,840 sketches and 7,238 3D
shapes from 48 classes. The sketch splits also follow the same protocol, while
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Method NN FT ST E DCG mAP
Siamese [Wang et al., 2015] 0.405 0.403 0.548 0.287 0.607 0.469
Shape2Vec [Tasse and Dodgson, 2016] 0.620 0.628 0.684 0.354 0.741 0.650
DCML [Dai et al., 2017] 0.650 0.634 0.719 0.348 0.766 0.674
LWBR [Xie et al., 2017] 0.712 0.725 0.785 0.369 0.814 0.752
DCA [Chen and Fang, 2018] 0.783 0.796 0.829 0.376 0.856 0.813
SEM [Qi et al., 2018] 0.823 0.828 0.860 0.403 0.884 0.843
DSSH [Chen et al., 2019] 0.831 0.844 0.886 0.411 0.893 0.858
This work 0.825 0.848 0.899 0.472 0.907 0.865

(a) SHRECI3

Method NN FT ST E DCG mAP
Siamese [Wang et al., 2015] 0.239 0.212 0.316 0.140 0.496 0.228
Shape2Vec [Tasse and Dodgson, 2016] 0.714 0.697 0.748 0.360 0.811 0.720
DCML [Dai et al., 2017] 0.272 0.275 0.345 0.171 0.498 0.286
LWBR [Xie et al., 2017] 0.403 0.378 0.455 0.236 0.581 0.401
DCA [Chen and Fang, 2018] 0.770 0.789 0.823 0.398 0.859 0.803
SEM [Qi et al., 2018] 0.804 0.749 0.813 0.395 0.870 0.780
DSSH [Chen et al., 2019] 0.796 0.813 0.851 0.412 0.881 0.826
This work 0.789 0.814 0.854 0.561 0.886 0.830

(b) SHREC14

Method NN FT ST E DCG mAP
Siamese [Wang et al., 2015] 0.118 0.076 0.132 0.073 0.400 0.067
SEM [Qi et al., 2018] 0.840 0.634 0.745 0.526 0.848 0.676
DSSH [Chen et al., 2019] 0.838 0.777 0.848 0.624 0.888 0.806
This work 0.816 0.799 0.891 0.685 0.910 0.831

(¢) Part-SHREC14

Table 2.5: Comparison 3 to many-shot sketch-based 3D shape retrieval on
SHREC13, SHREC14, and Part-SHREC14. Having a metric space revolving
around semantic prototypes benefits five out of six metrics.

the 3D shapes are now split into 5,812 for training and 1,426 for testing to avoid
overlap.

Following previous works [Chen and Fang, 2018, Su et al., 2015, Xie et al.,
2017], we generate 2D projections for all 3D shape models using the Phong re-
flection model [Phong, 1975]. Similarly, we render 12 different views by placing
a virtual camera evenly spaced around the unaligned 3D shape model with an
elevation of 30 degrees. We only aggregate the multiple views during testing to
reduce complexity. We report six retrieval metrics [Li et al., 2014a]. The nearest
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Figure 2.11: Qualitative analysis of many-shot sketch-based 3D shape retrieval
on Part-SHREC14. Incorrect results are shown in blue. Our approach handles
the unaligned shapes by projecting all views to the same semantic prototype in
the shared space. An open problem remains the confusion with categories that
are close both in semantics and in appearance (e.g., “violin” wvs. “cello”).

neighbour (NN) denotes precision@1. The first tier (FT) is the recall@K, where
K is the number of 3D shape models in the gallery set of the same class as the
query. The second tier (ST) is the recall@2K. The E-measure (E) is the harmonic
mean between the precision@32 and the recall@32. The discounted cumulated
gain (DCG) and mAP are also reported.

Results. Table 2.5 shows the results on all three benchmarks and six metrics.
We compare to seven state-of-the-art baselines, which mostly focus on learning a
joint feature space of sketches and 3D shapes with metric learning [Chopra et al.,
2005, Hadsell et al., 2006, Schroff et al., 2015]. Across all three benchmarks, we
observe the same trend, where we obtain the highest scores for five out of the six
baselines. Only for the precision@1 metric (NN) do the recent approaches of Chen
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et al. [2019] and Qi et al. [2018] obtain higher scores on all three benchmarks.
A first reason for this behaviour is that both approaches directly optimize for
the nearest neighbour metric. Qi et al. [2018] search in the label space while
Chen et al. [2019] perform a learned hashing. A second reason comes from their
usage of more complex 3D shape representations. Qi et al. [2018] work with point
clouds while Chen et al. [2019] sample 2D views from various viewpoints. Our
approach, while simple in nature, provides competitive results compared to the
current state-of-the-art in many-shot sketch-based 3D shape retrieval.

Qualitative analysis. To gain insight in our approach for retrieving 3D shapes
from sketches, we provide qualitative examples in Figure 2.11. Rotations of un-
aligned shapes can be handled. For example, 3D shapes of “laptop” or “piano”
are retrieved despite the large differences in rotation angles. Yet, confusion re-
mains with visually similar categories. This happens when the search needs to
differentiate among fine-grained categories. For example, differences are subtle
between “sedan cars” and “sports cars”, or between “violin” and “cello”. Al-
though errors can appear with semantically similar categories, our method can
retrieve highly variable 3D shapes from sketches.

2.6 Conclusion

In this chapter, we open visual search beyond two domains to scale to any number
of domains. This translates into a search between any pair of source and target
domains, a search from a combination of multiple sources, or a search within
a combination of multiple targets. This creates new challenges as all domains
should map to the same embedding space, while new domains should be able
to be incorporated efficiently. To achieve open cross-domain visual search, we
propose a simple approach based on domain-specific prototype learners to align
the semantics of multiple visual domains in a common space. Learning a map-
ping to a common space enables a visual search among any number of source or
target domains. The addition of new domains consists in the training of a new
prototype learner, without the need to retrain previous models. Empirical demon-
strations on novel open cross-domain visual search tasks present how to search
across multiple domains. State-of-the-art results on existing closed cross-domain
visual search tasks show the effectiveness of our approach.



Chapter 3

Diversely-Supervised Visual Product Search

3.1 Introduction

This chapter strives to retrieve specific images of products, such as cars or clothes.
Searching for product images has a long tradition in computer vision and mul-
timedia, covering query-by-instance [Bell and Bala, 2015, Huang et al., 2015,
Kiapour et al., 2015, Liu et al., 2016, Song et al., 2016], query-by-category [Berg-
amo et al., 2011, Chechik et al., 2009, Deselaers and Ferrari, 2011, Frome et al.,
2007], query-by-attribute value [Kovashka et al., 2012, Parikh and Grauman,
2011, Veit et al., 2017, Yu and Grauman, 2014, Zhao et al., 2018b], or query-by-
description [Karpathy and Fei-Fei, 2015, Lee et al., 2018, Wang et al., 2019¢]. A
more targeted search strategy has been proposed recently, in which a query-by-
sentence aims to modify attribute values [Ak et al., 2018, Han et al., 2017, Vo
et al., 2019, Zhao et al., 2017a] or to generate product instances [Ak et al., 2019,
Zhu et al., 2017]. While these previous works consider the similarity of instance,
category and attribute labels individually, we aim to integrate them altogether
to enable a more expressive product search.

We are inspired by recent works on diverse supervision [Ruder et al., 2019,
Ye et al., 2018], which define auxiliary labels in separate branches to benefit a
primary task. Ruder et al. [2019] show the benefits of part-of-speech tagging as
auxiliary labels for several natural language processing problems. Ye et al. [2018]
leverage image-level, box-level and pixel-level annotations jointly for instance seg-
mentation. Encouraged by these seminal works, we introduce diverse supervision
to visual product search. We define the search for a given diverse set of labels as
our primary task. To achieve this, we learn visual representations for attribute,

Published in ACM Transactions on Multimedia Computing, Communications, and Appli-
cations, 18(1):1-22. [Thong and Snoek, 2022]
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instance, and category labels altogether in an integrated embedding space for a
product retrieval task.

Our main contribution is the introduction of diversely-supervised visual prod-
uct search, where the objective is to search for product images that match to a
specific set of diverse labels. For example, we may want to retrieve images of “a
shirt with long sleeves and a stripe print”, which composes a set of three differ-
ent labels. For this purpose, we derive an embedding space where interrelations
among labels result in interrelated representations. Training relies on a diverse
supervision of attribute, instance and category labels to describe images through
a diverse representation. For every label, we compute a representation by ag-
gregating the corresponding items in the training set. We propose an evaluation
based on composite queries for diversely-supervised product search. We represent
composite queries by averaging the aggregated visual representations of each di-
verse label of the specific set. As such, we create two diversely-labeled datasets,
which build upon existing clothes [Liu et al., 2016] and cars datasets [Krause
et al., 2013, Yang et al., 2015]. Evaluation on these two datasets shows the bene-
fits of our embedding for diversely-supervised product search in seen and unseen
settings, and for discovering the typicality effect of product styles. All source code
and setups are released to foster further research in diversely-supervised visual
product search !.

3.2 Related work

Visual product search has attracted a lot of interest from social media plat-
forms [Jing et al., 2015, Zhai et al., 2017, 2019] or online e-retailers [Yang et al.,
2017, Zhang et al., 2018b], as they need to recommend products to users. In mul-
timedia and computer vision applications, this interest in visual product search
has been translated into different retrieval problems. Each problem comes with
its own challenge and offers new ways to search for products.

One line of work follows the traditional instance retrieval problem where an
example image is used as a query. The objective is to retrieve images of the same
product in a gallery set within the same domain [Liu et al., 2016, Song et al.,
2016] or across domains [Bell and Bala, 2015, Huang et al., 2015, Kiapour et al.,
2015, Liu et al., 2012, 2016]. Product categories can also be related to each other
to retrieve complementary products for recommendation by capturing a global
description of style [Hsiao and Grauman, 2018, Kiapour et al., 2014, McAuley
et al., 2015, Veit et al., 2015].

Another line of work covers image captioning where a description is matched
to an image [Karpathy and Fei-Fei, 2015, Lee et al., 2018, Wang et al., 2019¢|. The
idea is to learn a multimodal embedding where text and image representations are
aligned together [Karpathy and Fei-Fei, 2015]. Grounding words in the image is

1Source code is available at https://github.com/twuilliam /diverse-search
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particularly important to capture the interactions between both modalities [Lee
et al., 2018, Wang et al., 2019¢]. In this chapter, the search task is complementary
to text-image retrieval as we consider an unordered set with a varying number of
labels instead of a fixed description sentence.

Finally, another line of work explores relevance feedback to integrate input
from the user. This can consist of a comparison of product pairs to assess the
relative strength of attributes [Kovashka et al., 2012, Parikh and Grauman, 2011,
Yu and Grauman, 2014, to verify that they exhibit the same attribute value [Veit
et al., 2017, Zhao et al., 2018b], or indicate a location of attribute interest [Huang
et al., 2014]. Alternatively, the user can manipulate one attribute value to re-
trieve [Ak et al., 2018, Han et al., 2017, Vo et al., 2019, Zhao et al., 2017a] or to
generate [Ak et al., 2019, Zhu et al., 2017] the targeted product. In this chapter,
we introduce a complementary problem: we search for products that match to a
specific, yet diverse, set of labels.

Diverse labels. Searching for a diverse set of labels has mainly focused on de-
scribing images with multiple binary attributes. Multi-attribute queries are used
to search for images of faces [Kumar et al., 2011, Scheirer et al., 2012, Siddiquie
et al., 2011], by describing the absence or presence of facial traits. The conjunc-
tion of positive binary attribute values has also proven to be useful in animal
categorization, in a retrieval setting [Rastegari et al., 2013] or a zero-shot clas-
sification setting [Akata et al., 2016, Farhadi et al., 2009, Lampert et al., 2014].
While attributes are important to describe objects, they are not specific enough
for producing a product search [Ferrari and Zisserman, 2008]. Different from
these works, we aim to learn (a) image similarities through a diverse set of labels
which go beyond attributes by including category and instance labels; and (b) an
embedding space that encodes every label with real-valued vector representations
rather than binary representations.

Structured queries have also been proposed to capture a diverse set of rela-
tions for complex scene retrieval. Sentence queries go beyond simple keywords to
capture relations among objects [Gordo and Larlus, 2017, Sadeghi and Farhadi,
2011, Vo et al., 2019, Wang and Hebert, 2016]. Graph queries structure explic-
itly these relations [Chaudhary et al., 2020, Johnson et al., 2015, Lan et al.,
2012]. Paragraph queries enable the retrieval of an image sequence to illustrate
a story [Kim et al., 2015, Ravi et al., 2018]. In this work, we rely on a diverse
set of label vocabularies to structure product retrieval. We form composite query
representations by averaging over the visual representations of the desired labels
to search for.

Diverse representations. Encoding multiple labels into an embedding space is
usually done through two different approaches. One approach is to learn a global
representation of images [Liu et al., 2016, Yang et al., 2015] to classify categories
and attribute values. An alternative approach is to learn a subspace for each
attribute to create distinct and disentangled similarities [Veit et al., 2017]. Vari-
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ants of this approach enhance the backbone network to modulate channels either
with a learned real-valued vector to promote constructive interference [Zhao et al.,
2018b], or by a fixed binary mask to model task relationships in a non-parametric
manner [Strezoski et al., 2019]. Yet, these approaches are restricted to comparing
attribute [Veit et al., 2017] or instance [Liu et al., 2016, Yang et al., 2015] labels.
In this chapter, we propose to encode attribute, instance and category labels in
an integrated manner, by explicitly establishing their interrelationships.

3.3 Method

3.3.1 Problem statement

During the training, we are given a training set of product images Xj.q;n. Each
image x in the training set comes along with a diverse set of labels. In particular,
we are interested in the category label y € C, the label v of attribute k € A,
and the instance label ¢ € Zy.4;,. C is the category vocabulary of C' product
categories. As products can express multiple attributes, we consider K different
attribute vocabularies A, with Ay attribute values each. Hence, images also
have multiple attribute labels, forming multiple tuples (k,v) with k = 1,--- | K
and v = 1,--- , Ap. Tirain is the set of instances in the training set. Instances
are an integral part of visual products. Images of the same instance usually
differ by a different viewpoint or background. Hence, the instance labels enforce
images of the same product to be close to each other. Overall, we leverage all
{C, Ay, -+, Ag, Tirain } 1abels to provide a diverse supervisory signal to the model
during training.

During the evaluation, we are given a gallery set of images X,,;, which origi-
nates from a separate set of products. Formally, Z;,4in N Zya = 0. The gallery set
X, a1 shares the same category vocabulary C and K attribute vocabularies Ay with
the training set X},.q,. As such, these vocabularies serve to build a set of labels
for describing composite queries used for retrieving product images. An example
of such a search is to retrieve clothes images that match “a shirt with long sleeves
and a stripe print”, where the set of labels comprises one product category and
values for two different attributes. Separating the instances in the gallery set
Xyar from the training set X4, allows to evaluate the generalization ability of
the model on new products which express both seen and unseen combinations of
categorical and attribute values.

3.3.2 Diversely-supervised embedding

We propose to learn a diversely-supervised embedding space where Euclidean
distances capture label similarities. The embedding space is motivated by the
definition of attribute, instance, and category for describing products: (a) prod-
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ucts are instances of particular categories, and (b) attributes characterize visual
properties of products. For example, a “3-Series sedan” is an instance of the
“BMW?” car category with “4 doors” and “5 seats” attributes. In this context,
attribute and instance labels are highly interrelated to each other because at-
tributes qualify instances. Our technical contribution lies in how to explicitly
encode these label definitions in the diversely-supervised embedding space.

To learn a representation for each label, we rely on a cross-entropy loss with
softmax embedding [Liu et al., 2017b, Movshovitz-Attias et al., 2017, Snell et al.,
2017]. While originally proposed for either instance retrieval [Liu et al., 2017b,
Movshovitz-Attias et al., 2017] or few-shot learning [Snell et al., 2017], we develop
a variant for learning a representation from a diverse set of labels. Different
from the commonly used contrastive [Chopra et al., 2005, Hadsell et al., 2006]
or triplet [Schroff et al., 2015, Weinberger and Saul, 2009] losses, the proposed
loss doesn’t require any intricate sampling, which makes the training with diverse
supervision much simpler. We derive below how to learn representations for each
label type in the embedding space.

Attribute representations. We encode attribute labels in subspaces, one per
attribute. A dataset with K attributes results in an embedding with K subspaces.
Let h = fy(x) be the features h of an image x from a convolutional network f with
trainable parameters . The idea is to learn a linear projection of the features
h in multiple separate subspaces to encode the representation for each attribute
k=1,---,K in a representation z4, € R%:

z4, = Wih + by (3.1)

where W, and b, are the weights and biases, respectively. We learn the attribute
representation based on the cross-entropy loss with softmax embedding;:

exp(—||z, — arol|)

> ez, OP(=llZay — k)’

EAk = — log (32)

where || - || is the Euclidean distance, Z 4, denotes the set of all the latent pro-
totypes ay, € R? of attribute k. The softmax embedding function provides a
probability of the attribute representation z,4, to be recognized as the value v
of attribute k. At each step, the model pulls z4, to its corresponding latent
prototype ay,, and pushes it away from the prototypes of other values ay, ..

Instance representations. We establish an interrelation between instance and
attribute representations. As attribute labels qualify product instances, we en-
code this property in the embedding space. The instance representation z; € R?
with D = K - d corresponds to the concatenation of all attribute subspaces:

Z; = U[zAk], (3.3)
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Figure 3.1: Diversely-supervised embeddings. We consider attributes (blue), cat-
egory (yellow) and instance (pink) representations. Given the output features of a con-
volutional network, we learn multiple linear projections W to an embedding space. (a)
The triple grouping makes the embedding axis-aligned on attributes for both instances
and categories. Average representations of instances form category representations. (b)
The dual grouping treats category representations in a separate subspace.

where (J[-] is the vector concatenation operator. Similarly, we learn the instance
representation based on the cross-entropy loss with softmax embedding:

exp(—|zr, — pill)

L; = —log ;
>z, ep(—|lz1, — p:))

(3.4)

where Z; denotes the set of all the latent instance prototypes p; € RP.

Category representations. We propose two different variants to encode the
category labels, as illustrated in Figure 3.1: (a) the triple grouping ensures that
representations from instances of the same category are close to each other (Fig-
ure 3.1a), while (b) the dual prefers to encode the category labels separately (Fig-
ure 3.1b). We also learn the category representation based on the cross-entropy
loss with softmax embedding:

exp(—|lze — ¢y )
2 eze P(=llzo —c.fl)”

»CC = — log (35)

where Z¢ denotes the set of all latent category prototypes c,. In the triple group-
ing, category representations are a concatenation of attribute subspaces z¢ € R”.
Hence, z¢ is also a concatenation of a series of zy4, , just like z;. Though, we im-
pose a constraint on Z¢ such that grouping instance representations form category
representations. In other words, without the loss on z instance representations
would be free to organize themselves in the embedding space. Formally, the
category representation corresponds to:

1
cy = ] th (3.6)

where Y is the set of all latent instance prototypes of the category y. In the dual
grouping, they are linearly projected to their own subspace zo € R
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The grouping motivation differs by the assumptions on how to relate instance,
category and attribute labels. We assume that attributes qualify instances, and
categories emerge by grouping instances. This leads to the triple grouping, where
all three types of labels are interrelated. The dual grouping relaxes the category
assumption, by only interrelating attributes and instances. The former incorpo-
rates the fact that categories and instances play opposite roles: categories force
the embedding to be agnostic to instances, while instances force the embedding
to focus on fine-grained differences making categories harder to learn.

Training. The training objective of the diversely-supervised embedding corre-
sponds to a minimization of a weighted sum of representations for each type of
labels:

A
£= MLt 3 3 Lay + doke+ Al (37

where A7, A, and A¢ denote trade-off hyperparameters to control the contribution
of each type of label. Some images might not express all attributes K defined
in the dataset, e.g., a skirt doesn’t have a sleeves length attribute. In this case,
the contribution of the missing attribute in Eq. 3.7 is ignored. We also apply
an 5 regularization on the final representation z, which encodes all label types.

In the triple grouping, the final representation is z = z; € R” while in dual,
z = [z1;2¢] € REFDA,

Prototype updates. To design the probabilistic model, we take inspiration from
the prototype literature [Liu et al., 2017b, Movshovitz-Attias et al., 2017, Snell
et al., 2017], where the general idea is to apply a softmax over distances to proto-
types. Different from prototypical networks [Snell et al., 2017], we consider proto-
types as latent parameters, which are initialized randomly and updated through-
out the training like any other neural network parameters. In other words, the
backward pass also includes the partial derivative of the loss with respect to all
latent prototypes. This differentiates us from prototypical networks [Snell et al.,
2017]. Indeed, rather than defining prototypes as the average of support image
representations, our prototypes are latent representations that are updated dur-
ing training. Compared to a classification setting [Snell et al., 2017], no support
images are present in retrieval that is why we design prototypes as latent repre-
sentations as usually done in instance retrieval [Movshovitz-Attias et al., 2017,

Zhai and Wu, 2019].

Implementation details. The backbone network relies on ResNet50 [He et al.,
2016], pre-trained on ImageNet [Russakovsky et al., 2015]. To produce the embed-
ding space, the classification layer is removed and replaced by the multiple linear
projections with a random weight initialization. Latent prototypes are also initial-
ized with random weights. During training, the model minimizes the loss function
described in Eq. 3.7 using the Adam stochastic optimizer algorithm [Kingma and
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Ba, 2015]. Images are cropped given their bounding box labels and resized to
224 x 224, and augmented with horizontal flipping. Hyper-parameters are the
following: minibatch size of 128, learning rate of le—4, 5; = 0.9, By = 0.999,
weight decay of be—5, and subspaces are of size d = 50. We set the trade-offs to
Ar = Ao = Aq = 1 and A\gp = le — 3. Updates of the latent prototypes operate
at a learning rate 10x higher. The learning rate undergoes a cosine annealing
decay without restart [Loshchilov and Hutter, 2017]. We set hyper-parameters
according to the classification accuracy of attributes on the validation set. The
implementation relies on the PyTorch framework [Paszke et al., 2019].

3.3.3 Composite queries representations

During the evaluation, we query the gallery set X, with composite queries de-
rived from the training set. We represent composite queries by a real-valued vector
q € R? of M diverse labels. In other words, given a composite query q, the idea is
to retrieve product images in the gallery set X, from their visual representations
z that match a specific set of M labels. To form composite query representations,
we average the representations from the training set of each m € M label indi-
vidually and take the overall average. Formally, this corresponds to a per-label
averaging:

S

— i L (n) (3.8)
TN ;!MM 2 2

TLGMm

where M., is the set of training images that exhibits label m with m =1,--- | M.
The inner sum averages the representations z of all images n € M,, for each label
m. The outer sum calculates an average of averages to create a composite query
representation q that includes all M labels. If normalization is done globally
(i.e.moving 1/|M,,| to the outer sum), it corresponds to a per-sample averaging.

3.4 Experimental details

3.4.1 Diversely-labeled datasets

We introduce two datasets for diversely-supervised visual product search: Di-
verse — Cars and Diverse—Clothes. Both datasets include instance, category and
multiple attributes labels. Figure 3.2 illustrates some diversely-labeled examples
for each dataset.

Diverse—Cars. We build upon Cars196 by Krause et al. [2013] and CompCars
by Yang et al. [2015] to create Diverse-Cars. The original datasets intend to
tackle fine-grained categorization and verification, we merge them for the task of
diversely-supervised product search. This creates a dataset that covers car models
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Figure 3.2: Diversely-labeled examples from Diverse-Cars and Diverse—
Clothes.

sold in both North American and South-Pacific regions. We manually annotate
Diverse—Cars to merge car model duplicates and to provide clean annotations
for car makers and car attributes. Diverse-Cars defines 97 car makers and 3
car attributes. Every attribute is further defined with the specific values: 4
number of doors, 4 number of seats and 12 type values. In total, Diverse—Cars
contains 28,423 images from 386 car models for training and 22,450 images from
305 separate car models for evaluation.

We manually re-annotate the images to ensure the quality of the category and
attribute labels. Besides the new category and attribute labels, we also ensure
that similar car models between the two original datasets are merged. The new
labels will be made public. In the newly proposed labels, category and attribute
value labels are annotated. Original instance labels are preserved. We adopt the
same three attribute vocabularies as initially defined in CompCars [Yang et al.,
2015]. Figure 3.3 shows one sample for every attribute value of every attribute.

Overall, a total of 691 unique instances are annotated. Every image in the
dataset receives an instance, a category and three attribute value labels. Note
that some categories are very scarce. We ensure that there are at least one or
two models per car maker in the training set, which in return can result in the
absence of some car makers in the gallery set. In other words, not all car makers
are present in the gallery set. For hyper-parameters search, we create a separate
validation set from the training set. We randomly sample 17 car models, for a
total of 1,169 images. We keep the validation separate. There is no re-training
on both training and validation sets once hyper-parameters are fixed.

Diverse—Clothes. We build upon In-Shop Clothes by Liu et al. [2016] to cre-
ate Diverse-Clothes. The original dataset provides a large number of clothing
products along with multiple views and a rich description of several sentences,
but the provided labels are known to contain scarce attribute values, duplicates
and incoherencies [Zakizadeh et al., 2018]. Hence, we manually re-annotate the
dataset to provide clean annotations for clothes categories and clothes attributes.
Diverse—Clothes defines 12 clothes categories and 8 clothes attributes. Every at-
tribute comes with specific attribute values: 6 fabric, 7 frontal feature, 6 hemline,
13 neckline, 15 print, 4 shoulder line, 6 sleeves length and 2 silhouette values.
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Convertible Coupé Hatchback MPV Pick-up Sedan Stationwagon suv Van

Figure 3.3: Image samples for every attribute value in Diverse-Cars.

In total, Diverse—Clothes contains 25,862 images from 3996 fashion products for
training and 26,797 images from 3982 separate fashion products for evaluation.

Diverse—Clothes builds upon In-Shop Clothes by Liu et al. [2016], which pro-
vides a large number of clothing products. Every product comprises multiple
images from several viewpoints and a rich description of several sentences. How-
ever, the labeling of the original In-Shop Clothes dataset was done in a weakly-
supervised manner, which can result in scarce attribute values, duplicates, or
incoherencies [Zakizadeh et al., 2018].

We manually re-annotate the images to ensure the quality of the category and
attribute labels. Besides the new category and attribute labels, other cleaning
tasks are also performed: (1) instance and image duplicates are removed; (2)
instances with two different category labels are merged. The new labels will be
made public. In the newly proposed labels, category and attribute value labels
are re-annotated. Original instance labels are preserved. Eight different new
attributes are defined. Figure 3.4 shows one sample for every value of every
attribute.

Overall, a total of 7,978 unique instances are re-annotated. While a category
label and an instance label are assigned to all instances, not all attribute labels
are necessarily assigned to all instances. For example, a skirt does not have a
sleeves length attribute label. For hyper-parameters search, we create a separate
validation set from the training set. We sample 59 clothes items, for a total
of 352 images. We keep the validation separate and do not re-train on it once
hyper-parameters are fixed.
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Figure 3.5: Composite queries distribution per dataset. Unseen queries rep-
resent a third of all queries. Diverse—Clothes appears to be more challenging
than Diverse—Cars given the very few images per query (in both seen and unseen
scenarios).

3.4.2 Composite queries

We leverage composite queries to retrieve images in the gallery set X,,; that share
the same set of labels. In this paper, we define a composite query as a composite
between a category label and one or multiple attribute labels, for a total of M
types of label. An example of composite query for cars can be “a BMW with 2
doors, § seats and with a coupé type” (M = 4) while an example for clothes can
be “a shirt with long sleeves and a stripe print” (M = 3). To avoid searching a
needle in a haystack, we limit the number of attribute labels in composite queries
to a maximum of three.

During the evaluation, we separate seen from wunseen composite queries. If
there is at least one image in the training set AXj..;, that corresponds to the
composite query, then the composite query is identified as seen. If the combina-
tion of category and attributes doesn’t exist in the training set X qin, then the
composite query is unseen. Unseen composite queries are more realistic and more
challenging than seen composite queries because their combination has never been
encountered by the model during training.

For each dataset, we generate composite queries by considering all possible
category and attribute combinations and select the valid ones. A query is valid if
there is at least one image in the gallery set X, with this specific combination.
Figure 3.5 presents the distribution of seen and unseen composite queries for
both datasets. Unseen composite queries constitute more than a third of the
total queries, which illustrates the difficulty of both benchmarks. Diverse-Clothes
provides a more challenging evaluation than Diverse-Cars. Indeed, there is a high
number of queries and very few images per query considering the large gallery
size. For example, given an unseen query, the median number of images per query
is only 5 while the the gallery size is 26,797 images. Searching for new clothes
products emerges as a more difficult task than searching for new car models, given
the large diversity of fashion items.
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3.4.3 Diversely-supervised search

Evaluation is performed on the gallery set X, that contains separate instances
from the training set Xj.qin, as defined in Section 3.3.1. In other words, while
a diverse set of labels defined by the composite query might have been seen or
unseen during training, instances in the gallery have never been seen before. This
is the protocol commonly used in zero-shot instance retrieval (e.g., [Liu et al.,
2016, Song et al., 2016]), where no overlap exists in terms of images nor instances
between the training and the gallery sets. An /{5 normalization is applied to
the representations before measuring distances between the composite query q
and the gallery Xj,. A retrieved image is considered as a hit if it shares the
set of labels with the composite query. We report the mean average precision
(mAP) [Manning et al., 2008] across seen, unseen combinations for composite
queries, and the overall, to measure the performance.

3.5 Results

3.5.1 Comparison with alternatives

We adapt four existing methods, designed for a different purpose, in such a way
that they become applicable to our setting. For fair comparisons, we apply the
same procedure on these alternative models for both training and evaluation.
We also use the same similarity loss based on the softmax embedding loss with
prototypes. Below, we detail how each selected method is repurposed:

e Global maps an image x to a global representation h, of the same dimen-
sion as our model with partial grouping. Inspired by Liu et al. [2016], we add
common softmax classification heads on top of the global embedding space
to predict values for every K attributes and for categories. In other words,
this corresponds to a multitask model with multiple heads. An additional
similarity loss on the global embedding space models instance representa-
tions. In our setting, the final embedding used for evaluation is the global
representation space.

e Conditional gives every label its own metric subspace z, as originally in-
troduced for attributes by Veit et al. [2017]. Compared with our proposed
method, conditional does not include any grouping mechanism. We add for
every subspace label a loss that measures image similarities. In our setting,
the final embedding used for evaluation concatenates attribute, category
and instance subspaces.

e Modulation controls the amount of feature sharing for every type of la-
bels, as originally proposed for attributes by Zhao et al. [2018b]. Similar to
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Method seen unseen all Method seen unseen all

Global 33.20 19.45 28.53 4+ 0.20 Global 8.58 4.15 6.88 4 0.08
Conditional 33.83 19.83 29.00 & 0.13 Conditional 8.01 3.60 6.33 £0.13
Modulation 32.80 17.57 27.63 &+ 0.46 Modulation 8.61 4.12 6.89 =+ 0.08
Routing 29.87 16.02 25.17 &£ 0.14 Routing 6.61 2.56 5.06 & 0.11
This work 37.61 21.03 31.98 £ 0.30 This work 9.67 4.56 7.72 £ 0.13

(a) Diverse—Cars (b) Diverse—Clothes

Table 3.1: Comparison with alternatives. We adapt four existing methods,
designed for a different purpose, in such a way that they become applicable to
our setting (details provided in Section 3.5.1). We report the average over three
runs. Our embedding outperforms these alternatives in mAP (in %) on both
Diverse—Cars and Diverse-Clothes datasets. Integrating attribute, instance and
category representations altogether in the embedding space with interrelated rep-
resentations helps to model a diverse set of labels.

conditional, every type of label representation is also delimited to its sub-
space. Though, the main difference with conditional lies in the backbone
network, which produces different features per label. Instead of having an
explicit subspace per label during training, the idea is to encode the label
information by transforming the activations of the backbone with a learned
real-valued vector to weight every channel. This offers a compelling and
efficient way to have label-specific feature representations without the need
to train label-specific models. Following Zhao et al. [2018b], modulation
occurs after the last two residual blocks (i.e., block3 and block4). In our
setting, the final embedding concatenates the modulated attribute, category
and instance representations.

e Routing zeroes out channels given a type of labels, as originally proposed
for many task learning by Strezoski et al. [2019]. Routing is in the same
spirit as modulation, and the difference lies in the usage of fixed binary
masks to transform the activations of the backbone rather than learned
real-valued vectors. Following Strezoski et al. [2019], we generate binary
masks by sampling a binomial distribution with a probability of success of
0.6. Similar to modulation, we apply the routing module after the last two
residual blocks. In our setting, the final embedding concatenates the routed
attribute, category and instance representations.

Results on Diverse—Cars. Table 3.1a shows that our diversely-supervised em-
bedding outperforms alternative ways to combine attribute, category and instance
subspaces. Interestingly, channel-modulated methods based on a real-valued or
binary masks achieve a lower retrieval score than the non-modulated conditional
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counterpart. As cars depict clear attribute values, their representation doesn’t re-
ally benefit from creating a feature weighting. Indeed, there is no middle ground
between 3 and 4 doors while there might exist a debate to decide whether the
sleeves length is long or three-quarter. When comparing with the conditional
embedding, the diversely-supervised embedding shows a large improvement. In-
tegrating attribute, instance and category representations altogether in the em-
bedding space, rather than separating them all, helps to capture the diverse set
of labels needed for diversely-supervised search.

Note that for fair comparison, we implement alternatives with the same pro-
totype loss as our method. For example, the conditional alternative of Veit et al.
[2017] has been initially proposed with a triplet loss. When training conditional
with a triplet loss [Schroff et al., 2015], the mAP drops by 9.74% on Diverse-Cars.
As triplets only capture one label at a time, results degrade in a multiple labels
setting. Our proposed loss with latent prototypes allows us to capture all labels
simultaneously, which results in an increased performance for the alternatives and
our proposed model.

Results on Diverse—Clothes. Table 3.1b confirms the benefits of the diversely-
supervised embeddings on this more challenging dataset. When products exhibit
more subjective attribute values, modulation has an edge over the non-modulated
conditional counterpart. The routing module struggles the most as zeroing out
channels destroys information needed when measuring distances in the embedding
space. When comparing the inference time, we notice the channel modulated
methods have a linear complexity to the number of subspaces as every labels
comes with a modulated representation. This is different from global, conditional
and ours that have a constant complexity, as they do not need to be channel-
modulated. Our integration of attribute, instance and category representations
in the embedding space, also captures these more subtle attribute changes without
the need to modulate the backbone.

3.5.2 Ablations

Per-sample vs. per-label averaging. We study two alternatives to represent
composite queries in the embedding space, as defined in Eq. 3.8. Recall that we
collect all visual representations corresponding to every label and average them
either per-sample or per-label to form a representation for composite queries.
Table 3.2 shows that a per-label averaging outperforms a per-sample averaging
on Diverse—Cars. When averaging per-sample, all sample images are considered
equally in the composite query. If a label is over-represented in the training
set, a per-sample averaging will then result in a composite query biased towards
this dominant label. When averaging per-label, all labels are instead considered
equally. If a label is over-represented in the training set, a per-label averaging will
mitigate the imbalance effect as an equal weight is put to each label representation
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Averaging seen  unseen all
Per-sample  6.44 5.06 5.97
Per-label 35.17 19.28 29.77

Table 3.2: Per-sample wvs. per-label
averaging on Diverse-Cars. Weight-
ing per-sample biases in the query,
which degrades the mAP (in %) score.

Grouping seen  unseen all
Triple 35.17  19.28  29.77
Dual 38.10 20.71 32.19

Table 3.3: Triple vs. dual grouping
on Diverse-Cars. Separating the cat-
egory representation leads to an mAP
(in %) improvement.

to produce the composite query. For the remaining experiments, we then rely on
a per-label averaging for composite queries to avoid a strong bias towards the
dominant label.

Triple vs. dual grouping. In this experiment, we evaluate the difference be-
tween the triple and dual grouping in the embedding (Figure 3.1). The grouping
motivation differs by the assumptions on how to relate instance, category and
attribute labels; and the practical application. In the triple grouping, attributes
qualify instances, and grouped instances form categories. With all three types
of labels interrelated in one single embedding space, this allows to explore the
dataset to discover trends, as illustrated in Figure 3.11. The dual grouping re-
laxes the category assumption, as categories are now in a separate subspace. This
avoids the duality where the embedding focuses on fine-grained instance differ-
ences while trying to group them for form categories at the same time. Table 3.2
shows that the dual variant outperforms the triple one on Diverse-Cars. A com-
peting duality appears between instances and categories: focusing on categories
pushes the embedding to be agnostic to instances differences. The triple variant
allows an interrelated exploration of products, as all diverse label representations
are axis-aligned. Yet, putting the category representations in another subspace
better helps the diversely-supervised search. Additionally, we evaluate a variant
where category labels are treated like any other attribute labels. In this variant,
we obtain a 29.34% mAP. This reinforce the observation that category labels are
then different from attributes and need to be treated accordingly. Depending
on the application, it can be advantageous to separate instance and category
representations. For the remaining experiments in this section, we use the dual
grouping as it yields the best scores for both seen and unseen queries.

Pre-training. We explore the effect of self-supervised pre-training on our model.
We rely on MoCo v2 [Chen et al., 2020, He et al., 2020] for the self-supervision
training, and use the same hyper-parameters as proposed originally. Once trained,
we use these weights to initialize the ResNetb0 backbone of our model. Ta-
ble 3.4 compares a pre-training on ImageNet [Russakovsky et al., 2015] with
self-supervision on both Diverse-Cars and Diverse-Clothes. On both datasets,
pre-training on ImageNet outperforms a pre-training with self-supervision. Dur-
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Pre-training Cars  Clothes
Self-supervised 16.21 3.53
ImageNet 32.19 7.74

Table 3.4: Pre-training comparison
on Diverse—Cars and Diverse—Clothes.
Pre-training on ImageNet improves by
a factor two on the diverse search of all
queries (mAP, in %) compared with a

49
Swapping Cars  Clothes
v 0.86 0.33
32.19 7.74
Table 3.5: Swapping backbones

between Diverse-Cars and Diverse—
Clothes. When swapping the back-
bones, the diverse search of all queries
yields a very low performance (mAP, in

self-supervised pre-training. ImageNet
acts as a regularizer.

%). Backbone features are specific to
each dataset.

Search space Model Fine-tuning Cars Clothes
Features Self-supervision 1.35 0.45
Features Pre-trained 0.91 0.59
Features Pre-trained v 22.02 3.64
Embedding  Pre-trained v 32.19 7.74

Table 3.6: Search space comparison on Diverse-Cars and Diverse-Clothes.
Fine-tuning on the respective datasets yields a significant mAP (in %) improve-
ment over models trained in a supervised or self-supervised setting on ImageNet.
Diversely-supervised search benefits significantly when the search occurs in the
embedding space, which captures all label types as opposed to the feature space.

ing training, we notably observe an overfitting effect with models initialized with
self-supervision. Indeed, the training set of both datasets is several orders of
magnitude smaller than ImageNet. Thus, a pre-training on ImageNet acts as a
regularizer to help models generalize to diversely-supervised search.

Swapping backbones. To understand the importance of backbone features in
the generalization performance on diversely-supervised search, we swap the back-
bone network trained on Diverse-Cars with the one trained on Diverse—Clothes,
and vice-versa. Concretely, h in Eq. 3.1 for Diverse—Cars comes from the back-
bone fy of Diverse-Clothes, and vice-versa. Table 3.5 shows the negative effect
of swapping backbones. In either scenario, swapping the backbone drops the per-
formance close to zero. This means that the backbone features, as well as the
linear projections, are dataset-specific as they cannot generalize across datasets.

Search space. We assess the importance of the embedding space for diversely-
supervised product search by comparing with a search in the feature space. Con-
cretely, we compute the composite query representation in Eq. 8 from h(™ instead
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Figure 3.6: Influence of diverse labels. In both datasets, the instance supervi-
sion 7 is essential. For Diverse-Cars, the category supervision C matters the most
while for Diverse—Clothes the attribute supervision A is the most important. A
combination of supervision results in an improvement for both seen and unseen
composite queries.

of 20, where h™ corresponds to the output of the backbone convolutional net-
work for the n-th sample and z(™ to the output of the embedding layer. Table 3.6
shows the benefits of diversely-supervised search in the embedding space. When
relying on a backbone model without fine-tuning, we obtain very low scores when
trained either in supervised or self-supervised settings on ImageNet [Russakovsky
et al., 2015]. For the self-supervised model, we rely on MoCo v2 [Chen et al.,
2020, He et al., 2020]. When fine-tuning the model on the respective datasets,
the diversely-supervised search improves considerably. Searching in the embed-
ding space is the most effective as it captures all label similarities, and also the
most efficient as the dimension is lower than the feature space. For example in
Diverse-Cars, the dimensionality of the embedding space is 200 compared with
2048 in the feature space. When swapping backbones and searching in the feature
space, we observe a similar behaviour as in Table 3.5 where the performance drops
close to zero. Diversely-supervised search benefits from a retrieval operation in
an embedding space that captures all label types.

Influence of diverse labels. We investigate the influence of each diverse label
as a supervision source during training in Figure 3.6. In particular, we evaluate
the effect of the instance, category and all attributes labels individually and their
combination. When leveraging all types of labels, it achieves the best overall
scores. In general, the instance labels always matters and combining two types of
labels leads to an improvement. Though, both product datasets exhibit different
behaviours. Figure 3.6a shows that the model benefits the most from category
labels on Diverse-Cars. Category labels alone yield a high retrieval score and
combining them with other types of labels results in even higher scores. Indeed,
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car makers usually distill a similar design to all their car models. Being able to
represent categories is then the most important. Figure 3.6b rather depicts the
importance of attribute-label supervision on Diverse—Clothes. Attribute labels
alone yield a high retrieval score and their combination with other labels is always
beneficial. Contrary to car makers, fashion designers focus more on attribute
combinations to create new products. Indeed compared to cars, clothes have
more attributes, which makes this supervision the most important. In case of
scarce resources, we then recommend to collect annotations on instances and
categories for cars, and on instances and attributes for clothes.

Weighted diverse labels. While Figure 3.6 switches on and off the contribution
of every lambda, Figure 3.7 evaluates these trade-off hyper-parameters with real
values. When evaluating every lambda individually, we fix the others to one.
All settings improve over the absence of a label, which indicates that all labels
are important to diversely-supervised search. It is possible to slightly improve
the performance by reducing the contribution of attributes or category labels
on Diverse—Clothes rather than setting them all to one. Though, as the search
space for the lambda triplet is vast, we recommend to simply set all three to
one. Notably, this enables a simple, non-exhaustive, and fair comparison with
alternative methods.

Embedding regularization. Figure 3.8 varies the amount of regularization g
on the embedding space on Diverse-Clothes. The higher the regularization, the
better the performance of diversely-supervised search is. Interesting, this affects
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#A  seen unseen all #A  seen unseen all
1 4215 2350 37.33 1 2044 429 18.79
2 36.76 20.67 30.89 2 10.05 4.40 8.53
3 3091 17.41 24.93 3 7.86  4.61 6.34
(a) Diverse—Cars (b) Diverse—Clothes

Table 3.7: Influence of the number of attributes. We examine the influence
of the number of attributes in composite queries and report the mAP (in %).
The more specific the composite query is, the harder is gets to retrieve relevant
images. Unseen queries for clothes remain at the same level because they are
equally challenging as the median number of images per query is the same.

both seen and unseen queries positively. There is a cliff in performance after
Ar=1 where the performance drops drastically. Indeed, when the regularization
is too strong, the representation is pushed towards zero, which annihilates the
model learning.

Improving the performance. While comparisons in Table 3.1 are done with
Ar=0.001, Figure 3.8 shows that increasing this value can greatly benefit the
diversely-supervised search in our proposed models. Indeed, when applying a
Ar=1 during training, we improve the mAP for all composite queries to 34.24 +
0.23 for Diverse—Cars, and to 11.34 + 0.21 for Diverse—Clothes. Though, applying
such a high regularization for the alternatives can be detrimental. For example on
Diverse—Cars, modulation drops to an mAP below one while conditional drops by
five points. The fact that our model incorporates a grouping mechanism helps to
benefit from higher regularization on the embedding space as alternatives without
any grouping suffer to various extents.

Influence of the number of attributes. We examine the influence of the
number of attributes in the composite queries on the retrieval performance. As
described in Section 3.4.2, we create composite queries with up to three attributes.
For example, “a DS with & doors and & seats” is a composite query with a cate-
gory and two attributes, for a total of three labels. Table 3.7 shows that increas-
ing the number of attributes in the composite queries leads to a more challenging
task. The more specific the search is, the harder it gets to find the needle in the
haystack. On both datasets there is a drop of about 12 mAP when switching
from one to three attributes. In particular, Table 3.7a exhibits a drop of only 6
mAP points for unseen queries but 11 mAP points for seen queries on Diverse—
Cars. Table 3.7b shows a constant performance for unseen queries while scores
decrease more importantly for seen queries on Diverse-Clothes. This is explained
by the fact that the median number of images per unseen composite query for all
levels of detail is the same, making them equally challenging. Figure 3.9 depicts



3.5. Results
Representation  Cars  Clothes
Binary 21.47 7.58
Real-valued 32.19 17.74

Table 3.8: Binary representations
on the diverse search of all queries
(mAP) on Diverse-Cars and Diverse—
Clothes. While a binary representation
has a large gap to real-valued repre-
sentations on Diverse—Cars, it provides
a compelling alternative with a close
score on Diverse-Clothes.

53
Representation  Cars  Clothes
Sentences 5.51 3.96
Subspaces 32.19 7.74
Table 3.9: Sentence representa-

tions on the diverse search of all
queries (mAP) on Diverse-Cars and
Diverse-Clothes.  Sentences cannot
capture the diversity of all labels in
composite queries, as they lack the flex-
ibility of subspaces to represent every

label.

composite query examples with an increasing number of attributes. For Diverse—
Cars, there can exist multiple car models matching the query. The model can
retrieve correct images regardless of the viewpoint. Yet, confusion can happen
when cars are of the same color or shape. For Diverse—Clothes, the search is
more challenging as there are usually one clothes item with very few images to
retrieve. Items can be rare or exhibit original combinations of labels. Future
work on product search should emphasize the retrieval performance of (a) com-
posite queries with several attributes as distinguishing products on a fine-grained
level requires a higher amount of attributes, and (b) unseen composite queries as
designers usually create products with an unseen combination of labels.

Attribute subspace visualization. Figure 3.10 plots the t-SNE [Maaten and
Hinton, 2008] visualization of every attribute subspace on the test set of Diverse—
Cars, as well as the latent prototype visualization for every attribute value. For
the number of doors attribute, the prototypes are well separated, with a prototype
at each extremity. Though, it appears that cars with 3 doors don’t have a compact
representation as they tend to spread all across the space. For the number of seats
attribute, there is a transition from 2 seats to cars with more than 5 seats. This
indicates that the model has found a progressive way to represent this attribute.
For the type attribute, every car type is also represented around the region of its
corresponding latent prototype. Some values are close to each other, for example
coupe and convertible, which indicates that the model has captured the car shape
similarities.

Binary representations. As we design our embedding model to be a proba-
bilistic model, a binary representation can also be used for diversely-supervised
search. In this scenario, the representation of every image corresponds to the
one-hot predictions of the probabilistic model for the category label and every
attribute label. As such, the composite query is represented by a binary rep-
resentation for diversely-supervised search. Table 3.8 compares the binary rep-
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{Ferrari, coupé type}

{DS5, 3 doors, 5 seats}

(a) Diverse—Cars Our model can retrieve the multiple (third row) or
only (second) matching car models. Yet, it can be fooled by cars of the
same color (first).

{Skirt, leopard print}

WS T
s

(b) Diverse—Clothes Our model can retrieve rare (first row) or original
(second and third) clothes items.

Figure 3.9: Influence of the number of attributes. We show examples of
unseen composite queries with an increasing number of attribute values and their
top-5 retrieved images (correct in green, incorrect in red).
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(a) Number of doors (b) Number of seats (¢) Type
Figure 3.10: Attribute subspace visualization with t-SNE on the test set
of Diverse-Cars. Learned prototype representations for every value of every at-
tribute are illustrated with a star. (a) The number of doors are clustered with
prototypes being at extremities. Cars with 3 doors tend to spread all across the
embedding space. (b) A transition from 2 seats to more than 5 seats is observed.
Cars with more than 5 seats tend to spread all across the embedding space. (c)
Car types are occupying the whole embedding space. Certain car types tend to
be close to each other, e.g. coupe and convertible, or pickup and van.

resentations with real-valued representations. On Diverse—Cars, there is a large
gap in performance between both representations. This difference resides in the
fact that the performance for unseen queries drops by a factor two. On Diverse—
Clothes, the performance is similar for both representations, which suggests that
binary representations can be used if storage space becomes a challenge.

Text representations. An alternative to learned label subspaces is to rely on
text representations. The idea is to process the diverse label through a language
model to obtain a text representation. The model then learns to regress to the
text embedding, which is considered as a prototype during learning. For example,
for an image with a diverse label “a shirt with long sleeves and a stripe print”,
we feed this sentence to a language model and take the output embedding as
a prototype to regress to. We rely on sentence-BERT [Reimers and Gurevych,
2019], a variant of BERT [Devlin et al., 2019] for sentences fine-tuned on natural
language inference datasets [Bowman et al., 2015, Williams et al., 2018], to extract
text representations. Table 3.9 shows that text representations underperform
learned label subspaces. Recall the example above. While the image has a diverse
label “a shirt with long sleeves and a stripe print”, it should hit for composite
queries such as “a shirt with long sleeves” or “a shirt with a stripe print”. Having
a sentence representation is too rigid as it imposes an order in the attributes and
ties strongly attributes with the category. Instead, subspaces offer a more flexible
representation, and allow composite queries with various numbers of attribute in
an unordered manner.
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Figure 3.11: Discovering typical, atypical and eclectic products. We ex-
plore product instances in the gallery set to discover design styles. Images in the
same row share the same category label (underlined). The blue text box indicates
the model prediction (italics). (a) Typical instances close to the category proto-
type depict the common appearance of sweaters, dresses and shirts. (b) Atypical
instances far from the category prototype exhibit a global appearance that resem-
bles other categories, which causes misclassification. (c) Eclectic instances with
a high entropy display original attribute values for the category.

3.5.3 Discovering typical, atypical and eclectic products

In this experiment we aim to discover products with typical, atypical or eclectic
styles in the gallery set. We rely on the ¢riple grouping which integrates attribute,
category and instance representations within the same embedding space. First,
we aggregate visual representations per instance, i.e.images of the same instances
are aggregated to the same visual representation. We refer to those as product
representations. Second, we compute distances between product representations
and all category prototypes ¢, € Z¢ in the embedding space. These distances
provide three different indicators: (a) a small distance to the corresponding pro-
totype indicates typical products, while (b) a large distance refers to atypical
products. Additionally, the entropy can be computed over the probability distri-
butions for each product representation, where (c¢) a high entropy refers to eclectic
products on the edge of several categories. Probabilities are obtained by applying
the softmax function over the distances.

We provide qualitative results based on the three indicators on Diverse—
Clothes. Figure 3.11a illustrates the closest instances to category prototypes.
These instances depict a common style, which makes them easily recognizable
as they form typical instances [Rosch, 1978]. Distilling a typical design style
in instances is particularly attractive for brands to enforce loyalty or attach-
ment [van den Brink et al., 2006]. Yet, product design styles have a determined
lifespan [Sproles, 1981] and other combinations of visual attributes defining the
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style will emerge next due to cyclic [Al-Halah et al., 2017] or punctual [Mall
et al., 2019] trends. Figure 3.11b illustrates the farthest instances to category
prototypes. The global shape of these instances, either in size or fabric, makes
them look like they are part of another category. For example, instances of
“dresses” in row 2 look like “tees”. Thus, the model can misclassify these in-
stances. Figure 3.11c illustrates instances that confuse the embedding the most
as they exhibit a high entropy. These instances depict an original visual ap-
pearance, especially for the print attribute. Searching for atypical and eclectic
products reveals unexpected and intriguing trends in product design.

3.6 Conclusion

We have introduced the problem of diversely-supervised visual product search,
where queries describe a specific set of diverse labels to search for. We have pro-
posed a diversely-supervised embedding, where attribute, instance and attribute
labels provide a diverse supervision to learn a representation for products. Eval-
uation relies on composite queries to describe the specific set of labels to search
for. Composite query representations correspond to a per-label average of se-
lected visual representations in the embedding space. Experiments on seen and
unseen settings show that our diversely-supervised embedding better models a di-
verse set of labels than alternative baselines repurposed for diversely-supervised
visual product search. The embedding also enables the discovery of the typicality
effect in design styles, which reveals intriguing products. In the current form,
labels describe physical properties of products but could also capture aesthetics,
or cultural differences.






Chapter 4

Bias-Awareness for Zero-Shot Learning the Seen
and Unseen

4.1 Introduction

Zero-shot recognition [Lampert et al., 2014, Palatucci et al., 2009] considers if
models trained on a given set of seen classes S can extrapolate to a distinct set of
unseen classes Y. In generalized zero-shot learning [Chao et al., 2016, Xian et al.,
2018a], we also want to remember the seen classes and evaluate over the union of
the two sets of classes T = SUU. Nevertheless, when evaluating existing models
in the generalized scenario, the seminal work of Chao et al. [2016] highlights that
predictions tend to be biased towards the seen classes observed during training.
In this chapter, we consider the challenge of mitigating this inherent bias present
in classifiers by proposing a bias-aware model.

An effective remedy to remove the bias towards seen classes is to calibrate
their predictions during inference. Chao et al. [2016] propose to reduce the scores
for the seen classes, which in return improves the generalized zero-shot learning
performance. Yet, the bias towards seen classes should also be tackled while
training classifiers and not only during the evaluation phase to address the bias
from the start. Towards this goal, seen and unseen classes can be addressed
separately during training. Liu et al. [2018] define two separate training objectives
to calibrate the confidence of seen classes and the uncertainty of unseen classes.
Atzmon and Chechik [2019] break the classification into two separate experts,
with one model for seen classes and another one for unseen classes. Their COSMO
approach provides compelling results at the expense of a third additional expert
to combine results. As generalized zero-shot learning considers both seen and
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unseen classes simultaneously, learners should benefit from mitigating the bias in
both directions by considering both sets jointly rather than separately.

The main objective of this chapter is to mitigate the bias towards seen classes
by considering predictions of seen and unseen classes simultaneously during train-
ing. To achieve this, we propose a simple bias-aware learner that maps inputs to a
semantic embedding space where class prototypes are formed by real-valued rep-
resentations. We address the bias by introducing (7) a calibration for the learner
with temperature scaling, and (i) a margin-based bidirectional entropy term to
regularize seen and unseen probabilities jointly. We show that the bias towards
seen classes is also dataset-dependent, and every dataset does not suffer to the
same extent. Finally, we illustrate the versatility of our approach. By relying
on a real-valued embedding space, the model can (i) handle different types of
prototype representation for both seen and unseen classes, and (i) operate either
on real features, akin to compatibility functions, or leverage generated unseen
features. Comparisons on four datasets for generalized zero-shot learning show
the effectiveness of bias-awareness. All source code and setups are released!.

4.2 Related work

Generalized zero-shot learning has been introduced to provide a more re-
alistic and practical setting than zero-shot learning, as models are evaluated on
both seen and unseen classes [Chao et al., 2016]. This change in evaluation has
a large impact as existing compatibility functions designed for zero-shot learning
do not perform well in the generalized setting [Changpinyo et al., 2020, Chao
et al., 2016, Xian et al., 2018a]. Indeed, whether they are based on a ranking
loss [Akata et al., 2015, 2016, Frome et al., 2013, Romera-Paredes and Torr, 2015,
Xian et al., 2016] or synthesis [Changpinyo et al., 2016, 2017, 2020], compatibility
functions empirically exhibit a very low accuracy for unseen classes. As identi-
fied by Chao et al. [2016], this indicates a strong inherent bias in all classifiers
towards the seen classes. To overcome the low accuracy for unseen classes, both
Kumar Verma et al. [2018] and Xian et al. [2018b] learn a conditional generative
model to generate image features. Once trained, image features of unseen classes
are sampled by changing the conditioning. Classification then consists of training
a one-hot softmax classifier on both real and sampled image features. Having
access during training to generated unseen features leads to an increase in unseen
class accuracy. Among the different generative models used in generalized zero-
shot learning, are generative adversarial networks [Felix et al., 2018, Li et al.,
2019, Xian et al., 2018b], variational autoencoders [Kumar Verma et al., 2018,
Schonfeld et al., 2019] or a combination of both [Xian et al., 2019]. However,
a classifier trained on generated features still suffers from a bias towards seen
classes because generative models do not produce fully realistic features. In this

1Source code is available at https://github.com/twuilliam /bias-gzsl
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chapter, we strive for a bias-aware classifier which can behave as a stand-alone
model like compatibility functions and also leverage unseen features samples from
a generative model.

Addressing the bias in classifiers remains an open challenge for generalized
zero-shot learning. Although Chao et al. [2016] identify the critical bias towards
seen classes, only a few works try to address it during training. Related works
separate the seen and unseen classifications. Liu et al. [2018] map both features
and semantic representations to a common embedding space. Probabilities are
then calibrated separately in this common space to make seen class probabili-
ties confident and reduce the uncertainty of unseen class probabilities. Atzmon
and Chechik [2019] train expert models separately for seen and unseen class pre-
dictions. Their predictions are further combined in a soft manner with a third
expert to produce the final decision. In this chapter, we strive to address the bias
by considering seen and unseen class probabilities jointly rather than separately.
Having access during training to the joint class probabilities lets the bias-aware
model learn how to balance them from the start.

4.3 Method

During training, a generalized zero-shot learner G : X — 7T is given a training
set D = {(2y, Yn), Yn € S}\_,, where z,, € RP is an image feature of dimension
D and y,, comes from the set S of seen classes, with S C T. For each ¢ € S there
exists a corresponding semantic class representation ¢(c) € R4 of dimension A.
At testing time, G predicts for each sample in the testing set D7 = {z,}*, a
label that belongs to 7 by exploiting the joint set of seen and unseen semantic
class representations. This problem formulation can be extended with an auxiliary
dataset DY = {(Zp, yn), yn € U}N_,, where y,, comes from the set of unseen classes
U. DY mimics image features from unseen classes, and is typically sampled from
a generative model. The joint set {DS, DY} covers both seen and unseen classes.

In this chapter, we propose a bias-aware generalized zero-shot learner f(-),
which can operate during training with (i) only D° similar to compatibility func-
tions (Section 4.3.1) or (ii) the joint set {DS, DY} similar to classifiers in the
generative approach (Section 4.3.2). In both scenarios, the learner includes mech-
anisms to mitigate the bias towards seen classes. Learning consists of mapping in-
puts x to their corresponding semantic class representations ¢(c). In other words,
the model regresses to a real-valued vector, which describes a class prototype. We
denote the set of seen class prototypes as ®° = {¢(c), c € S}, unseen class proto-
types as ® = {¢(c),c € U}, and their union as &7 = &5 U Y = {4(c),c € T}.
Usually, the semantic knowledge used for class prototypes corresponds to seman-
tic attributes [Farhadi et al., 2009, Lampert et al., 2014], word vectors of the
class name [Frome et al., 2013, Palatucci et al., 2009], hierarchical representa-
tions [Akata et al., 2015, 2016, Xian et al., 2016], or sentence descriptions [Reed
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et al., 2016, Xian et al., 2018b]. To exploit this diversity in semantic knowledge,
we propose to swap the representation types for seen and unseen prototypes (Sec-
tion 4.3.3).

4.3.1 Stand-alone classification with seen classes only

We design the bias-aware generalized zero-shot learner as a probabilistic model
with two key principles. First, it is calibrated towards seen classes such that
inputs from unseen classes yield a low confidence prediction at testing time. In
return, this reduces the bias towards seen classes for unseen class inputs. Second,
it maps inputs to class prototypes in the semantic embedding space. Following
these two principles, we propose:

ek, ) = e (22 010D e (2UELHD)

where s(-, ) is the cosine similarity and T' € R+ is the temperature scale. When
T = 1, it acts as the normal softmax function. When T > 1, probabilities are
spreading out. When 7" < 1, probabilities tend to concentrate similar to a Dirac
delta function. Contrary to knowledge distillation [Hinton et al., 2014], we seek
to concentrate the probabilities with a low temperature scale for discriminative
purposes. Learning the probabilistic model is done via minimizing the cross-
entropy loss function over the training set of seen examples D°:

N
1
»Cs = _N ;logp(yn|xn78) (42)

This probabilistic model behaves like a compatibility function, because it only
sees samples from seen classes at training time. At testing time, the evaluation
simply measure the similarity in the embedding space with respect to the union
of seen and unseen prototypes ®7.

Variants of this prototype-based learner have been proposed in image re-
trieval [Liu et al., 2017b, Movshovitz-Attias et al., 2017, Wen et al., 2016, Zhai
and Wu, 2019] or image classification [Liu et al., 2018, Snell et al., 2017, Wu et al.,
2018]. We mainly differ by (i) fixing the prototypes to be semantic class repre-
sentations rather than learning them; (iz) learning a mapping from the inputs to
the class representations rather than learning a common embedding space; (iii)
applying a softmax function to provide a probabilistic interpretation of cosine
similarities; and (iv) calibrating the model with the same temperature scaling for
both training and testing.

4.3.2 Classification with both seen and unseen classes

In the generative approach for generalized zero-shot learning, samples from unseen
classes are generated. We can then use the generated data DY as an auxiliary
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dataset for calibration and for entropy reqularization. In this context, given an
input x the probabilistic model learns to predict a class from the union of both
seen and unseen classes:

p(clz, T) = exp (L) / Zexp( (), W”) o @3)

The only and major difference with eq. 4.1 resides in the class prototypes that
are considered to produce the prediction while f(-) remains the same model.
p(c|z, S) only evaluates over the set of seen class prototypes ®° while p(c|z, T)
evaluates over the union of seen and unseen class prototypes ®7. In this case,
the temperature scaling ensures that the model is confident for both seen and
unseen classes. This difference also makes the learning distinctive from related
works (i.e., DCN [Liu et al., 2018] or COSMO [Atzmon and Chechik, 2019]) as
they consider seen and unseen classifications separately rather than jointly. Akin
to eq. 4.2, we minimize the cross-entropy loss function on the joint set {D®, D"}
of seen and unseen classes:

N N
1 1 -
£s+u = _N Z logp(ynLTm T) - ﬁ Z logp@/n‘xm T) (44)
n=1 n=1

This probabilistic model behaves like a classifier used in generative approaches,
because it sees samples from both seen and unseen classes at both training and
testing times, and the partition function normalizes over the union of seen and
unseen sets of classes. Having a classification over the union enables regularization
in both seen and unseen directions.

Bidirectional entropy regularization. Intuitively, when an image from an
unseen class is fed to the classifier, probabilities for seen classes should yield a
high entropy while probabilities for unseen classes should result in a low entropy.
In other words, the evaluation over seen classes of an unseen class input should
be uncertain because the image comes from a class the classifier has never en-
countered during training. Conversely, when an image from a seen class is fed to
the classifier, the entropy of the probabilities for unseen classes should be high
while the entropy for seen classes should be low. To encourage this effect, given
an image x we compute the normalized Shannon entropy [Shannon, 1948] of the
probabilistic model p(c|x, T') for both seen and unseen class directions:

Hs(x) ’ Zp clz, T)log p(clx, T), (4.5)
ceS
Ho(x) = \Z/l\ Zp clz, T)logp(clx, T), (4.6)

celU
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where H, and H, are the average entropy for seen and unseen classes, respectively.
For training, we derive a margin-based regularization for both seen and unseen
class directions:

1 & 1 & ]
Ro= [m+ = Hyz,) = =Y H(@)| . (4.7)
N n=1 N n=1
4+
1 & 1 & ]
R,= |m+ 5 ;Hu(:ﬁn) % ;Hu(xn) : (4.8)
4+

where [-];+ = max(0,-). Ry ensures a margin of at least m between the average
seen class entropy of seen inputs x,, and generated unseen inputs z,. In other
words, this formulation seeks to minimize H(z,) and maximize Hs(Z,). R, has
a corresponding effect on the unseen class entropy. The final loss function for
training then becomes:

Li= Loy + Agnt(Rs + Ry). (4.9)

where Ag, € R>q is a hyper-parameter to control the contribution of the bidirec-
tional entropy.

4.3.3 Swapping seen and unseen class representations

As presented above, relying on a real-valued embedding space allows mechanisms
to mitigate the bias in two scenarios. It also enables to swap class representations
to less biased representations. Consider now the case where there exist multiple
types of semantic information which differ by their type of representation and by
how expensive it is to collect them. For example, attribute descriptions require
expert knowledge while sentence descriptions can be crowd-sourced to non-expert
workers. Practically, sentences tend to be less biased than attributes and per-
form better [Xian et al., 2018b], but do not offer a comprehensive expert-based
explanation [Reed et al., 2016]. One could then train a model for seen classes on
attributes as they rely on expert-based explanations and rely for unseen classes
on sentences as they are easier to collect. This results in different representation
types for seen and unseen classes.

Formally, we assume that we have access to seen prototypes {®%, ®3} with
representations from domain A and B, respectively. For evaluation, we have
access to unseen prototypes ®4 of domain A but ®% of domain B is absent. The
objective is then to learn a mapping 8 from ®$ to ®5, in order to regress &% from
P4 at testing time. We define the mapping as a linear least squares regression
problem with Tikhonov regularization, which corresponds to:

mgﬂll@f; = B3l + Al B2 (4.10)
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where A\g controls the amount of regularization. Relying on a linear transforma-
tion prevents overfitting, as the mapping involves a limited set of class prototypes.
During evaluation, we apply 8 to unseen prototypes of domain A to regress their
values in domain B: &% = Y. Swapping representations then corresponds to
regressing from one domain to another.

4.4 Experimental details

Datasets. We report experiments on four datasets commonly used in generalized
zero-shot learning, e.g., [Changpinyo et al., 2020, Chao et al., 2016, Reed et al.,
2016, Xian et al., 2018a]. For all datasets, we rely on the train and test splits
proposed by Xian et al. [2018a]:

e Caltech-UCSD-Birds 200-2011 (CUB) [Wah et al., 2011] contains 11,788
images from 200 bird species. Every species is described by a unique com-
bination of 312 semantic attributes to characterize the color, pattern and
shape of their specific parts. Moreover, every bird image comes along with
10 sentences describing the most prominent characteristics [Reed et al.,
2016]. 150 species are used as seen classes during training, and 50 distinct
species are left out as unseen classes during testing.

e SUN Attribute (SUN) [Patterson and Hays, 2012] contains 14,340 images
from 717 scene types. Every scene is also described by a unique combination
of 102 semantic attributes to characterize material and surface properties.
645 scene types are used as seen classes during training, and 72 distinct
scene types are left as unseen classes during testing.

o Animals with Attributes (AWA) [Lampert et al., 2014] contains 30,475 im-
ages from 50 animals. Every animal comes with a unique combination of
85 semantic attributes to describe their color, shape, state or function. 40
animals are used as seen classes during training, and 10 distinct animals are
left out as unseen classes during testing.

e Ozford Flowers (FLO) [Nilsback and Zisserman, 2008] contains 8,189 images
from 102 flower plants. Every flower plant image is described by 10 different
sentences describing the shape and appearance [Reed et al., 2016]. 82 flowers
are used as seen classes during training, and 20 distinct flowers are left as
unseen classes during testing.

Features extraction. For all datasets, we rely on the features extracted by Xian
et al. [2018a]. Image features x come from ResNet101 [He et al., 2016] trained on
ImageNet [Russakovsky et al., 2015] and sentences representations are extracted
from a 1024-dimensional CNN-RNN [Reed et al., 2016]. As established by Xian
et al. [2018a], parameters of ResNet101 and the CNN-RNN are frozen and are not
fine-tuned during the training phase. No data augmentation is performed either.
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Figure 4.1: Bias variation across Figure 4.2: Seen and unseen class
datasets. When measuring the aver- samples. Visual differences arise from
age linkage between seen and unseen  the global shape (CUB, AWA) or colors
representations, FLO is the most af- (FLO). Yet, their semantic class repre-
fected while SUN is the least. Thus, sentation yields a very high pairwise sim-
the bias towards seen classes differs ilarity, which creates a high bias.

across datasets.

Evaluation. We evaluate experiments with calibration stacking as proposed by
Chao et al. [2016], which penalizes the seen class probabilities to reduce the bias
during evaluation. Following Xian et al. [2018a], we compute the average per-
class top-1 accuracy of seen (denoted as s) and unseen (denoted as u) classes,
and their harmonic mean H=(2 x s x u)/(s + u). We report the 3-run average.

Implementation details. In our model, f(-) corresponds to a multilayer per-
ceptron with 2 hidden layers of size 2048 and 1024 to map the features x to the
joint visual-semantic embedding space of size A. The output layer has a linear
activation, while hidden layers have a ReLU activation [Nair and Hinton, 2010]
followed by a Dropout regularization (p = 0.5) [Srivastava et al., 2014]. We train
f(+) using stochastic gradient descent with Nesterov momentum [Sutskever et al.,
2013]. We set the following hyper-parameters for all datasets: learning rate of
0.01 with cosine annealing [Loshchilov and Hutter, 2017], initial momentum of
0.9, batch size of 64, temperature of 0.05, and an entropy regularization term of
0.1 with a margin of 0.2. For AWA, we reduce the learning rate to 0.0001 and
increase the entropy regularization to 0.5 while keeping the same margin. When
relying on sentence representations, we double the capacity of f(-) with twice the
number of hidden units in each layer. We set hyper-parameters on a hold-out
validation set and re-train on the joint training and validation sets. The source
code uses the Pytorch framework [Paszke et al., 2019].
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4.5 Results

Bias variation. To understand whether the bias towards seen classes is dataset-
dependent, we measure the average linkage between seen and unseen represen-
tations. Concretely, we compute the average of the pairwise cosine similarity
between ®° and ®Y. A high average linkage then refers to a high similarity be-
tween seen and unseen representations. Intuitively, a high average linkage is not
desirable as unseen representations can easily be confused with seen ones, which
makes the generalized zero-shot learning problem harder. Figure 4.1 depicts the
average linkage per dataset. FLO exhibits the highest average linkage while SUN
the lowest, with a 1.6 times difference. In other words, classifiers trained on FLO
are highly affected by the bias towards seen classes. Figure 4.2 illustrates seen
and unseen class samples with a very high pairwise similarity on CUB, AWA and
FLO. Visually, these classes can be differentiated by their color or shape. Though,
their semantic representations are very similar, which creates a high bias. The
bias towards seen classes then differs across datasets. Addressing the bias within
generalized zero-shot learners should then result in varying extents.

Temperature scaling. Figure 4.3 varies the scale of temperature in eq. 4.1. Fol-
lowing related metric learning works (e.g., [Wu et al., 2018, Zhai and Wu, 2019)),
we consider the temperature as a hyper-parameter. When treated as a latent
parameter, the optimization diverges as its value goes down to zero to satisfy
the loss function. The highest H score occurs when 7' = 0.05 on the validation
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Table 4.1: Swapping attribute (Att) and sentence
(Sen) representations. While Att-Att and Sen-Sen
are the usual non-swapped evaluation settings, our
method can also swap them. When using sentences
for unseen classes, it always improves upon attributes
in swapped and non-swapped evaluations as they are
less biased and more discriminative.

Seen Unseen H

Att Att 48.5
Sen Att 47.4
Att Sen 49.7
Sen Sen 50.3

set of all datasets. Performance starts to degrade substantially after 7" > 0.1.
A temperature lower than 7' < 0.05 can yield even higher scores but is usually
prone to numerical errors. As such, we set T'= 0.05 in all our experiments when
training the model with only seen samples (eq. 4.2) or in combination with gen-
erated unseen samples (eq. 4.4). We also evaluate modifying 7" between training
and testing phases. Setting it to 1 during training and testing as in a normal
softmax drops H by 43.3% on AWA. Changing it to 0.05 when testing drops the
score by 25.6%. A fixed temperature value is preferred to ensure f(-) maps inputs
to prototypes similarly in training and testing. Having a low temperature yields
narrow probabilities, which translates into a more confident and discriminative
model. Hence, the model reduces the bias by having a lower likelihood to classify
an unseen class input as part of a seen class.

Entropy regularization. Figure 4.4 ablates the direction of the margin-based
entropy term in eq. 4.9. For this experiment, we rely on unseen class features gen-
erated from Cycle-CLSWGAN [Felix et al., 2018]. When using a unidirectional
entropy regularization, the improvement is either very low or even negative over
a model without any regularization. Interestingly, this negative effect does not
depend on the direction as both H, and H, are affected when considered individ-
ually. Regularizing in only one direction forces the model to compensate for the
other direction. Only the bidirectional regularization provides a benefit for all
datasets consistently. This positive effect indicates the importance of balancing
out both seen and unseen probabilities when mitigating the bias. Regularizing in
both directions jointly helps the model learn a correct bias trade-off.

Swapping representations. Table 4.1 presents the different combinations of
attribute (Att) and sentence (Sen) representations for training and evaluation.
Att-Att and Sen-Sen are the common non-swapped settings. Sen-Sen forms an
upper-bound as sentences provide better class representations over attributes.
Indeed, sentence descriptions exhibit a lower average linkage than attribute de-
scriptions. In a swapped setting, the unseen representations are regressed from
representations in another domain based on eq. 4.10. A model trained on Att
can be improved by 1.2 points at testing time when using Sen to regress the un-
seen representations. On the other hand, a model trained on Sen degrades when
using Att to regress unseen representations. Indeed, Sen-Att requires to map
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low-dimensional attribute representations of unseen classes to a high-dimensional
space of sentence representations on which the classifier has been trained. Sen-Att
then involves dimensionality expansion, which is a harder problem than dimen-
sionality compression in Att-Sen. In the scenario where a model is trained on
attributes for seen class derived from experts, it is possible to leverage sentences
for unseen classes derived from crowd-sourcing to improve the results.

Comparison with the state of the art. We compare the bias-aware prototype
learner with eight other classifiers. Scores from other classifiers correspond to the
performance as reported by the authors in their original paper. First, we consider
stand-alone classifiers which only observe the seen class inputs during training,
i.e., without using any generated features. Compared with the one-hot soft-
max [Xian et al., 2018b] and COSMO [Atzmon and Chechik, 2019], our proposal
can operate as a stand-alone classifier akin to a compatibility functions [Akata
et al., 2015, 2016, Frome et al., 2013, Liu et al., 2018, Romera-Paredes and Torr,
2015, Xian et al., 2016]. Indeed, our formulation relies on a real-valued embedding
space rather than a discrete label space for classification. We outperform all other
stand-alone classifiers on all datasets. Second, our approach is easily extended
with existing generative models to include an auxiliary dataset DY for unseen
classes. We select -CLSWGAN [Xian et al., 2018b] and Cycle-CLSWGAN [Felix
et al., 2018] as the authors provide source code to evaluate on all four datasets.
Reproducing their experiments yields results within a reasonable range, i.e., less
than a 2-point difference in the H metric. We obtain better results with Cycle-
CLSWGAN [Felix et al., 2018] than f-CLSWGAN [Xian et al., 2018b], which
highlights the importance of the quality of the generated unseen class features.
Moreover, our method profits more when generate samples better reflect the true
distribution. When switching from f~-CLSWGAN [Xian et al., 2018b] to cycle-
CLSWGAN [Felix et al., 2018] on CUB, a one-hot softmax classifier leads to a
2.6% increase while our bias-aware classifier with a joint entropy regularization
yields a 7.5% increase. We achieve state-of-the-art results on CUB, AWA and
FLO. Only on the SUN dataset the one-hot softmax [Xian et al., 2018b] and
COSMO [Atzmon and Chechik, 2019] provide higher scores. This originates from
a lower bias towards seen classes in the SUN dataset (see Figure 4.1), which makes
a bias-aware model less beneficial. When a dataset exhibits a low bias, separating
the model for seen and unseen classes is preferred to treat them equally. Con-
versely, when a dataset exhibits a high bias, the training of the model should
consider seen and unseen classes jointly to balance out their probabilities from
the start. Overall, we produce competitive results in both scenarios, especially
compared with classifiers without any bias-awareness.
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4.6 Conclusion

The classification of seen and unseen classes in generalized zero-shot learning re-
quires models to be aware of the bias towards seen classes. In this chapter, we
present such a model which calibrates the probabilities of seen and unseen classes
jointly during training, and ensures a margin between the average entropy of both
seen and unseen class probabilities. Learning consists of regressing inputs to real-
valued representations. Relying on a mapping to a real-valued embedding space
enables to swap seen and unseen representations, and to evaluate the model in
a stand-alone scenario or in combination with generated unseen features. Over-
all, our proposed bias-aware learner provides an effective alternative to separate
classification approaches or classifiers without bias-awareness.



Chapter 5

Feature and Label Embedding Spaces Matter in
Addressing Image Classifier Bias

5.1 Introduction

This chapter strives to identify and mitigate biases present in image classifiers,
with a focus on their feature and label embedding spaces. Adverse decisions from
image classifiers can create discrimination against members of a certain class of
protected attribute, such as age, gender, or skin tone. Buolamwini and Gebru
[2018] importantly show that face recognition systems misclassify subgroups with
darker skin tones. This also applies to object recognition, where performance
is higher for high-income communities [de Vries et al., 2019] mainly located in
Western countries [Shankar et al., 2017]. Similarly problematic, current classi-
fiers perpetuate and amplify current discrimination present in society [Caliskan
et al., 2017, Garg et al., 2018]. For example, Kay et al. [2015] highlight the ex-
aggeration of gender bias in occupations by image search systems. These adverse
decisions notably arise because image classifiers are prone to biases present in the
dataset [Geirhos et al., 2020]. It is therefore essential to identify harmful biases
in image representations and assess their effects on the classification predictions,
as we do in this chapter.

Addressing dataset biases is not enough, and classifier biases should also be
addressed. Zhao et al. [2017b] importantly show that biases can actually be am-
plified during the image classifier training. Even when balancing a dataset for
the protected attribute gender, image classifiers can still surprisingly amplify bi-
ases when making a prediction [Wang et al., 2019b]. This outcome emphasizes
the importance of considering protected attributes during the training to avoid
biased and adverse decisions. A first approach is to perform fairness through

Published at British Machine Vision Conference [Thong and Snoek, 2021]
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blindness, where the objective is to make the feature space blind to the protected
attribute [Alvi et al., 2018, Hendricks et al., 2018, Zhang et al., 2018a]. An alter-
native is to perform fairness through awareness, where the classifier label space
is explicitly aware of the protected attribute label [Dwork et al., 2012]. To better
understand the effectiveness of these methods, Wang et al. [2020b] propose crucial
benchmarks in biased image classification. They notably expose the shortcom-
ings of these methods and show that a simple method with separate classifiers
is more effective at mitigating biases. Building on this line of work, this paper
first identifies a bias direction in the feature space, and secondly address bias
mitigation in both label and feature spaces. Another important aspect concerns
how to measure the fairness of image classifiers. We borrow from the general
fairness literature [Beutel et al., 2017, Dwork et al., 2012, Hardt et al., 2016]
to ensure that predictions are similar for all members of a protected attribute,
which complements the benchmarks introduced by Wang et al. [2020b] on image
classification bias.

Contributions. Our main contribution is to demonstrate the importance of fea-
ture and label spaces for addressing image classifier bias. First, we identify a bias
direction in the feature space of common classifiers. We aggregate class pro-
totypes to represent every class of each protected attribute value, and show a
main direction to explain the maximum variance of the bias. Second, we mitigate
biases at both classification and feature levels. We introduce protected classifi-
cation heads, where each head projects the features to a label embedding space
specific to each protected attribute value. This differs from common classifica-
tion, which usually considers a one-hot encoding for the label space [Luo et al.,
2019, Saito et al., 2018, Wang et al., 2020b]. For training, we derive a cosine
softmax cross-entropy loss for both multi-class, multi-label and binary classifica-
tions. Once trained, we apply in the feature space a bias removal operation to
further reduce the bias effect. Experiments on the two benchmarks introduced
by Wang et al. [2020b] show the benefits on addressing classifier bias in both
feature and label embedding spaces to improve the fairness of the predictions,
while preserving the classification performance. The source code is available at:
https://github.com/twuilliam /bias-classifiers.

5.2 Related work

Biases in word embeddings. Assessing the presence of biases in word em-
beddings, especially the gender bias, has received a large attention given their
wide range of applications within and beyond natural language processing. The
seminal and important work of Bolukbasi et al. [2016] reveals that the difference
between female and male entities in word2vec [Mikolov et al., 2013] contains a gen-
der bias direction. This shows that word2vec implicitly captures gender biases,
which in return creates sexism in professional activities. Caliskan et al. [2017]
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further reveal that multiple human-like biases are actually present in word em-
beddings. Even contextualized word embeddings [Peters et al., 2018] are affected
by a gender bias direction [Zhao et al., 2019], which creates harmful risks [Bender
et al., 2021]. To mitigate such gender bias, Bolukbasi et al. [2016] propose a
post-processing removal operation while Zhao et al. [2018a] derive regularizers to
control the distance between relevant words during training. It is important to
note that biases cannot be removed entirely as they can still be recovered to some
extent [Gonen and Goldberg, 2019]. As such, methods mainly mitigate biases in
models rather than producing debiased models. Inspired by the literature on
gender bias identification and mitigation in word embeddings, we pursue an anal-
ogous reasoning to show that biases are implicitly encoded in image classification
models as well.

Biases in image datasets. As computer vision research relies heavily on datasets,
they constitute a main source of biases. Torralba and Efros [2011] notably iden-
tify that datasets have a strong built-in bias as they only represent a narrow view
of the visual world. Models trained on this narrow view can then rely on spurious
correlations and produce detrimental predictions. For fairness and transparency
purposes, it becomes necessary to document the dataset creation [Gebru et al.,
2018, Hutchinson et al., 2021], as well as detecting the presence of potential biases
and harms due to an unfair and unequal label sampling [Birhane and Prabhu,
2021, Dixon et al., 2018, Shankar et al., 2017, Yang et al., 2020]. Towards this end,
Bellamy et al. [2018] and Wang et al. [2020a] propose metrics to measure biases,
and actionable insights to mitigate them in a dataset. Even though addressing
biases from the start of the dataset creation is highly recommended, models can
still be affected by spurious correlations and produce unfair decisions [Wang et al.,
2019b]. In this chapter, we focus on addressing image classifier bias.

Biases in image classifiers. Searching for a representative subset of image ex-
amples provides visual explanations of biases [Kim et al., 2016, Stock and Cisse,
2018]. In this chapter, we rather identify that such bias exists in the feature space
in image classifiers. To mitigate image classification bias, training with adversar-
ial learning [Goodfellow et al., 2014] makes the classifier blind to the protected
attribute. For example, reducing the gender bias can be achieved by forcing a
model to avoid looking at people to produce a prediction [Hendricks et al., 2018,
Wang et al., 2019b]. Blindness can also be achieved in the feature space by re-
moving the variation of the protected attribute with a confusion loss [Alvi et al.,
2018, Zhang et al., 2018a]. Though, when benchmarking these methods, Wang
et al. [2020D] illustrate that adversarial approaches tend to be detrimental as they
decrease the performance by making image classifiers less discriminative. At the
same time, non-adversarial approaches tend to amplify biases less, while perform-
ing well on image classification. Wang et al. [2020b] notably show that encoding
the protected attribute into separate heads better mitigates bias. We build on
this literature and propose to mitigate biases at classification and feature levels.
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Biases benchmarking. There is no consensus (yet) in benchmarking image
classifier bias, which makes apple-to-apple comparisons complicated: (a) bench-
marks become no longer valid because datasets are taken down for ethical rea-
sons [Peng et al., 2021] (e.g., Racial faces in-the-wild [Wang et al., 2019a] derives
from the problematic MS-Celeb-1M [Guo et al., 2016]); (b) datasets are intro-
duced without benchmarks of debiasing methods (e.g., FairFace [Karkkainen and
Joo, 2021] only evaluates commercial facial classification systems, and Diversity
in Faces [Merler et al., 2019] only provides statistics about craniofacial measures);
(c) related works come with differing evaluation settings (e.g., Wang et al. [2019b)]
train MLP probes to measure model leakage). While addressing algorithm bias in
face verification [Gong et al., 2020, Singh et al., 2020, Yin et al., 2019] is crucial,
we focus on image classification [Hwang et al., 2020, Kim et al., 2019, Wang et al.,
2019b, 2020b]. Therefore, we adopt in this chapter the benchmarks introduced
by Wang et al. [2020b] and Kim et al. [2019] in multi-class, multi-label and binary
classifications for their comprehensiveness and reproducibility.

5.3 Identifying a bias direction

Problem formulation. We consider the task of image classification where every
image x is assigned a label y € ). For every image, there also exists a protected
attribute value v € 1, on which the classifier should not base its decision. In other
words, classifiers should not discriminate against specific members of a protected
attribute. In this paper, we consider discrete variables for protected attribute
values, and limit the problem to binary values with V={0,1}. For example, we
only consider the values “female” and “male” to describe the protected attribute
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gender. It is important to note that this formulation is a simplification of the real
world where protected attributes go beyond binary values, and are non-discrete.

Image classifiers are typically composed of a base encoder and a projection
head. First, a base encoder f(-) extracts the feature representations of images x.
In our case, this corresponds to a convolutional network and results in h=f(x).
Second, a projection head ¢(-) maps the features h to a discriminative space
where a class is assigned. In our case this corresponds to a linear projection, or
a multilayer perceptron, and results in z=g(h) with z € R™. For example, in a
one-hot encoding, M equals the number of classes.

During training, we are given access to the protected attribute labels and can
incorporate it in model formulations. We denote the triplet (x;, y;, v;) as the i-th
sample in the training set. During the evaluation, models only have access to
the images. In this section, we show that common image classifiers — that do not
leverage protected attribute labels during training — still implicitly encode their
information in the feature space.

Protected class prototypes. Once a model has been trained, we extract the
features h from the training set. We then aggregate prototypes w, for every
class y and specific to each protected attribute value v, coined as protected class
prototypes. For example in Figure 5.1, the class y=cat has two prototypes in the
feature space, one for v=color images and one for v=gray. For any class y with
any protected attribute value v, we compute the protected class prototypes as
their average representation in the feature space from the training set:

= e Sl = g 0 = o (), (51)

where N, is the number of training images of class y with protected attribute
v, and I[-] is the indicator function. Once all protected class prototypes are
computed, we extract a subspace that captures the variance of the bias related
to the protected attribute.

Bias direction. To identify a bias direction, we experiment with a standard con-
volutional network trained with a softmax cross-entropy loss on CIFAR-10S [Wang
et al., 2020b]. This dataset provides a simple testbed to measure biases in im-
ages, as certain classes are skewed towards gray images, while others are skewed
towards color images. Once trained, we aggregate the difference between class
prototypes of each protected attribute value for every class:

A ={d,ly € Y} = {p, — myly € V}. (5.2)

Note that for multi-label classification, we consider all binary labels to define
Y. Figure 5.2a shows the principal component analysis (PCA) of A. When
computing the ratio of explained variance of every principal component (PC),
a main direction of variance appears. The first PC is more important than the
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Figure 5.3: Mitigating biases in classification predictions. (a) For classifi-
cation, we mitigate biases with protected label embeddings where each protected
attribute value has its own space. (b) In the feature space, we include a removal
operation of the bias direction b in where b is computed from the training set,
which is applied once the model has been trained.

others, which yields a high skewness. Figure 5.2b depicts the same analysis on a
random A, where no main direction appears. Hence, there exists a subspace in
the feature space where the bias information is maximized.

5.4 Mitigating classifier bias

Figure 5.3 illustrates our approach to mitigate biases class predictions at both
classification and feature levels. For the classification level, we create two pro-
tected label embedding spaces, one for each value of the binary protected at-
tribute. For the feature level, we propose a bias removal operation once the model
has been trained. The proposed method works for both multi-class, multi-label
abd binary settings.

Protected label embeddings. We project features h into embedding spaces,
one for each protected attribute value. This results in the embedding repre-
sentation z¥ = ¢”(h) € R™, where classification occurs. During training, each
projection head ¢¥(-) only sees samples from its assigned attribute value, which
creates a protected embedding. By only seeing samples of one protected value,
class boundaries are better separated [Saito et al., 2018].

We further push these properties by relying on a cosine softmax cross-entropy
loss for classification. z constitutes a discriminative embedding representation
with semantic information about classes. This differs from related approaches in
domain adaptation [Luo et al., 2019, Saito et al., 2018] or bias mitigation [Wang
et al., 2020b], which also show the benefits of separate projection heads with a
standard softmax but with a one-hot encoding label space. Below we derive a
cosine softmax with protected embeddings for both multi-class, multi-label and
binary classifications.
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Multi-class classification assigns a label y € ) to an image . We introduce
a protected weight matrix W?¢ € RPY*M where M is the size of the embedding
space and v € V is the protected attribute value. Every row W/ acts as a
latent real-valued semantic representation for every class y of each protected
attribute v. The objective is then to maximize the cosine similarity, denoted
as “sim”, between an embedding representation z¥ and its corresponding weight
representation. This results in the probabilistic model:

exp (Sim(W;:7 zv)/7->
nyey exp (Sim(Wy?:, Z”)/T) g

p(ylz*,v) = (5-3)

where 7 is a temperature scaling hyper-parameter. For training, we minimize the
cross-entropy loss over the training set of size V:

= ——Z Z v']log p(ys| i, vi), (5.4)

During inference, the attribute value label is not present. Thus, we perform an
ensemble prediction over both heads to predict § = argmax, ) ., p(y|z,v’).
Binary classification is a special case where C'=1.

Multi-label classification assigns multiple binary labels y to an image . This
typically occurs when we want to predict the presence of multiple binary at-
tributes in an image. We denote as y© € {0,1} the label of attribute c. Similar
to multi-class classification, we introduce a protected weight matrix W< € R2*M
where the two rows correspond to the absence and presence of attribute ¢ for pro-
tected attribute v. The resulting probabilistic model is:

exp <sim (Wy”f, z“)) /7')
D ye(o1) €XP <81m(WyU,C, z”)/7>

p(y" =" v) = (5.5)

which corresponds to a classifier for two classes. Compared to a binary classi-
fier with a sigmoid function, the softmax function offers more flexibility for the
model to represent the negatives. We minimize the cross-entropy loss over all C'
attributes of the training set of size N:

_ _N_ Z Z Z v'] log p(ys|@s, v;). (5.6)

During inference, we also perform an ensemble prediction to compute the proba-
bility score for the presence of every attribute §¢ = > ., p(y'© = 1|z, 0’).
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Bias removal in the feature space. Once trained, we perform the same anal-
ysis as in Section 5.3 where we collect protected class prototypes in the feature
space from the training set and also apply a principal component analysis on
their differences A. We refer to the direction of the first principal component
of A as b. Following Bolukbasi et al. [2016], we first project features h on the
bias direction b to obtain hp. Then, we neutralize the bias effect by removing hy,
from the features h, resulting in the mitigated features h Mathematically, this
bias removal operation corresponds to:

_ h-b b
h=h—hy=h— " (5.7)
1Bl [|]]

Once h is computed, we can further feed it to each head to get the mitigated
protected embeddings 2'=g¢"(h).

Relation with Domain Independent [Wang et al., 2020b]. Our proposed
method builds on the observation from Wang et al. [2020b] that separate classifi-
cation heads improve the fairness of the predictions. We differ by demonstrating
how feature and label spaces also matter for addressing biases. We find the fea-
ture space implicitly encodes a bias direction (Section 5.3) and we derive a bias
removal operation to reduce its influence. As distances matter in the feature
space, this motivates us to switch from a one-hot encoding to a real-valued vec-
tor representation for the label space, where classification now occurs through a
cosine embedding softmax.

5.5 Experiments

5.5.1 Fairness metrics

Bias amplification measures whether spurious correlations in the dataset have
been amplified by the model during training [Zhao et al., 2017b]. The idea is to
compare the number of positive hits of the model for every class and for each
value of the protected attribute with the training set statistics. Following Zhao
et al. [2017b], the bias amplification score corresponds to:

1 Py
m Z Z Hs(y7v)>ﬁ PO + Pl - S(y7 U)? (58)
Yy Yy

veV yey

where P] is the number of images positive for class y with a protected attribute v
predicted by the model, and s(y, v)=N;/(N, + N, ) is the ratio of training images
N, of class y with a protected attribute v. Intuitively, the score should be as low
as possible: a positive value indicates a bias amplification while a negative value
indicates a bias reduction. When training and testing sets are not i..d., we follow
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Wang et al. [2020b] and compute:

1 max (P, P))
|y| Z W —0.5. (5.9)

Demographic parity assesses the independence between a prediction y and a
protected attribute v such that p(g=y'|v=0)=p(§=y'|v=1) [Dwork et al., 2012,
Hardt et al., 2016]. The idea is to compare whether model predictions for a par-
ticular class 3’ are similar for both values of the protected attribute d. Following
Beutel et al. [2017], a statistical parity difference score is derived:

1 TP, +FP, TP)+FP,
mz N T T No | (5.10)

where TP, and FP} are the number of true positives and false positives of class
y with protected attribute v, and NV is the number of images with protected
attribute v in the evaluation set. When the score tends to zero, the model makes
the same rate of predictions for class y' regardless of the protected attribute value.

Equality of opportunity assesses the conditional independence on a particular
class y' between a prediction § and a protected attribute v such that p(y = ¢'|y =
y,v=0)=py=y|ly=1y,v=1) [Hardt et al., 2016]. The idea is to compare
whether a model produces a true positive rate (a.k.a. recall) for a particular class
y’ that is the same for both values of the protected attribute d. Following Beutel
et al. [2017], an equality of opportunity difference score is derived:

Z TP1 TP0
Iy\ TP1 + FN1 TPO + FNO ’

(5.11)

where FN is the number of false negatives of class y with protected attribute
v. When the score tends to zero, the model classifies images as class y' correctly
regardless of the protected attribute value.

Equality of odds assesses the conditional independence on any class iy’ between
a prediction § and a protected attribute v such that p(g = ¢/|ly = y,v = 0) =
p(y = y'ly = y,v = 1) [Hardt et al., 2016]. Following Bellamy et al. [2018], an
equality of odds difference score is derived:

5-(|[FPR,— FPR)| +|TPR, —TPR)|), (5.12)

where F'PR) is the false positive rate of class y with protected attribute v and
TPR, is the true positive rate. When the score tends to zero, the model exhibits
similar true positive and false positive rates for both protected attribute values.
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5.5.2 Multi-class classification

Setup. We evaluate multi-class classification on the CIFAR-10S dataset [Wang
et al., 2020b], which is a biased version of the original CIFAR-10 [Krizhevsky
and Hinton, 2009]. A color bias is introduced in the training set, where 5 classes
contain 95% gray images and 5% color images, and conversely for the 5 other
classes. Figure 5.4 shows examples for every class in their dominant color bias.
This creates simple spurious correlations that still affect common classifiers. Two
versions of the testing set are considered: one with only gray images and another
one with only color images. Although this breaks the i.i.d. assumption between
training and testing sets, it allows the assessment of the color bias in a controlled
manner. We report the per-class accuracy. We rely on ResNetl8 [He et al.,
2016] as the encoding function f and set each projection function g¥ as a fully-
connected layer of size M=128 followed by a linear activation. Training is done
from scratch with stochastic gradient descent with momentum [Sutskever et al.,
2013] for 200 epochs, and the following hyper-parameters: learning rate of 0.1 with
a momentum of 0.9, batch size of 128, weight decay of 5e-4, and temperature of
0.1. The learning rate is reduced by a factor 10 every 50 epochs. Note that this
setup is identical for all models we compare with, as benchmarked by Wang et al.
[2020b]. We report the average over 5 runs.

Bias removal. Once the proposed model has been trained, we compute A in
Eq. 5.2 from the training set of CIFAR-10S. When performing a principal compo-
nent analysis on A, we observe that there remains a main direction explaining the
variance (Figure 5.5a). Though, compared to the baseline model (Figure 5.2a),
our model with protected embeddings reduces the skewness from 2.63 to 1.87.
This effect is even more noticeable after the bias removal (Figure 5.5b). Indeed,
the skewness drops to 0.54 and there is no longer a main direction of variance.
The bias removal operation reduces the presence of the bias in the feature space.

Results. Table 5.1 compares our method with four other approaches. BASE-
LINE is a standard model trained with an N-way softmax while OVERSAMPLING
balances out the training by sampling more often underrepresented values of the
protected attribute. ADVERSARIAL blinds the feature space to the protected at-
tribute. This is achieved either with a uniform confusion loss [Alvi et al., 2018,
Tzeng et al., 2015] or a gradient reversal layer [Ganin et al., 2016]. DOMAIN
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Model Loss Acc. %,1) Bias (1) Par. (%)) Opp. (%) Odds (%,1)

BASELINE N-way softmax 88.5+0.3  0.074+0.003 2.90+0.11 12.72+0.51 7.19+0.21

OVERSAMP. N-way softmax 89.1+0.4 0.066+0.002 2.77+0.67 11.6440.33 6.91+0.11
W/.Confusmn 83.8+1.1 0.101+0.007 4.14+0.28 17.5541.05 9.2840.73
Alvi et al. [2018]

ADVERS.

w/ V rev. proj.
Ganin et al. [2016]

84.1+1.0 0.094+0.011 3.60+0.46 15.60+2.05 7.89+0.81

DowMm. Dis. joint ND-way softmax 90.340.5 0.040+0.002 1.65+0.06 7.24+0.31 4.02+0.17

DoM. IND. N-way softmaxxD 92.0+0.1 0.004+0.001 0.2040.04 1.0240.17 0.59+0.12

This paper N-way cos softmaxxD 91.5+0.2 0.004+0.000 0.15+0.01 0.88+0.17 0.46+0.07

Table 5.1: Multi-class classification comparison on N=10 classes of CIFAR-
10S. Despite a small loss in the accuracy score, our proposed approach with a
cosine softmax, rather than a common softmax as in DOMAIN INDEPENDENT,
improves the fairness of the model in multi-class classification.

DISCRIMINATIVE makes the classification aware of the protected attribute label
by assigning a class for every category and protected attribute pair [Dwork et al.,
2012]. DOMAIN INDEPENDENT creates two classification heads, one head for each
value of the protected attribute [Wang et al., 2020b]. Reported accuracy and bias
amplification scores correspond to Wang et al. [2020b], while we reproduce their
experiments from the original source code to report the demographic parity and
equality of opportunity and odds scores.

Our proposed approach improves upon the other alternatives in the fairness
scores. Only in the accuracy metric our model yields slightly lower results com-
pared to DOMAIN INDEPENDENT. This shows that there might exist a trade-off
between the downstream task and the fairness of the classifier, as improving both
remains challenging. It is interesting that ADVERSARIAL produces worse results
than simple methods such as BASELINE or OVERSAMPLING. As ADVERSARIAL
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blurs the distinction between both protected attribute values, it also alters the
class boundaries, which makes the model less discriminative. DOMAIN DISCRIM-
INATIVE achieves a lower performance than our model and DOMAIN INDEPEN-
DENT. This highlights the importance of separating the classification heads for
each protected attribute value. Overall, our proposed approach with a cosine
softmax, rather than a common softmax as in DOMAIN INDEPENDENT, reduces
the bias direction in the feature space and improves the fairness in multi-class
classification.

5.5.3 Multi-label classification

Setup. We evaluate multi-label classification on the “Align and Cropped” split of
the CelebA dataset [Liu et al., 2015], which contains 202,599 face images labeled
with 40 binary attributes. Following Wang et al. [2020b], we consider the gender
as the protected attribute and train models to predict the other 39 attributes.
Figure 5.6 shows examples for the top-5 attributes skewed towards each gender
value. During the testing phase, only 34 attributes are considered as the other
5 don’t contain both genders. We report the weighted mean average (mAP)
precision across the selected attributes. Every positive man image is weighted
by (N, + Ny)/(2N,,,) while every positive woman image by (N, + Ny)/(2Ny),
where N, and N, are the man and woman image counts in the test set. This
weighting ensures a balanced representation of both genders in the evaluation of
every attribute.

We rely on ResNet50 [He et al., 2016] pre-trained on ImageNet [Russakovsky
et al., 2015] as the encoding function f. We remove the final classification layer
and replace it with two fully-connected layers (one for each protected attribute
v) of size M =128 followed by a linear activation as the projection function g".
Training is done with stochastic gradient descent with momentum [Sutskever
et al., 2013], and the following hyper-parameters: learning rate of 0.1 with a
momentum of 0.9, batch size of 32, and temperature of 0.05. The best model is
selected according to the weighted mAP score on the validation set. Compared to
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Loss Hip Bias Parity Opp. Odds Embedding sco?imax mAP  Bias Parity Opp. Odds
N sigmoids x D 75.4 -0.039 17.74 14.87 9.19 .
N cos sigmoids x D 75.5 0.001 11.63 10.29 5.79 Single N 74.5 -0.039 10.65 14.02 7.77

+ bias removal 74.7 -0.020 7.43 7.00 4.00 Single N xD 67.7-0.070 19.26 21.02 13.54

N cos softmax x D 76.3 -0.006 11.97 10.18 6.06 Protected N x D 75.3 -0.041 6.71 6.73 4.10
+ bias removal 75.3 -0.041 6.71 6.73 4.10

Table 5.2: Label space comparison on Table 5.3: Single ws.protected em-
CelebA. An embedding learned with a bedding comparison on CelebA. Sepa-
cosine similarity improves the fairness rating the gender information into pro-
upon common sigmoids. A softmax tected heads resultsin an increased clas-
with bias removal in the feature space sification and fairness performance over

further improves fairness. a single head.
Model Loss mAP (%,1) Bias () Par. (%,1) Opp. (%,4) Odds (%,{)
BASELINE N sigmoids 74.7 0.010 23.32 24.34 14.28

w/ confusion

ADVERSARIAL [Alvi et al,, 2018] 71.9 0.019  23.73 28.66 16.69
DowMm. Dis.  ND sigmoids 73.8 0.007  22.34 25.35 14.69
DowMm. IND. N sigmoids x D 75.4  -0.039 17.74 14.87 9.19
This paper N cos softmax x D 75.3  -0.041 6.71 6.73 4.10

Table 5.4: Multi-label classification comparison of N=34 attributes in
CelebA. Despite a small loss in the mAP score, our proposed embedding learned
with a cosine softmax, rather than a common softmax with one-hot encoding
as in DOMAIN INDEPENDENT, improves the fairness of the model in multi-label
classification.

the benchmarks introduced by Wang et al. [2020b], our model training only differs
by the optimizer, as we notice some overfitting issues when using Adam [Kingma
and Ba, 2015]. The backbone and the rest of the hyper-parameters are similar.

Label space. Table 5.2 compares the different formulations of the label embed-
ding space. Relying a real-valued embedding space learned with a cosine simi-
larity function improves the fairness of the predictions compared to the common
one-hot representation. Labels now correspond to a real-valued vector instead of
a binary value, which enables a distributed class representation. Switching to a
softmax function instead of a sigmoid provides a weight representation for nega-
tives, which in return helps the classification performance. The benefit of negative
representations is further highlighted when applying the bias removal operation
in the feature space, even though a small drop in the classification score occurs.
Overall, the embedding formulation with a softmax cross-entropy in combination
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Method Trained on £B1 Trained on EB2 Trained on EB1 Trained on EB2
e EB2 Test EBI  Test EB2 Test EBI  Test
BASELINE 59.86 84.42 57.84 69.75 54.30 7r.17 4891 61.97
Alvi et al. [2018] 63.74 85.56 57.33 69.90 66.80 75.13 64.16 62.40
Kim et al. [2019] 68.00 86.66 64.18 74.50 54.27 7743 62.18 63.04
This paper 70.85 88.73 80.59 83.65 35,93 77.67 65.90 73.08
(a) Gender prediction (age protected) (b) Age prediction (gender protected)

Table 5.5: Binary classification comparison on IMDB face dataset. Our
formulation of the label embedding space improves the binary classification ac-
curacy (%) with an extreme bias over methods that impose an invariance to the
protected attribute in the feature space.

with the bias removal preserves the performance of the downstream task while
improving the fairness of the predictions.

Single vs. protected embeddings. Table 5.3 assesses the importance of having
protected embeddings, with one projection function ¢* for each value v of the
protected attribute gender. We evaluate the single head setting with and without
the protected attribute label in the loss function. When the protected attribute
information is available, we basically have two cosine softmax losses, one for each
value. Mixing the two losses in one single head is detrimental to the performance
as the model gets confused on where to project the inputs in the embedding space.
Protected embeddings better separate the gender information for the classification
of every attribute given the improved performance and fairness scores.

Results. Table 5.4 compares our model with four other approaches, similarly to
the comparison in Table 5.1. Reported mAP and bias amplification scores corre-
spond to Wang et al. [2020b], while we reproduce their experiments to measure
demographic parity and equality of opportunity and odds scores. Our proposed
approach yields the fairer scores across all evaluated models. And similar to
multi-class classification, we also notice a small drop in the downstream task
when measuring the mAP. The ADVERSARIAL produces again the worse results
across all metrics. This indicates that current methods applying an adversarial
training remove more information than the bias, which is detrimental for both
the downstream task and the fairness of the model. DOMAIN DISCRIMINATIVE
and BASELINE result in a similar performance. Interestingly, a trade-off between
the mAP and fairness scores is also present in DOMAIN INDEPENDENT. Our pro-
posed approach improves over DOMAIN INDEPENDENT in the fairness scores by a
large margin. Mitigating the bias in both feature and label embedding spaces is
then preferred over methods that only address one of the two as it improves the
fairness of the model predictions.
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Binary classification. We further evaluate the binary classification task on the
“cropped” split of the IMDB face dataset [Rothe et al., 2018|. Following Kim
et al. [2019], we create three sets with an extreme bias: EBI comprises women <
29 years old (yo) and men > 40 yo; EB2 has women > 40 yo and men < 29 yo;
and Test has women and men < 29 yo and > 40 yo. They contain 36,004, 16,800
and 13,129 face images of celebrities, respectively. Similar to Kim et al. [2019],
we learn to predict the gender with age as a protected attribute (and conversely),
and rely on ResNet18 [He et al., 2016] pre-trained on ImageNet [Russakovsky
et al., 2015] as the encoding function f. We add a fully-connected layer of size
M=128 with linear activation for each projection function g*. Training is done
with stochastic gradient descent with momentum [Sutskever et al., 2013] for 5
epochs, and the hyper-parameters: learning rate of 0.1 with momentum of 0.9
and an exponential decay of 0.999, batch size of 128, and temperature of 0.1.

Table 5.5 compares our model with three other approaches. BASELINE is
also a standard model trained with binary cross-entropy. Both Alvi et al. [2018]
and Kim et al. [2019] mitigate the extreme bias by making the feature space
invariant to the protected attribute. Kim et al. [2019] rely on an adversarial
formulation [Chen et al., 2016, Ganin et al., 2016], improving over Alvi et al.
[2018]. Given the binary classification setting, we did not apply a bias removal
operation, as a PCA on two samples is not pertinent. Still, our formulation of
the label space improves the performance in both the gender and age settings.
Only when predicting age and training on FB1, our model struggles a bit as it
tends to overfit quickly. This binary classification comparison further confirms
that simpler alternatives to adversarial losses can better mitigate biases present
during training.

5.6 Conclusion

Reducing the effect of adverse decisions involves the identification and mitigation
of biases within model representations. In this paper, we focus on biases coming
from binary protected attributes. First, we identify a bias direction in the feature
space of common image classifiers, where the first principal component of the
difference of protected class prototypes captures bias variation. Second, build-
ing on this observation, we mitigate classification bias with protected projection
heads that learn a label embedding space for each protected attribute value. This
formulation trained with a cosine softmax cross-entropy loss improves upon the
common one-hot encoding in terms of fairness for both multi-class, multi-label
and binary classifications. Furthermore, removing the bias direction in the feature
space reduces even further the bias effect on the classifier predictions. Overall, ad-
dressing image classifier bias on both feature and label embedding levels improves
the fairness of predictions, while preserving the classification performance.






Chapter 6

Conclusions

6.1 Thesis summary

This thesis investigates how visual similarities help to learn models robust to
bias in computer vision tasks. Models should be able to adapt constantly to new
and changing environments without being biased to what they have seen during
training. Throughout this thesis, we focus on the research question: how to learn
visual stmilarities robust to bias? We explore this question through the multiple
facets of biases with a common theme on visual similarities to address them. We
start with categorization across multiple domains, then investigate the ability to
retrieve seen and unseen attribute combinations, followed by the study of the
confidence of image classifiers towards seen classes, and finally the identification
and mitigation of adverse predictions in image classifiers.

Chapter 2 addresses cross-domain visual search, where visual queries retrieve
category samples from a different domain. For example, we may want to sketch
an airplane and retrieve photographs of airplanes. Despite considerable progress,
the search occurs in a closed setting between two pre-defined domains. In this
chapter, we make the step towards an open setting where multiple visual domains
are available. This notably translates into a search between any pair of domains,
from a combination of domains or within multiple domains. We introduce a
simple —yet effective— approach. We formulate the search as a mapping from every
visual domain to a common semantic space, where categories are represented by
hyperspherical prototypes. Open cross-domain visual search is then performed
by searching in the common semantic space, regardless of which domains are
used as source or target. Domains are combined in the common space to search
from or within multiple domains simultaneously. A separate training of every
domain-specific mapping function enables an efficient scaling to any number of
domains without affecting the search performance. We empirically illustrate our
capability to perform open cross-domain visual search in three different scenarios.
Our approach is also competitive with respect to existing closed settings, where
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we obtain state-of-the-art results on several benchmarks for three sketch-based
search tasks.

Chapter 3 introduces a diversely supervised visual product search, where
queries specify a diverse set of labels to search for. Where previous works have
focused on representing attribute, instance, or category labels individually, we
consider them together to create a diverse set of labels for visually describing
products. We learn an embedding from the supervisory signal provided by every
label to encode their interrelationships. Once trained, every label has a corre-
sponding visual representation in the embedding space, which is an aggregation
of selected items from the training set. At search time, composite query repre-
sentations retrieve images that match a specific set of diverse labels. We form
composite query representations by averaging over the aggregated representations
of each diverse label in the specific set. For evaluation, we extend existing prod-
uct datasets of cars and clothes with a diverse set of labels. Experiments show
the benefits of our embedding for diversely supervised visual product search in
seen and unseen product combinations and for discovering product design styles.

Chapter 4 looks at the problem of generalized zero-shot learning, which aims
to recognize inputs from both seen and unseen classes. Yet, existing methods tend
to be biased towards the classes seen during training. In this chapter, we strive to
mitigate this bias. We propose a bias-aware learner to map inputs to a semantic
embedding space for generalized zero-shot learning. During training, the model
learns to regress to real-valued class prototypes in the embedding space with
temperature scaling while a margin-based bidirectional entropy term regularizes
seen and unseen probabilities. Relying on a real-valued semantic embedding
space provides a versatile approach, as the model can operate on different types
of semantic information for both seen and unseen classes. Experiments are carried
out on four benchmarks for generalized zero-shot learning and demonstrate the
benefits of the proposed bias-aware classifier, both as a stand-alone method or in
combination with generated features.

Chapter 5 addresses image classifier bias, with a focus on both feature and
label embedding spaces. Previous works have shown that spurious correlations
from protected attributes, such as age, gender, or skin tone, can cause adverse
decisions. To balance potential harms, there is a growing need to identify and
mitigate image classifier bias. First, we identify in the feature space a bias di-
rection. We compute class prototypes of each protected attribute value for every
class, and reveal an existing subspace that captures the maximum variance of
the bias. Second, we mitigate biases by mapping image inputs to label embed-
ding spaces. Each value of the protected attribute has its projection head where
classes are embedded through a latent vector representation rather than a com-
mon one-hot encoding. Once trained, we further reduce in the feature space the
bias effect by removing its direction. Evaluation on biased image datasets, for
multi-class, multi-label and binary classifications, shows the effectiveness of tack-
ling both feature and label embedding spaces in improving the fairness of the
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classifier predictions, while preserving classification performance.

6.2 Closing Remarks

In this thesis, we have unveiled the potential of visual similarities to address sev-
eral biases arising in computer vision tasks. Throughout the thesis, the approach
has been to derive a loss function to learn an embedding space robust to various
biases. By learning visual associations, models are able to generalize better and
cope with a constantly changing environment.

There remains more to be explored to identify and address adverse biases in
computer vision. With the growing ubiquity of computer vision, current models
are now at risk of producing potential harms. As such, we need to ensure that
computer vision models don’t reproduce biases present in society or amplify them
even more. Identifying the source of biases then becomes critical to mitigate
their effects on the predictions. This leads towards fundamental changes in the
data collection and the training of the models to improve their generalizability,
robustness, and fairness.
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Samenvatting

Dit proefschrift onderzoekt hoe visuele overeenkomsten helpen bij het leren van
modellen die robuust zijn tegen vooroordelen voor computer vision taken. Mod-
ellen moeten zich constant kunnen aanpassen aan nieuwe en veranderende omgevin-
gen zonder bevooroordeeld te zijn door wat ze tijdens het trainen hebben gezien.
In dit proefschrift concentreren we ons op de onderzoeksvraag: hoe leer je visuele
overeenkomsten die robuust zijn tegen vooroordelen? We onderzoeken deze vraag
door middel van de meerdere facetten van vooroordelen door ze aan te pakken met
een gemeenschappelijk thema over visuele overeenkomsten. We beginnen met een
categorisering over meerdere domeinen, onderzoeken vervolgens het vermogen om
combinaties van zichtbare en onzichtbare attributen te verkrijgen, gevolgd door
de studie van het vertrouwen van beeld classificatie modellen tegenover geziene
klassen, en ten slotte de identificatie en beperking van ongunstige voorspellingen
in beeld classificaties.

Hoofdstuk 2 behandelt visueel zoeken tussen domeinen, waarbij visuele zoekop-
drachten categorie voorbeelden ophalen uit een ander domein. Wanneer we bi-
jvoorbeeld een vliegtuig willen schetsen en foto’s van vliegtuigen verkrijgen. On-
danks aanzienlijke vooruitgang vindt de zoektocht plaats in een gesloten setting
tussen twee vooraf gedefinieerde domeinen. In dit hoofdstuk maken we de stap
naar een open setting waar meerdere visuele domeinen beschikbaar zijn. Dit
vertaalt zich met name in een zoekopdracht tussen elk paar domeinen, vanuit
een combinatie van domeinen of binnen meerdere domeinen. We introduceren
een eenvoudige, maar effectieve aanpak. We formuleren de zoekopdracht als een
mapping van elk visueel domein naar een gemeenschappelijke semantische ruimte,
waar categorieén worden weergegeven door hyper sferische prototypes. Open vi-
sueel zoeken tussen domeinen wordt vervolgens uitgevoerd door te zoeken in de
gemeenschappelijke semantische ruimte, ongeacht welke domeinen als bron wor-
den gebruikt of als doel. Domeinen worden gecombineerd in de gemeenschappeli-
jke ruimte om tegelijkertijd vanuit of binnen meerdere domeinen te zoeken. Het af-
zonderlijk trainen van elke domeinspecifieke mapping-functie maakt een efficiénte
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schaling naar een willekeurig aantal domeinen mogelijk zonder de zoekprestaties
te beinvloeden. We illustreren empirisch ons vermogen om open visuele zoekop-
drachten tussen domeinen uit te voeren in drie verschillende scenario’s. Onze
aanpak is ook concurrerend met betrekking tot bestaande gesloten settings, waar
we state-of-the-art resultaten verkrijgen op verschillende benchmarks voor drie
op schetsen gebaseerde zoektaken.

Hoofdstuk 3 introduceert een diverse gesuperviseerde visuele zoekopdracht
naar een product, waarbij queries een diverse reeks labels specificeren waarnaar
moet worden gezocht. Waar eerdere werken zich richtten op het afzonderlijk
weergeven van attribuut-, instantie- of categorielabels, beschouwen wij ze samen
om een gevarieerde set labels te creéren voor het visueel beschrijven van pro-
ducten. We leren een inbedding van het gesuperviseerde signaal van elk label om
hun onderlinge relaties te encoderen. Eenmaal getraind, heeft elk label een bijbe-
horende visuele representatie in de inbeddingsruimte, wat een samenvoeging is van
geselecteerde items uit de trainingsset. Tijdens het zoeken halen samengestelde
query-representaties afbeeldingen op die overeenkomen met een specifieke set van
diverse labels. We vormen samengestelde query representaties door het gemid-
delde te nemen van de geaggregeerde representaties van elk diverse label in de
specifieke set. Voor evaluatie breiden we bestaande product datasets van auto’s
en kleding uit met een diverse verzameling aan labels. Experimenten tonen de
voordelen aan van onze inbedding voor het visueel zoeken naar producten onder
toezicht van verschillende soorten in zichtbare en onzichtbare product combinaties
en voor het ontdekken van product ontwerpstijlen.

Hoofdstuk 4 gaat in op het probleem van gegeneraliseerd zero-shot leren, dat
tot doel heeft input van zowel zichtbare als onzichtbare klassen te herkennen.
Toch zijn bestaande methoden vaak bevooroordeeld ten opzichte van de klassen
die tijdens de training worden gezien. In dit hoofdstuk proberen we deze bevooro-
ordeeldheid te verminderen. We stellen een vooroordeel-bewuste leerder voor om
inputs toe te wijzen aan een semantische inbeddingsruimte voor gegeneraliseerd
zero-shot leren. Tijdens de training leert het model terug te vallen naar echte
klasse-prototypes in de inbeddingsruimte met temperatuurschaling, terwijl een op
marges gebaseerde bidirectionele entropie term zichtbare en onzichtbare waarschi-
jnlijkheden regulariseert. Het vertrouwen op een semantische inbeddingsruimte
met reéle waarde biedt een veelzijdige benadering, aangezien het model kan
werken op verschillende soorten semantische informatie voor zowel zichtbare als
onzichtbare klassen. Er worden experimenten uitgevoerd op vier benchmarks
voor gegeneraliseerd zero-shot leren en deze demonstreren de voordelen van de
voorgestelde vooroordeel-bewuste classificatie functie, zowel als een op zichzelf
staande methode als in combinatie met gegenereerde features.

Hoofdstuk 5 gaat in op de vooroordelen van beeldclassificatie, met een focus
op zowel feature- als label inbeddingsruimten. Eerdere werken hebben aange-
toond dat valse correlaties van beschermende kenmerken, zoals leeftijd, gender
of huidskleur, ongunstige beslissingen kunnen veroorzaken. Om mogelijke schade
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in evenwicht te brengen, is er een groeiende behoefte om vertekening door beeld-
classificatie te identificeren en te verminderen. Ten eerste identificeren we in
de feature-ruimte een vooroordeel-richting. We berekenen klasse prototypes van
elke beschermende attribuutwaarde voor elke klasse en onthullen een bestaande
subruimte die de maximale variantie van de bias vastlegt. Ten tweede vermin-
deren we vooroordelen door beeldinvoer toe te wijzen aan inbeddingsruimten
van labels. Elke waarde van het beschermde attribuut heeft zijn projectiekop
waarin klassen worden ingebed via een latente vector representatie in plaats van
een gewone one-hot-codering. Eenmaal getraind, verminderen we in de feature-
ruimte het vooroordeel-effect verder door de richting ervan te verwijderen. Eval-
uatie van bevooroordeelde afbeeldingsdatasets, voor classificaties met meerdere
klassen, meerdere labels en binaire bestanden, toont de effectiviteit aan van het
aanpakken van zowel feature- als labelinbeddingsruimten bij het verbeteren van
de eerlijkheid van de classificatie voorspellingen, terwijl de classificatie prestaties
behouden blijven.
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