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“Systems thinking leads to another conclusion, however, waiting, 
shining, obvious, as soon as we stop being blinded by the illusion of 
control. […] The future can’t be predicted, but it can be envisioned 
and brought lovingly into being. Systems can’t be controlled, but 
they can be designed and redesigned. We can’t surge forward with 
certainty into a world of no surprises, but we can expect surprised 
and learn from them and even profit from them. […] We can’t 
control systems or figure them out. But we can dance with them!” 

Donella H. Meadows
Thinking in Systems: A Primer, 2008, p 168-170.
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1
general

introduction

This chapter is partly adapted from the following book chapter:
Lunansky, G., Nuijten, M., Deserno, M., Cramer, A.O. J. & Borsboom, D. 
(2017). Psychologische stoornissen als complexe netwerken. In Handboek 
persoonlijkheidspathologie (pp. 245-266). Bohn Stafleu van Loghum, Houten.
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1.1 introduction

Mental disorders are the leading cause of disability worldwide, affecting more than 
300 million people (World Health Organization, 2017). Major Depression (MD) alone is 
ranked as the single most significant contributor of non-fatal health loss globally (World 
Health Organization, 2017). Mental health problems place a considerable burden on 
the lives of suffering individuals, such as lower quality of life and an increased risk of 
experiencing adverse events (e.g., job loss, divorce, and lower life expectancy; Cuijpers 
et al., 2012; Lopez et al., 2006). In addition, mental health problems can have a long-
lasting and severe impact on the social environment of the inflicted person and society 
as a whole (Greenberg et al., 2015). Stressful life experiences and adversity (e.g., the 
death of a loved one, abuse, physical illness, and poverty) are essential factors in 
initiating the development of mental disorders (Brown et al., 1987; Green et al., 2010; 
Kalisch et al., 2019).

However, not all people that face adversity develop persisting mental health problems. 
Around 90% of people in Western countries experience at least one potentially 
traumatizing event during their lifetime, but the lifetime prevalence of posttraumatic 
stress disorder is only about 8% (de Vries & Olff, 2009; Kilpatrick et al., 2013). In the 
immediate aftermath of a stressful life event, depressive symptoms occur quite 
frequently (e.g., 25% according to Cénat & Derivois, 2014), but many initially afflicted 
people return to healthy physical and psychological functioning (Bonanno et al., 2004). 
Why do some people seem to ‘bounce back’ quite rapidly while others get stuck in 
a whirlwind of problems and suffer from mental health complaints? Based on the 
Latin verb resilire, which means ‘to spring back’ or ‘to rebound’, resilience refers to the 
ability or capacity to maintain or quickly return to normal psychological functioning 
after facing some adverse event (Bonanno, 2004; Kalisch et al., 2017; Werner, 1995). 
Understanding resilience could help identify the mechanisms that help prevent or 
reduce the risk of developing mental disorders in people who have faced hardship. 
Therefore, resilience research is crucial to understanding how mental disorders can 
be hindered or prevented in the face of adversity.

Although various definitions exist, resilience is always defined in response to adversity. 
Therefore, the concept of resilience is a disposition, which expresses a tendency or 
capacity that manifests under certain conditions or situations (Mumford, 2003). 
Resilience refers to a response after facing adversity, begging the question how to 
scientifically study a person’s resilience. Naturally, adversity cannot be induced or 
manipulated in experimental research for ethical reasons. Researchers have studied 
resilience in people who have faced adversity (e.g., childhood trauma) by following 
them over some time to see whether they developed mental health problems (e.g., 
see: Werner, 1993; Arseneault et al., 2011; Singham et al., 2017). In addition, researchers 
focused on healthy participants and investigated which positive factors (e.g., 

cognitions, behaviors, or traits) could be related to resilience (Simeon et al., 2007). 
While this type of research contributed substantially to the literature, such as which 
factors can play a part in accelerating or hindering the development of mental health 
problems, no strong predictors of resilience have been found (Bonanno, 2021).

There are more reasons why it is difficult to study resilience. Researchers have found 
that people can successfully adapt to the stressors they encounter (the steeling effect), 
or develop lasting problems making them more vulnerable to a minor stressor in 
the future (the scarring effect; Rutter, 2012; Wichers et al., 2010). Resilience should 
therefore be studied from a developmental perspective (Stainton et al., 2019) and is 
often described in terms of a dynamic process, in which the person is successfully 
adapting to its environment and stressors (Ioannidis et al., 2020; Kalisch et al., 2017; 
Rutter, 2012; Sapienza & Masten, 2011). This dynamic approach to resilience implies 
that a person’s level of resilience can change over time, meaning that someone may 
be ‘resilient’ at one point in life but not at another point. Additionally, one may show 
resilience against one type of adversity (e.g., losing one’s job), but not against another 
negative event (e.g., losing one’s parent). These fluctuations in resilience are associated 
with different protective factors (e.g., optimism; Ellis et al., 2017) and risk factors (e.g., 
neuroticism; Roberts & Kendler, 1999), which help or hinder a person in maintaining 
good mental health. Risk and protective factors do not operate in isolation but 
interact (Fritz et al., 2018; Riley & Masten, 2005). For example, a person who scores 
high on neuroticism and has suffered from a difficult childhood is more likely to have 
a lower level of resilience than a person who scores high on neuroticism but had a 
happy childhood. Therefore, resilience should not be viewed as a static personal trait 
that permanently defends the lucky individual against all kinds of adversity. Instead, 
resilience involves complex and dynamic interactions between risk and protective 
factors as well as the stressors a person faces (Fritz et al., 2019; Ioannidis et al., 2020; 
Kalisch et al., 2019). Thus, practical and ethical challenges complicate the study of 
resilience: how to explore a person’s response to adversity? Additionally, there are 
methodological challenges: How to account for the complex interactions between 
protective factors, risk factors, and resilience?

The multifactorial aspect of resilience (risk and protective factors are found across 
domains, such as biology, neuroscience, sociology, economics, and psychology; Xu & 
Kajikawa, 2018) illustrates the need for an interdisciplinary approach to advance the 
study of resilience collaboratively. A research field that is also occupied with studying 
resilience, and that may inspire investigations in psychology, is ecology. Environmental 
scientists study the resilience of ecosystems (such as lakes) by representing them 
as complex systems of various interacting elements (such as fish, nutrients, algae) 
that can end up in self-enforcing alternative stable states (such as clear or turbid 
water; Scheffer et al., 1993). In the lake example, the water can be clear, representing 
a situation in which all elements of the system thrive and maintain a healthy balance 
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of, among others, vegetation, fish population, and nutrients. However, this healthy 
balance can be disturbed (e.g., the algae in the lake grow), which leads to a causal 
chain of disruption (e.g., the increased number of algae limit the light at the bottom 
of the lake, reducing the vegetation, which, in turn, confine the fish population and 
nutrients, etc.) leading to a self-sustaining state of lake turbidity. The resilience of 
such complex systems can be studied by implementing the system in a computational 
model and simulating its behavior under different conditions and perturbations (i.e., 
events or stressors that disrupt the system; for example, see: Allison & Martiny, 2008; 
Hipsey et al., 2015; Meadows et al., 1972). In this way, one can study the resilience of 
lakes against different environmental conditions and perturbations, such as different 
climates or human interference (Scheffer & van Nes, 2007).

Especially in the case of complex systems, where the system’s behavior is often better 
approached using non-linear equations that are hard or impossible to solve analytically, 
simulation modeling offers a solution (Taber & Timpone, 1996). Over the past decades, 
this approach has been extended and optimized, for example, to predict the potential 
effects of the climate crisis on specific ecosystems such as rainforests (e.g., Cui et 
al., 2021; Kumar et al., 2021). By generating testable hypotheses from the model, one 
can observe the accuracy of predictions and improve models and theories (Guest & 
Martin, 2020). As such, one can study and anticipate the resilience of complex systems 
scientifically.

Taking complexity models and simulation modeling to psychology offers many novel 
and exciting research opportunities (e.g., see: Borsboom et al., 2020; Cramer et al., 
2016; Fried, 2020; Guest & Martin, 2020; Robinaugh, Haslbeck, Ryan, et al., 2021). 
Using computational models to simulate adverse events can help overcome practical 
and ethical challenges of studying resilience, as this opens the possibility to perturb 
models instead of people. Furthermore, complexity models may help solving the 
methodological challenges by focusing on the interactions between variables.

An interesting framework that developed complexity models for psychology is the 
network theory of psychopathology. This theory proposes that mental disorders act 
as complex systems and can be represented as networks of interacting symptoms 
(Borsboom, 2017; Borsboom & Cramer, 2013). Over the past years, the network theory 
gave rise to various statistical complexity models estimated from empirical data of 
symptom assessments (e.g., see: Epskamp, Waldorp, et al., 2018; Haslbeck & Waldorp, 
2020; van Borkulo et al., 2014). Using these statistical symptom network models, one 
can estimate the direct relations between symptoms in a network structure. The 
models are widely used and have been applied to various mental disorders, such as 
MD (Cramer et al., 2016), schizophrenia (Isvoranu et al., 2017), autism (Deserno et al., 
2017), and insomnia (Blanken et al., 2021).

In this dissertation, I propose a novel approach to study resilience by combining 
existing statistical complexity models, specifically, network models of psychopathology 
symptoms (Borsboom, 2017), with simulation modeling. I extend the existing 
statistical network models to accommodate behavior that corresponds with empirical 
phenomena from the resilience literature. In this way, one can model the interactions 
between symptoms, risk factors, and protective factors to better represent, understand 
and anticipate resilience. Using these network models for simulation modeling 
provides endless possibilities to study potential responses to adversity from different 
perspectives and types of data, and, thereby, progress the scientific study of resilience. 
As such, the work in this dissertation aims to offer a lingua franca to researchers from 
different domains (Buyalskaya et al., 2021) and novel tools to collaboratively investigate 
the complex concept of resilience.

In the remainder of this chapter, I further elaborate on this dissertation’s approach 
by expanding on the network theory of psychopathology and simulation modeling in 
psychology. Subsequently, I discuss the current implementation of resilience research 
in network models together with the open questions that remain. To conclude, I 
outline the dissertation chapters which work on these open questions one by one.

1.2 the proposed approach: combining existing network 
models with simulations modeling to study resilience

1.2.1 The network theory of psychopathology and symptom models
The network theory of psychopathology proposes that mental disorders act as 
complex systems organized in a network of causally interacting symptoms (Borsboom, 
2017; Borsboom & Cramer, 2013; Cramer et al., 2010). The network consists of nodes 
representing psychiatric symptoms and edges representing the direct relations between 
symptoms. A symptom (e.g., ‘excessive worrying’) can be triggered by an external 
event (e.g., losing one’s job) and, in turn, activate neighboring symptoms as well (e.g., 
excessive worrying → insomnia → fatigue; Borsboom & Cramer, 2013). In this way, 
subsequent symptom-symptom interactions can lead to the situation in which a person 
is stuck in these symptom activation patterns and suffers from a mental disorder. In 
the first seven years since the introduction of the theory (Cramer et al., 2010), over 
140 scientific papers applied the network theory of psychology empirically to various 
mental disorders (Contreras et al., 2019). The considerable success of the theory is 
due to two reasons which will be discussed below: 1) theoretically, this approach 
offers solutions to essential phenomena from the psychopathology literature that 
traditional approaches could not explain, and 2) practically, the network theory of 
psychopathology has been implemented in statistical models, making it possible for 
researchers to study mental disorders as complex systems empirically.
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Traditionally, mental disorders were represented from a medical point of view, assuming 
the existence of an underlying mental illness that causes symptoms (Borsboom, 2017). 
In other words, the idea was that people suffer from a depressed mood and lack of 
interest because they are depressed. Statistically, mental disorders were represented 
as latent variables: invisible entities that act as the common cause of all the manifest 
(i.e., observable) symptoms (Borsboom et al., 2003). The latent variable (henceforth: 
LV) model is mathematically elegant: controlling for the LV in the statistical model, 
i.e., keeping its value constant so that it cannot act as a causal variable, makes the 
correlations between symptoms disappear (van Bork et al., 2019). Thus, according 
to the LV model, symptoms only co-occur because they stem from an underlying 
common cause, which is in line with the traditional and medical approach to mental 
disorders. In the same way that cancer symptoms disappear when a tumor is removed, 
mental health symptoms would vanish when a mental illness is treated (Borsboom, 
2017). However, clear physical substrates that could act as a common cause of mental 
disorders have not been found (Borsboom et al., 2019).

Additionally, there are more aspects of mental disorders that the LV model cannot 
explain. The LV model views each mental disorder as a categorically distinct entity 
with causal power on a specific set of symptoms. From this view, it is difficult to 
explain the high prevalence of comorbidity (Cramer et al., 2010). Comorbidity refers 
to the situation in which a patient suffers from more than one (mental) disorder 
simultaneously (Angold et al., 1999). A large cohort study in the Netherlands found 
that 75% of patients suffering from MD also suffered from a lifetime comorbid anxiety 
disorder (Lamers et al., 2011). The LV model provides no explanation for the fact that 
two distinct entities co-occur so often. Furthermore, in the LV model, all symptoms 
of the same mental disorder are (statistically) exchangeable. This means that people 
with very different combinations of symptoms can receive the same diagnosis (Fried, 
2017). In other words, the LV model offers no way to differentiate people with diverse 
symptomatology diagnostically. Moreover, the LV model only allows for linear relations 
between the disorder and symptoms, while symptoms can evolve in a non-linear 
fashion (Hayes et al., 2007). Some patients suddenly transition towards a much more 
severe state of the disorder (Hayes & Strauss, 1998). Lastly, the LV model offers no 
genuine, actionable interventions on the development of the disorder as symptoms 
are seen as merely passive indicators. From this view, intervening on symptoms does 
not treat the underlying mental disorder.

The network theory of psychopathology suggests solutions to all aforementioned 
characteristics of mental disorders. First, the theory explains comorbidity by proposing 
that all mental disorder symptoms can be represented in one extensive interconnected 
network. Symptoms that co-occur more frequently, such as the symptoms belonging to 
the diagnosis of MD, cluster together (Borsboom et al., 2011). Symptoms that belong to 
two diagnostic categories, such as ‘sleep disturbances’, which belongs to the MD, and 

Generalized Anxiety Disorder (GAD) diagnosis, function as a bridge symptoms between 
clusters (Cramer et al., 2010). Thus, a person can develop symptoms of MD and, via 
a bridge symptom such as ‘sleep disturbances’, enter the symptom cluster of GAD. 
Furthermore, symptoms are not (statistically) exchangeable in the network theory, as 
symptoms hold causal power to their neighboring symptoms (Borsboom & Cramer, 
2013). Symptoms can have no edges, weak edges, or strong edges to neighboring 
symptoms. Symptoms with many and strong edges have a central position in the 
network (Epskamp, Borsboom, et al., 2018). As such, symptoms may play different 
roles in developing and maintaining mental disorders (Blanken et al., 2018). Moreover, 
network models represent dynamic systems that may show non-linear behavior and 
sudden jumps into a severely disordered state (Borsboom, 2017). For example, network 
models can show hysteresis: the situation in which a person gets stuck in a disordered 
state (e.g., a depressive episode), even when the stressors that made them develop 
symptoms are diminished to a much lower level than what triggered symptoms. 
For example, solving relationship problems that triggered a depressive episode may 
not be enough to return to a non-depressed state (Cramer et al., 2016). Lastly, the 
network theory deconstructs the development of mental disorders into a causal chain 
of symptom activation, and in this way, offers many more targets for interventions 
(Blanken et al., 2019; Henry et al., 2021).

Importantly, the network theory of psychopathology has been implemented in 
statistical models, making it possible for researchers to empirically study mental 
disorders as complex systems. The statistical models can be estimated from different 
types of data: Gaussian data (Epskamp, Waldorp, et al., 2018), binary data (van Borkulo, 
Epskamp, et al., 2014), or mixed data (Haslbeck & Waldorp, 2020). Network models can 
be estimated on the population level from cross-sectional data or the individual level 
from longitudinal data (using, for example, multiple assessments per day; Bringmann 
et al., 2013; Epskamp, van Borkulo, et al., 2018). All network models are implemented 
in the freely available statistical software program R (see the supplementary materials 
of this dissertation for an introductory chapter in R). Together with these novel 
methodological tools, the network theory has caused a shift in the thinking about 
mental disorders, both on a theoretical and applied level (McNally, 2021).

1.2.2 Simulation modeling as a form of abductive reasoning
Using simulations and computational models to study resilience is a form of abductive 
reasoning. In abductive reasoning, one starts from empirical phenomena regarding 
a theme of interest, which are well-established general features that the scientist 
tries to explain (Borsboom et al., 2020; Haig, 2005). An example of an empirical 
phenomenon in resilience is that some people develop a mental disorder such as PTSD 
after facing trauma, while others do not. The researcher then starts thinking about a 
possible formal and mathematical model (i.e., the theory) that generates plausible data 
accommodating the phenomena. In addition, the formal model can be implemented in 
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a computational model to check for similarities between simulated data and empirical 
data that describe the phenomena. Building such a realistic, complex computational 
model from the ground up is not straightforward and requires a long development and 
evaluation process. However, one could instead estimate existing statistical complexity 
models from data (such as estimating a symptom network from empirical data) and, as 
a first approximation, adopt these estimated models as data-generating computational 
models. The simulations from the model can be used to 1) evaluate the model’s 
accuracy by comparing simulated data with empirical data, 2) generate testable and 
specific hypotheses for empirical research, and 3) study how the model would behave 
under different conditions (Haslbeck et al., 2021). For example, by adjusting specific 
parameters of the model (e.g., decrease the probability that a specific symptom occurs) 
and simulating data to study how the model’s behavior would change (i.e., check if 
overall symptomatology levels would decrease).

Combining statistical network models with simulation modeling offers many 
advantages. First, simulations can help researchers understand the model they 
estimated from data and, in that sense, be a form of data analysis (Finnemann et al., 
2021). Simulations teach us what would happen according to the model, given the 
data (e.g., do we expect a group of remitting MD patients to end up in a depressed 
state again, given their symptom data?; Cramer et al., 2016). Using simulations from 
a formal or mathematical model can reveal patterns of behavior from the model that 
are difficult to anticipate when only describing the system (Robinaugh, Haslbeck, 
Waldorp, et al., 2021). Second, by simulating data from the estimated model, one must 
be explicit about the assumed dynamics that run over the network. Specifically, one 
must explain the rules or formulas that are used to simulate the model’s behavior. 
By explicitly formalizing the model’s dynamics, one can start scientific discussions 
about whether the used dynamics are plausible or the best way forward, or which 
improvements can be implemented. Third, one can quantify the relative importance 
of estimated parameters using simulations. Instead of interpreting the found relations 
between symptoms by looking at the network graph, which can induce subjectivity, 
one can quantify the relative importance of a specific parameter by changing it and 
seeing how the model’s behavior changes.

1.3 current findings and open questions regarding the 
study of resilience from the network approach

The network theory of psychopathology and statistical symptom network models 
offer exciting possibilities to conceptualize the dynamical and multifactorial nature 
of resilience from a complex system’s approach. The section below briefly discusses 
current findings, debates, and several open questions.

1.3.1 Assessing resilience from the estimated symptom network model’s 
structure
The behavior of complex systems follows from their internal structure (Meadows, 
2008). In other words, the way that the components of a complex system are connected 
determines how it will behave. Therefore, it is likely that the internal structure of a 
symptom network determines the course of symptom evolutions. Researchers have 
investigated whether the structure of estimated symptom networks, i.e., the overall 
strength of associations between symptoms, indeed relates to the level of symptom 
development over time. In a simulation study using networks of MD symptoms 
(Cramer et al., 2016), networks with robust connectivity (i.e., many and strong edges 
between symptoms) were vulnerable to developing depression. When the network 
was faced with stress, symptom activity spread rapidly. The network jumped towards 
a depressed state where it got stuck despite lowering stress levels. Networks with 
weak connectivity showed more gradual symptom development patterns when faced 
with stress and spontaneous recovery in which the present symptoms disappeared. 
In addition, an empirical study followed a group of patients that had suffered from 
MD in the past year (van Borkulo et al., 2015). Patients who relapsed into a depression 
after two years were characterized by symptom networks with stronger connectivity 
at baseline than remitting patients. These studies suggest a relationship between 
symptom network connectivity and resilience. However, it is not clear yet if, and how, 
resilience could be assessed from a baseline network’s internal structure. Therefore, 
the first open question is how resilience could be evaluated from a network’s internal 
structure.

1.3.2 Adding risk and protective factors to the symptom network
Researchers have suggested that the various risk and protective factors that account 
for resilience may be represented in a network structure (Fritz et al., 2019; Ioannidis et 
al., 2020; Kalisch et al., 2017, 2019; Schueler et al., 2021). The behavior of the symptom 
network would change due to the interactions between all these risk and protective 
factors and symptoms. For example, the protective factor “social support” may hinder 
the evolution of a depressive symptom such as “depressed mood” when faced with a 
stressful life experience. However, the proposed ideas have not yet been translated 
to a formal or computational model that can show these dynamical and multifactorial 
resilience characteristics. Thus, the second open question is how risk and protective 
factors can be integrated into symptom networks, such that they change the network’s 
resilience.

1.3.3 Considering different timescales in the network model
Another issue is that the various risk factors, protective factors, and mental health 
symptoms evolve on different timescales (Bringmann et al., 2021). For example, 
psychopathology symptoms may evolve over days, but personality factors that are a 
risk factor for developing depression, such as neuroticism, may evolve over a timespan 
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of years (Roberts & Mroczek, 2008; Roberts & Kendler, 1999). It is not straightforward 
how to accommodate fast and slow-changing processes in a model. Therefore, the 
third open question is how to account for different timescales in such an integrated 
network model of resilience.

1.3.4 Studying the relation between symptom evolutions and network 
structure over time
Over the past years, various researchers have argued in favor of estimating individual 
networks instead of cross-sectional networks (e.g., see Bringmann et al., 2013; Wichers 
et al. 2010; Wichers et al., 2015). This is because population effects do not necessarily 
translate to the individual level, especially in developmental processes such as the 
evolution of mental disorders (Hamaker, 2012; Molenaar, 2004). Thus, to understand 
the relationship between network structure and the symptom development in 
individuals, we need to estimate individual networks. To do so, one needs longitudinal 
data with many repeated assessments over time (Bringmann et al., 2013; Epskamp et 
al., 2018). Therefore, the fourth open question is what the relationship is between the 
structure of network models from individual participants and their change in symptom 
evolutions over time. Additionally, in the context of resilience, a related question is 
what different mechanisms may account for a person’s symptom evolutions, and how 
these evolutions are reflected in the person’s symptom network.

1.3.5 Projecting the effect of interventions and perturbations on the 
network’s symptom development
One of the most important clinical implications of the network theory of psychology 
is that symptoms play a different role in developing or hindering mental disorders 
(Borsboom & Cramer, 2013). Clinical interventions could have different propelling 
effects depending on the specific symptoms that are being targeted. Recent studies 
used simulations from network models to represent symptom-specific interventions 
by temporarily deactivating a symptom and calculating its effect on the rest of the 
network (Burger et al., 2020; Castro et al., 2019; Henry et al., 2021; Robinaugh et al., 
2016). To investigate whether symptoms play different roles in developing or hindering 
mental disorders, we need to study the effect of both clinical interventions and stressful 
perturbations on the network’s symptom development. The fifth and final open 
question is how to study the effect of different interventions on symptom evolutions.

1.4 dissertation outline

This dissertation investigates the above-mentioned open questions consecutively in 
the following five chapters.

Chapter 2 studies how resilience could be evaluated from a network’s internal structure. 
I integrate the concept of resilience within the network theory of psychopathology 

by examining the stability of the dynamics of the projected symptom evolutions. 
The chapter presents the resilience quadrant, which organizes symptom networks 
based on two dimensions: 1) health versus disorder, and 2) stable versus unstable. 
The quadrant captures different behaviors on those dimensions: resilient trajectories 
despite facing adversity, and persistent symptoms despite treatment interventions. 
Using the example of Major Depressive Disorder, I show how different networks can 
show chronically depressed, relapsing, remitting, or resilient trajectories of symptom 
evolutions. Using simulations, a proof-of-concept shows a systematic methodology of 
how to investigate where in the resilience quadrant (empirically estimated) symptom 
networks are currently located.

Chapter 3 studies how risk and protective factors can be integrated into symptom 
networks, such that they change the network’s resilience. The chapter proposes that 
symptom networks may be embedded within a web of risk and protective factors 
that affect the network’s resilience – which depends on the symptom’s expected level 
and stability over time. The risk and protective factors affect the symptom network’s 
resilience by hindering or accelerating the network’s symptom evolutions.

Chapter 4 investigates how to account for different timescales in such an integrated 
network model of resilience, with embedded symptoms, risk and protective factors. 
The chapter focuses on the relation between personality and psychopathology, where 
personality represents a slowly changing process and psychopathology a fast-changing 
process. Using an applied example of neuroticism and major depressive disorder, the 
chapter presents a system in which personality items that share content overlap with 
symptoms affect the symptom’s tendency to be present. The chapter shows that this 
system generates data that accommodate important phenomena, such as the strong 
relation between neuroticism and depression and individual differences in the change 
of neuroticism levels and development of depression over time.

Chapter 5 studies how the structure of individual network models relates to their 
change in depressive complaints over time. Many studies have found that depressive 
complaints are associated with the regulation of affect. However, these studies 
often focus on either the population level or collect data within an intensive but 
brief timespan capturing relations between momentary affect and current depressive 
complaints. As such, neither approach captures the relation between long-term 
affect fluctuations and change of depressive complaints in individuals. This chapter 
investigates how affect fluctuations and evolutions of depressive complaints are 
associated within and across people over longer periods of time (9-14 weeks) by 
estimating multilevel and individual networks from a longitudinal study.

Chapter 6 studies how to investigate the projected effect of different interventions 
on symptom evolutions. This chapter presents a method to evaluate the effect of 
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symptom-specific intervention targets on the behavior of the network, which is applied 
to an estimated network of PTSD assessments as an empirical illustration. The method 
is accompanied by a newly developed R-package nodeIdentifyR that researchers can 
use to study the projected effects of targeted interventions from their datasets.

The first part of the supplementary materials includes two supplementary chapters 
that may support some researchers to better understand the work presented in this 
dissertation. The first chapter introduces R, the statistical program in which all studies 
have been conducted. The second supplementary chapter gives an overview of the 
network theory in Spanish to expand the theory and work into Hispanic-speaking 
countries and research institutions. The second part of the supplementary materials 
includes the supplements to Chapters 2 to 6.
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2.0 abstract

Resilience refers to the ability to return to normal psychological functioning despite 
facing adversity. It remains an open question how to anticipate and study resilience, 
due to its dynamic and multifactorial nature. This chapter presents a novel formalized 
simulation framework for studying resilience from a complex systems perspective. 
From this view, resilience is a property of a system that arises if a system is located 
in a stable and healthy state despite facing adversity. We use the network theory of 
psychopathology, which states that mental disorders are self-sustaining endpoints 
of direct symptom-symptom interactions organized in a network system. The 
internal structure of the network determines the most likely trajectory of symptom 
development. We introduce the resilience quadrant, which organizes the state of 
symptom networks on two domains: 1) healthy versus disordered, and 2) stable versus 
unstable. The quadrant captures different behaviors along those dimensions: resilient 
trajectories in the face of adversity, as well as persistent symptoms despite treatment 
interventions. Subsequently, we introduce a systematic methodology, using simulated 
perturbations, to determine where in the resilience quadrant an observed network 
is currently located. As such, we present a novel outlook on resilience by combining 
existing statistical symptom network models with simulation techniques.

2.1 introduction

Why do some people suffer from mental illness after a disruptive, stressful life event, 
while others seem to bounce back relatively rapidly from such adversity without 
developing (lasting) psychopathology? Around 90% of people in Western countries 
experience at least one potentially traumatizing event during their lifetime, but 
the lifetime prevalence of posttraumatic stress disorder is only about 8% (de Vries 
& Olff, 2009; Kilpatrick et al., 2013). In the immediate aftermath of a stressful life 
event, depressive symptoms occur quite frequently (e.g., 25% according to Cénat 
& Derivois, 2014), but many initially afflicted people return to healthy physical and 
psychological functioning (Bonanno et al., 2004). The ability to preserve or quickly 
bounce back to psychological health and normal functioning after adversity is referred 
to as resilience (Bonanno, 2004; Kalisch et al., 2017; Werner, 1995). A meta-analysis 
of 54 studies that reported response trajectories of individuals after facing stress and 
potentially traumatic events identified different trajectory types (resilience, recovery, 
chronic, and delayed onset). The resilient trajectory was the most prevalent (Galatzer-
Levy et al., 2018). Individuals characterized by a resilient trajectory may face mild to 
moderate disruptions in normal functioning (e.g., a few weeks of poor sleep and bouts 
of sadness), but overall maintain a stable trajectory of healthy functioning. On the 
contrary, a chronic trajectory is characterized by severe disruptions in functioning, 
which do not diminish over time without some type of intervention.

Investigating how these individual differences in resilience arise is not straightforward. 
The first reason for this is that resilience is a disposition that expresses a tendency 
or capacity that manifests under certain conditions or situations (Mumford, 2003). 
Resilience refers to a response after facing adversity, which, naturally, cannot be 
induced in experimental research for ethical reasons. The second reason is that the 
concept of resilience is complicated to analyze. Resilience is associated with many 
distinct variables across domains (e.g., self-compassion; MacBeth & Gumley, 2012), 
social support (Gariépy et al., 2016) and positive emotions (Tugade & Fredrickson, 2004) 
and is thus inherently multifactorial. There is no evidence for a set of key predictors 
that can explain all individual differences in resilience levels (Bonanno, 2021; Modesto-
Lowe et al., 2021). Instead, resilience results from many different protective factors (e.g., 
optimism; Ellis et al., 2017) and risk factors (e.g., neuroticism; Roberts & Kendler, 1999) 
which respectively help or hinder people in maintaining or rapidly bouncing back into 
their normal functioning (Fritz et al., 2018; Xu & Kajikawa, 2018). Importantly, these risk 
and protective factors do not operate in isolation but interact with one another (Ellis 
et al., 2017; Gijzel et al., 2019; Riley & Masten, 2005; Weinans et al., 2021). For example, 
two people with a similar level of neuroticism can still have different responses to 
stressful events, such as losing their job. A person who scores high on neuroticism 
and also has suffered from a difficult childhood is more likely to have a lower level 
of resilience than a person who also scores high on neuroticism but had a happy 
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childhood. A further element that makes the study of resilience complicated is its 
dynamic nature by which someone is successfully (or not) adapting to its environment 
and various stressors over time (Shafi et al., 2020; Crameri et al., 2021; Hill et al., 
2018; Kalisch et al., 2017; Rutter, 2012; Sapienza & Masten, 2011; Stainton et al., 2019). 
Instead of representing resilience as a static trait that permanently shields someone 
from all types of misery, evidence suggests that resilience levels within individuals 
can change over time (Infurna, 2021; Stainton et al., 2019). Thus, resilience involves 
complex and dynamic interactions between risk and protective factors as well as the 
stressors a person faces, which current accounts of resilience fail to accommodate 
(Kalisch et al., 2019).

The network theory of psychopathology offers a theory and modeling framework 
that allows taking the multifactorial and dynamic nature of resilience into account 
(Borsboom 2017; Kalisch et al., 2019). The central idea of this theory is that mental 
disorders act as complex systems (Borsboom, 2017; Borsboom & Cramer, 2013). Complex 
systems consist of interacting elements that produce a pattern of behavior (Meadows, 
2008). The take-away message from the complex systems approach is that a system’s 
behavior follows from its internal structure. To study the system’s behavior, one 
should understand how the whole system operates instead of studying every variable 
or component in isolation. The internal structure of the system can lead to a self-
sustaining state, meaning that the system gets ‘stuck’ in a certain state that is difficult 
to break (Scheffer et al., 1993). The network theory of psychopathology proposes that 
a mental disorder is such a self-sustaining state, ultimately caused by direct symptom-
symptoms interactions (Borsboom, 2017). Symptoms are organized in a network and 
directly affect each other: for example, insomnia causes fatigue, which, in turn, results 
in concentration problems (Borsboom & Cramer, 2013). The concentration problems 
might trigger a depressed mood, which, over time, results in feelings of worthlessness. 
The end result of these symptom-symptom interactions (i.e., insomnia -> fatigue -> 
concentration problems -> depressed mood -> feelings of worthlessness) is a depressive 
episode (Borsboom, 2017). The number of active symptoms defines the state of the 
symptom network. One may use DSM diagnostic cut-offs to determine the number of 
symptoms that depict the network’s state: 1) relatively few symptoms active (below 
a diagnostic cut-off), a healthy state; or 2) relatively many symptoms active (above a 
diagnostic cut-off), a disordered state.

Figure 2.1. An example of a symptom network model. The nodes in the network (the circles in 
the figure) represent symptoms, such as ‘insomnia’ or ‘depressed mood’. The node parameters 
(illustrated by the node borders) are called thresholds and express the preference of a symptom 
to be present. Strong thresholds (shown by thick borders) indicate a symptom’s large preference 
to be absent, meaning that the symptom is less likely to activate. Contrary, weak thresholds 
(thin borders) indicate that a symptom has a minor preference to be absent and can become 
present more easily. The edges in the network (the lines between the nodes in the figure) 
represent the association between the symptoms. The stronger the association (thicker lines), 
the stronger the preference of symptoms to be in the same state. Thus, when one symptom 
is present, a strongly connected neighboring node is more likely to become present as well.

The most likely behavior of the symptom network is determined by its architecture 
(i.e., the internal structure). The network’s architecture consists of 1) the connections 
between the symptoms and 2) the thresholds of each symptom to become active. 
Strongly connected symptoms are more likely to activate each other (Cramer et al., 
2016). For example, suppose the depressive symptom ‘insomnia’ is strongly connected 
to ‘excessive worrying’. In that case, the presence of insomnia increases the likelihood 
that excessive worry will activate as well, and vice versa. In this way, symptom 
networks with weak connectivity are more likely to become stuck in a vicious cycle of 
symptom-symptom interactions (van Borkulo et al., 2015). In addition, each symptom 
has a threshold for activation. Symptoms with low thresholds (e.g., insomnia) are 
more easily activated when faced with some perturbation (e.g., a stressful event) than 
symptoms with high thresholds (e.g., suicidal ideation; Schweren et al., 2018). In this 
way, individual differences in the development of psychopathology could potentially 
be explained by differences in the network architecture across people.
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However, it remains an open question how to study the resilience of networks, 
specifically, what type of outcome should be used to define whether a network is 
resilient. It is currently unknown how the network’s architecture relates to resilience. 
To answer that question, one needs to study how the symptom network’s behavior 
is affected by adversity. One can expose the symptom network to perturbations by 
simulating data under different conditions that represent adversity. In this way, it is 
possible to investigate how the network’s behavior would evolve according to the 
model. Alternatively, one can explore how a specific symptom network would respond 
to treatment interventions after getting stuck in a disorder state. By simulating data 
under the situation that a network receives treatment interventions, one can study 
how susceptible a depressed network is to change. In other words, one can investigate 
the stability of the network’s state against simulated perturbations that represent 
stressors or treatment interventions. Thus, by using simulations, we can study how 
resilient a network is against adversity (i.e., the stability of a healthy state) and how 
easily a network will respond to treatment interventions (i.e., the stability of the 
disorder state). As such, one can generate clear, testable, and specific hypotheses 
on what factors contribute to the system’s resilience that can be used for empirical 
validation.

This chapter will show how to study resilience using a statistical network model of 
psychopathology combined with simulations. The chapter is set up as follows. Section 
2.2 (“The resilience quadrant”) introduces the resilience quadrant, which organizes 
symptom networks based on their most likely state (healthy or disordered) and stability 
against perturbations. We show that the quadrant captures different behaviors along 
those dimensions: resilient trajectories in the face of adversity, as well as persistent 
symptoms despite treatment interventions. Section 2.3 (“Proof-of-concept”) shows 
how to study in which regime of the quadrant symptom networks are currently located 
using simulations with exemplary architectures. Section 2.4 (“Discussion’) concludes 
with the necessary steps to further the study of resilience from a complex systems 
approach, such as implementing risk and protective factors to symptom networks.

2.2 the resilience quadrant

We present the resilience quadrant as a formalized simulation framework that shows 
the four different resilience regimes in which a symptom network can be located (see 
Figure 2.2). The framework is formalized because it explains how different network 
architectures lead to differences in resilience and how we could study the resilience 
of networks. The quadrant organizes networks by two dimensions: the network’s 
projected state (state-axis) and the stability of that state (stability-axis). The state-axis 
denotes whether the system can be expected to be in a healthy or disorder state, 
given the network’s architecture. The stability axis indicates how susceptible the 
projected state is to change when faced with perturbations. Using the example of 

Major Depressive Disorder (MDD), a network of depression symptoms can be located 
in a resilient, remitting, relapsing, or chronically depressed regime of the quadrant.

Figure 2.2. The resilience quadrant. The center shows the resilience quadrant of a (simplified) 
mental health system with two alternative stable states: healthy and depressed. The valleys 
in each quadrant represent the underlying attractor landscape for the two alternative states. 
For example, in the “resilient” regime, the system is located within the deep, steep, and wide 
attractor basin of the healthy state, and therefore unlikely to fall into the shallow attractor 
basin of the depressed state, even in the face of adversity. The corresponding boxes show the 
current location in the system’s trajectory, where the upper trajectory represents the healthy 
state and the lower trajectory the depressed state. The switch from one state to the other is 
called a sudden jump, which can also be represented by shifting from one attractor basin into 
another. Within each box, corresponding network architectures are shown. Nodes represent 
depression symptoms, and edges represent associations (e.g., logistic regression coefficients) 
between symptoms, while the thickness of edges represents the strength of this relationship. 
The thickness of red borders around nodes represents the magnitude of threshold parameters, 
which differ per node.

A visual metaphor that can explain the discussed link between the stability of the 
network’s state and resilience is the ball-in-a-cup metaphor (see Figure 2.3, which 
is often used in dynamical systems theory; e.g., see Scheffer et al., 2018). The cup 
represents the attractor basin of the network, which corresponds to the state the 
network is gravitating towards. As introduced above, the states are simplified to two 
options: a healthy state with few active symptoms and a disordered state with many 
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active symptoms. The ball represents the system’s current state, which can take on 
all possible combinations of active and inactive symptoms. The steepness and width 
of the cup represent how stable the ball lies in the attractor. If the attractor basin is 
broad, deep, and steep, the ball is likely to stay at the lowest point and unlikely to move 
and be pushed over the edge. In contrast, an attractor basin that is narrow, shallow, 
and flat is unstable since the ball is likely to roll out of the attractor basin (Holling, 
1973). The ball can be pushed by perturbations, such as minor daily stressors or adverse 
life events (e.g., divorce or the death of a loved one; Fried et al., 2015). However, the 
external events may also represent alleviating interventions, such as clinical treatments 
that aim to move a patient towards a healthy state. The influence of the perturbation 
on the ball’s behavior depends on the force pushing the ball forwards (i.e., how strong 
the perturbation itself is) and the form of the cup (i.e., how deep and steep the 
attractor is). Together, these determine the probability that the ball will switch from 
one state to another. Thus, a network situated in a healthy and stable attractor, with 
an unstable attractor for the disordered state, will show a resilient trajectory. This 
means that resilience is no longer a specific component of the network (e.g., a variable 
in the network or a particular set of factors) but a property of the network.

Figure 2.3. The ball-in-a-cup metaphor. The depth and width of the attractor determine how 
easily an imaginary ball falls into and out of the attractor, and thus, how stable the system is 
currently located in the attractor. The left basin is stable, represented by its wide and steep 
valley. Contrary, the right basin is unstable due to its shallow and narrow form.

In the resilient regime (the upper-right area of Figure 2.2), the network is located in 
a healthy and stable state. This means that the network’s small number of active 
symptoms is stable in the face of adversity. Some symptoms may be triggered after an 
event, but these will show spontaneous recovery. Networks with weak connectivity 
and high thresholds will be located in this regime. The healthy state can also be 
unstable in which symptoms are more easily activated after facing perturbations, 
which is depicted in the lower-right regime (“remitting”) of the quadrant (see Figure 
2.2). For example, patients in remission may be characterized by an unstable healthy 
state and thus not resilient even though their profile and number of depression 
symptoms might fall below the clinical cut-off for diagnosis. Networks with slightly 

stronger connectivity but lower thresholds than the resilient network are located in 
the remitting regime. The left part of the quadrant depicts the unhealthy state of the 
network, whereas the upper left shows the chronic depression regime. A network in 
this regime is stuck in an unhealthy stable state and therefore unresponsive to clinical 
interventions. Patients who suffer from chronic depression can be hypothesized to fit 
this category, as they are often not responsive to many (first) treatment interventions 
(Fava, 2003; Hölzel et al., 2011). Networks with strong connectivity and low thresholds 
will be located in this regime. Disordered symptom networks can also be unstable, 
representing, for example, groups of patients that are relapsing into depressive states 
(shown in the bottom-left regime of the quadrant). The relapsing networks also have 
strong connectivity and low thresholds, but these parameters are less extreme than 
in the chronically depressed network.

We use simulations to study where in the quadrant a network is located in two steps. 
First, we check the location of the network on the state-axis (i.e., the projected 
state of the network): healthy versus disordered. To study the projected state of the 
network, we simulate many observations1 from the network. We calculate the mean 
number of active symptoms, representing the most likely state in which the network 
will end up. Second, we study the location of the network on the stability-axis: 
stable versus unstable. We investigate the stability of the projected state simulating 
perturbations to the network. Note that different perturbations are needed to examine 
the stability of a healthy or disordered projected state. To study the stability of a 
healthy projected state, we apply aggravating interventions mirroring the development 
of depressive symptoms due to an adverse life event. Aggravating interventions 
temporarily increase the level of symptoms in the simulations. To the contrary, we 
apply alleviating interventions to investigate whether a disordered projected state is 
susceptible to change. Alleviating interventions represent treatment interventions by 
forcing symptoms to be inactive at specific moments of the simulation. In the following 
section, we provide a proof-of-concept of how we can assess in which regime of the 
resilience quadrant symptom networks are currently located.

2.3 proof-of-concept

In the current section, we explain how to identify typical cases of networks for every 
regime in the resilience quadrant. We constructed four different networks to show 
resilient, remitting, relapsing, or chronically depressed trajectories. We constructed 
these networks by altering the architecture (i.e., threshold and connectivity 

1 For specific types of network models, the most likely state of a network can also be calculated ana-
lytically. For example, the most likely state of the model used in this chapter (the Ising model) can be 
solved analytically for networks up to ten nodes using the R-package IsingSampler (Epskamp, 2020). 
However, as we also simulate perturbations to check the stability of the most likely state, we use the 
same type of simulations to position the network on both the state- and stability-axis.
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parameters) of an empirically estimated baseline symptom network in four ways (see 
Figure 2.4). The baseline symptom network represents nine depression symptoms in a 
population with healthy and depressed participants. The four networks differ in their 
architecture, specifically their connectivity and thresholds, and were constructed to 
mimic characteristic behavior for each quadrant in Figure 2.2. To construct the network 
in the resilient regime, we decreased the connectivity and made the thresholds higher 
(i.e., the symptoms will be less likely to activate), which will make the healthy state 
of the network more stable. We did the opposite for the network located in the 
chronically depressed regime by increasing the connectivity and making the thresholds 
lower (i.e., making the symptoms more likely to activate). We made the network’s 
projected states more unstable for the remitting and relapsing networks by altering the 
connectivity and threshold parameters in opposite directions (see the supplementary 
materials for a detailed description of how we constructed the networks).

All analysis code and research materials are available at https://osf.io/gv46e/. Analyses 
were done with R, version 4.1.2 (R Core Team, 2021) and the packages IsingFit, version 
0.3.1 (van Borkulo et al., 2014), qgraph, version 1.9 (Epskamp et al., 2012), ggplot2, 
version 3.3.5 (Wickham, 2016), tidyverse, version 1.3.1 (Wickham et al., 2019) and ggpubr, 
version 0.4.0 (Kassambara & Kassambara, 2020). This study’s design and its analysis 
were not pre-registered.

2.3.1 Health versus disorder: Simulating observations without perturbations
The first dimension in the resilience quadrant is health versus disorder. To assess 
whether a system characteristically displays healthy or disorder patterns, one can 
evaluate whether the expected number of active symptoms exceeds a clinical cut-off. 
For instance, in the present case, we simulated data from the four networks to show 
that these specific networks end up in different projected states (healthy or depressed). 
The supplementary materials to this chapter explain the simulation technique used to 
simulate the observations from the networks in detail. The simulated observations 
can be seen as ‘repeated measures’ of the nine depression symptoms for the same 
fictitious population of participants that each network represents. In that way, the 
simulated observations approximate the most likely symptom developments of every 
network, given the network’s architecture. We calculated the projected state of every 
network by taking the mean of the sum scores of active symptoms over all simulated 
observations. 

Figure 2.4. Constructing resilient, relapsing, remitting, and chronically depressed network 
models. We create four networks that show resilient, remitting, relapsing, and chronically 
depressed trajectories by manipulating an empirical baseline network model (in the centre). 
The four networks are created by multiplying the connectivity and threshold parameters of the 
baseline model’s architecture, and in this way, increasing or decreasing the parameters. The 
four constructed networks show behavior that fits the four regimes of the resilience quadrant. 
The thickness of edges represents the magnitude of the connectivity, and the thickness of node 
borders represents the strength of the thresholds. As can be seen from the figure, the relaps-
ing and remitting networks have quite similar architectures. See the supplementary materials 
for the exact values with which the baseline model parameters are multiplied to construct 
the four novel models. Abbreviations of the nodes refer to depression symptoms as follows: 
dpm = depressed mood, lss = loss of interest, app = appetite disturbance, slp = sleep distur-
bance, mtr = psychomotor agitation, ftg = fatigue, wrt = feelings of worthlessness, cnc = con-
centration problems, and dth = thoughts of death.

The mean sum score falls below or above a specific clinical cut-off value for diagnosis. 
The clinical cut-off value used in these simulations is the (simplified2) clinical cut-off 
value for diagnosing MDD, namely a sum score of five or more active symptoms 
denoting a depressed state and less than five active symptoms indicating a healthy 
state.

2 The Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM–5; American Psychiatric 
Association, 2013) states that for a diagnosis of MDD, 5 symptoms should be present, of which ‘loss 
of interest’ or ‘depressed mood’ should be present (American Psychiatric Association, 2013). For sim-
plicity, here we do not consider which specific symptoms are present.
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Table 2.1 and Figure 2.6 show the results from the simulations. The projected state for 
the resilient network is healthy since the mean sum score of simulated observations 
falls below the cut-off of 5 symptoms (mean = 0.03, sd=0.19). The remitting network 
showed more fluctuations. There is no clear state for this model and the number 
of active symptoms switched from a few active symptoms to a state with a high 
number of active symptoms. However, based on the mean of the active symptoms 
(mean = 3.83, sd = 3.95) the projected state of the networks falls below the cut-off 
value of five or more active symptoms. It is therefore located within the healthy regime 
of the resilience quadrant. The relapsing network showed some fluctuating symptom 
evolutions but with more active symptoms. The mean sum score of the relapsing 
network falls above the cut-off value (mean = 8.36, sd=0.87), and its projected state 
is therefore depressed. The chronically depressed network model showed many active 
symptoms (mean = 8.87, sd=0.47), and its projected state is consequently depressed.

2.3.2 Stability versus instability: Simulating observations with perturbations
After evaluating whether the characteristic behavior exhibits healthy or disorder states, 
we assessed the second domain of the resilience quadrant: stability versus instability. 
To this end, we perturbed the networks to study how stable their projected state is. 
We applied aggravating interventions to networks with a healthy projected state by 
activating all symptoms for specific moments in the simulation. We applied alleviating 
interventions for networks with a projected disordered state by forcing all symptoms 
to be inactive at particular moments. Figure 2.5 gives an example of simulated 
aggravating interventions, and the supplementary materials of this chapter explain the 
simulations in detail. After the interventions, the simulation of observations continued 
in its regular fashion. The network’s architecture determines whether the following 
simulated observations can get ‘stuck’ in the presence of symptoms or maintain a low 
level of symptoms. We calculated the effect of the interventions by computing the 
mean of the active symptoms over all observations. This symptom mean can again fall 
above or below the chosen clinical cut-off value, determining whether the system’s 
projected state after facing aggravating or alleviating interventions remains healthy 
or depressed.

Figure 2.5 An example of simulated aggravating interventions. Simulations are based on the 
estimated baseline depression model (see the supplementary materials). The x-axis represents 
the simulated observations, the y-axis the sum scores of the active depression symptoms. The 
red vertical lines represent every moment an aggravating intervention is simulated, meaning 
that all symptoms are forced to be active for one moment in the simulation. The dashed red 
line denotes the (simplified) clinical cut-off value for diagnosing MDD, namely a sum score of 
five active symptoms. The lower figure zoomed in on one intervention to show how the system 
recovers in detail. In this plot, the network with these estimated parameters generating these 
dynamics will fall below the clinical cut-off value for diagnosing depression most of the time.

Based on the previous results, we simulated aggravating perturbations for the 
networks projected to be in the healthy state and alleviating interventions for the 
networks projected to be in the unhealthy state (See Table 2.1 and Figure 2.6). The 
resilient network bounced back very quickly from every aggravating intervention and 
remained in a healthy state with almost no actively present symptoms (mean = 0.19, 
sd = 0.85). Interventions had more effect on the remitting network, in which the state 
of the network sometimes reached a depressed state. However, symptom evolution 
patterns were still highly fluctuating. The mean sum score of the network now 
falls above the cut-off (mean = 5.76, sd = 3.65). In the relapsing network, the applied 
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alleviating interventions successfully diminished the number of symptoms but with 
high fluctuations (mean = 4.13, sd = 4.1). The chronically depressed network model 
remained depressed most of the time despite alleviating interventions. However, the 
alleviating interventions seem to have some effect as symptom presence fluctuated 
(mean = 7.41, sd = 3.22).

Table 2.1. The mean and standard deviations of the simulated dynamics with and without 
perturbations for every constructed network.

Constructed Symptom Networks

Symptom Sum Score Resilient Remitting Relapsing Chronically 
depressed

M SD M SD M SD M SD

Without perturbations 0.04 0.19 3.83 3.95 8.36 0.87 8.87 0.47

With perturbations 0.19 0.85 5.76 3.65 4.13 4.1 7.41 3.22

2.3.3 Determining the position of the networks in the resilience quadrant
We can evaluate where the networks are located in the resilience quadrant by 
comparing the previous results. First, we assessed the networks on the health versus 
disorder domain to locate them on the left or right side of the state-axis in the 
quadrant (See Figure 2.2). If the network’s projected regime fell below (above) the 
clinical cut-off, we positioned the network on the healthy (depressed) domain in the 
right (left) side of the quadrant. Second, we evaluated the networks on the stable 
versus unstable domain to locate them on the upper or lower side of the stability-axis 
in the quadrant. If the network’s projected state after perturbations remained the 
same as the state without perturbations (i.e., the mean sum score of active symptoms 
still fell below or above the clinical cut-off; healthy or depressed), we positioned the 
network on the stable regime on the upper side of the quadrant. Otherwise, we 
located it in the unstable regime on the lower side of the quadrant.

Figure 2.6 shows the results of all the simulations for the four networks. The resilient 
network showed a healthy state, which was stable against aggravating interventions 
and is therefore located in the “resilient” regime of the resilience quadrant. The 
remitting network showed unstable dynamics, with a symptom mean score below the 
cut-off, but which jumped towards an unhealthy state after aggravating interventions. 
Therefore, the remitting network is located in the unstable healthy (“remission”) 
regime. The relapsing network is projected to be in an unstable depressed state, which 
can jump to a healthy state after alleviating interventions and is therefore placed in 
the “relapsing” regime of the quadrant. The chronically depressed network remained 
depressed despite alleviating interventions and is thus situated in the stable depressed 
(“chronically depressed”) regime.

Figure 2.6. The projected symptom evolutions for four networks in distinct regimes of the 
resilience quadrant. The x-axis of every plot shows the simulated observations, and the y-axis 
the sum of the present symptoms, where a higher score indicates a higher level of depression. 
The dashed horizontal red line indicates the clinical cut-off value of 5 symptoms or more for a 
diagnosis of MDD. The vertical lines indicate the moments where interventions are simulated, 
where red lines indicate aggravating interventions (all symptoms are forced to be present), 
and green lines indicate alleviating interventions (all symptoms are forced to be absent). The 
upper-right plot shows the symptom evolutions for the symptom network located in the re-
silient regime. Despite aggravating interventions, it displays a healthy and stable state, which 
follows from the projected low number of present symptoms. The lower-right panel shows 
the results for the network that was constructed to show an unstable healthy state located 
in the remitting regime of the quadrant. The projected state of the network is healthy, but it 
is heavily affected by the aggravating interventions. The lower-left panel shows the projected 
evolutions of the network located in the relapsing regime, which is characterized by an unstable 
depressed state that recovers from alleviating interventions. The upper-left panel shows the 
results for the network located in the chronically depressed regime, which is characterized by 
high levels of symptomatology despite alleviating interventions. The chronically depressed 
network is therefore unlikely to be susceptible to treatment interventions.

2.3.4 The relation between network architecture and resilience
The networks in the four quadrants were constructed from a baseline estimated 
network. We arrived at the typical networks by systematically altering the parameters 
of the baseline network. This process is represented in Figure 2.4. As is shown in the 
figure, a chronically depressed network arises when interactions between symptoms 
are strong (stronger connectivity), and the tendency of each symptom to be active is 
stronger (lower thresholds). Thus, both stronger interactions with other symptoms and 
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the degree to which symptoms have an autonomous tendency to be active contribute 
to a loss of resilience. In contrast, the resilient network is a perfect mirror of the 
chronically depressed network: it features weaker symptom-symptom interactions and 
a more favorable threshold of the individual nodes. Notably, the relapsing and remitting 
networks are located in the parameter space in between the chronically depressed 
and resilient networks. They have slightly less favourable thresholds and somewhat 
stronger connectivity. In this area of the parameter space, simulations suggest that 
many (nearly) equivalent models can be constructed through slight changes in the 
model parameters. This indicates that to assess resilience, the threshold parameters 
of the model cannot be ignored, as lower thresholds can offset stronger interactions 
and vice versa. In addition, observe that small changes in the model’s parameters 
suffice to alter their position in the resilience quadrant. We return to the implications 
of these results in the discussion.

2.4 discussion

This chapter proposed a novel framework to formalize and study resilience using a 
complex systems approach to psychopathology. Specifically, we combined (estimated) 
symptom network models with simulations to study how resilient a symptom network 
is based on its architecture. We have introduced a systematic methodology to 
determine where a given network is located in the resilience quadrant, which operates 
in two steps. First, assess whether the system characteristically exhibits symptom 
activation beyond the clinical cut-off. Second, evaluate whether the system state is 
robust against perturbations using simulations (where these are either aggravating or 
alleviating depending on the characteristic state of the system). Applying this analysis 
to a baseline symptom network of depression, an expected finding is that stronger 
connectivity and less favorable thresholds together can make a network chronically 
depressed. However, two important additional findings emerged. First, the effects of 
changes in thresholds and connections can offset each other (see also Kruis, 2021). 
This finding is important to incorporate in research. It implies that empirical tests, 
such as those based on the Network Comparison Test (van Borkulo et al., 2022) which 
compares networks based on only their connectivity, should not be confused with 
tests of resilience. This is because two networks with equal connectivity but different 
thresholds may show different levels of resilience. Second, the differences in parameter 
values that result in different quadrants are slight. This potentially explains why 
resilience is thought to be dependent on complex configurations of factors thought to 
support resilience, in which many factors interact and have relatively weak connections 
to each other.

It is our hope that thinking about and studying resilience from a complex systems 
approach will ultimately lead to novel methods that can improve the assessment 
and prediction of response trajectories to adverse events or treatment efficacy. For 

example, to help decide what the network structure of a patient may look like and, as 
such, help decide in which regime of the resilience quadrant patients could be located. 
This may contribute in determining optimal intervention strategies, as patients with 
unstable network structures may need less strong treatment interventions compared 
with patients with chronically depressed networks. In the remaining section, we will 
outline the most critical steps that, in our view, will help advance the research program 
of resilience from a complex systems approach in psychology.

2.4.1 Extend the ideas presented in this chapter to other statistical 
network models
The network model that was used in our simulations (see the supplementary materials 
for details) is helpful for theoretical exercises since it is a relatively simple model 
that can accommodate various complex phenomena aligning with mental disorders, 
such as phase transitions from healthy to depressed states (Finnemann et al., 2021). 
However, the model used in this chapter originates in physics and is designed to 
explain ferromagnetism (Ising, 1925; see the supplementary materials). The model 
is potentially too simplified to be a realistic representation of the dynamic course 
of symptom development. For example, symptoms can only be active or inactive in 
the model, and the associations between symptoms cannot change over time. The 
ideas outlined in this chapter could be extended to other models, which are more 
useful to represent the course of depressive complaints or resilient responses. The 
Gaussian Graphical Model (GGM; Epskamp et al., 2018) allows for continuous and 
ordinal data, such as symptoms measured on a Likert-scale. The Mixed Graphical 
Model (MGM; Haslbeck & Waldorp, 2020) is a network model that can be estimated 
from both continuous and categorical data and is thus a suitable candidate to study 
the relationships between symptoms and various types of risk or protective factors. 
Vector Auto-Regressive models (VAR models; Bringmann et al., 2013) can be used to 
study the relationships of variables over time (e.g., see Henry et al., 2021), such as 
daily fluctuations of moods and affect states (e.g., see: Snippe et al., 2017; Wichers 
et al., 2015). One could also add interventions to continuous time VAR models (Ryan 
& Hamaker, 2021). Ideally, models would also be built from the ground up to allow 
for specific time-varying elements of resilience (Robinaugh et al., 2020), such as the 
computational model for Panic Disorder (Robinaugh et al., 2021).

2.4.2 Expand the modeling of perturbations
This chapter proposed a way to represent and study the resilience of symptom 
networks as an outcome by comparing simulated dynamics before and after 
alleviating or aggravating interventions. Perturbations could be extended such that 
they represent different types of adversity or treatment interventions in life. Instead 
of representing interventions as (de)activating all symptoms at specific moments, 
one could also model interventions that represent chronic stressors, minor daily 
hassles or permanent treatments (i.e., taking medication that permanently impacts 
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symptom development). One could, for example, (de)activate specific symptoms for 
the duration of the simulations. In addition, one could target specific symptoms for 
alleviating or aggravating interventions to investigate which symptom is projected to 
have the largest influence on the resilience level of the network (see Chapter 6 of this 
dissertation). Alternatively, one could target a random number of symptoms for every 
intervention, realistically representing stressful life events or treatment interventions.

2.4.3 Include risk and protective factors to symptom networks
Resilience results from various risk and protective factors across domains (Fritz et 
al., 2018; Xu & Kajikawa, 2018). This chapter assessed resilience from a symptom 
network architecture by studying the stability of symptom evolutions after facing 
perturbations. Symptom networks could also be extended with risk and protective 
factors that help or hinder the further development of symptoms. These risk and 
protective factors may directly affect the symptom network’s architecture such that 
it becomes more or less resilient (See Figure 2.7) (Isvoranu et al., 2017; Kalisch et al., 
2019; Chapter 3 of this dissertation). For example, the risk factor of being sexually 
abused in childhood is directly linked to the development of feelings of guilt later in 
life (Isvoranu et al., 2017), while the protective factor ‘social support’ may hinder the 
evolution of ‘depressed mood’ (e.g., Gariépy et al., 2016). Risk (or protective) factors 
may directly influence the development of symptoms and strengthen (or weaken) 
their connections or thresholds. Networks targeted by many risk factors may have 
stronger connections between symptoms, making them more vulnerable to stressful 
events. In these networks, stressors could lead to vicious cycles of persistent symptom 
activation resulting in full-blown depressive episodes in which the network gets stuck 
(Cramer et al., 2016).

One could study whether groups of people that score high on certain risk or protective 
factors have, indeed, a different symptom network structure. This could be achieved by 
estimating a network from both symptom data and risk and protective factors (using, 
for example, the MGM network model for mixed data; Haslbeck & Waldorp, 2020). 
Afterward, one may condition on specific values of the risk and protective factors, 
such as the presence of protective factors and the absence of risk factors, to obtain 
the symptom network structure for the people represented by that situation. One 
could feed that symptom network into the proposed framework in this chapter by 
simulating data and perturbations from the specific symptom network architecture. 
In this way, one could study whether specific risk and protective factors lead to 
differences in resilience from a complexity approach. However, the problem is that 
the simulation techniques presented in this chapter currently only work for binary data. 
Future research could apply the proposed logic to networks estimated from different 
data, such as mixed data (i.e., symptoms and risk or protective factors measured on 
different scales).

Figure 2.7. Representation of a symptom network with risk and protective factors. A 
representation of a symptom network model (the black nodes represent symptoms), where 
symptoms are related to other factors from distinct domains (the nodes in grey tones; e.g., 
personality, social factors, biological factors). These external factors can act as protective 
factors by lowering the possibility that symptoms occur, or as risk factors by increasing the 
likelihood that symptoms will develop. Relations between all variables in the model may vary in 
strength (shown by the thickness of the lines). In addition, external perturbations (aggravating 
interventions; the lightning bolts, and alleviating interventions; the medical case) may also 
influence the symptom-symptom interactions. Protective factors, such as relationship quality 
or partnership satisfaction, may dampen the interactions between symptoms. When a person 
starts feeling worried, their spouse can decrease the probability that worrying will lead to 
other symptoms by offering social support (Røsand et al., 2012). (The figure is an adaptation 
of Figure 3.1 in Chapter 3).

2.4.4 Work on a personalized framework of resilience assessment and 
prediction
Our presented framework may be helpful to generate hypotheses on network models 
of different participant groups, such as comparing clinically depressed patients with 
healthy individuals. One could compare the networks of groups of people that did and 
did not develop mental disorders over time (van Borkulo et al., 2015). Using our proposed 
framework, an exciting possibility is to investigate whether differences between 
these groups could already be detected at baseline. However, this does not mean 
that we can predict response trajectories or assess the resilience of every individual 
from these groups. One of the biggest challenges for formalizing psychological 
phenomena such as mental health is the heterogeneity of people (Molenaar, 2004). 
Heterogeneity implies that trajectories at the group-level do not directly translate to 
every individual (Hamaker, 2012). To personalize a formal framework of resilience, our 
proposed framework needs to be adapted to individual models. A recent example of a 
study in this direction suggests monitoring individuals over time on stressor exposure 
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and mental health problems (Kalisch et al., 2021). Deviations of the individuals from 
a ‘normative’ trajectory (for example, based on the mean of the studied sample of 
participants) could be detected early and related to later outcomes. Another example 
is to combine intensive data collection of daily momentary moods and stressful events 
with periodic assessments of symptom evolutions (Kuranova et al., 2020). In this way, 
one could study if the recovery from adverse events, in terms of maintaining positive 
momentary moods, could be related to an increase in symptom development or 
resilient responses.

2.4.5 Concluding
Resilience is an inherently multifactorial and dynamic concept. As such, we have to 
understand how different mechanisms work together to make a person cope, thrive, or 
break apart after facing hardship (Ioannidis et al., 2020; Kalisch et al., 2017). This chapter 
presented a novel way to study resilience from a complex system’s perspective in 
psychology by combining existing statistical symptom network models with simulation 
techniques. We hope that the general framework will aid future researchers from 
different domains to advance the study of resilience collaboratively.
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3.0 abstract

Inspired by modeling approaches from the ecosystems literature, in this chapter, we 
expand the network approach to psychopathology with risk and protective factors 
to arrive at an integrated analysis of resilience. We take a complexity approach to 
investigate the multifactorial nature of resilience and present a system in which a 
network of interacting psychiatric symptoms is targeted by risk and protective 
factors. These risk and protective factors influence symptom development patterns 
and thereby increase or decrease the probability that the symptom network is pulled 
towards a healthy or disorder state. In this way, risk and protective factors influence 
the resilience of the network. We take a step forward in formalizing the proposed 
system by implementing it in a statistical model and translating different influences 
from risk and protective factors to specific targets on the node and edge parameters of 
the symptom network. To analyze the behavior of the system under different targets, 
we present two novel network resilience metrics: Expected Symptom Activity (ESA, 
which indicates how many symptoms are active or inactive) and Symptom Activity 
Stability (SAS, which indicates how stable the symptom activity patterns are). These 
metrics follow standard practices in the resilience literature, combined with ideas 
from ecology and physics, and characterize resilience in terms of the stability of the 
system’s healthy state. By discussing the advantages and limitations of our proposed 
system and metrics, we provide concrete suggestions for the further development of 
a comprehensive modeling approach to study the complex relationship between risk 
and protective factors and resilience.

3.1 introduction

Understanding the causal background of psychiatric problems has been a central 
theme for psychiatry from its beginning as a medical discipline (Alexander & Elesnick, 
1966; Harrington, 2019; Kraepelin & Lange, 1927; Shorter, 1997). For the vast majority 
of mental disorders, no conclusive single root causes have been found (Kendler, 2005, 
2008), suggesting that psychiatric conditions may result from the interaction between 
many distinct factors (Kendler et al., 2011). As alternatives to monocausal biological 
and psychogenic approaches, holistic (e.g., biopsychosocial) theories have emphasized 
the ontological complexity of psychiatric disorders: in this view, a psychiatric disease 
has been conceptualized as the outcome of a dynamic interaction between biological, 
psychological and social variables (Engel, 1977; Ghaemi, 2008; Lamb, 2014; Wallace, 
2008).

Despite their attractiveness, however, holistic ideas and concepts have often been 
stated in general and vague terms. Critics of holistic-dynamic approaches have, 
therefore, stressed the gap between recognizing the complexity of psychiatric disorders 
on the one hand and scientific rigor on the other (e.g., McLaren, 1998). However, there 
is no principled reason why holistic approaches could not be thoroughly scientific. 
To move towards more formalized holistic models of mental health, it has become 
increasingly popular to look at mental health systems using the lens of ecology 
(Olson & Goddard, 2010; VanLeeuwen et al., 1999). Ecosystem research studies the 
interactions between organisms and their environment, and is holistic in the sense 
that it conceptualizes these interactions as constitutive of a single integrated system 
(Chapin III et al., 2002; Folke et al., 2004; Scheffer et al., 2001). For example, according 
to the ecosystem approach to human development, humans are embedded within 
different ecological levels (Bronfenbrenner, 1979; Ungar, 2011). Interactions between 
individuals take place within a specific environmental context and are embedded 
within a broader cultural and sociological level.

A variety of risk and protective factors (henceforth: RP factors) exist in each of these 
ecological levels. Risk factors hinder optimal coping mechanisms, increasing the 
probability of negative outcomes when individuals are faced with adversity, while 
protective factors help individuals navigate adverse life events with less damage 
(Werner, 2000). RP factors are therefore closely related to the development of 
resilience, which is defined as the ability to maintain or quickly bounce back to a 
healthy state despite facing adversity (Kalisch et al., 2017; Rutter, 2012). Researchers 
have successfully identified a host of RP factors related to resilience across various 
domains such as (neuro)biology, personality, socio-economic factors, and family 
structures (e.g., Benzies & Mychasiuk, 2009; Friedman et al., 2016; Martinez-Torteya 
et al., 2009). For example, a frequently replicated risk factor for the development of 
posttraumatic stress disorder (PTSD) is childhood trauma (Isvoranu et al., 2016; Yehuda 
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et al., 2001). On the other hand, social support is an established protective factor 
against the development of depression in high-risk environments (Casale et al., 2015). 
Various brain structures and pathways have been found to be related to resilience 
(Liu et al., 2018). Furthermore, severe depression has consistently been associated 
with dysfunctions in biological stress responses, such as irregularities in the feedback-
loop of the hypothalamic–pituitary–adrenal axis (HPA axis; Glass et al., 2004; Malhi 
& Mann, 2018).

However, in typical schematic representations of RP factors affecting mental 
health and resilience, it is easy to draw causal arrows between domains, such as 
neurobiological variables affecting psychological variables that, in turn, affect social 
variables. It is, however, more difficult to specify the exact nature of those causal 
arrows or to analyze how the system as a whole behaves as a function of these 
relations. Due to the multifactorial and complex nature of mental health, few would 
argue that the ecosystem analogy has to be correct in some way. However, current 
approaches are a) insufficiently precise, as suggestive visual representations of complex 
systems have not yet been translated into formal models, b) not operationalized, as 
there exist no widely accessible tools for modeling psychological resilience, and c) 
silent on crucial conceptual issues, such as how psychological, biological, and social 
factors interact or how different time scales are related.

In the current chapter, we address these issues by extending the network theory 
of psychopathology (Borsboom, 2017; Borsboom & Cramer, 2013) with RP factors 
and propose an approach to analyze the resilience of the resulting system. A recent 
theory by Kalisch et al. (2019) proposes that resilience factors target parameters of 
psychopathology networks. By doing so, these resilience factors influence symptom 
development patterns and improve resilience. We expand this idea to include both 
risk and protective factors and take a step forward in formalizing the system by 
representing it with a statistical model. We translate various effects RP factors can 
have on resilience to specific targets on network parameters. To analyze the resilience 
of this system, we introduce two novel resilience metrics for symptom networks: 
Expected Symptom Activity (ESA) and Symptom Activity Stability (SAS). These metrics 
are developed by combining standard practices in the resilience literature with ideas 
from the field of ecology and physics, where resilience is defined as a healthy state 
that is robust in stability. In Section 3.2, we outline the theoretical framework of the 
proposed system, after which we will present three studies that serve as illustrations 
of our system and resilience metrics (see Sections 3.3-3.5). Lastly, we will discuss the 
limitations of our proposed system and metrics and provide concrete suggestions for 
future research (see Section 3.6: General Discussion).

3.2 theoretical framework: rp factors target the 
architecture of symptom networks

The main idea behind the network approach to psychopathology is that mental 
disorders act as a complex system, where psychopathology emerges from causally 
interacting symptoms connected in a network (Cramer & Borsboom, 2015). Symptoms 
are typically conceptualized as being present (possibly with some degree of severity) 
or absent, and accordingly modelled using an Ising model (van Borkulo, Borsboom, et 
al., 2014) or an extension thereof.

In these models, it is useful to specify two types of parameters. First, an activation 
parameter for every node (i.e., the network variables, in this case, symptoms), called 
the threshold parameter, which indicates the node’s internal preference to be activated 
(van Borkulo, Borsboom, et al., 2014) or, alternatively, how much pressure is required to 
activate the node. For example, a node such as ‘suicidal ideation’ will have a stronger 
negative threshold, meaning it is more likely to be deactivated and will require more 
pressure to activate, than a node such as ‘insomnia’ which is more easily activated 
(Borsboom & Cramer, 2013). Second, a connectivity parameter for every estimated 
edge (i.e., the connection between variables), which indicates the weight, type, and 
directionality of every edge between two nodes. Edges can be strong or weak, positive 
or negative, and unidirectional or bidirectional (Epskamp & Fried, 2018). The set of 
node and edge parameters of the network model forms the network architecture, 
which describes, for example, if there are few or many edges between symptoms and 
if symptoms are more or less likely to activate.

Psychological networks are dynamic models, where network architecture governs 
symptom activation patterns (Borsboom, 2017). Activation of one symptom can lead 
to activation of a strongly connected neighboring symptom. If two symptoms, e.g., 
“fatigue” and “depressed mood”, are connected, the theory states that activation of 
“fatigue” increases the probability of activating “depressed mood”. The stronger the 
association between two symptoms (denoted in the connectivity parameter), the 
higher the probability that activation of one symptom leads to activation of the other 
symptom (Cramer et al., 2016).

If external stressors (e.g., losing one’s job), are sufficient to trigger symptom activation 
and symptoms are strongly connected, the activation of one symptom could lead to 
a full activation spread where the network falls into a pattern of persisting symptom 
activation (Cramer et al., 2016). In contrast, if symptoms are not easily activated and/
or weakly connected, an external stressor might lead to the activation of one or two 
symptoms but will not result in a full-blown depressive episode. In this way, network 
architecture determines the most likely symptom activation pattern (Borsboom, 2017).
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Following this line of reasoning, if (1) psychopathology develops according to the 
network theory of mental disorders, and (2) network architecture is of paramount 
importance for symptom development, the next question is how this network 
architecture arises. Which factors contribute to the development of a ‘healthy’ or 
‘unhealthy’ network architecture, increasing or decreasing the probability that a 
stressful event will trigger a whole symptom activation spread?

Until now, the network theory of mental disorders has mostly focused on 
psychopathology and symptom networks (Robinaugh et al., 2020). However, network 
theory also allows one to formalize biopsychosocial ecosystem models of mental health 
and resilience. Recently, an answer to how network architecture might arise has been 
proposed by extending symptom networks with resilience factors, which are called 
hybrid symptom-and-resilience-factor (HSR) networks (Kalisch et al., 2019). These 
resilience factors are represented as external, protective variables influencing symptom 
network architecture. In this way, resilience factors affect symptom development 
patterns and account for individual differences in resilience (Kalisch et al., 2019).

HSR networks need not be restricted to positive resilience factors. RP factors could 
both be present in these HSR networks (see Figure 3.1 for a representation of the 
theoretical model, including RP factors). For example, a protective factor such as 
“positive affect” could lower the strength of the connection between the symptoms 
“depressed mood” and “excessive worrying”, making it less likely that the activation 
of depressed mood will lead to the activation of excessive worrying. Contrary, vicious 
cognitive thought patterns (“I am worthless”, “I will never be good enough”) might 
affect threshold parameters of specific symptoms, making it more likely that, for 
example, the Generalized Anxiety Disorder (GAD) symptom “excessive worrying” will 
be activated. Biological factors might also influence liability for developing psychiatric 
disorders, and possible biological pathways have been investigated by adding genetic 
risk scores to psychiatric symptom networks of psychosis (Isvoranu et al., 2019). 
Also, weak but differential relations have been found by adding biomarkers (estriol, 
cortisol, corticotropin-releasing hormone, and tumor necrosis factor alpha) to a 
symptom network of post-natal depression, suggesting possible symptom-specific 
biological pathways (Santos et al., 2017). Lastly, another example comes from the social 
domain, where social support has frequently been found to be a protective factor for 
developing Major Depressive Disorder (MDD; Gariépy et al., 2016). The social domain 
variable “social support” might function as a moderator between “Depressed Mood” 
and “Worthlessness”. In other words, social support could lower connectivity strength 
between two MDD symptoms, thereby dampening the effect activation of depressed 
mood has on the development of feelings of worthlessness.

The theory that RP factors affect the architecture of the symptom network and, 
thereby, resilience (Kalisch et al., 2019) is a promising approach to formally study the 

relationship between mental health and environmental RP factors from a complex 
systems perspective. However, the theory has not yet been formalized or translated 
to a statistical model, nor has it been used to analyze empirical data. We present 
three studies; the first two are simulation studies, which differ in that Study I analyzes 
the resilience of networks as a function of global effects from hypothetical RP 
factors (i.e., the whole network architecture is systematically altered), and Study II 
analyzes the resilience of networks under specific targets of hypothetical RP factors 
(i.e., parameters belonging to nodes with different roles in the maintenance and 
development of symptom activation are altered). Study III is an empirical study, in 
which we give an empirical illustration of the full system.

Figure 3.1. The theoretical ecosystem model of mental health. The psychopathology symp-
tom network model, denoted with symptoms,  to , lays in the center (in black for illustrative 
purposes). Around the symptom network model forms a web of networks with variables from 
other domains, such as personality ( ), biological ( ), and social variables ( ). Specific variables 
from other domains function as risk (red arrows) or protective (green arrows) factors, targeting 
node parameters or edge parameters. These risk and protective factors affect the symptom 
network model’s architecture, thereby shaping the most likely symptom development pattern.

3.3 study i: analyzing global effects from rp factors 
on the symptom network

In this study, we investigate how the resilience of a symptom network changes 
under global effects of RP factors – that is, RP factors have an effect on the whole 
network architecture. The model in this study is illustrated in Figure 3.2. Hypothetical 
RP factors (i.e., the peripheral networks containing variables Y1-Y4, Z1-Z4, and 
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V1-V4) affect the thresholds as well as the edges of a hypothetical, fully connected 
psychopathology network of symptoms (i.e., the center network containing variables 
X1-X9 with a density of 1). Risk factors deteriorate resilience (red arrows), protective 
factors increase resilience (green arrows). We systematically alter the strength of the 
effect of RP factors and the density of the symptom network. To analyze the resilience 
of the symptom network model, we present two novel resilience metrics: ESA, which 
indicates how many symptoms are active or inactive, and SAS, which indicates how 
stable the symptom activity patterns are.

Figure 3.2. Design of Study I. The network in the centre represents the symptom network 
(containing variables X1-X9). The three remaining networks (containing variables Y1-Y4, Z1-Z4, 
and V1-V4) represent hypothetical RP factors. Since no empirical data is used, all variables are 
denoted in statistical interpretation, without substantive labels. RP factors are assumed to 
cause changes in symptom network architecture, but no data on RP factors are used in the 
study. All RP factors are assumed to affect the symptom network architecture equally.

3.3.1 Simulation study

3.3.1.1 The symptom network model
The symptom network model is represented by the Ising model (Ising, 1925). This 
model originates in the field of thermodynamics and ferromagnetism but has 
frequently been applied to represent psychological and psychiatric dynamical systems 
(see, for example: Cramer et al., 2016; Dalege et al., 2018; Marsman et al., 2017; van 
Borkulo et al., 2014) due to its relative simplicity in number and type of parameters 
and, nonetheless, its capacity to accommodate complex phenomena. For example, 

in some parameter settings, the Ising model can show alternative stable states that 
the system converges towards, while in others, it can show linear, gradual changes 
(Cramer et al., 2016). Other characteristics of the Ising model are that relationships are 
undirected (e.g., the undirected arrow between X1 and X2 implies that the relationship 
from X1 to X2 is equal to the relationship from X2 to X1; see Figure 3.2) and that all 
nodes of the Ising model are binary (i.e., symptoms can be inactive; denoted by a 0, 
or active; denoted by a 1).

A substantial advantage of the Ising model is that it is analytically solvable up to around 
ten nodes (Epskamp, 2020), meaning the full probability distribution over all states is 
known and all model dynamics can be calculated from the model parameters. This 
allows for a complete overview of the model’s behavior as a function of its architecture. 
For our study, this means that we know precisely how many active symptoms to 
expect for every parameter combination of the network, allowing us to study how 
the symptom network model behaves under different influences from hypothetical 
RP factors. We chose a network model with nine symptoms, mimicking the MDD 
symptoms proposed by the Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5; American Psychiatric Association, 2013). All threshold parameters have a value 
of -2, and all connectivity parameters have a value of 0.5.

3.3.1.2 Effects of RP factors on the symptom network
In the proposed system, RP factors affect the resilience symptom networks by targeting 
edges (connectivity parameters) or nodes (threshold parameters). In our simulation, 
targets are operationalized by multiplying specific parameters of the symptom network 
with certain constants. RP factors that affect edges act as causal moderators (Kalisch 
et al., 2019). Such risk moderators increase connectivity parameters (i.e., multiply the 
edge weights with a constant > 1), making it more likely that a symptom will activate 
its neighboring symptom. In contrast, protective moderators decrease connectivity 
parameters (i.e., multiply the edge weights with a constant < 1).

RP factors that affect nodes act as causal main effects, affecting threshold parameters. 
Risk main effects increase a symptom’s disposition for activation. Since symptom 
threshold parameters are generally negative, risk factors make the thresholds less 
negative (i.e., multiply thresholds with a constant < 1). Contrary, protective main 
effects decrease a symptom’s internal disposition for activation by increasing the 
negative value of threshold parameters (i.e., multiply thresholds with a constant > 1).

For symmetry, the constants < 1 range from 0.5 to 1 with a stepwise increase of 0.1, 
and constants > 1 are given by the inverse of the resulting numbers. Consequently, 
baseline network parameters are multiplied by 11 constants: 0.50, 0.60, 0.70, 0.80, 
0.90, 1, 1.11, 1.25, 1.43, 1.67 and 2. A constant of 1 represents the baseline network 
without influences from risk or protective factors.
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3.3.1.3 Network density
Symptom activity patterns will not only depend on the strength and type of targets 
from RP factors on the symptom network, but also, on the density structure of the 
symptom network (i.e., the proportion of present edges relative to all possible edges; 
van Borkulo et al., in press). Density influences network dynamics; the denser the 
network, the stronger symptoms interact and symptom activation is spread over the 
network (Bringmann et al., 2016). Therefore, we use networks with three different 
densities (1, 0.5, and 0.3) in our simulations (see Figure 3.3).

Figure 3.3. Three Ising models with varying densities. Panel (A; left) shows an Ising model 
with density = 1, panel (B; centre) shows an Ising model with density = 0.5 and panel (C; right) 
shows an Ising model with density = 0.3.

3.3.1.4 Metrics to assess resilience
To assess the resilience of our hypothetical symptom network, we introduce two novel 
resilience metrics. The ESA represents the mean sum score of active symptoms as a 
function of the network’s underlying probability distribution. This informs us whether a 
network is likely to be in a healthy state (i.e., a low ESA due to weak symptom activity) 
or an unhealthy state (i.e., a high ESA due to strong symptom activity). Symptom 
levels are often used to assess the validity of resilience questionnaires by relating 
resilience scores to the severity of mental disorders (Connor & Davidson, 2003; Oshio 
et al., 2003). The rationale behind this is that individuals who score high on protective 
factors and/or score low on risk factors are more likely to develop fewer symptoms 
when faced with stressful life events than those who score low on protective factors 
and/or high on risk factors.

Resilience, however, is defined as the ability to maintain a healthy state (i.e., a low 
sum score) and quickly bounce back to a healthy state after facing adversity. In other 
words, a resilient system is characterized by a low ESA and stable symptom activity. 
To capture the latter characteristic, we introduce our second resilience metric, SAS, 
which involves the variability of the symptom activity pattern. Variability of symptom 
activity is an important aspect of resilience since the mean sum score can result from 
different activation patterns. For example, in a system with nine symptoms, a mean 

score of 3 could be the result of consistently moderate or highly unstable symptom 
activity patterns. This means that a symptom network is resilient if ESA has a low 
value and SAS has a high value: in that case, the dominant state of the network is one 
in which symptoms are stably absent3.

SAS is related to a model’s entropy, which has been used as an indicator of stability 
in dynamic systems theory. Entropy is a measure of the probability of each possible 
state of the system, based on the parameters of the system (Dalege et al., 2018; Jaynes, 
1965). If entropy is high, many states are equally likely, which indicates that the system’s 
dynamics will be unstable, switching between many possible states. Contrarily, if 
entropy is low, only a few states have a high probability of occurring, meaning the 
system’s behavior will be more organized and stable.

Symptom activation patterns follow from the probability distribution of the Ising 
model. The Ising model for two nodes ( ) is given by formula (1), which extends 
for models with  nodes (Haslbeck et al., 2020):

(1)

In this formula,  and  are elements of {0,1},  is the probability of the event 
,  denotes the threshold parameter of the node , and  denotes the edge 

weight parameter of the neighboring nodes  and .  is a normalizing constant 
denoting the sum of the potentials of all possible states. The probability distribution 
for  = 9 can be calculated by a generalization of formula (1).

ESA is calculated by taking the expected value E(.) of the probability distribution:

(2)

Where  represents the number of active symptoms in the network (i.e.,  ranges over 
all possible sum scores; in our case from 0 to 9),  represents a possible sum score  
, and  represents the corresponding probability of  given a specific network 

architecture. This probability distribution is provided the IsingSampler package in the 
R-programming environment (Epskamp, 2020).

3 Note that SAS can be low when ESA is low or when ESA is high. Although the symptom network is 
stable in both cases, it is not resilient in its healthy state for the latter case. Also note in many cases 
there will be a strong relation between ESA and SAS, in the sense that SAS will be lowest if ESA 
hovers around /2 and will increase as ESA approaches its limits at 0 or . However, one can also 
set up parameter settings for the network in which ESA equals /2 and SAS is high (this will occur, 
for instance, if half of the symptoms have a very strong threshold and the other have a very weak 
threshold); hence, even though ESA and SAS will often be related, this is not necessarily so.
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SAS is calculated by taking the inverse of the standard deviation  of the expected 
value :

(3)

The standard deviation is a scaled variability metric. We take its inverse to align the 
magnitude of SAS with its interpretation: low SAS indicates weak stability, and high 
SAS indicates robust stability. Taking a standard deviation of 1 as a reference, SAS – the 
inverse of the standard deviation – is also 1. When the standard deviation is larger than 
1, SAS will be < 1, indicating that the stability is lower. When the standard deviation 
is smaller than 1, SAS will be >1, indicating that the stability is higher. We calculate 

 for every change of the network architecture using IsingSampler (Epskamp, 2020).

ESA and SAS will be calculated for all 11 network architectures, for all three networks 
with different densities.

3.3.2 Results
Results for all alterations (i.e., strength of effect of RP factors and density) on the 
architectures of the networks are displayed in Figure 3.4. Table 3.1 shows the results for 
the extremes of RP factor influences, namely when the multiplier is equal to 0.5 or 2.

For the model with density = 1, RP main effects and moderators strongly affect the 
resilience of the symptom network. In the absence of RP effects (i.e., multiplier = 1) 
ESA is moderate, and SAS is low, meaning that symptom activity is moderate but 
unstable. Protective factors decrease ESA and increase SAS, meaning that they push 
the network towards a resilient state. Contrary, risk factors strongly increase ESA and 
SAS, meaning that they push the network towards a stable state of high symptom 
activation. This means that as RP factors affect network parameters, symptom activity 
increases or decreases, and symptom development patterns become more stable. 
When RP factors simultaneously alter both connectivity and threshold parameters, 
ESA remains around its baseline value, with low ESA, indicating unstable activity 
patterns.

Dynamics change for the model with a density of 0.5. In the absence of RP factor 
effects (i.e., multiplier = 1) ESA is low, and SAS is moderate, meaning symptom activity 
patterns are low and relatively stable. However, risk moderators affecting edges 
increase ESA to moderate symptom activity and decrease SAS, meaning that risk 
moderators push the system towards an unhealthy and unstable state. Since there 
are fewer present edges that can be targeted by moderators, their effect on ESA is 
smaller compared to the fully connected network. This means that the network gets 

pushed into moderate symptom activity with corresponding instability. Main effects 
targeting thresholds have a more substantial effect on resilience, as they still target all 
threshold parameters. Protective main effects push the system in the same resilient 
state as the former model with density =1.

The model with density = 0.3 follows similar dynamics as the former model with 
density = 0.5; however, ESA changes within a more restricted range, meaning effects 
from risk and protective factors on ESA are smaller.

Figure 3.4. Risk and protective factors affecting symptom network dynamics. The behavior 
of an Ising model under the influences of hypothetical RP factors for three different network 
densities. The left panel shows a network with density = 1, the middle panel a network with 
density = 0.5, and the right panel a network with density = 0.3. The x-axis denotes the value of 
the constant with which network architecture is multiplied. The y-axis denotes ESA. Line type 
represents which parameters are multiplied; threshold parameters, connectivity parameters, 
or both. The color of circles represents the type of hypothetical RP factor which influences 
network parameters: red circles represent risk factors, green circles, protective factors, and 
black circles represent both factors. The size of the circles represents SAS.
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Table 3.1. Network resilience for different densities and influences from risk and protective 
factors.

Factor Type Density = 1 Density = 0.5 Density = 0.3 Multiplier

ESA SAS ESA SAS ESA SAS

Baseline 4.5 0.34 1.53 0.74 1.29 0.86 1

Moderator

Risk 8.98 6.47 5.02 0.39 1.99 0.60 2

Protective 1.46 0.77 1.22 0.91 1.15 0.96 0.5

Main Effect

Risk 8.40 1.08 4.64 0.51 3.43 0.59 0.5

Protective 0.18 2.26 0.17 2.39 0.17 2.44 2

Both 4.5 0.49 3.12 0.62 2.80 0.67 0.5

4.5 0.23 0.19 2.16 0.18 2.32 2

ESA stands for Expected Symptom Activity, which describes the level of symptom activity. ESA 
ranges between 0 and the total number of symptoms, in this case, 9. Low ESA means a low level of 
activity, indicating a healthy state. SAS stands for Symptom Activity Stability, which describes the 
stability of symptom activation patterns. SAS is computed as the inverse standard deviation, meaning 
an SAS of 1 indicates a standard deviation of 1. SAS < 1 indicates decreasing stability (increasing 
standard deviation), and SAS > 1 indicates increasing stability (decreasing standard deviation). A 
system is resilient when ESA is low and SAS is high, as this indicates a low level of symptom activation 
with robust stability.

3.3.3 Discussion
In Study I, we investigated the resilience of symptom networks with varying densities 
and different degrees of the effect of RP moderators and main effects by inspecting 
ESA and SAS. Results from this simulation study show that the resilience of the 
network changes as a result of RP effects. However, network density also strongly 
affects how resilience changes. When density is 1 (i.e., a fully connected network) and 
risk factors target the network, ESA increases, and SAS decreases. This means that the 
model is in a disorder state with full symptom activity and is unlikely to recover from 
this. Contrary, when protective factors target the network, ESA decreases, and SAS 
increases. This means that the network shows strong resilience, as symptom activity 
is low, but stability is high.

However, as density decreases, the network’s ESA also decreases, meaning that it 
never shows full activity in our simulations. Risk factors, especially moderators (i.e., 
affecting edge parameters), increase ESA and decrease SAS, implying that stability 
decreases as risk factors gain more influence. When both RP factors are present, 
the main factors affecting thresholds have a more substantial influence on ESA than 
moderators affecting connectivity parameters. This is due to the fact that there are 

fewer present edges moderators can influence, and therefore, their effect on symptom 
activation patterns is smaller.

3.4 study ii: manipulating the target points of the rp 
factors on the symptom network

A fundamental principle of network theory is that nodes differ in how important they 
are in maintaining and developing symptom activity (Blanken et al., 2018; Borsboom, 
2017). In this study, we investigate how the resilience of a symptom network changes 
when target points of RP factors affect parameters belonging to nodes that have a 
strong or weak role in symptom activity spread. The model in this study is illustrated in 
Figure 3.5. Hypothetical RP factors (i.e., the networks containing variables Y1-Y4, Z1-Z4, 
and V1-V4) affect specific threshold and edge parameters of the psychopathology 
symptom network (i.e., the center network containing variables  - . The symptom 
model is estimated from empirical data to obtain plausible network parameters that 
differ per node and edge (i.e., the symptoms vary in their importance on symptom 
activity spread). We systematically alter parameters belonging to nodes with a weak 
or strong role in the symptom network.

Figure 3.5. The design of Study II. The network in the centre represents the symptom network 
(variables  to ). The symptom network is estimated from empirical data. Therefore, edge 
and node parameters differ, leading to different roles symptoms have in the spread of symptom 
activity. The three remaining networks (containing variables Y1-Y4, Z1-Z4, and V1-V4) represent 
hypothetical RP factors. RP factors are assumed to change symptom network architecture, by 
systematically targeting symptom network parameters. We study how different target points 
from RP factors on symptom network architecture affect resilience, by multiplying specific 
symptom network parameters with constants.
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3.4.1 Simulation Study

3.4.1.1 Data
Psychiatric symptoms are measured with the 27-item Symptom Checklist (SCL-27; 
Hardt & Gerbershagen, 2001). The SCL-27 is a multidimensional screening instrument, 
functioning as a validated abbreviation of the 90-Symptom Checklist (Derogatis et 
al., 1973). It consists of 27 items measuring symptoms on six dimensions: (I) depressive 
symptoms, (II) dysthymic symptoms, (III) vegetative symptoms, (IV) agoraphobic 
symptoms, (V) symptoms of social phobia, and (VI) symptoms of mistrust. Symptom 
descriptions can be found in the supplementary materials. Symptoms are measured 
on an ordinal scale with five levels. Participants were part of an Argentinian study 
on mental health and were recruited via probability sampling (Etchevers et al., 2019). 
Number of participants is 1469 (female = 875, male = 579, other = 15). The questionnaire 
was administered online.

3.4.1.2 The symptom network model
An Ising model is used to estimate the network model (see Figure 3.6). In order to 
estimate the Ising model, the data need to be binarized. The following rule is used: 
responses indicating no or modest symptom presence are recoded with a 0, responses 
indicating moderate or high symptom presence are recoded with a 1. Thus: {0, 1, 2} → 
0, {3, 4} → 1. The model is estimated using the IsingFit package in the R-programming 
environment (van Borkulo et al., 2014).

Figure 3.6. Empirically estimated symptom network. Empirically estimated Ising model using 
SCL-27 symptom data. Blue edges represent positive associations between nodes (van Borkulo 
et al., 2014a). The width of edges and color intensity represents the strength of edges, showing 
the connectivity parameters in this estimated model differ for every pair of nodes. Threshold 
parameters differ per node. Symptom descriptions can be found in the supplementary materials.

3.4.1.3 Calculate ESA and SAS from simulated Ising model dynamics
Since the estimated Ising model consists of 27 nodes, the underlying probability 
distribution cannot be calculated analytically. Instead, we need to simulate data 
points using a sampling method. The IsingSampler package in the R-programming 
environment includes three sampling methods to simulate states from an Ising model. 
We will use the Metropolis-Hastings algorithm (Murray, 2007). The chain starts with 
random values for every node, consisting of a 0 or a 1 (indicating presence/absence 
of the symptom). Then, for every iteration, a node is set to its opposite response 
option, and the probability of that node being in the opposite option given all other 
node values and parameters is calculated. In this way, the chain converges to the 
most probable state of the model based on its parameters. We use 1000 iterations 
for every chain.

ESA is calculated by taking the mean sum score and SAS by taking the inverse standard 
deviation of the 1000 simulated data points.

3.4.1.4 Strong nodes and weak nodes
Some nodes could be more involved than others in the spread of symptom activity 
when they are more central than others (Fried et al., 2016). Centrality indices describe 
how strong nodes are connected with other nodes and/or how many connections 
they have with neighboring nodes (Epskamp, Waldorp, et al., 2018). Nodes with 
many strong associations are hypothesized to have a more substantial influence on 
symptom development patterns. Different centrality indices exist, but, currently, node 
strength is the most stable one (Epskamp, Borsboom, et al., 2018). Therefore, we use 
node strength to determine which nodes are targeted by RP factors. Node strength 
centrality is calculated by taking the sum of all absolute edge weights a node is directly 
connected to (Bringmann et al., 2019).

Figure 3.7 shows the node strength indicator for every node, ordered from high node 
strength to low node strength. The five nodes with the highest node strength are 
SCL-2, SCL-4, SCL-8, SCL-9, and SCL-21, which will be called strong nodes. The weak 
nodes are the five nodes with the lowest node strength: SCL-3, SCL-7, SCL-14, SCL-19, 
and SCL-20.
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Figure 3.7. Centrality plot showing the node strength of SCL-27 symptoms. The x-axis shows 
node strength on standardized z-scores; the y-axis shows all SCL-27 variables. The variables are 
ranked from highest to lowest node strength.

We create two conditions, the strong node condition, and weak node condition. In 
both conditions, threshold and connectivity parameters are systematically altered 
using the same 11 multiplying constants from Study I. In the strong nodes condition, 
parameters belonging to strong nodes are altered, and in the weak nodes condition, 
parameters belonging to weak nodes are altered (see Figure 3.8; yellow edges and 
nodes represent connectivity parameters and threshold parameters that are altered 

for every condition). For every alteration, symptom activation is simulated using the 
IsingSampler package (Epskamp, 2020) and ESA and SAS are calculated from these 
simulated symptom dynamics.

Figure 3.8. Targeting parameters of strong and weak nodes. Yellow nodes and edges represent 
targets in the simulation. Targets are based on nodes with highest (left panel) and lowest (right 
panel) node strength. Symptom descriptions can be found in the supplementary materials.

3.4.2 Results
Here we will discuss the general results from the simulation study. Figure 3.9 shows 
the complete results, including all alterations on the network architectures, and Table 
3.2 shows the results for the extreme values influences from RP factors, i.e., when the 
constant used as multiplier is equal to 0.5 or 2.

Baseline ESA (i.e., when the constant used as multiplier = 1) for the model is low, 
meaning that the sample is healthy. However, baseline SAS is also low, meaning that 
this healthy state is unstable. In the strong nodes condition, risk factors strongly 
increase ESA and maintain SAS, meaning that they push the network towards a state 
of higher symptom activity, however, maintaining its instability. Protective factors 
decrease ESA and increase SAS, meaning they push the system towards a resilient 
state. When RP factors target connectivity and threshold parameters simultaneously, 
dynamics fluctuate within a wider range of ESA and SAS, nonetheless, maintaining a 
relative healthy and stable state.

In the weak nodes condition, RP factors have a smaller effect on resilience. Risk factors 
increase ESA; however, they have a weaker effect compared to the strong nodes 
condition. SAS is further decreased, meaning that the system is pushed towards an 
unstable state of moderate symptom activity. Protective factors decrease ESA but 
have a more moderate effect on lowering ESA compared to the strong nodes condition. 
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When both RP factors target connectivity parameters and threshold parameters 
simultaneously, they maintain SAS at its baseline level, while ESA fluctuates within a 
smaller range compared to the strong nodes condition.

Figure 3.9. Risk and protective factors affecting parameters of strong and weak nodes. 
The behavior of an estimated Ising model under influences of hypothetical RP factors, when 
parameters belonging to nodes with high and weak node strength are targeted. The left panel 
shows the network behavior in the strong node condition; the right panel shows its behavior 
in the weak node condition. The x-axis denotes the value of the multiplier constant. The y-axis 
denotes ESA. Line type represents which parameters are multiplied; threshold parameters, 
connectivity parameters, or both. The color of circles represents the hypothetical RP factor 
that influences network parameters: red circles represent risk factors, green circles, protective 
factors, and black circles represent both factors. The size of the circles represents SAS.

Table 3.2. Risk and protective factors influencing strong or weak nodes.

Factor Type Strong nodes Weak nodes Multiplier

ESA SAS ESA SAS

Baseline 5.32 0.27 5.34 0.27 1

Moderator

Risk 15.03 0.31 11.26 0.18 2

Protective 3.97 0.39 4.46 0.32 .5

Main Effect

Risk 11.60 0.26 8.14 0.22 .5

Protective 2.72 0.53 3.41 0.38 2

Both 7.50 0.27 6.22 0.27 .5

2.92 0.46 4.68 0.26 2

ESA stands for Expected Symptom Activity, which describes the symptom activity levels. ESA ranges 
between 0 and number of symptoms, in this case, 27. Low ESA indicates low activity levels, meaning 
the system is in a healthy state. SAS stands for Symptom Activity Stability, which describes the 
stability of symptom activity levels. SAS is computed by taking the inverse standard deviation. 
An SAS of 1 indicates a standard deviation of 1, SAS < 1 indicates decreasing stability (increasing 
standard deviation), and SAS > 1 indicates increasing stability (decreasing standard deviation). Low 
SAS indicates unstable symptom activity patterns. A system is resilient when ESA is low and SAS is 
high, meaning that the system has a stable and low level of symptom activity.

3.4.3 Discussion
We conclude that it matters which parameters are targeted by RP factors. RP factors 
altering parameters belonging to strong nodes have a more substantial effect on 
resilience than weak nodes. The range of ESA is wider in the strong nodes condition 
than in the weak nodes condition. Our study shows that risk factors in the strong 
nodes condition have a larger effect on ESA and SAS than risk parameters in the weak 
nodes group. However, this group difference does not hold for protective factors. This 
could be related to the health of the used sample, where baseline ESA is low.

Specific relations between RP factors and symptoms need to be estimated on the 
individual symptom level to understand how RP factors affect resilience. Therefore, in 
the next study, the effect of RP factors on resilience will be calculated by estimating 
a model from empirical data on RP factors and symptoms. This means that the 
associations between RP factors and specific symptoms will be empirically estimated. 
In this way, the effect of RP factors on specific symptoms can be studied.
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3.5 study iii: empirical illustration of a system 
including symptoms and rp factors

In this section, we present an empirical illustration of how the proposed system can 
be implemented in a model that is estimated from data, including measurements on 
RP factors and psychiatric symptoms. We investigate which specific RP factors are 
associated with specific symptoms, and how symptom activity levels change when they 
are targeted by associated RP factors. Contrary to the former two simulation studies, 
no data will be generated, nor will network architecture be altered on hypothetical 
target points. Instead, we estimate a network that includes both symptoms and the 
RP factors which allows us to study possible symptom-specific pathways with RP 
factors and the system as a whole.

3.5.1 Study design

3.5.1.1 Data
We use the same dataset as the former study and include the measurements on RP 
factors from the same participants. RP factors are determined a priori; meaning factors 
are labelled as ‘risk’ or ‘protective’ before data are collected. Risk factors include 
measurements on tobacco use, alcohol use, and illicit drug use. Protective factors 
include measurements on physical activity, religious practice, sexual life satisfaction, 
and volunteer work.

Variables in this dataset are measured on different scales. The variables physical 
activity, tobacco use, alcohol use, and illicit drug use are measured on a binary scale, 
religious practice and volunteer work are measured on an ordinal scale (five levels), 
and sexual life satisfaction is measured on an ordinal scale (six levels). All variables are 
recoded such that ‘0’ indicates no presence of the variable and ‘1’ or higher indicates 
(increasing) presence. SCL-27 items representing symptoms (Derogatis et al., 1973) are 
measured on an ordinal scale (five levels).

Due to high correlations between the three risk factors, tobacco use, alcohol use, and 
illicit drug use, these factors have been collapsed into one risk factor, “substance use”. 
This was done by summing over all three factors, which originally were measured on a 
binary scale, where 0 indicated no usage and 1 indicated usage. The novel “substance 
use” variable ranges from 0 to 3.

3.5.1.2 Model
In order to account for the different measurement scales used in the data, a Mixed 
Graphical Model (MGM; Haslbeck & Waldorp, 2020) is estimated. This network model 
includes both categorical and continuous variables. Here we choose to model ordinal 
variables as continuous variables.

The model uses nodewise regression to calculate associations between nodes 
(Haslbeck & Waldorp, 2020). For every variable, its intercept, and the beta-coefficients 
of all other variables are computed. This intercept represents the threshold of the 
node, and the beta-coefficients represent connectivity parameters with neighboring 
nodes. Regularization is applied to select the sparsest model, meaning that most 
edges with small values are pushed towards zero to control for false-positive edges 
(Epskamp & Fried, 2018).

The MGM estimates which variables are positively or negatively associated with each 
other. These associations represent main effects: if, for example, the variables “alcohol 
use” and “SCL-2: feeling blue” are positively connected, this means that if “alcohol use” 
increases, “SCL-2: feeling blue” increases as well. Keep in mind that this relationship 
could also be the other way around, which we will discuss further in Section 3.6 
(General Discussion). The MGM is estimated using the bootnet package in R with the 
mgm default, using 10-fold cross-validation to select the regularization parameter 
(Epskamp, Borsboom, et al., 2018).

Moderation analysis is used to study which RP factors could influence connectivity 
parameters of the symptom network. This analysis checks for every relationship 
between RP factors and symptoms if another variable moderates this relationship. 
This is done by estimating a Moderated Network Model (MNM; Haslbeck et al., 2019) 
using the mgm package in R (Haslbeck & Waldorp, 2020).

3.5.1.3 Assessing resilience
In this study, we investigate how symptom activity levels change due to the presence 
or absence of RP factors. To study how RP factors affect symptom activity levels 
and stability, we condition on different values of these RP factors. Lowest values of 
RP factors indicate absence, highest values indicate their presence. The means of 
symptoms and possibly also the interactions between symptoms can be functions 
of the RP factors. If we condition on the RP factors we fix them to specific values, 
which affects the means and possibly interactions between symptoms. The effect 
of RP factors’ presence or absence is calculated by conditioning on these RP factor 
values4. For example, conditioning on the presence of the protective factor “volunteer 

4 Mathematically, in the regression formula used for calculating symptom means, the beta-coefficient 
(representing the connectivity parameter) of the corresponding RP factor is multiplied by a specific 
value of this RP factor instead of on the RP factor’s mean. The effect of RP factors’ presence or ab-
sence is calculated by conditioning on these RP factor values. However, when estimating the MGM, 
variables are standardized. This means model parameter estimates need to be transformed in order 
to be unbiased for computing ESA on the data scale (Hastie et al., 2015). Take  to be the unbiased 
beta-coefficients where:  and  the biased beta-coefficients. The unbiased be-
ta-coefficients can be calculated with: , where  and  are the original data standard 
deviations. The unbiased intercept can be calculated with:

  
   , where  and  are the original data means.
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work”, is done by conditioning on its highest value, which is 5. The rest of the RP 
factors maintain their mean value. Based on the model, the novel symptom means 
are computed for the situation where “volunteer work” has a value of 5.

We investigate two situations by conditioning on the RP factors. In the first situation, 
we condition on the presence of protective factors, meaning item scores on protective 
factors are >= 1, and absence of risk factors, meaning item scores on risk factors are 0. 
Second, we study the opposite situation, namely, the presence of risk factors and the 
absence of protective factors. In both situations, novel symptom means for all SCL-27 
items are computed. Note that it is not necessary that all symptoms will change in 
their means, since mean changes depend on whether a symptom mean is a function of 
the RP factors. In other words, if a symptom such as “SCL-6: your mind going blank” 
is not associated with any RP factors, and neither are its neighboring symptoms, the 
SCL-6 symptom mean will not change despite conditioning on any RP factor.

To compare symptom activity levels from the baseline model with the two conditioned 
situations representing the presence and absence of specific RP factors, ESA is 
computed in the baseline model and two conditioned models. Baseline symptom 
activity can be calculated from the data by calculating the individual symptom means 
of all the SCL-27 items. The novel, conditioned symptom means are computed after 
conditioning on the presence/absence of the RP factors. ESA is calculated by summing 
over all (conditioned) symptom means.

SAS will not be computed since, in the current analysis, ESA variance does not relate 
to symptom activity stability. Conditioning on RP factors does not change the variance 
patterns in symptoms. To compute SAS, the probability distribution of the whole 
model needs to be known, which is problematic in its current set-up because data 
are measured on a larger scale compared to the Ising model’s binary case. A possible 
solution for future research is to gather longitudinal data, as will be further discussed 
in Section 3.6 (General Discussion).

To interpret current analyses outcomes using results from the former theoretical 
simulations, network density and node strength centrality of the symptom nodes 
will be computed. Density will only be computed for edges between symptom nodes.

3.5.2 Results
Figure 3.10 shows the estimated network model. The risk factor “substance use” 
is negatively associated with protective factors “religious practice” and “volunteer 
work”. Surprisingly, there are also some negative edges between the risk factor and 
symptoms, such as the SCL-5 symptom “thoughts of death or dying”.

Protective factors are mostly positively associated with each other and negatively 
associated with symptoms. For example, the protective factor “religious practice” is 
negatively associated with the SCL-15 symptom “Feeling hopeless about the future”, 
the protective factor “sports / physical activity” is negatively associated with the SCL-9 
symptom “Feeling low in energy or slowed down”, and the protective factor “sexual 
life satisfaction” is negatively associated with the SCL-2 symptom “feeling blue”.

No moderators between symptoms and RP factors have been found.

Figure 3.10. Mixed Graphical Model including symptoms and risk and protective factors. 
Grey nodes represent SCL-27 symptoms. Green nodes represent protective factors; red nodes 
represent risk factors. Blue edges represent positive associations, and red edges represent 
negative associations. The width of edges and color intensity represents edge strength. Node 
label abbreviations of the risk and protective factors are as follows: “Substance” refers to “Sub-
stance use”, “Sports” to “Physical/sports activity”, “Religion” to “Religious practice”, “Sexual” to 
“Sexual life satisfaction”, and “Volunteer” to “Volunteer work”. The SLC-27 items can be found 
in the supplementary materials of this chapter (see Table D1).

The network density of edges between symptom nodes is 0.55. Nodes with the 
highest node strength are SCL-2, SCL-24, SCL-4, SCL-1, SCL-21 (see the supplementary 
materials for the centrality plot). All strongest symptoms are connected to at least 
two RP factors, although they have small edges.
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The ESA of the baseline model is 36.21. Highest possible ESA is 4 * 27 = 108. When 
conditioning on the presence of protective factors and the absence of the risk factor, 
ESA decreases to 35.45. The difference with baseline ESA is – 0.75. When conditioning 
on the presence of the risk factor and the absence of protective factors, ESA is 36.70, 
meaning an increase of 0.49 compared with baseline ESA.

3.5.3 Discussion
We studied symptom-specific associations with RP factors, and the effect of the 
presence or absence of RP factors on symptom levels. Overall, protective factors 
were positively associated amongst each other and negatively associated with specific 
symptoms. The risk factor “substance use” was mostly positively associated with 
specific symptoms, however, there were also some negative associations with specific 
symptoms. No moderators were found.

When conditioning on the presence of the risk factor and the absence of protective 
factors, ESA slightly increased. Contrary, when conditioning on the presence of 
protective factors and the absence of the risk factor, ESA slightly decreased. This 
means that there is a small effect from the RP factors on symptom activity levels, 
where risk factors slightly decrease and protective factors slightly increase symptom 
activity. Note, however, that estimated edges are bidirectional. To investigate causal 
effects, longitudinal data are needed to estimate a dynamic model. Longitudinal data 
are furthermore needed to calculate SAS.

A possible explanation for the small effect of the RP factors on ESA is that floor effects 
might be present since baseline symptom activity levels are low. The sample contains 
too many healthy participants, meaning not enough participants are present showing 
high symptom activity and strong effects with risk factors. Including clinical patients 
in the sample might show a wider variety of response patterns and stronger effects 
when conditioning on RP factors.

Furthermore, the symptom network consisted of 27 items, while the RP factors 
consisted of merely five variables. Important RP factors which have a strong influence 
on the symptom network might be missing. Future studies could repeat the proposed 
analyses on a dataset with more RP factors to investigate if stronger effects are found.

The symptom network density is 0.5, meaning the range in which ESA could change 
is smaller, and the strongest nodes are connected to at least two, but not all, RP 
factors. Estimated edges have a much smaller value than the theoretical simulations’ 
multipliers, explaining why this empirical illustration shows almost no effect.

3.6 general discussion

In this chapter, we presented a formal system where RP factors from biopsychosocial 
domains influence resilience by altering the architecture of psychopathology symptom 
networks. Furthermore, we presented two novel metrics to analyze the resilience 
of symptom networks. Here, we will discuss these contributions and their clinical 
implications, together with their limitations, and provide concrete suggestions for 
future research.

Our presented system builds on the theory by Kalisch et al. (2019), who propose that 
resilience factors could affect the architecture of symptom networks. By doing so, 
resilience factors change the network’s symptom activity patterns and resilience. In 
this chapter, we extended that idea to include both risk and protective factors and 
took a step forward into formalizing the system. We translated possible ways in which 
RP factors can affect resilience to specific target points on the symptom network 
parameters, where we made a distinction between main effects targeting threshold 
parameters and moderators targeting connectivity parameters. Targets from RP factors 
are operationalized by multiplying these threshold and connectivity parameters with 
certain constants, which, based on their magnitude, act as risk or protective factors, 
thereby deteriorating or improving resilience. As a first formalization, we implemented 
the system using the Ising model as a statistical model representing the symptom 
network (van Borkulo, Borsboom, et al., 2014). Furthermore, we provided an empirical 
illustration of how the system could be implemented in a Mixed Graphical Model 
(Haslbeck & Waldorp, 2020), which analyzes both categorical and continuous data.

A second contribution of the current chapter is that we presented two novel metrics 
for assessing the resilience of symptom networks: Expected Symptom Activity (ESA) 
and Symptom Activity Stability (SAS). Computing ESA is based on the common 
practice in the resilience literature to relate the presence and/or absence of RP 
factors to symptom severity levels (Connor & Davidson, 2003; Oshio et al., 2003). 
Furthermore, it is consistent with the psychological network literature to compute 
the number of active symptoms as an indicator of the state of the symptom network 
(Borsboom, 2017; Cramer et al., 2016). However, symptom levels do not indicate how 
resilient a system is, as a resilient system should maintain or quickly bounce back 
to its healthy state despite facing adversity (Kalisch et al., 2017; Rutter, 2012). Thus, 
resilience entails a low level of symptom activity and robust stability of this low level. 
Stability measures have been developed in the field of ecology (e.g., see: Beisner et 
al., 2003; Scheffer, 1990) and physics (e.g., calculating the Gibbs entropy; Jaynes, 1965) 
and are crucial for studying the resilience of dynamical systems such as ecosystems. 
In this chapter, we linked concepts from stability theory with existing measures in the 
resilience literature and psychopathology network theory by proposing to compute the 
variance of symptom activity patterns as a metric for the stability of symptom levels.
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Symptom network models including RP factors can have important clinical implications 
for the analysis of symptom-specific pathways. Symptom network models focus on 
unique associations between symptoms, which may suggest pathways for which 
symptom-level intervention strategies can be developed (Blanken et al., 2019). 
This is especially important for multifactorial disorders such as depression, since 
scales or sub-scales of these disorders are unstable over time (e.g., they are not 
measurement invariant), and do not measure one, underlying component (i.e., they 
are not unidimensional; Fried et al., 2016). Therefore, symptom network analysis 
offers a promising, novel technique to compare the symptom-specific efficacy of 
treatment interventions for depression, such as antidepressant medication versus 
Cognitive Behavioral Therapy (CBT; Boschloo et al., 2019). Including RP factors into 
symptom networks may yield new insights into symptom-specific pathways involving 
biopsychosocial factors, which aid the development of novel and more effective 
intervention strategies.

Apart from analyzing symptom-specific pathways in experimental data, a recent call for 
“precision psychiatry” urges the development of computational models that integrate 
data units across scales, such as biomarkers, self-report symptom inventories and 
clinicians’ observations (Fernandes et al., 2017). The collection of experimental data 
is costly, which is why an exploratory analysis with observational data gives a first 
indication of possible symptom-specific pathways between specific symptoms and RP 
factors, such as biomarkers. In this chapter, we showed a simulation-based, exploratory 
method for observational data, which aims to investigate which symptom-specific 
pathways might exist with relevant RP factors.

The presented method has some limitations, of which we will discuss the most 
pressing ones. Using the Ising model as a statistical model to incorporate the theory 
by Kalisch et al. (2019) has limitations, as the model does not hold for more complex 
elements of the proposed theory. The first and major one is that the dynamical aspect 
of the theory by Kalisch et al. (2019) cannot be investigated with the Ising model. The 
theory states that the presence of a protective factor could, over time, increasingly 
increment a symptom’s threshold, as the protective factor and symptom get entangled 
in a positive feedback loop. For example, having a job with regular working hours might 
lead to better sleep and a smaller chance (i.e., stronger negative threshold) to develop 
the psychiatric symptom insomnia. As sleep improves, one’s job performance might 
also improve, creating a positive feedback loop between the protective factor (stable 
job) and stronger symptom threshold (insomnia). To investigate this dynamical aspect, 
an invariant model such as the Ising model is not suitable.

A second limitation is that the Ising model does not consider different time scales on 
which the various variables operate. It is plausible to assume that a protective factor 
such as social support evolves on a slower time scale than a psychiatric symptom such 

as depressed mood. Future research could expand the proposed system in line with 
the Personality-Resilience-Psychopathology model (see Chapter 4 in this dissertation) 
in which personality variables that operate on a slower time scales affect specific 
network parameters of fast-evolving symptom networks. A third limitation is that 
the Ising model can only analyze binary data, while measures on symptoms and RP 
factors will usually be on an ordinal or continuous scale. To address this limitation, our 
study also provided an empirical illustration of the proposed system using an MGM 
(Haslbeck & Waldorp, 2020). However, this is not an optimal solution since the MGM 
also does not account for the dynamical aspect of the theory. Lastly, a limitation of 
using the Ising model is that specific aspects of its dynamics are restricted within its 
domain (Haslbeck et al., 2020). Some results from our simulation studies are, therefore, 
only valid within this specific domain. For example, when using a different binary 
notation for the state of the variables (the {-1,1} domain instead of the {0,1} domain), 
increasing the density of the network does not increase symptom activation but only 
its variance. Dynamics of the {0,1} domain or {-1,1} domain can be translated to each 
other by transforming the network’s parameters as described by (Haslbeck et al., 2020).

We have several concrete suggestions for future research. First, the further 
development of time-varying models to study holistic models of resilience. Time-
varying models allow for dynamic relations between variables over time (Tan et al., 
2012). Differential equations describe how variables change as a function of themselves 
and other related variables, which is why computational models often use these 
equations to simulate behavioral patterns over time. For example, the computational 
model for Panic Disorder (Robinaugh, Haslbeck, et al., 2021) explains how panic 
attacks can instantiate, reach their peak, and end, by using a mathematical model 
of differential equations. These equations represent dynamic relationships between 
relevant variables, such as arousal and perceived threat, and are constructed based 
on reported relationships in the literature. Second, using latent change models such 
as the Random Intercept Cross-Lagged Panel Model (Mulder & Hamaker, 2020). This 
model estimates dynamic relations between different variables over time, and could 
be used to model the effects from RP factors from various domains on psychiatric 
symptoms. Therefore, future research should focus on collecting longitudinal data, 
including measures on psychiatric symptoms and various RP factors, and developing 
and estimating time-varying models.

Second, there are multiple ways in which the proposed metrics, especially SAS, 
could be improved. As general and straightforward as computing the variance is, it 
is also not the most exact way of predicting how a system will react in the face of 
adversity. Furthermore, high variability of a system’s behavioral patterns might also 
be an indicator of strong adaptability (McEwen, 2000). Therefore, computing SAS as 
a resilience indicator could be further extended by computing a symptom network’s 
sensitivity to perturbations (Van Nes & Scheffer, 2015). This would give a more dynamic 
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indicator of the stability and adaptability of symptom activity patterns when faced 
with perturbations. Alternatively, when developing a more advanced model for the 
proposed system in this chapter using differential equations, the system’s potential 
landscape can be computed (e.g., Zhou et al., 2012), giving an exact overview of the 
system’s stable states. This chapter outlined the main reasons for computing ESA and 
SAS as resilience metrics of symptom networks, while their optimal computation will 
hopefully be further developed in future research.

Holistic, ecosystem models, including variables from multiple domains such as 
biopsychosocial models, are an interesting candidate for studying the complex 
nature of mental health and its relationship with various risk and protective factors. 
By combining ideas and models from the network perspective of psychopathology 
(Borsboom, 2017; Cramer et al., 2016; Haslbeck & Waldorp, 2020; van Borkulo, Epskamp, 
et al., 2014) with the theory on resilience factors targeting network parameters (Kalisch 
et al., 2019) we took one step forward towards the formalization of resilience.
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4.0 abstract

Network theories have been put forward for psychopathology (in which mental 
disorders originate from causal relations between symptoms) and for personality 
(in which personality factors originate from coupled equilibria of cognitions, affect 
states, behaviors, and environments). Here, we connect these theoretical strands in 
an overarching Personality-Resilience-Psychopathology (PRP) model. In this model, 
factors in personality networks control the shape of the dynamical landscape in which 
symptom networks evolve; for example, the neuroticism item “I often feel blue” 
measures a general tendency to experience negative affect, which is hypothesized 
to influence the threshold parameter of the symptom “Depressed Mood” in the 
psychopathology network. Conversely, events at the level of the fast-evolving 
psychopathology network (e.g., a depressive episode), can influence the slow-evolving 
personality variables (e.g., by increasing feelings of worthlessness). We apply the 
theory to neuroticism and Major Depressive Disorder (MDD). Through simulations, 
we show that the model can accommodate important phenomena, such as the strong 
relation between neuroticism and depression, and individual differences in the change 
of neuroticism levels and development of depression over time. The results of the 
simulation are implemented in an online, interactive simulation tool. Implications for 
research into the relationship between personality and psychopathology are discussed.

4.1 introduction

Research into the relationship between personality and psychopathology has 
established that there exist robust associations between personality traits and mental 
disorders (Kotov, Gamez, Schmidt & Watson, 2010). For example, neuroticism is a well-
established risk factor for developing Generalized Anxiety Disorder (GAD; Kotov et 
al., 2010) and Major Depressive Disorder (MDD; Kendler, Gardner & Prescott, 2002; 
Kendler, Kuhn & Prescott, 2004); Anti-social Personality Disorder (APD) and substance 
use disorder (SUD) are related to low levels of agreeableness and conscientiousness 
(Ruiz, Pincus & Schinka, 2008); and extraversion is negatively related to Social Anxiety 
(Kaplan et al., 2015).

Several different theories have been put forward to explain how personality and 
mental health are related. One important answer, sometimes called the vulnerability 
hypothesis (Ormel et al., 2013), is that personality items measure personality traits and 
that these personality traits influence the liability to develop disorders. For example, 
high levels of neuroticism may make an individual more vulnerable to develop MDD, 
either by directly promoting the processes conductive to developing the disorder 
or by enhancing the effect of external adverse events that trigger depression. 
The most important evidence for the vulnerability hypothesis is the prospective 
correlation between personality and psychopathology, which has been established in 
several domains, most notably for the personality trait neuroticism and internalizing 
psychopathology (e.g., MDD, GAD; Saklofske, Kelly, & Janzen,1995; Jylhä & Isometsä, 
2006; Fanous et al., 2002).

However, the vulnerability hypothesis is certainly not the only game in town. For 
instance, Ormel et al. (2013) discuss a number of other pathways through which the 
statistical association between neuroticism and mental disorders could arise (see also 
Lahey, 2009): a) via common determinants (e.g., genes), b) because mental disorders 
are the endpoints of a continuum that, in the low range, captures normal variation in 
neuroticism (Krueger & Tackett, 2003), and c) because psychiatric disorders themselves 
increase levels of neuroticism, either permanently or temporarily (Ormel, Oldehinkel, 
& Vollebergh, 2004; Monroe & Harkness, 2005). Importantly, these explanations are 
not mutually exclusive: if neuroticism and MDD share part of their genetic background, 
this does not preclude the possibility that neuroticism induces vulnerability as well; 
and if the latter is the case, this does not rule out the possibility of permanent 
negative effects. Distinguishing between these possible scenarios is difficult due to 
the structural confounding of risk factors and the infeasibility of many interventions 
that might disentangle the influences of different variables. In fact, it is not clear that 
it makes sense even to try to distinguish between these scenarios, as each of them 
may be correct - if only for some individuals some of the time.
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Rather than trying to disentangle effects empirically, in the present chapter we 
approach the problem from the opposite perspective and will propose a modeling 
framework that allows us to represent all of these different processes in one and the 
same model. Our point of departure is that of a complexity perspective, in which one 
could see mental health as an ecosystem, meaning that it contains various elements 
from varying domains, which all interact in order to maintain a healthy balance. In 
this human ecosystem, a person’s cognitions, feelings, behaviors, and environmental 
features are all in constant interaction with each other (Scheffer et al., 2018). Thus, 
instead of trying to separate all elements of the system and reducing them to distinct 
factors, we aim to integrate them into a single theoretical framework. The network 
approach to psychopathology (Cramer et al., 2010; Cramer et al., 2013; Cramer et al., 
2016; Borsboom, 2017) offers a useful starting point for such an approach, because a) 
it offers a set of formalized models that represents the interaction between different 
systems, and b) network theories have been proposed both for the etiology and 
remission of (episodic) mental disorders (Borsboom, 2017; Cramer et al., 2016), and 
for personality (Cramer et al., 2012). In the network perspective, the question of how 
to represent the relation between personality and psychopathology thus boils down 
to the question of how these different networks interact. To answer this question, 
our central proposal will be to use theoretical and methodological tools from the 
literature in ecology that deal with the interaction between slow processes (e.g., 
gradual change of vegetation in an ecosystem over decennia) and fast processes (e.g., 
monthly fluctuations in the size of populations of insects living on the vegetation; 
Ludwig, Jones, & Holling, 1978; Rinaldi & Scheffer, 2000). In particular, we propose that 
the personality network may be primarily understood in terms of a slow process, in 
which the individual seeks an equilibrium with the environment (Cramer et al., 2012), 
while the fast process primarily involves the dynamic interactions between symptoms 
in a symptom network (Borsboom & Cramer, 2013), which in turn feeds back into the 
slow process.

This chapter is organized as follows. First, we introduce the model wherein personality 
and psychopathology are both represented. Here, we will shortly describe current 
network theories of psychopathology and personality and how to integrate these 
domains, which operate on different time scales, into a single model. Second, we will 
apply the model to the relationship between neuroticism and MDD. For this purpose, 
we present a simulation that illustrates the explanatory potential of the model by 
showing how it represents well-known phenomena in the literature, as well as an 
interactive online simulation app that allows users to simulate the applied model. We 
end with discussing the implications of the framework for future research.

4.2 the personality-resilience-psychopathology network

Figure 4.1 presents a general schematic overview of the Personality Resilience 
Psychopathology network (henceforth: PRP network). The model represents both 
psychopathology and personality as complex networks, thus incorporating network 
theories as have been suggested in the respective literatures (Cramer et al., 2010; 
Borsboom & Cramer, 2013; Cramer et al., 2016; Borsboom, 2017). The PRP network 
connects these perspectives by proposing that psychopathology and personality also 
influence each other; namely, by altering their respective network structures and 
variables through interactions which take place on different time scales. In the current 
paragraph, we shortly discuss the relevant network theories, after which we outline 
a proposal for connecting them.

Figure 4.1. The PRP model. The lower system represents a network of personality traits (P1-P5) 
that co-evolve over periods of years, which is the slow process. The upper system represents a 
psychopathology network, in which nodes are symptoms (S1-S5) and thresholds are resilience 
parameters influencing the nodes (represented as dynamical landscapes connected to the 
nodes). The black nodes (E1 and E2) represent environmental factors. Personality nodes can 
influence the psychopathology network by shaping threshold parameters or edge connectivity 
strengths. The personality nodes can also influence the environmental factors, which in turn 
can influence the psychopathology symptoms directly. The plots on the right represent the 
dynamics of the processes which operate on different time scales; arrows between the plots 
indicate the feedback process by which features of the fast network (e.g., a disorder state) 
influence the variables in the slow network (e.g., stable cognitions or tendencies to display 
certain affect states).
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4.2.1 A network perspective on psychopathology and personality
According to the network perspective (Cramer et al., 2010; Borsboom & Cramer, 2013; 
Cramer et al., 2016; Borsboom, 2017), psychological constructs such as psychopathology 
behave as complex systems, in which symptoms of mental disorders directly influence 
each other. Examples include causal effects of insomnia on concentration problems or 
fatigue in the case of Major Depressive Episode (MDE; Cramer et al., 2010); the effects 
of unusual perceptual experiences (e.g., hallucinations in which one sees dead people) 
on delusions (e.g., the conviction that one has paranormal abilities and is destined 
to perform particular tasks) in Schizophrenia (Isvoranu et al., 2016); and the effect 
of obsessions (e.g., the persistent conviction that one is dirty) on compulsions (e.g., 
powerful urges to respond to the obsession, as through handwashing) in Obsessive 
Compulsive Disorder. Typically, these complex causal systems are represented in a 
network structure, where nodes represent the relevant variables (e.g., depression 
symptoms) and the connections, called edges, represent the direct interactions 
between these nodes. Such interactions are typically theorized to occur on a relatively 
short time scale of days to months; an apt analogy is the idea of a set of domino tiles 
that knock each other over (Borsboom et al., 2011).

A fundamental assumption behind the network perspective on psychopathology is 
that symptom networks can be characterized in terms of an attractor landscape, 
in which mental health is a stable state in which no or only a few symptoms are 
activated (Borsboom, 2017). This attractor landscape controls the dynamic behavior 
of the system as it reacts to perturbations (Dakos et al., 2015); which could be adverse 
life events, such as losing a loved one or becoming ill, both of which are known 
precipitating factors in the development of internalizing disorders (Keller, Neale & 
Kendler, 2007). In this way, the underlying attractor landscape wherein the network 
evolves is related to the resilience of the network. Psychological resilience refers to 
the ability to maintain or quickly bounce back into a healthy state after facing some 
adversity (Werner, 1995; Masten, 2001; Bonanno, 2004; Kalisch et al., 2015; Kalisch 
et al., 2019; Scheffer et al., 2018). Therefore, if the network structure is such that 
the healthy stable state is resilient, the system will not enter a prolonged state of 
persistent symptom activation, but instead quickly recover from perturbations (Cramer 
et al., 2016; Scheffer et al., 2018). In contrast, individuals that are not resilient are 
more prone to developing a mental disorder after suffering from a stressful life event. 
If the network structure is such that the healthy stable state easily collapses into 
a state of persistent symptom activation, the system is vulnerable (Cramer et al., 
2016). Individuals whose psychopathology symptoms are represented in a vulnerable 
network structure, are more prone to developing a mental disorder after suffering 
from a stressful life event.

From a network perspective, personality can be viewed as a slowly evolving network 
structure, which is characterized by the co-evolution of relatively stable cognitions, 

affect states, behaviors, and environments (Cramer et al., 2012). Although the 
fundamental modeling ideas behind network approaches to psychopathology and 
personality are very similar, symptom dynamics of (episodic) psychopathology 
usually operate on a shorter time scale (e.g., days, weeks, or months) and as such 
more naturally lend themselves to the domino-tile metaphor. The evolution of 
personality, in contrast, may be better thought of in terms of a system of coupled, 
slowly evolving equilibria (e.g., on a time scale of years or decades). For example, as 
a person develops the general tendency to participate in social interaction, social 
skills will co-develop with this tendency in a mutualistic fashion (van der Maas et 
al., 2006). If a person is generally anxious in social situations, however, the opposite 
effect will occur. Therefore, this process will be characterized by seeking equilibria 
with the environment; for instance, it is likely that a more socially skilled individual will 
seek out an environment that involves a relatively larger degree of social interaction. 
Similarly, if conscientiousness develops to a larger degree, a person will be more likely 
to function well in a situation that requires this trait. In this way, individuals slowly 
“carve out” patterns of characteristic functioning in corresponding environments, and 
network theory suggests that precisely these stable patterns are picked up in typical 
personality tests.

The development of stable personality patterns is likely to be subject to both genetic 
and environmental influences (Boomsma, Busjahn & Peltronen, 2002; Eaves & Eysenck, 
1975; Franić, Borsboom, Dolan, & Boomsma, 2014; Kendler et al., 1993) impinging on 
the development of personality traits (i.e., characteristic dispositional tendencies 
to experience certain mood states or to act in a particular manner), personality 
architectures (i.e., coherent sets of interlocking knowledge and appraisal structures; 
Mischel & Shoda, 1995; Cervone, 2005), and functional relations between elements of 
the personality structure (Wood et al., 2015). As such, we hypothesize that individuals will 
display variations in the structure and parameters of the resulting personality networks.

4.2.2 The integration of psychopathology and personality networks
To conceptualize the relation between personality and psychopathology networks 
we pursue ideas taken from the ecosystems literature, in which this question often 
arises (Ludwig, Jones, & Holling, 1978; Rinaldi & Scheffer, 2000; Walker, Carpenter, 
Rockstrom, et al., 2012). In the ecosystems literature, a common way of representing 
slow-fast interactions is by taking variable values in the slower process (e.g., gradual 
change of vegetation in an ecosystem over decennia) to affect parameters of the 
faster process (e.g., monthly fluctuations in the size of populations of insects living 
on the vegetation). At a given time point, the fast process is then evaluated for its 
equilibrium, with the variables of the slow process held constant. The fast process 
is also allowed to have causal effects on the slow process, because properties of the 
equilibrium distribution of the fast process can influence the values of variables in the 
slow process (DiFrisco, 2017).
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In the current framework, this means that personality traits (which can be viewed 
as the slow process) operate as parameters of the psychopathology network (which 
can be viewed as the fast process). Through this mechanism, the slow changing 
personality traits regulate the resilience to external perturbations of faster changing 
psychopathology symptom networks. However, as the fast process unfolds over time, 
its properties can also alter certain parameters in the slow process; for example, having 
a depressed episode can itself change some of the slow changing personality traits 
(e.g., increasing neuroticism or decreasing extraversion).

Naturally, the distinction between slow and fast processes is not absolute, we do 
not propose a categorical difference between personality and psychopathology 
with respect to the time scales at which they operate. Indeed, some personality 
changes (e.g., learning new coping mechanisms) can be fast with respect to some 
psychopathology (e.g., slowly evolving negative symptoms of schizophrenia). In 
addition, some aspects of personality dynamics can operate on a faster time scale 
(e.g., see Fleeson, 2001; Cervone, 2005; Mischel & Shoda, 1995; Wood et al., 2015). The 
current approach should not be interpreted as suggesting a fundamental distinction in 
this respect. However, we do suggest that, in general, the development of personality 
involves the generation of a relatively stable and coherent pattern of thoughts, 
affect states, and dispositions to behave in characteristic ways, while episodes of 
psychopathology typically are seen as reflecting relatively fast processes by which 
people move into and out of psychopathological states. In addition, for the disorders 
that show the strongest relations between psychopathology and personality (e.g., 
consider the relation between neuroticism and depression or anxiety disorders) it 
appears that the time scales at which the relevant processes operate are in fact 
different. We discuss the feedback mechanisms of the slow process (i.e., personality) 
on the fast process (i.e., psychopathology) and the reverse in turn.

4.2.3 Effects of personality (slow network) on psychopathology (fast 
network)
A central idea in network approaches to psychopathology is that certain network 
structures make it easier for activation to “spread through” the network. For instance, 
it has been shown that very strong interactions between symptoms can lead to a 
situation in which the symptoms sustain each other; a state of consistent symptom 
activation that we phenomenologically recognize as a mental disorder (Cramer et 
al., 2016). This directly suggests a way to integrate personality and psychopathology; 
namely, we can set up a model in which personality traits and their architecture (a) 
shape the person’s psychopathology network parameters and, in doing so, indirectly 
control a person’s resilience to external shocks, and (b) influence the probability of such 
shocks as emanating from the external field, by predisposing the person to seek out 
or get caught up in situations that harbor more potential for shocks (see Figure 4.1).

Psychopathology networks are governed by three sets of parameters, each of which 
may stand under the influence of the personality network. First, symptoms in the 
psychopathology network have a specific probability of activation, independently of 
the influence of other symptoms in a network. This probability is represented by 
their threshold parameters. Second, symptoms are influenced by other symptoms, as 
represented by their edge weight parameters, which indicate how sensitive symptoms 
are to activation by their neighbors. Third, symptoms can be activated through events 
in the external field (the total set of factors outside of the network that impinge on 
it). Personality factors may affect each of these parameters in characteristic ways.

4.2.3.1 Thresholds
If one peruses personality questionnaires and diagnostic systems, the relation 
between personality items and psychopathology symptoms immediately stands out. 
In their meta-analysis, Steel, Schmidt & Shultz (2008) examined 2142 correlation 
coefficients to study the relationship between subjective well-being and personality. 
They found strong relationships for many items, over different facets of various 
personality questionnaires. In fact, this is exactly the feature that generates doubt 
on whether personality items and psychopathology symptoms measure truly 
distinct entities. For example, Mõttus (2016) has already argued for a more rigorous 
examination of the specific causal relationship between overlapping personality 
traits and psychopathology symptoms, suggesting a holistic and interdependent 
relationship. This strong relationship between personality items and psychopathology 
symptoms informs the hypothesis that personality predisposes a person to experience 
“subthreshold” symptomatology (e.g., see Ormel et al., 2013; Campbell-Sills, Cohan & 
Stein, 2006). In line with Scheffer et al. (2018) - who propose that nodes in a network 
can be understood as having their own resilience contributing to the resilience of 
the network as a whole - personality items could be said to measure properties that 
affect the threshold parameters of mental health symptoms. This is evident from 
studying items with content overlap. Taking neuroticism as an example, the items “I 
get stressed out easily” and “I get upset easily” (IPIP; Goldberg et al., 2006) may actually 
assess how easily the GAD symptom “Restlessness or feeling keyed up or on edge, more 
days than not for at least 6 months” (DSM-5; American Psychiatric Association, 2013) 
will present itself in a person. Therefore, one can hypothesize that a person’s score on 
those two neuroticism items shapes the threshold parameters of the “restlessness” 
symptom node in a psychopathology network. In the same way, a person’s score 
on the neuroticism item “I get irritated easily” (IPIP; Goldberg et al., 2006) asks how 
easily the GAD symptom “Irritability, more days than not for at least 6 months” gets 
activated (DSM-5; American Psychiatric Association, 2013). Therefore, in a GAD 
network, this neuroticism item could be said to shape the threshold value for the 
“irritability” symptom node. Consequently, we propose that personality items affect 
the resilience of specific nodes, with which they share content overlap, by shaping 
their threshold values in a psychopathology network. Following this line of reasoning, 
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content overlap is thus no longer a validity threat, but instead an asset that can be 
exploited to inform models better.

4.2.3.2 Connections
A second way in which the slowly evolving personality factors can affect resilience 
is by altering the connectivity of the symptom network (Cramer et al., 2012). For 
instance, while it may simply be a feature of the human system that insomnia causes 
fatigue, the strength of this relationship plausibly may depend on a host of factors, 
which include those in the realm of personality (Blanken et al., 2019). Similarly, while 
feelings of worthlessness may cause suicidal ideation for many individuals (Williams et 
al., 2006), the degree to which one is prepared to engage in suicidal ideation plausibly 
depends on one’s personality constitution.

In previous work on network approaches to personality (Cramer et al., 2012), 
connectivity of the symptom network was in fact suggested to be the way in which 
neuroticism could be operationalized in a network model for MDD. Although this 
intuitively sits well with the idea that neuroticism has to do with the reactivity of 
the system (e.g., in the form of psychological reactions to stress; Kendler, Kuhn & 
Prescott, 2004), the actual content of current operationalizations of neuroticism 
in personality questionnaires primarily formulates very general tendencies for 
feelings of worthlessness, anxiety, or depressed mood. We suggest that current 
operationalizations of neuroticism may therefore better be considered to assess 
threshold parameters of feelings of worthlessness, anxiety, or depressed mood, as 
they appear to concern not only reactivity to other symptoms but also reactivity to 
the external field.

With respect to the relation between thresholds and connectivity, it should be noted 
that these properties are in part communicating vessels: if one’s symptom thresholds 
change, this has direct implications for the effective connectivity within the symptom 
network, as a more resilient symptom will ceteris paribus require more activation and 
thus stronger connections in order to be activated. Similarly, if one has two symptom 
networks with equal positive connectivity parameters in, for example, an Ising model 
(Marsman et al., 2018), then these need not be equally resilient; if the thresholds are 
different, then the network with higher thresholds will be less resilient. It should be 
noted that current tests for differences in symptom connectivity (van Borkulo et al., 
2015) do not account for differences in thresholds and thus should not be mistaken 
for tests of resilience. How to separate these effects from each other is an important 
question for future methodological research.

4.2.3.3 The external field
Personality involves a general tendency to engage in certain types of interactions 
(Magnus, Diener, Fujita & Pavot, 1993; Ozer & Benet-Martinez, 2006; Soto, 2019). 

For instance, extraverts are in part defined as people who seek out social situations 
(Ashton, Lee & Paunonen, 2002), and conscientious individuals are more often found 
in more demanding job situations (Ng, Ang & Chan, 2008). As the probability of events 
that may impinge on the symptom network are not likely to be equally distributed 
over these situations, it follows that personality may also influence the likelihood of 
relevant events in the external field. For example, as extraverts are more likely to 
settle in jobs that involve social interaction, any systematic effect of social interaction 
on psychopathology symptoms would be amplified for them. To the extent that 
personality factors are subject to genetic influences, this mechanism may in part 
explain the fact that environmental features (possibly including adverse life events) 
appear to be associated with genetic factors (Kendler & Baker, 2007; Krapohl et al., 
2017).

4.2.4 Effects of psychopathology (fast network) on personality (slow 
network)
As the slow process of the personality network unfolds, certain states of the 
psychopathology network can become more likely. Importantly, however, these states 
can also feed back into the slow process. This may either increase the vulnerability 
of the psychopathology network or increase its resilience. These two categories of 
effects are referred to as scarring (Ormel et al., 2013; Monroe & Harkness, 2005) and 
steeling (Rutter, 2012a; Rutter, 2012b).

4.2.4.1 Scarring
It is possible that experiencing a mental disorder induces changes in the slow 
personality network, which alter that network in such a way as to reduce the resilience 
of the person to adverse events. This feature is known in the psychopathology 
literature as a kindling effect (Kessler & Wang, 2009). For instance, in the literature 
on depression, such effects have been repeatedly suggested (Hammen, Mayol, de 
Mayo & Marks, 1986; Monroe, Rohde, Seeley & Lewinsohn, 1999). In these accounts, 
the amount of stress or adverse life events necessary to trigger the onset of the first 
Major Depressive Episode (MDE) is hypothesized to be higher than the amount of 
stress that triggers its recurrence (Monroe & Harkness, 2005). In other words, once 
a person has suffered from an MDE, he or she is more likely to have recurrent MDEs, 
even to the point that an MDE may develop in the absence of any triggering events 
(Monroe, Anderson & Harkness, 2019).

This effect implies that the way the depression network reacts to stressors has 
changed once it has been in a depressed state. From our perspective, this suggests 
the hypothesis that the fast process (the MDD symptoms) feeds back into the slow 
process (the personality traits). That is, once a person has suffered from an MDE, this 
experience can in itself change the personality elements of the system (which then, in 
turn, lowers the resilience of the depression network). For example, the experience of 
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an MDE may fuel the idea that one has failed in life, thereby increasing the tendency 
to experience feelings of worthlessness – a personality variable in the slow network. 
However, the effect might also be moderated via the external field: once the network 
is pulled into a disorder state because of a life event, it might react different to future 
(minor) stressors since it has now shifted towards a different attractor basin. In other 
words, its equilibrium state is now changed to a disorder state, making it easier (i.e., 
less activation from the external field is necessary) for the MDE to recur.

4.2.4.2 Steeling
Another example of how the interaction between the different fields in our model 
might explain real-world phenomena from clinical practice, is the steeling effect 
(Rutter, 2012b). The steeling effect entails the idea that resilience is built up through 
successful responses of the system to adverse events, which in themselves strengthen 
the resilience of the system. Thus, the steeling effect is the mirror image of the scarring 
effect.

Steeling effects are often observed in biological systems. The classic example is 
the human body building up resistance to viruses if injected by a small dosage of 
pathogens. Just like resistance to infections is induced by administering a small and 
modified dose of the pathogen in the body, thereby strengthening the immune system, 
resilience of mental health may arise from an increasing ability to cope with adverse 
life events after successfully having went through other adversities in the past (Rutter, 
2012b). One way in which this may happen occurs when the experience of an episode 
of a mental disorder leads people to inquire new insights about themselves (e.g., 
through psychotherapy) that may allow them to increase their skills in dealing with 
adverse life events. Another example involves people who have experienced episodes 
of psychosis or depression and have learned to increase their resilience by setting up 
(social) early warning systems that may alert themselves and their environment to 
impending escalations of the system (Elder, 1974; Luthar, Cicchetti & Becker, 2000; 
Troy & Mauss, 2011). Finally, a recent study found that an early career set-back (namely, 
falling just below the threshold for receiving a research grant) actually had a positive 
impact on the future career of junior researchers (Wang, Jones & Wang, 2019). Thus, 
the steeling effect entails that successfully surpassing adversity (meaning that there 
might be some temporary psychopathology symptom activation, but no development 
of a full-blown mental disorder) increases resilience.

In our model, this is represented as follows: when the psychopathology network 
structure is resilient, the fast process changes the variables in the slow process 
(personality network) which share content overlap, so as to increase resilience. In the 
next section, we apply the theoretical PRP model to neuroticism and MDD, showing 
how the scarring and steeling effects can be simulated.

4.3 application: the relationship between neuroticism 
and mdd

To illustrate the proposed framework, we apply the PRP model to the relationship 
between neuroticism and MDD. Figure 4.2 shows the applied model: the center 
network represents the slow process of personality, and the network at the border 
represents the fast process of MDD. We propose that the slow process of neuroticism 
influences the development of MDD by altering the depression symptom network 
structure. We hypothesize that certain neuroticism items assess properties that affect 
the thresholds of depression symptoms; in particular, this occurs when a neuroticism 
item asks about a general tendency to display the states that define the corresponding 
MDD symptom. We refer to these neuroticism items showing content overlap with 
certain MDD symptoms as “overlapping items”.

The exact nature of the relationship between MDD and neuroticism remains an open 
question, which could have multiple answers. For example, one could say that there 
is a causal relationship, or a constitutive relationship. However, in order to provide 
concrete steps for the simulations, this relationship between the MDD symptom 
thresholds and neuroticism items needs to be specified. We propose that there is 
a supervenience relationship between the overlapping neuroticism items and the 
MDD threshold values. Supervenience is defined as follows: “A property X can be 
said to supervene on lower order properties Y if there cannot be X-differences without 
Y-differences. Thus, the presence of Y-differences is a necessary (but insufficient) 
condition for the presence of X-differences” (Kievit et al., 2011, p. 70). This allows for 
multiple realizability, for example where different item scores might lead to the same 
sum score: there cannot be a change from the sum score of 8 to a sum score of 9 
without there also being changes in the item scores, but a sum score of 8 can be the 
result of the item scores of 4 and 4, 3 and 5, 2 and 6, etcetera.
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Figure 4.2. The applied PRP model to an example of neuroticism and depression. The center 
network represents the slow process (the personality elements) and the network at the border 
represents the fast process (the depression symptoms). The MDD symptoms are: depressed 
mood, loss of interest, appetite disturbance, sleep disturbance, psychomotor agitation, fatigue, 
feelings of worthlessness, concentration problems and thoughts of death. The MDD symptoms 
and neuroticism items which share content overlap are connected in the figure. In this way, one 
can imagine various mental disorder symptoms interacting with various personality factors.

In our model, the MDD symptom thresholds supervene on the lower order personality 
items: differences in neuroticism item scores are a necessary but insufficient condition 
for differences in MDD threshold values. There cannot be differences in the threshold 
values without there also being a difference in the item scores, but there can be 
differences in the neuroticism item scores without altering the threshold values, 
because the changes in the neuroticism item scores can cancel each other out.

4.3.1 Phenomena to be accommodated
We identify three important phenomena regarding the relationship between MDD and 
neuroticism that are well established in the literature, and show how the applied PRP 
network model accounts for them in a simulation: 1) the strong correlation between 
MDD and neuroticism in the general population 2) the fact that this correlation 
remains relatively strong for the rest scores and 3) Individual differences in the effect 
of stressful life events (SLEs) on depression and neuroticism.

4.3.1.1 Strong correlation between MDD and neuroticism
A widespread finding in the literature regarding the relationship between MDD and 
neuroticism is their strong correlation in the general population: Jylhä & Isometsä 
(2006) report a correlation of r = .71 (N = 441) between neuroticism and depression 
symptoms, Fanous et al. (2002) report a correlation of r = .68 for males and r=.48 
for females (N=3771). Thus, our model should show a similar result. Since the model 
iterates over time, in which the fast and slow processes influence each other and are 
therefore updated with every iteration, we expect that the correlation between MDD 
and neuroticism increases with every iteration.

4.3.1.2 Robustness against removal of overlapping item
It is a well-known phenomenon from the literature that the strong correlation between 
neuroticism and MDD and GAD holds after removing the neuroticism items that 
have content overlap with the psychopathology symptoms (Walton, Pantoja, and 
McDermut, 2018; Brandes et al., 2019). From a latent variable model perspective, 
this can be explained by stating that the overlapping items and symptoms are only 
indicators of the underlying, correlating factors neuroticism and MDD or GAD. This 
phenomenon of the robustness of the rest-score correlation is therefore used as an 
argument in favor of the latent variable approach, stating that the correlation between 
the neuroticism items and MDD or GAD cannot merely be a product of tautologies 
(Walton, Pantoja, and McDermut, 2018; Brandes et al., 2019).

However, our model could provide an alternative explanation for the phenomenon of 
the robustness of the correlation between neuroticism and MDD after removing the 
overlapping items. In the current simulation setup, the sole point of contact between the 
neuroticism network and the MDD network lies in the three symptoms whose threshold 
is altered slightly as a function of the seven corresponding personality items. If the true 
data-generating mechanism is similar to the PRP model, then the correlation between 
non-overlapping neuroticism scores and non-overlapping depression symptoms will 
arise as a matter of necessity. The reason is that even though only a subset of the 
neuroticism items is connected to the MDD symptoms, individual differences in these 
items are nevertheless positively correlated with non-overlapping neuroticism items. For 
example, thoughts of death and loss of interest could be present due to direct activation 
by depressed mood and feelings of worthlessness, which could have been activated by 
the corresponding neuroticism aspects. Therefore, the non-overlapping neuroticism 
items will be correlated to the MDD symptoms. At the same time, non-overlapping 
MDD symptoms will “inherit” the effects of neuroticism on the overlapping symptoms. 
Through this mechanism, non-overlapping MDD symptoms will get correlated to 
neuroticism. As a result, all MDD symptoms are correlated to all neuroticism items 
in the end. This means that because the data were generated with all variables, the 
non-overlapping variables were affected by and/or affected the overlapping variables, 
thereby causing the non-overlapping MDD and neuroticism variables to get correlated.
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In order to test if the robustness of the rest-score correlations between neuroticism 
and MDD arises from the simulations of our PRP model, and to test if this is due to 
our proposed data-generating mechanism, the simulations should show two results:

If the overlapping neuroticism items and symptoms are removed from the data-
generating mechanism, meaning that there is no point of contact between the 
neuroticism network and the MDD network, the correlation between neuroticism 
and MDD should approach zero. This can be tested by setting the scaling factor 
between the overlapping items and MDD symptom thresholds to zero and calculating 
the correlation between MDD and neuroticism after one iteration of the simulation.

If the overlapping neuroticism items and symptoms are present in the data-generating 
mechanism, but removed from the rest-score correlation calculations (as is done in 
studies such as Walton, Pantoja, and McDermut, 2018), the correlation between 
the MDD symptoms and neuroticism items should be robust against the removal of 
the overlapping item-symptom variables in the simulated data. This can be done by 
simulating the data according to the proposed PRP model, and then calculating the 
rest-score correlations between the MDD symptom sum score and the neuroticism 
item scores, without the overlapping items.

4.3.1.3 Individual differences in the effect of SLEs on depression and neuroticism
Individuals’ levels of neuroticism change over time (Costa et al., 1986; Steunenberg 
et al., 2005), and this change seems to be driven by stressful life events (SLEs). After 
suffering from SLEs, levels of neuroticism are likely to increase (Riese et al., 2013), 
which, in turn, increase the probability of developing depression (Saklofske, Kelly & 
Janzen, 1995). People who have been diagnosed with an MDD once, are not only more 
likely to suffer from another depressive episode again, but have also been found to 
have an increased level of neuroticism (Bolger & Zuckerman, 1995). On the other hand, 
individuals who show resilient coping mechanisms, are less depressed after being 
exposed to significant trauma, despite controlling for levels of neuroticism (Sinclair, 
Wallston and Strachan, 2016). Also, Roberts et al (2017) found in their meta-analysis 
of 207 studies that emotional stability (which entails a low score on neuroticism) 
was the primary trait domain showing positive changes after psychotherapeutic 
interventions. Our model accommodates for these individual differences (Monroe & 
Harkness, 2005; Monroe & Harkness, 2019) by proposing that an individual’s resilience 
against developing MDD affects their level of symptomatology and neuroticism, via 
either scarring or steeling effects. Note that resilience is not conceptualized as a static 
trait, but as a global characteristic that supervenes on the MDD network structure. 
In other words, resilience is not a node in an individual’s network, but a characteristic 
of the network structure itself.

4.3.2 Simulation
In this simulation we connect an empirically estimated MDD network with an 
empirically (independent) estimated neuroticism network. All the simulations are 
executed in R (R Core Team, 2013).

To translate the above ideas into a formalized computational model, we need to 
choose a model structure to inform the dynamics and interaction between neuroticism 
and MDD symptomatology. Ideally, such models would be based on data gathered and 
analyzed in a longitudinal prospective study that both contained sufficient repeated 
personality assessments to estimate the parameters of the slow process, and tracked 
MDD symptomatology using intensive time series data as people moved in and out 
of major depressive episodes. To the best of our knowledge, neither such data nor 
statistical models to analyze them with respect to the interaction between fast and 
slow processes currently exist in the context of (noisy) psychological data. Therefore, 
we have chosen to use two models that have been proposed to capture some of the 
structure (and, in the case of MDD, also some of the dynamics) of personality and 
MDD: we use the MDD simulation model proposed by Cramer et al. (2016) and connect 
it to the personality network proposed by Cramer et al. (2012). Importantly, the current 
modeling study aims to establish that the proposed theory can explain important 
phenomena in the relation between MDD and neuroticism; it is not intended as a 
fully realistic model of this interaction and should not be interpreted as such. Thus, 
the simulations have the limited but nevertheless important aim of establishing a 
proof-of-possibility.

4.3.2.1 Data
For the neuroticism network we use the “big5” dataset as inventory as incorporated in 
the R-package qgraph (Epskamp et al., 2011). The dataset contains the measurements 
of a Dutch translation of the NEO PI-R (Costa & McCrae, 1992) on 500 first year 
psychology students (Dolan, Oort, Stoel, Wicherts, 2009). There are 48 neuroticism 
items, which will all be used in our simulation. For the MDD network, we use the 
Virginia Adult Twin Study of Psychiatric and Substance Use Disorders (VATSPSUD) 
dataset (Kendler, Karkowski & Prescott, 1999). The participants are 8973 twins from 
the Mid-Atlantic Twin Registry. The MDD symptoms are measured during a psychiatric 
interview using an adaptation of the Structured Clinical Interview for DSM-III-R 
(Spitzer & Williams, 1992), where each participant was asked if they had experienced 
any of the 14 disaggregated DSM-III-R symptoms. The dataset contains binary data 
on the presence/absence of 9 aggregated symptoms of MDD (criterion A for MDD 
in DSM-III-R; American Psychiatric Association, 1987). The symptoms are aggregated 
following recommendations as made in Aggen, Neale & Kendler (2005) and following 
the criteria in the DSM. Table 4.1 shows the relation between the (dis)aggregated 
symptoms and the DSM criteria for MDD.
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Table 4.1. Aggregated/Disaggregated criteria for MDD and the DSM symptomatology.

(Dis)aggregated criteria DSM Symptom criteria

(1) Depressed mood (1) Depressed most of the day, nearly every day

(2) Markedly diminished interest (2) Markedly diminished interest or pleasure in all, or 
almost all, activities most of the day, nearly every day

(3a) Significant weight loss or
(3b) Significant weight gain or
(3c) Increased appetite or
(3d) Decreased appetite

(3) Significant weight loss when not dieting or weight gain 
(e.g., change of more than 5% of body weight in a month), 
or decrease or increase in appetite nearly every day

(4a) Insomnia or
(4b) Hypersomnia

(4) Insomnia or hypersomnia nearly every day

(5a) Psychomotor agitation or
(5b) Psychomotor retardation

(5) Psychomotor agitation or retardation nearly every day

(6) Fatigue or loss of energy (6) Fatigue or loss of energy nearly every day

(7) Feelings of worthlessness (7) Feelings of worthlessness or excessive or inappropiate 
guilt nearly every day

(8) Inability to concentrate (8) Diminished ability to think or concentrate, or 
indecisiveness, nearly every day

(9) Recurrent thoughts of death. (9) Recurrent thoughts of death, recurrent suicidal 
ideation or suicide attempts

Table 4.2 shows the hypothesized relationships for these two sets of variables, based 
on the content of the items. This means that we hypothesize that there are seven NEO 
PI-R items which have content overlap with three MDD symptoms.

Table 4.2. Hypothesized relationships for the PRP network model applied to neuroticism 
and MDD.

Neuroticism item → MDD symptom threshold

N11: “I often feel lonely or sad” (*)
N71: “I seldom feel sad or depressed”

→ “Depressed Mood”

N161: “I have a low opinion of myself”
N131: “I easily blame myself when something goes wrong”
N136: “I often feel inferior to others”
N41: “I sometimes feel completely worthless” (*)

→ “Feelings of Worthlessness”

N171: “Sometimes I eat until I feel sick” → “Appetite Disturbance”

Items with an (*) are asked in a contra-indicative fashion in the original questionnaire (e.g., N11: “I 
seldom feel lonely or sad”). The raw data are already recoded.

For illustrative purposes, Figure 4.3 shows the applied PRP model with a subset of 
the 48 neuroticism items, in order to show how the overlapping MDD symptoms and 
neuroticism items are connected to each other in the simulation.

Figure 4.3. The applied PRP model to neuroticism and MDD. Relations between NEO PI-R 
neuroticism items (Costa & McCrae, 1992) and thresholds of MDD-symptomatology as based 
on the correspondence between the content of the items. The upper network represents an 
MDD network, the lower network represents a neuroticism network. For illustrative purposes, 
only a small subset of the 48 neuroticism items is represented here, including the seven neurot-
icism items that are hypothesized to alter several MDD threshold values. A neuroticism item is 
connected to the threshold of an MDD symptom if the item formulates a general disposition 
to experience a phenomenon identified by a symptom. For instance, the disposition assessed 
through the item “Sometimes I feel completely worthless” is taken to influence the threshold 
of the DSM-5 symptom “Feelings of worthlessness or excessive or inappropriate guilt, nearly 
every day for at least two weeks”.

The Ising model (van Borkulo et al., 2014) was used as a prototype model for the 
organization and dynamics of an MDD symptom network, which represents the fast 
process. The Ising model is a straightforward model for binary (i.e., absent or present) 
symptoms that implements symmetric pairwise interactions. Although the Ising model 
is a toy model rather than a fully realistic model of symptom interactions, it is helpful 
as a simplest non-trivial case: its behavior is sufficiently simple to be mathematically 
tractable, and at the same time sufficiently rich to represent important phenomena in 
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the etiology of mental disorders, such as alternative stable states, critical transitions 
and hysteresis (van Borkulo et al., 2014; Cramer et al., 2016; Marsman et al., 2018). The 
Ising model is characterized by two parameters: a threshold parameter for each node 
(e.g., MDD symptom) in the network and a connectivity parameter for each edge 
(e.g., the connection between two symptoms). The threshold of a node represents the 
autonomous disposition of the node to be present and, thus, reflects the probability of 
being present in the absence of any influences of connected nodes. The connectivity 
parameter for each edge represents the strength of two nodes influencing each 
other. The parameters of the Ising model can be estimated with node-wise logistic 
regression, in which the intercept is an estimate of the threshold and the slope is an 
estimate of the edge strength. In addition, the model evolves in an external field (i.e., 
any factor outside the model, such as stressful events) that influences the node states.

The neuroticism network is estimated with a Gaussian Graphical Model using LASSO 
regularization (GGM; Epskamp et al., 2018), and represents the slow process. The GGM 
handles continuous data, which is suitable for the 5-point likert-scale items of the NEO 
PI-R dataset. LASSO regularization limits spurious edges, meaning that the estimated 
model is less likely to contain false positive connections (Epskamp & Fried, 2018).

Now there are two empirically estimated networks representing neuroticism and 
MDD. These are cross-sectional networks, meaning they are estimated from the 
differences between individuals. However, we assume that the estimated networks 
can be used as a blueprint for all individuals. To make sure we have enough power 
for our simulations, we use the estimated network parameters to simulate 1000 
participants using the ggmGenerator function from the bootnet R-software package 
(Epskamp, Borsboom & Fried, 2017). To make explicit that we are analyzing data of 
simulated individuals, we will refer to these simulated individuals as “sims”. With these 
neuroticism scores, our simulation study begins.

Sims differ in the starting point of the simulation. That is, they differ on their 
neuroticism item scores, which are generated according to the empirically estimated 
network structure. For each sim, the networks communicate as shown in Figure 4.3. 
The sim’s overlapping neuroticism score is, thus, connected to the MDD network 
parameters. This works as follows. For every iteration, both the neuroticism and MDD 
networks influence each other: every sim’s neuroticism item scores will affect their 
MDD network structure (by altering the relevant MDD symptom thresholds), which 
results in an altered level of resilience. Every sim’s own resilience against developing 
MDD then affects their neuroticism item scores at the next iteration of the model. 
Thus, even though this application of the PRP network model is derived from cross-
sectional data, we simulate individual-level dynamics in order to generate hypotheses 
regarding personalized trajectories over time. Next, we describe the simulation process 
in more detail.

4.3.2.2 Simulating the fast process
From the PRP model it follows that neuroticism items that have content overlap 
with depression symptoms should influence the threshold values of the respective 
symptoms. This is modeled as follows: 1) all neuroticism item scores are standardized 
for all sims, 2) standardized item scores of the neuroticism traits that we hypothesize 
to alter a certain MDD symptom (see Table 4.2) are summed, 3) multiplied by a scaling 
factor that represents the influence of neuroticism on MDD (in our case, we use a 
scaling factor of 0.1), and 4) added to the MDD threshold of the focal MDD symptom. 
For example, to compute the novel threshold value of the sims’s MDD node “Feelings 
of Worthlessness” on each iteration, the standardized scores on the neuroticism items 
“N41: I sometimes feel completely worthless” , “N131: I easily blame myself when 
something goes wrong”, “N136: I often feel inferior to others” and “N161: I have a 
low opinion of myself” are summed, multiplied with a scaling factor (in our case .1), 
and added to the participant’s original MDD symptom “Worthlessness” threshold 
value. This is repeated for every MDD symptom that is expected to be influenced 
by neuroticism items. Then, the MDD network parameters are updated for every 
individual, based on their neuroticism item scores. This is done on every iteration, 
thus, the thresholds of the focal MDD symptoms are updated based on their value 
on the previous iteration.

Glauber dynamics (Glauber, 1963) are used to simulate timepoints from our PRP 
network, in order to study the influence of neuroticism on the depression network. 
This process operates as follows. For every time point, the algorithm selects one 
randomly chosen MDD node. This node can be active (encoded by a “1”) or inactive 
(encoded by a “0”)5. Subsequently, the state of this node gets temporarily flipped, 
meaning that an active (inactive) node gets deactivated (activated). Then, the current 
and flipped state are compared with each other, and the likelihoods of the resulting 
system states are compared. On the basis of this evaluation, the most probable state 
for the relevant node is chosen for the next time point, based on the state of all 
other nodes, taking the network architecture into account. As a result, the most 
likely trajectory of the depression network can be simulated, mimicking a continuous 
process. Figure 4.4 shows an example of an individual’s simulated dynamics using 
Glauber dynamics.

By simulating the evolution of the system in this manner, we can study the dynamics 
that are implied by any given network structure. Of course, the veracity of these 
dynamics depends on the degree to which the Glauber dynamics approximate the 
actual process operative in the etiology of MDD. Since this is unknown at the moment, 

5 Following the suggestions as made in Haslbeck, Epskamp, Marsman & Waldorp (2020), we use the 
transformed {0,1} parameters of the Ising model to compute the Glauber dynamics.
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this model should primarily be seen as a first approximation that allows us to model 
the process. However, as science progresses and more information about the relevant 
etiological processes becomes available, the current model can straightforwardly be 
adapted according to new scientific insights.

Figure 4.4: An example of simulated dynamics of the fast process. The example shows the 
dynamics for one simulated participant (sim 612). The x-axis shows the time points, the y-axis 
shows the sum score of the active MDD symptoms. This participant shows a sum score of 0 - 2 
active MDD symptoms most of the time, but there are also some peaks leading to more than 
5 active symptoms. However, these peaks are episodic and the participant does not get ‘stuck’ 
in the depressed state (i.e., this sim seems to recover).

4.3.2.3 Simulating the slow process
For every iteration of the model, the sim’s fast process affects their slow process.6 
If a person has a vulnerable MDD network structure and is therefore more likely to 
suffer from a depressive episode, this can have a scarring effect. We account for this 
in our simulation by slightly increasing certain neuroticism item scores (we increase 
the standardized overlapping scores with 0.3) in the next iteration of the model. This 

6 We want to note that in our simulation study, we model the influence of the fast process (MDD) on 
the slow process (neuroticism) but do not let neuroticism evolve over time. That is, in our simulation 
model, the effect of the depression symptoms on the overlapping neuroticism indicators does not 
spread through the neuroticism network.

will, in turn, affect the thresholds of certain MDD symptoms (see Table 4.2), making 
them more vulnerable and therefore more likely to suffer from a depressive episode. 
We follow the opposite procedure for a sim with a strongly resilient network structure. 
This sim is unlikely to suffer from a major depressive episode despite facing adversity, 
and therefore we lower the relevant neuroticism item scores on the next iteration 
of the model (we lower the standardized overlapping item scores with 0.3). This will 
implement the steeling effect, since this sim is more likely to also have a more resilient 
network structure because of the lower neuroticism level.

Naturally, not every resilient individual will always show steeling effects, since steeling 
effects are more likely to occur within highly resilient individuals who successfully 
surpass adversity (Rutter, 2012b). Therefore, we also consider the individuals who show 
moderate resilience, which show no further change (Masten, 2001; Bonanno, 2004). 
In our simulation, sims with moderate resilience will show no scarring nor steeling 
effects in the next iteration of the simulation, meaning their neuroticism scores stay 
the same for the next iteration.

To assess the resilience of the MDD network structure, we again simulate Glauber 
dynamics but add an artificial “shock” to the system by forcing all nodes to be active for 
one time point. This allows us to see how the system bounces back from these short 
but intense perturbations, representing an SLE. Then, dynamics with and without 
the perturbations are compared and the resilience of the system can be quantified7.

We can now iterate the whole model simulating both the fast and slow process at 
every iteration. The strength of the relationships between the fast and slow processes 
can be altered to study the effects of different levels of feedback between the slow 
and fast network processes. That is, we can alter how strongly the neuroticism items 
affect the MDD symptom threshold values and how strongly the resilience of the MDD 
network influences the neuroticism item scores at the next time point by altering the 
scaling factor. We have developed an interactive simulation tool for users to replicate 
our simulations with different values of the scaling factor, to study its impact on the 
influence of the slow and fast processes. This simulation tool can be found at: https://
gabylunansky.shinyapps.io/PRPmodel/.

4.3.3 Results

4.3.3.1 Strong correlation between MDD and neuroticism
The first phenomenon that should follow from the applied model is the strong 
correlation between MDD and neuroticism. Figure 4.5 shows how the correlation 

7 This is quantified with a resilience indicator that measures the degree to which the system is suscep-
tible to shocks. See the supplementary materials for the computations.
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between the MDD symptom sum scores and neuroticism item scores increases across 
the three iterations of the model with a scaling factor of 0.1: from r=.41, to r=0.59 and 
r=0.66. Importantly, this means that small influences of the processes on each other, 
which arise only from the contact points between the seven neuroticism and three 
MDD networks (Figure 4.3), are able to generate strong correlations between the total 
scores computed on these networks.

Figure 4.5. The increasing correlation between MDD and neuroticism. On the x-axis are 
the standardized neuroticism item scores, and on the y-axis are the mean MDD symptom 
sum scores. The data are generated with a scaling factor of 0.1. As the PRP model iterates, 
meaning that both the fast and slow processes influence each other, the correlation between 
neuroticism and MDD increases.

4.3.3.2 Robustness against removal of overlapping items
Next, we investigated whether the proposed model can demonstrate the strong 
correlation between MDD and neuroticism, even after removing overlapping MDD 
symptoms and neuroticism items from both the data-generating mechanism and the 
computations of the rest-score correlations from the simulated data.

First, to remove the overlapping MDD symptoms and neuroticism items from the data-
generating mechanism we implemented a simulation wherein both neuroticism and 
depression are scaled to have no effect on each other. In other words, all the arrows in 
Figure 4.3 from the neuroticism items to the MDD symptom thresholds and from the 
MDD network to the neuroticism item scores are set to zero (scaling factor = 0). Since, 
in this case, the dynamic processes on the networks are independent, there should be 
no relationship between MDD and neuroticism across all iterations of the simulation. 
As the scaling factor increases, however, the feedback between the networks should 

increase and the correlation between MDD and neuroticism should get stronger as a 
result. Figure 4.6 shows that this is the case: the correlation for the simulation with a 
scaling factor of 0 is r = .01, as expected, but when the scaling factor increases to .05 
or .1, the correlation between MDD and neuroticism is respectively r=.21 and r=.41 for 
the first iteration (i.e., the first round in the simulation in which the neuroticism and 
MDD network affect each other).

Figure 4.6. The correlation between MDD and neuroticism for different scaling factors. 
On the x-axis are the standardized neuroticism item scores, on the y-axis are the expected 
values of the MDD symptoms. On the left panel the scaling factor of the PRP model is zero, 
meaning that there is no relation in the data-generating model between neuroticism and MDD. 
In the middle panel this scaling factor is set to 0.5, and in the right panel to .1. The correlation 
increases with the scaling factors.

Second, to check the robustness of the rest-score correlations after removing the 
overlapping items from the simulated data, we simulated data with the PRP model 
(i.e., including overlapping items) with scaling factor = 0.1 and simulated data for three 
iterations. This resulted in three datasets including overlapping items. Figure 4.7 shows 
what happens if we calculate the correlation between simulated neuroticism and MDD 
data after removing the overlapping items in the same way as has been done in the 
literature to test the effects of item overlap (Walton, Pantoja, and McDermut, 2018). 
Next, we computed the mean rest-scores of MDD and neuroticism for each individual 
and correlated those scores. The rest-score correlations over the three iterations 
are respectively: r=0.3, r = 0.41 and r = 0.43. As Figure 4.7 evidences, the resulting 
correlation between the rest-scores after removal of overlapping items is only slightly 
weaker than the correlation between the total scale scores. Clearly, the correlation 
between neuroticism and MDD is robust against removal of overlapping items.
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Figure 4.7. The rest-score correlation between MDD and neuroticism. Removal of the over-
lapping items from the rest score calculation. On the x-axis are the standardized neuroticism 
item scores that have no overlap with the MDD symptoms, on the y-axis are the mean MDD 
symptom sum scores. The data are generated with a scaling factor of 0.1. The correlation of 
the rest scores between neuroticism and MDD increases over the iterations of the PRP model.

4.3.3.3 Individual differences in the effect of SLEs on depression and neuroticism
To facilitate the presentation of these results, we categorized simulated individuals 
into three groups: sims that always show the steeling effect (i.e., across all iterations 
of the model their depression network is resilient and thus their neuroticism score 
lowers), sims that always show the scarring effect (i.e., across all the iterations of 
the model their depression network is vulnerable and thus their neuroticism score 
increases), and sims that show a combination or neither of these effects (i.e., across all 
iterations the depression networks are sometimes resilient and sometimes vulnerable; 
therefore, sometimes their neuroticism items might increase or decrease, but most of 
the times their neuroticism item scores will remain the same).

Figure 4.8 shows individual trajectories of three randomly selected sims, each from a 
different group, to show scarring effects, steeling effects, or neither of these effects. 
For instance, sim 182 showing scarring effects, shows sudden jumps into a disorder 
state (where the sum score of activated symptoms is > 5), and stays in that state 
for a relatively prolonged time. This dynamic increases over the iterations, since the 
vulnerable network structure leads to a higher neuroticism item score, which in turn 
negatively affects their MDD network structure. On the contrary, sim 360 shows 
steeling behaviour: there is spontaneous recovery after short peaks of an increased 
sum score of MDD symptoms, and as the model iterates, the participant shows no 
symptom activation for most of the time and less peaks. Lastly, sim 14 shows no clear 

scarring or stealing behaviour. This means that this sim sometimes shows moderate 
vulnerability when facing an SLE, and at other times moderate resilience, without a 
clear pattern or changes in the level of neuroticism.

Figure 4.8: Individual simulated trajectories from the PRP model. The dynamics over time of 
three randomly selected sims from each group (scarring, steeling or neither effect) are plotted. 
The x-axis represents time, while the y-axis shows the sum score of the active MDD symptoms. 
The upper row shows the dynamics of a sim from the steeling effect group, the middle row 
the dynamics of a sim from the scarring effect group and the lower row the dynamics of a sim 
belonging to neither group. The expected values of MDD are calculated after 10.000 Glauber 
dynamics iterations, however, here we only show 3000 time points in order to increase the 
visibility of the dynamics.
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4.4 discussion

In this chapter, we have proposed to model the relation between personality and 
psychopathology using interacting networks that operate on slow and fast time scales. 
At the level of the slow process, personality traits affect the threshold and connectivity 
parameters of the psychopathology symptom network, thereby affecting the resilience 
of mental health. At the level of the fast process, (alterations in) resilience of the 
psychopathology network can influence the slow process through scarring and steeling 
effects. This model is integrated, in the sense that it does not conceptualize personality 
and psychopathology as qualitatively and categorically distinct entities. In fact, in a 
nontrivial sense, the components of personality and psychopathology are the same: 
they both involve thoughts, affect states, and behaviors that influence each other. 
Items as characteristically worded in personality scales aim to pick up the average 
levels at which these components arise, while psychopathology symptoms tap distinct 
episodes of in- or decreases in these levels. Our model represents the way these 
processes interact, but should not be read as proposing an ontological distinction 
between the components themselves.

The implementation of a first order approximation to this theoretical model in a 
simulation, which connects empirically informed MDD and neuroticism networks, 
shows that the model results in plausible empirical patterns and can accommodate 
a) the strong correlation between MDD and neuroticism, b) the robustness of this 
correlation against removal of overlapping items, and c) individual differences in the 
effect of SLEs on depression and neuroticism. Thus, by taking a complexity perspective, 
we have been able to integrate personality and psychopathology into a single model 
with empirically plausible properties.

In the proposed model, the resilience of the psychopathology network influences 
the level of the traits in the personality network. In our simulation, we operationalize 
resilience by simulating the dynamics of the MDD network and comparing its 
equilibrium state with and without perturbations. The perturbations in this simulation 
are forcing all the nodes (symptoms) in the model to be active for one time point, 
which represents the situation of briefly being in a full-blown Major Depressive Episode 
after facing a stressful life event. In this way, we can study to what extent the system 
bounces back from these perturbations and compare the sum score of active symptoms 
for both situations with and without perturbations. Thus, in our simulation we alter 
the state of the nodes, which reflect activating the symptoms. Another interesting 
possibility for studying the resilience of networks would be to use percolation analysis, 
such as is done by Kennett and al. (2018). Here, the network edges are systematically 
removed until the point that the system collapses. The application of percolation 
methods to study the resilience of networks is a current topic of active research (van 
Borkulo et al., 2016). However, in the present study we are specifically interested 

in how altering threshold parameters relates to symptom activation. Therefore, we 
have chosen to alter the symptom states, instead of the network edges. Even though 
the optimal operationalization of studying the resilience of psychological networks 
is beyond the scope of this chapter, we encourage future research to focus on this 
pressing issue.

The PRP framework is generic, meaning it does not only apply to specific disorders, 
personality traits or environmental factors, but provides a general way to study those 
specific contexts systematically. One can imagine extending the model in Figure 
4.2 with other mental disorder symptoms on the borders of the PRP model. The 
exact influence of the different components of the model on each other, such as 
the environment on the fast symptom network, might vary across different types 
of mental disorders, personality factors, and life events. For example, a particular 
(childhood) trauma might have such a substantial, direct impact on mental health that 
the influence of personality on mental health plays a relatively small role (Isvoranu et 
al., 2016). Also, some mental disorders, such as depression, are highly heterogeneous, so 
that the disorder manifests itself in different combinations of symptoms for different 
people (Fried, 2017). Additionally, different symptoms may have distinct roles in the 
network, such as stabilizing the disorder state or communicating between various 
disorders (Blanken et al., 2018). Therefore, the impact of altering the thresholds of 
one mental disorder symptom will vary depending on the symptomatology of the 
individual and the network architecture. In this way, distinct symptom patterns can 
emerge from the architecture of psychopathology networks, with subtle differences 
in this architecture resulting in possibly large differences in vulnerability to disorders 
(Borsboom & Cramer, 2013, Borsboom, 2017). Instead of only focusing on mental 
disorders, the proposed PRP framework also offers a novel and fruitful way for 
investigating the relationship between personality and positive mental health, such 
as the positive impact of conscientiousness and agreeableness (Strickhouser, Zell & 
Krizan, 2017).

Although the simulation model built to implement the theoretical framework shows 
promising results, it is primarily intended to illustrate the operating principles of the 
PRP network. In many ways, the simulation model is a first approximation of the theory 
and as such it is subject to many limitations. For instance, the model is now solely 
informed by networks estimated on cross-sectional data, and although we suspect 
that such data will remain indispensable for assessing relations between symptoms, 
the simulation would ideally also be informed by longitudinal studies that chart the 
time dynamics of the system. How such data could be integrated into the model 
represents an important question for further research. Another interesting question 
for future research is how to specify the nature of the relationship between MDD 
and neuroticism. If one follows the reasoning in this chapter, future researchers could 
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focus on empirically validating the strong assumptions in our model regarding the 
supervenience relationship between personality and psychopathology.

Another limitation is that in the current setup the model can infinitely update the 
MDD symptom thresholds and neuroticism item scores. Undoubtedly, this is not 
a plausible empirical scenario. Not only should the MDD symptom thresholds and 
neuroticism items be updated within a certain interval, but updating should also 
consider that levels of personality may change for reasons other than the factors 
described here (i.e., independently of the steeling and scarring processes) as individuals 
age (Roberts, Walton & Viechtbauer, 2006). This also implies that the effect of 
psychopathology on personality, or vice versa, might be dependent on age. The PRP 
model may accommodate for this possibility by letting the scaling factors in the 
simulations be a function of time. Such work could also incorporate insights from 
studies investigating the underpinnings of slow changes in personality (Lodi-Smith & 
Roberts, 2007; Bleidorn, 2015; Bleidorn et al., 2013). Future research may thus focus 
on extending the PRP model in order to make it both more empirically plausible and 
suitable to represent differences between age groups.

The PRP network provides novel avenues for future research to explore therapeutic 
interventions for mental health. Since mental disorders are thought to emerge from 
direct symptom-symptom interactions (Borsboom & Cramer, 2013), it should, in theory, 
be possible to influence this development in an earlier stage, i.e., before the network 
has spiraled into a stable disorder state. The PRP network suggests that the resilience 
of mental disorders can be affected by personality dispositions, which in themselves 
are elements in an interconnected network. These direct interactions lay out various 
possibilities for psychotherapy, for example by intervening on the individual’s tendency 
to worry frequently, thereby lowering the probability of developing the MDD symptom 
excessive worrying. Importantly, the PRP network offers a simple and transparent 
scenario for projecting the effects of such interventions in the slow process of 
personality on the psychopathology network.

The network perspective has successfully set out a novel research agenda that has led 
to many estimated network models from empirical data over a variety of psychological 
research fields (Robinaugh et al., 2020). The next question is how these estimated 
relationships between psychological variables arise, what causal processes they imply 
and how they develop over time. Therefore, theoretical work is needed to develop 
formal models that can inform specific hypotheses and thinking tools for studying these 
research questions (e.g., see: van der Maas et al., 2006; Cramer et al., 2016). In addition, 
if mental disorders really arise from a web of interconnected, clustering symptoms 
that evolve in an external field of life events and other factors (Fried et al., 2015; 
Borsboom, 2017), more research and theoretical work is needed on how to connect 
different sources of information as they relate to different features of this network. 

The simulation work in this chapter can be regarded as a first attempt to achieve this, 
by integrating two different research fields, namely personality and psychopathology, 
into one dynamical model. In the past century, psychology has fruitfully isolated 
variables and studied them with standardized tests and methodologies, but now is 
the time to start connecting the dots again, and to build a theoretical framework 
that can generate the bigger picture of how all the parts of the human system work 
together to generate an integrated whole (Cervone, 2005).
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5.0 abstract

Many studies have found that depressive complaints are associated with the regulation 
of affect. Generally, studies either focus on the link between affect traits and 
depressive complaints in the population, or on short-term fluctuations in affect states 
and current depressive complaints within persons. In this chapter, we investigated how 
affect fluctuations relate to the evolution of depressive complaints both within and 
across people over longer periods of time. We included assessments of affect (Positive 
and Negative Affect Scale) and depressive complaints (Patient Health Questionnaire) 
in 228 participants who completed at least 20 assessments spanning between 9-14 
weeks. We (i) explored affect trajectories, (ii) estimated longitudinal multilevel network 
models to examine the direct interplay between affect and depressive complaints, 
and (iii) investigated how individual network density relates to changes in depression 
severity over time. When separating affect trajectories based on depressive complaints, 
we identified that individuals consistently experiencing depressive complaints (PHQ 
> 4) report higher negative affect levels than positive affect. Contrary, individuals 
consistently reporting no depressive complaints (PHQ ≤ 4) showed the opposite 
pattern. Furthermore, the longitudinal networks included many and strong relations 
between the affects and depressive complaints. Lastly, we found a strong correlation 
between the density of individual networks and their change in depressive complaints. 
Thus, individual network density may indicate a more substantial aggravation or 
alleviation of depressive complaints. We conclude that affect fluctuations and change 
in depressive complaints are directly related, both within- and across individuals, and 
both within a single measurement moment and over time.

5.1 introduction

Many studies have found that depressive complaints are associated with the regulation 
of affect (e.g., Gross, 1999; Joormann & Gotlib, 2010; Joormann & Stanton, 2016). 
Typically, affect is divided into positive affect (PA), for example, feeling inspired or 
enthusiastic, and negative affect (NA), such as feeling afraid or upset (Watson et al., 
1988). PA is generally associated with a reduced risk of developing mood symptoms 
(Khazanov & Ruscio, 2016; Wichers et al., 2010), while NA is related to an increased risk 
of developing depressive symptoms (Wichers et al., 2007). This link between affect and 
depressive complaints has been investigated in the general population, showing how 
average levels of affect relate to average depressive complaints (e.g., Burke et al., 2018; 
Ripper et al., 2018) or within individuals, investigating how short-term fluctuations in 
affect states relate to current depressive complaints (e.g., Dejonckheere et al., 2019; 
Garnefski & Kraaij, 2006). As a result, these studies either focus on the link between 
affect traits and depressive complaints in the population, or on short-term fluctuations 
in affect states within persons.

However, both approaches have their limitations for interpreting the relation between 
affect and depressive complaints. Found associations from population studies (affects 
as traits) do not necessarily translate to the individual level (Hamaker, 2012; Molenaar, 
2004). Alternatively, longitudinal studies (affects as states) mostly collect data within an 
intensive but brief timespan (e.g., five times a day for two weeks; Schoevers et al., 2021), 
capturing relations between momentary affect and current depressive complaints. As 
such, neither approach captures the relation between long-term affect fluctuations 
and the evolution of depressive complaints. In this study we aim to investigate how 
affect fluctuations and evolutions of depressive complaints are associated within and 
across people over longer periods of time (9-14 weeks, 11±1 (mean±SD)), during a 
prolonged period of stress as induced by the COVID-19 pandemic.

The current chapter uses data that are part of a longitudinal investigation from the 
Boston College, in which the repercussions of the COVID-19 pandemic on mental 
health were investigated (Cunningham et al., 2021). The studied period (March 20th 
2020 until June 26th 2020) commenced a day after the first “stay-at-home” order was 
issued in California, which covers the moments leading up to the first large COVID-19 
wave in the US. Clearly, this was a period of great uncertainty, and many effects on 
mental health problems during this time have been reported across all levels of society 
(Grolli et al., 2021; Kaufman et al., 2020; Pfefferbaum & North, 2020; Van Lancker & 
Parolin, 2020). We investigate how fluctuations in positive and negative affect relate 
to the evolution of mood complaints in the face of these perturbations. We study the 
affect trajectories of all individuals, and examine whether these trajectories differ for 
individuals with different depressive courses. In addition, we study which potential 
mechanisms may underlie the individual trajectories by estimating longitudinal 
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multilevel network models (Borsboom & Cramer, 2013; Epskamp, van Borkulo, et al., 
2018; Epskamp, Waldorp, et al., 2018). These network models can estimate the direct 
interactions between affect and the depressive complaints for every individual and 
across individuals, within one measurement moment and across all measurement 
moments.

5.2 methods

The preregistration of this study can be found at the online repository of the Open 
Science Framework (https://osf.io/fw3np).

5.2.1 Participants
The data were obtained through the Boston College daily sleep and well-being survey 
(Cunningham et al., 2021). The study was set-up during the first wave of COVID-19 
(March 20th 2020 until August 5th 2020) and participants were recruited online. All 
English-speaking individuals older than 18 were eligible to participate in the study, 
resulting in N=1,518 enrolled participants (mean±SD age 35.2±15.1 years old, range 
18-90 years old). The participants provided informed consent, and the study received 
ethical approval from the Institutional Review Board at Boston College. More details 
on the study and recruitment can be found in Cunningham et al., 2021.

5.2.2 Procedure
The study started with a demographic survey, and upon completion participants 
received daily surveys on their sleep and well-being. The daily surveys were 
divided into a short and a full version, where the full version included additional 
questions containing validated assessments of mood (Positive and Negative Affect 
Schedule [PANAS]; Watson et al., 1988) and depression complaints (Patient Health 
Questionnaire-9 [PHQ-9]; Kroenke et al., 2001). The full version was sent on the 
first three days of the study enrollment. After enrollment, the long survey was sent 
on two randomly selected days of the week, and the short version was sent on the 
five remaining days. For a more detailed description on the assessments, we refer to 
Cunningham et al., 2021.

5.2.3 Materials
For the current study we include the demographics survey, PANAS items, and PHQ-9 
assessments from the full version of the questionnaire.

5.2.3.1 PANAS
The PANAS is a 20-item questionnaire on the experience of positive (e.g., enthusiastic) 
and negative (e.g., scared) affects rated on a five-point Likert scale ranging from 1 
(“very slightly/ not at all”) to 5 (“extremely”) (Watson et al., 1988). To reduce the 
number of variables for better power of the conducted statistical analyses (i.e., the 

estimated network models described in section 5.2.5 Statistical analyses, we selected 
the ten items of the PANAS that have been validated in the short-form (Mackinnon et 
al., 1999). For the assessment of PA, these include: inspired, alert, excited, enthusiastic, 
determined, and for NA, these include: afraid, upset, nervous, scared, distressed. In the 
survey, participants were explicitly asked to rate how they felt in the current moment 
(“For each of the following attributes, indicate which description best describes how 
you currently feel, right now in the moment”).

5.2.3.2 PHQ-9
The PHQ-9 is a 9-item questionnaire to measure depression severity by assessing each 
of the 9 DSM-IV criteria for depression on a four-point Likert scale ranging from 0 (“not 
at all”) to 3 (“nearly every day”) (Kroenke et al., 2001). In the current implementation, 
the item on suicidal thoughts was omitted. Participants were asked to rate the severity 
of complaints over the last several days (“In the last several days, how often have you 
been bothered by any of the following problems: not at all, some of the time, more 
than half of the time, almost all of the time”).

5.2.4 Data selection and pre-processing

5.2.4.1 Study period
Since the full version of the questionnaire was sent out twice a week on random 
occasions, we selected the study period from March 20th 2020 until June 26th 2020, 
ending three days after the final full survey was sent out. Of the total number of 
participants enrolled in this study, N=1,355 (89.3%) completed at least one assessment 
between the selected study period.

5.2.4.2 Pre-processing of assessments
Sometimes participants completed the full survey multiple times on a single day: 
on 79 occasions, the survey was completed twice, and on two occasions the survey 
was completed three times. For these 81 assessments we chose the survey that was 
completed first. Inspecting the response rate of the full survey over the study period, 
a clear three-day interval pattern is seen (see the supplementary material, Figure 1-2). 
Therefore, we chose to group the days into ‘measurement occasions’, defined by a 
three-day window (e.g., March 20th-22nd 2020 is measurement occasion 1). In this way, 
the entire study period is grouped into 33 measurement occasions of three days each. 
The advantage of this grouping is twofold. First, it circumvents the problem of large 
differences in the number of completed surveys per assessment. Second, given that 
the full surveys were sent out randomly twice a week, dividing the assessments into 
three-day intervals makes the time between two completed surveys more equidistant. 
In case participants completed multiple surveys within one measurement occasion, we 
averaged their responses. Following the recommendations for estimating a multilevel 
model (Jordan, Winer & Salem, 2020), we selected participants who completed surveys 
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for at least twenty measurement occasions, resulting in a final sample size of N=228 
participants (16.8%). Thus, for each included participant we have completed data for 
a minimum of 20 and a maximum of 33 measurement occasions that span 9-14 weeks, 
with an average of 11 weeks.

5.2.5 Statistical analyses
First, we inspect the affect trajectories for positive and negative affect over the studied 
time period during the COVID-19 pandemic. We plot the smoothed means of each 
affect over time using locally estimated scatterplot smoothing (i.e., a loess curve). Loess 
regression is a non-parametric method that fits least squares regressions in localized 
subsets of the data (Cleveland, 1979). The amount of smoothing that is applied 
depends on the number of data points that are used in each local regression (i.e., 
the neighborhood) and is controlled by setting the smoothing parameter  between 
0 and 1. The larger the values for , the more data points are being selected in the 
neighborhood (i.e.,  data points are selected, where  represents the total number 
of datapoints). More datapoints in the local regression results in smoother functions, 
that are more robust to fluctuations in the data. We set the smoothing parameter to 

=0.2 in order to aid the visualization of patterns in the data, without losing sensitivity 
of fluctuations in the data.

Second, we aim to investigate whether potential differences in affect trajectories 
exist depending on the course of depressive complaints. To investigate this, we define 
subgroups based on clinically meaningful in- or decrease of depressive complaints, 
which we defined, in line with previous research, as a 5-point difference in their PHQ-9 
total score (Lowe et al., 2004; Round et al., 2020). In addition, we will investigate 
whether we can differentiate between participants who consistently do not experience 
depressive complaints, defined as a PHQ-9 score of four or lower on all assessments; 
participants who experience occasional depressive complaints, defined as a PHQ-9 
score higher than four on at least one assessment (and lower than four on at least one 
other assessment); and participants who experience consistent depressive complaints, 
defined as a PHQ-9 score consistently higher than four on all assessments (Kroenke 
et al., 2001).

Third, while these explorations will shed light on the relation between affect 
trajectories and depression course, they do not model the interactions among affect 
and depressive complaints directly. Therefore, we will more directly investigate 
their interplay by estimating a multi-level network model including both affect 
and depressive complaints. To estimate the relations while taking the longitudinal 
structure of the data into account we estimate a two-step multi-level GVAR model 
as implemented in the mlVAR package (Epskamp et al., 2017). Estimating a multi-
level GVAR has two major benefits: (1) a single model can be estimated, leading to 
an adequately powered analysis, and (2) the within-person effects (reflecting intra-

individual differences) can be separated from between-person effects (reflecting inter-
individual differences) (Epskamp, van Borkulo, et al., 2018).

The multi-level GVAR network model consists of nodes, which represent variables (in 
the current study: affect and depressive complaints), and edges, which represent the 
direct conditional associations between the nodes (Borsboom, 2017; Cramer et al., 
2016; Epskamp, Borsboom, et al., 2018). The edges in the multi-level GVAR network 
are computed from partial correlations, meaning they portray the unique association 
among two variables after controlling for all other variables in the network. Edges 
can be positive or negative, indicating the corresponding nature of the associations 
between the nodes (Epskamp, Borsboom, et al., 2018).

The mlVAR package estimates three network structures: (a) a temporal network, 
(b) a contemporaneous network, and (c) a between-persons network (Epskamp, van 
Borkulo, et al., 2018). The temporal network indicates how well a variable predicts 
another variable at the next time point while controlling for all variables at the 
current time point. For example, a direct association from the depression complaint 
‘trouble concentrating’ to the NA ‘feeling distressed’ indicates that having ‘trouble 
concentrating’ now predicts ‘feeling distressed’ at the next time point, taking into 
account all other current affects and depressive complaints. In the contemporaneous 
network we control for all these temporal effects, and show the unique association 
among variables within the same time window. For example, a direct and positive 
edge between ‘feeling distressed’ and ‘feeling afraid’ indicates that, within the same 
time window, these two negative affects are positively associated, after removing the 
lagged effects. Finally, the between-persons network shows the relationships among 
the means of persons in the data. For example, a positive edge between ‘trouble 
concentrating’ and ‘feeling distressed’ would indicate that persons who have, on 
average, more trouble concentrating also, on average, feel more distressed.

Fourth, based on the theorized role of affect dynamics in the course of depressive 
complaints, we expected the network structure to differ between people who 
experienced a meaningful change in their depressive complaints (either aggravation 
or alleviation) and people who did not experience such a meaningful change. 
Specifically, we expect that in more strongly connected networks, change in one affect 
or complaint can more easily “cascade” into other affects and complaints, thereby 
resulting in higher overall changes in depressive complaints over time. To explore 
this hypothesis we computed, for each participant, the average absolute strength of 
their temporal associations (i.e., their density; Oreel et al., 2019). Subsequently, we 
correlated their density to the maximum change in their PHQ-9 score over time: the 
difference between an individual’s maximum PHQ-9 score, and their minimum PHQ-9 
score over the course of 4 months. To compute this maximum difference, we take the 
order in which the scores occur into account, to capture whether an aggravation or 
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alleviation was experienced. For example, two individuals A (PHQ-9 scores: 3,7,6,8,6) 
and B (7,8,4,4,3) who both have a minimum PHQ-9 score of 3 and a maximum PHQ-9 
score of 8, but differ in their PHQ-9 difference score reflecting their aggravation (A: 
maximum difference 3-8=-5) or alleviation (B: maximum difference 8-3=5). The PHQ-9 
difference score indicates the maximum change in depressive complaints this individual 
reported over the study period.

All analyses were performed in R (version 4.0.5) using the packages ‘ggplot2’, ‘mlVAR’, 
‘qgraph’, ‘dplyr’, ‘nnet’, and ‘ggpubr’. The derived data used for analyses and corresponding 
code can be found on the Open Science Framework (OSF): https://osf.io/2zh4f/.

5.3 results

5.3.1 Sample characterization
We included 228 participants that completed assessments on at least 20 measurement 
occasions within March 20th 2020 and June 26th 2020. Over the course of four months, 
on average, participants completed 23±3 (mean±SD) assessments. The majority of the 
participants were female (n =186, 81.58%) and, on average, 45±19 (mean±SD) years old. 
Two-hundredth-seven participants identified as white (90.8%). Most participants lived 
in a western country (n=221, 96.9%), from which most lived in the United States (n=198, 
86.8%). The median reported annual income was between 50,001 - 75,000 USD. Half of 
the participants had a graduate, medical or professional degree (n=116, 50.9%). For more 
details on sample characterization see the supplementary materials of this chapter.

First, Figure 5.1(a) shows the affect trajectories across the 33 measurement occasions for 
all participants concertedly. Averaging over all participants shows that PA is generally 
rated somewhat higher than NA, and that this is consistent over the entire study period.

Second, we inspected the affect trajectories for different groups based on (i) their 
change in depressive complaints over time, and (ii) the severity of the experienced 
depressive complaints. Over the studied time period, 116 participants experienced a 
meaningful change in their depression symptomatology: 56/116 participants (48.3%) 
experienced an aggravation in their depressive complaints (i.e., an increase in PHQ-9 
score of at least 5), and for 60/116 participants (51.7%) their depressive complaints 
alleviated (i.e., a decrease in PHQ-9 score of at least 5). Splitting the affect trajectories 
for each of these groups, shown in Figure 5.1(b), indicates that in both groups, on 
average, the affects are more intertwined. Interestingly, no marked differences are 
seen in participants who experienced an aggravation of their complaints compared 
with participants who experienced an alleviation of their complaints.

Grouping participants into the consistency of their depressive complaints, we found 
that 50/228 participants (21.9%) were consistently without depressive complaints, 

137/228 participants (60.1%) experienced depressive complaints at least occasionally, 
and 41/228 participants (18.0%) experienced depressive complaints consistently. 
Figure 5.1(c) shows the affect trajectories for each of these groups. Here, we see clear 
differences in affect trajectories across the three groups: in people without depressive 
complaints there is, on average, a clear distinction between the PA scores, which are 
rated relatively high, and the NA scores, which are all rated consistently low. In the 
people with occasional depressive complaints, the PA scores are, on average, still 
rated higher than the NA scores, but the distinction is less clear. Finally, in people who 
consistently experience depressive complaints, the ratings of positive and NA have 
flipped, as NA is, on average, rated higher than PA.

Figure 5.1. Affect trajectories from March 20th 2020 (measurement occasion 1) until June 26th 
2020 (measurement occasion 33). Panel (a) shows the smoothed conditional mean trajectories 
of all participants for each of the affect states, together with its 95% confidence interval (shaded 
area). Panel (b) on the left shows the trajectories for participants whose depressive complaints 
aggravated during the study period, and on right shows the trajectories for participants whose 
depressive complaints alleviated during the study period. The (c) panels show the trajectories 
for participants who consistently experienced no depressive complaints (left), those that occa-
sionally experienced at least mild depressive complaints (middle), and those that consistently 
experienced depressive complaints (right). Blue lines correspond to the smoothed conditional 
means of the positive affect states ‘inspired’, ‘alert’, ‘excited’, ‘enthusiastic’, and ‘determined’; 
and red lines correspond to the smoothed conditional means of the negative affect states 
‘afraid’, ‘upset’, ‘nervous’, ‘scared’, and ‘distressed’. Affect states are scored on a Likert scale 
from 1 to 5. Decimal scores were obtained when participants completed multiple assessments 
within one measurement occasion.
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Third, we investigated the dynamical relations among affect and depressive complaints 
by estimating a multilevel network model. Figure 5.2 shows the three estimated 
network structures: (a) the temporal associations averaged over all participants; 
(b) the contemporaneous associations averaged over all participants; and (c) the 
between-persons network structure. The temporal network shows many associations 
between affect and depressive complaints, indicating a direct interplay between 
affect and depression. Compared with the temporal network, the contemporaneous 
network shows clearer demarcations between PA, NA and depressive complaints: 
there are comparatively stronger edges within than between the three domains. 
This might indicate that within one measurement occasion the experience of PA, 
NA, and depressive complaints is relatively independent. The between-persons 
network portrays more relations between the different domains compared with the 
contemporaneous network, indicating that the average affect people experience is 
related to their average depressive complaints.

Figure 5.2. Output from mlVAR for =228 and  > 20. Left, the temporal network model is 
displayed, portraying the average within-person relations from one measurement occasion onto 
the next. The center displays the contemporaneous network model, portraying the average 
within-person effects in the same measurement occasion, after controlling for the temporal 
effects. Right, the between-persons network model is displayed, indicating the average effects 
between persons. Blue edges indicate positive relations, whereas red edges indicate negative re-
lations. Node colors correspond to PA (light blue), NA (salmon pink), and depression complains 
(grey). Abbreviations: Insp = inspired; Alt = alert; Exc = excited; Ent = enthusiastic; Det = deter-
mined; Afr = afraid; Ups = upset; Ner = nervous; Scar = scared; Dist = distressed; LoI = loss of 
interest; DepMood = depressed mood; SleepDis = sleep disturbances; Appet = loss of appetite; 
Worth = feelings of worthlessness; Con = concentration problems; PsychMot = psychomotor 
agitation or retardation.

Interestingly, the separation between the different network components (i.e., PA, NA, 
and depressive complaints) seems less evident in the temporal network compared to 
the contemporaneous and between-persons network; there are relatively more edges 
between components vs. within components within the temporal network. Post-hoc 
clustering analyses confirmed the original three components in the contemporaneous 
network and the between-person network; however, these components were not 
confirmed for the temporal network (see the supplementary materials, Figure 3-4). 

Depending on the clustering algorithm (spinglass or walktrap), 4 to 5 clusters were 
found within the average temporal network. These clusters were a mix of different 
affects and depressive complaints (see the supplementary materials).

Lastly, to further investigate the relations between affects and depressive complaints, 
we correlated individuals’ network density of the temporal network to their maximum 
change in PHQ-9 score. As shown from the correlation plot in Figure 5.3 (right panel), 
there is a strong correlation (r = 0.77) between individual network density and 
maximum absolute change in PHQ-9 score. Stronger network densities relate to both 
a more substantial aggravation and to a more substantial alleviation in their depressive 
complaints, as can be seen from the bifurcation in Figure 5.3 (left panel) illustrating the 
correlation between individual network density and change in PHQ-9 score.

Figure 5.3. Individual network density and change in depressive complaints. In the left panel 
the correlation between individual network density and maximum change in PHQ-9 score is 
shown. In the right panel the correlation between individual network density and the absolute 
maximum change in PHQ-9 score is shown.

5.4 discussion

In the current chapter we set-out to investigate the dynamic interplay between 
affect and depressive complaints during a prolonged and eventful time imposed by 
the COVID-19 pandemic. The unprecedented dataset allowed us to investigate how 
affect fluctuated over time, for different levels of depression severity and consistency. 
At first sight, affect fluctuations seem relatively stable over time, in which, on average, 
participants reported somewhat higher levels of PA than NA. However, we found 
different results when separating the affect trajectories based on the participant’s 
depressive complaints. Interestingly, while the affect trajectories were similar for people 
experiencing either an aggravation or alleviation of depressive complaints, we found 
marked differences in the trajectories among people who experienced consistently no 
depressive complaints compared with consistent depressive complaints. Specifically, 
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the experienced affect seemed to ‘flip’ depending on the severity of one’s depressive 
complaints. Crucially, these differences pertained to both PA and NA trajectories, 
showing that there is a clear link between depressive complaints and both positive 
and negative affect.

We subsequently investigated the link between affect and depression more directly, 
and network models revealed many and strong relations between the affect and 
depressive complaints, showing that both are indeed directly linked, both within- 
and across persons, and both within a single time point and over time. We identified 
three clear clusters of variables - pertaining to PA, NA and depressive complaints - 
in the contemporaneous and between-subject networks. Interestingly however, we 
did not find these clusters in the temporal network. This suggests that the relations 
among affect and depressive complaints within persons over time may be substantially 
different from their relations within one timepoint or between-persons.

Furthermore, we found a strong relation between the strength of the links in an 
individual’s temporal network (i.e., the density) and the absolute change in PHQ-9 
score. Interestingly, when considering the direction of change – alleviation or 
aggravation in PHQ-9 score – a bifurcation appeared, indicating that the same network 
density can relate to either a worsening or improvement in depression complaints. 
Crucially, this finding reflects a well-known property of test reliability, namely that the 
variance of a total score (in our case the change in depression complaints) consists of 
the sum over the variance in all items (in our case the individual affects and individual 
PHQ-9 items) and the sum over their covariances (Cronbach, 1951). Clearly, denser 
networks indicate stronger covariances, that is necessarily reflected in the variation of 
the sum score (i.e., the variation in PHQ-9 score). While this is a statistical necessity, 
this is, to the best of our knowledge, the first time that it has been shown in relation to 
individual psychopathology networks. This has important implications for the clinical 
interpretation of networks, as network density has generally been related with more 
severe psychopathology (e.g., see Calugi et al., 2021; Cramer et al., 2016; van Borkulo 
et al., 2015). However, our study shows an alternative situation in which a larger density 
of individual networks indicates more fluctuations and potential for flexibility (Hayes 
et al., 2015).

Some limitations warrant attention. First, the questionnaires were sent out twice a 
week at random intervals, thereby violating the assumption of equidistant measures for 
longitudinal analyses. We circumvented this problem in part by defining measurement 
occasions as three-day periods. Second, it should be noted that while we are interested 
in mechanisms of change, the current available network estimation techniques assume 
that the mean and variance of the time series data remains the same (i.e., stationarity) 
(Jordan et al., 2020). However, alternative time-varying network models require many 
more datapoints than present in the current dataset (e.g., see Haslbeck et al., 2020). 

Therefore, there is a mismatch between our data, our interest in change, and the 
available statistical models.

To conclude, we found that fluctuations of affect are directly related to the course of 
depressive complaints, both within- and across individuals, and both within a single 
measurement moment and over time. At first sight, affect trajectories over time 
seemed stable, even in the eventful time of COVID-19. However, marked differences in 
the affect trajectories appeared when separating individuals based on the consistency 
and severity of their depressive complaints. The conducted network analyses showed 
that there are direct interactions between affect, for both PA and NA, and depression 
complaints. The direct links between these domains was found when averaging 
over all individuals, and both within one measurement moment as over time. On 
the individual level, we showed that the stronger affect and depressive complaints 
are overall connected over time, the larger the change is in depressive complaints. 
Together, these findings shed light on the potential underlying mechanisms of change 
and development of mental disorders.
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6.0 abstract

Identifying the different influences of symptoms in dynamic psychopathology models 
may hold promise for increasing treatment efficacy in clinical applications. Dynamic 
psychopathology models study the behavioral patterns of symptom networks, where 
symptoms mutually enforce each other. Interventions could be tailored to specific 
symptoms that are most effective at lowering symptom activity or that hinder the 
further development of psychopathology. Simulating interventions in psychopathology 
network models fits in a novel tradition where symptom-specific perturbations are 
used as in silico interventions. Here, we present the NodeIdentifyR algorithm (NIRA) to 
identify the projected most efficient, symptom-specific intervention target in a network 
model (i.e., the Ising model). We implemented NIRA in a freely available R package. 
The technique studies the projected effects of symptom-specific interventions by 
simulating data while symptom parameters (i.e., thresholds) are systematically altered. 
The projected effect of these interventions is defined in terms of the expected change 
in overall symptom activity across simulations. With this algorithm, it is possible to 
study (1) whether symptoms differ in their projected influence on the behavior of the 
symptom network and, if so, (2) which symptom has the largest projected effect in 
lowering or increasing overall symptom activation. As an illustration, we apply the 
algorithm to an empirical dataset containing Post-Traumatic Stress Disorder symptom 
assessments of participants who experienced the Wenchuan earthquake in 2008. The 
most important limitations of the method are discussed, as well as recommendations 
for future research, such as shifting towards modeling individual processes to validate 
these types of simulation-based intervention methods.

6.1 introduction

Recent research focuses on the distinct roles that symptoms may play in the 
development of psychopathology (Blanken et al., 2018). For example, some symptoms 
could have stabilizing effects, meaning that once they are present, they also activate 
related symptoms (e.g., the presence of the depressive symptom “fatigue” also leads 
to the activation of the symptom “loss of energy”; Borsboom & Cramer, 2013). In 
this way, these stabilizing symptoms may influence the spread of symptom activity 
and the development of psychiatric disorders. Investigating whether symptoms have 
different roles in the onset and development of psychopathology and, if so, developing 
a methodology to identify the most influential symptoms could have promising clinical 
implications for increasing treatment efficacy (Boschloo et al., 2019; Chekroud et al., 
2017). Clinical interventions could be tailored to specific symptoms that are most 
effective in lowering symptom activity or that hinder the further development of 
psychopathology.

Treatments for mental disorders already make use of symptom-specific interventions. 
For example, in the case of Generalized Anxiety Disorder (GAD), interventions exist 
for a distinct type of worrying problems using Cognitive Behavioral Therapy (CBT; 
Dugas & Ladouceur, 2000). In the case of Major Depressive Disorder (MDD), specific 
treatment programs have been developed for suicidal behavior (DeCou et al., 2019). 
Symptom-specific interventions are also being developed in clinical trials, such as 
particular CBT for psychosis which focuses on treating hallucinations or delusions 
(Lincoln & Peters, 2019). Furthermore, symptom-specific treatments are used in 
experimental settings, such as randomized controlled trials, to compare the specific 
effects of different treatment conditions, for example, between psychotherapy 
and psychopharmacology (Bekhuis et al., 2018). By using novel technology, “micro-
interventions” can be administered via smartphones as a personalized approach to 
target the depressed mood symptom (Meinlschmidt et al., 2016). However, it is vital to 
consider the propelling effects from intervening on one symptom to other symptoms 
due to their potential interrelatedness (Boschloo et al., 2019).

An established framework to study psychopathology as an interrelated, dynamic 
system of symptoms is the network theory of mental disorders (Borsboom, 2017; 
Borsboom & Cramer, 2013; see Figure 6.1). The network theory of psychopathology 
has been applied to a variety of psychiatric disorders (e.g., for MDD, see Cramer 
et al., 2016; for GAD, see Beard et al., 2016; for Post-Traumatic Stress Disorder, see 
Armour et al., 2017; for Psychosis, see Isvoranu et al., 2017; and for Autism Spectrum 
Disorder, see Deserno et al., 2017). According to this theory, symptoms are not passive 
manifestations of one underlying mental disorder that acts as the common cause. 
Instead, symptoms play an active part in developing and maintaining psychopathology. 
By representing psychopathology as a dynamic system, symptoms are no longer 
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(statistically) exchangeable, meaning they could play different roles in the maintenance 
and development of psychiatric disorders (Blanken et al., 2018; Borsboom, 2017).

Figure 6.1. An example of a symptom network model. A hypothetical symptom network 
model for five psychopathology symptoms (S1-S5). Circles in the network represent nodes, 
which refer to the symptom variables (S1-S5). Lines that connect the circles represent edges, 
where green (red) lines represent positive (negative) associations. The thickness of the edges 
represents the magnitude of their association. In this hypothetical network, there is a relatively 
strong association between S5 and S2, which means that if S2 is activated, S5 is likely to activate 
as well, and vice versa. Contrary, there is no direct relation between S3 and S4 when controlling 
for the other nodes in the network (S1, S2, and S5).

Various statistical network models have been developed over the past years that 
analyze the co-occurrence of symptoms estimated from data, using, for example, 
clinical interviews or questionnaires (e.g., see Epskamp et al., 2018; Haslbeck & 
Waldorp, 2020; van Borkulo et al., 2014). In these network models, nodes represent 
symptoms, and edges represent the unique associations between symptoms (see Figure 
6.1; Borsboom & Cramer, 2013; Epskamp, Waldorp, et al., 2018). Edge parameters are 
called edge weight parameter, and denote the unique, weighted (i.e., edges can be 
present with a certain strength), statistical associations between a pair of symptoms 
when controlling for the presence of all other symptoms in the network (Epskamp, 
Borsboom, et al., 2018). Positive (negative) edge weight parameters denote positive 
(negative) associations. For example, suppose two symptoms such as “worry” and 
“irritability” are strongly positively associated. In that case, the theory proposes the 
hypothesis that the presence of the “worry” symptom leads to the activation of the 
“irritability” symptom as well, and vice versa (Borsboom, 2017; Borsboom & Cramer, 
2013). Different methods are used to estimate the edge weights, depending on the 
model used and the scale of the raw data. For example, in network models estimated 
from continuous data, such as the Gaussian Graphical Model (GGM; Epskamp, 
Waldorp, et al., 2018), edge weights are computed from the partial correlations of each 

pair of nodes. To obtain sparsity and account for false-positive edges, regularization 
is imposed on the network structure, meaning that small edge parameters are shrunk 
to zero (the most-used regularization technique is lasso, see van Borkulo, et al., 2014, 
and Epskamp & Fried, 2018, for details). Furthermore, network models can also have 
parameters for the disposition of symptoms to manifest, which can be strong or weak 
(e.g., see Haslbeck et al., 2020; Marsman et al., 2017; Marsman et al., 2018; van Borkulo 
et al., 2014). A symptom with a strong disposition to be “off”, for example, ‘suicidal 
ideation’, requires much ‘input’ such as stress before it will manifest.

To assess the relative importance of symptoms in psychopathology networks estimated 
from observational data, the concept of node centrality was received with high hopes 
(Spiller et al., 2020). Centrality indices stem from the domain of social networks, in 
which the most central node in the network has the largest number of edges with 
neighboring nodes and the most substantial edges (Newman, 2010). The concept was 
translated to psychology (Cramer et al., 2010), where the centrality hypothesis states 
that the most central nodes are the best intervention targets, as they are thought to 
represent the most influential nodes in a network (Robinaugh et al., 2020). Therefore, 
centrality metrics are used in psychopathology networks to identify possible 
intervention targets (Borsboom & Cramer, 2013; Epskamp, Borsboom, et al., 2018; Fried 
et al., 2018; Spiller et al., 2020; Stochl et al., 2018). However, several researchers have 
raised doubts regarding the suitability of centrality indices in psychological networks 
(Bringmann et al., 2019; Castro et al., 2019; Dablander & Hinne, 2019; Hallquist et al., 
2019; Rodebaugh et al., 2018; Spiller et al., 2020). Centrality indices are based on the 
structure of the psychological network (i.e., the presence and strength of edges), but do 
not explicitly consider the dynamics of the network (i.e., how symptoms influence each 
other’s presence). It is not evident how the structure of statistical network models 
relates to causal influences of symptoms: a causal process running over the network 
structure needs to be assumed before one can assess causal claims (Dablander & 
Hinne, 2019; Haslbeck, Ryan, et al., 2021; Henry et al., 2021).

A developing novel tradition studies the projected influences of symptoms in 
psychopathology models using simulated symptom-specific perturbations as in silico 
interventions (Burger et al., 2020; Castro et al., 2019; Henry et al., 2021; Robinaugh et 
al., 2016). By altering characteristics of the symptom network, such as systematically 
deactivating symptoms (i.e., altering the symptom variables’ state) the symptom’s 
projected influence on the behavior of the network can be studied (see for example: 
Castro et al., 2019; Henry et al., 2021; Robinaugh et al., 2016). For example, the value 
of a symptom such as “loss of energy” is set to zero to simulate its treatment effect 
on the rest of the network. The procedure is repeated for all other symptoms in the 
network. The projected impact of this symptom-specific intervention is calculated 
as the change in the overall symptom sum score. The node with the most significant 
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expected influence is the node that propels the most substantial change in the next 
simulation iteration (Robinaugh et al., 2016).

However, the clinical representation of simulating an intervention by altering the 
symptom’s state (i.e., forcing the symptom to be absent) does not take into account 
that nodes all have different dispositions for manifestation. The different dispositions 
of symptoms make interventions differ in their effectiveness to treat symptoms (Barth 
et al., 2016). Furthermore, from a clinical perspective, it is unlikely that a treatment 
intervention will forever push the presence of a symptom to zero. Instead, interventions 
are more likely to lower the probability of symptoms being present. In other words, 
symptoms may still be present from time to time, but after the intervention, they 
are less likely to occur. Therefore, a better clinical representation of simulating 
interventions would be the alteration of symptom parameters in a network model.

Symptom parameters can be altered in two ways: by increasing or decreasing the 
nodes’ internal dispositions for activation. A symptom’s disposition for activation 
can be decreased so that it is less likely to manifest. This would mimic a clinical 
intervention on a specific symptom, which we call an alleviating intervention. When 
done systematically, one can study which alleviating intervention on a specific 
symptom in a network model has the most substantial projected effect on lowering 
overall symptom activity. Contrary, a symptom’s parameter can also be increased 
such that it is more prone to activation, which we call an aggravating intervention. This 
would mimic the effect of a stressful event on the symptom, increasing its probability 
of manifestation. Aggravating interventions are used to study which symptom would 
have the most substantial projected effect on deteriorating the network’s state in a 
stressful event.

This chapter presents an algorithm that outlines node-specific target points for 
interventions on psychopathology networks, which are estimated from observational 
data. The algorithm focuses on the clinical importance of a symptom by altering its 
parameter and studying its projected effect on the behavior of the network. With 
this algorithm, it is possible to study (1) whether symptoms have distinct projected 
influences on the behavior of the network, and if so, (2) which symptom has the 
most substantial projected effect after an alleviating intervention and aggravating 
intervention. In the following section, the algorithm is explained and applied to an 
empirical dataset containing assessments of Post-Traumatic Stress Disorder (PTSD) 
symptoms.

6.2 methods

In this section, we explain the rationale behind the proposed technique. Furthermore, 
we outline the analysis design to apply the technique to an empirical dataset of PTSD 
symptoms.

6.2.1 NodeIdentifyR algorithm
We present the NodeIdentifyR algorithm (NIRA) to identify the projected most 
efficient, symptom-specific intervention target in psychological networks8. This 
technique studies the projected effects of symptom-specific interventions by 
simulating data when symptom parameters are systematically altered. The effect of 
these perturbations is calculated as the change in overall symptom activation of the 
network.

6.2.1.1 Model
The algorithm uses the Ising Model as a representation of psychopathological dynamic 
systems. The Ising model originates in physics and describes the interaction between 
states of particles connected in a network (originally, the Ising model was constructed 
to explain magnetism; Ising, 1925). Since the model’s characteristics align with the 
network theory of psychopathology, it is often used as a statistical model of symptom 
networks (Marsman et al., 2018; van Borkulo et al., 2014). The model is sufficiently 
simple to be mathematically tractable and, at the same time, sufficiently rich to 
represent important phenomena of mental disorders. For example, the presence of 
alternative stable states (i.e., the system can be in a healthy state or disorder state), 
critical transitions (i.e., the system can suddenly jump towards a disordered state 
when faced with enough stress), and hysteresis (i.e., once the system is stuck in the 
disordered state, it requires a stronger reduction of stress to recover than the original 
level of stress that caused the critical transition; Cramer et al., 2016). The Ising model 
uses binary data, meaning that symptoms can be “on” or “off”.

The Ising model is estimated using logistic regression analyses. Edge weights are the 
coefficients from logistic regression analyses, in which symptom variables are iteratively 
regressed on all other symptoms except the symptom variable itself (Marsman et al., 
2018; van Borkulo et al., 2014). The intercept of the logistic regression represents 
the threshold parameter of every symptom, which denotes the symptom’s disposition 
for manifestation (Marsman et al., 2018; van Borkulo et al., 2014). Positive (negative) 
thresholds denote the symptom’s disposition to be activated (deactivated) if all other 

8 The nodeIdentifyR R-package can be downloaded via:
 https://github.com/JasperNaberman/nodeIdentifyR
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symptoms are absent9 (Dalege et al., 2018). Threshold parameters differ over symptoms 
and are weighted, in which a higher magnitude indicates a larger probability that the 
symptom will be (de)activated. See the supplementary materials for the formula of 
the Ising model’s dynamics.

6.2.1.2 Interventions
All analyses and simulations are executed using the statistical software program 
R. NIRA runs multiple simulations, in which interventions are administered by 
systematically altering the threshold parameters of the estimated network model. 
One simulation will be executed with all the original threshold parameter values, 
and afterward, one simulation will be done for every symptom-specific intervention. 
To be precise, NIRA will generate 5000 observations or simulated ‘participants’ for 
which symptoms are assessed after interventions. For example, to study the effect 
of one intervention in a network containing ten symptoms, 11 x 5000 observations 
will be generated: once with all original threshold parameter values and ten times for 
every iteratively changed threshold parameter. Response simulations are computed 
with the R package IsingSampler (Epskamp, 2020), which samples states from the 
probability distribution of the Ising model. NIRA uses the Metropolis-Hastings 
algorithm implemented in IsingSampler for data generation to ensure the process will 
remain computationally feasible in a multivariate distribution (Epskamp, 2020). Note 
that the Metropolis-Hastings algorithm does not return the exact likelihood but a 
pseudo-likelihood; the exact likelihood can be computed for small networks (up to ~ 
ten nodes) with the function IsingLikelihood, but this is infeasible for larger networks 
due to the intractability of the Ising model (Epskamp, 2020).

Two types of interventions can be administered. Alleviating interventions decrease a 
symptom’s threshold by subtracting some value from its original threshold parameter, 
and aggravating interventions increase its threshold by adding some value to its 
original parameter. The magnitude of the intervention, specifically, the value with 
which the threshold parameters are increased or decreased, determines the strength 
of the intervention on the network’s behavior (i.e., the intervention’s effect size). 
Many different possibilities exist to determine a rule of how thresholds should be 
altered. We choose to use the standard deviations of the estimated thresholds: After 
estimating the model, we store the threshold of every symptom in a vector and 
compute its standard deviation. The standard deviation will be used to alter (i.e., add 
to or subtract from) the symptoms’ estimated threshold parameters one by one. In the 
current study, NIRA alters the estimated value of the threshold parameter in question 
with two times that standard deviation. In this way, the magnitude of the intervention 

9 Depending on the specific model used, and the possible values of the nodes, the threshold parameter 
could also take a value between 0 and 1, where 0.5 indicates no preference, 0 indicates a preference 
for deactivation and 1 indicates a preference for activation. See Haslbeck et al., 2020 for an extensive 
discussion.

is somewhat bound to the estimated thresholds of all symptoms in the network. A 
potential downside is that the magnitude of the intervention depends on the raw 
data and changes over different datasets. However, choosing a fixed magnitude (e.g., 
subtracting or adding a value of one to the thresholds) is suboptimal since its effect size 
will also change depending on the original value of the estimated threshold parameters 
(i.e., since the model is non-linear, changing a threshold from -3 to -2 has a different 
effect than changing the threshold from -1 to 0). In the R-package, the magnitude of 
the intervention can be adjusted to the number of standard deviations of choice. See 
the supplementary materials for a sensitivity analysis with interventions that alter the 
threshold parameters with one instead of two standard deviations.

Furthermore, it is important to note that when simulations are used to study projected 
effects, the simulated behavior of the model needs to converge to a stable state 
to ensure results are robust (see, e.g., Danvers et al., 2020). Multiple iterations are 
necessary to ensure that the simulated behavior is robust and replicable (Nilmeier 
et al., 2011). Therefore, we will simulate the effect of interventions on the behavior 
of the symptom networks until the model has converged to a stable state (See the 
supplementary materials for stability analyses of NIRA using various numbers of 
iterations).

6.2.1.3 Determining the most effective target
To study the projected effect of an intervention on the entire network, sum scores are 
inspected. The sum score of a simulated observation equals the sum of all data points 
for that observation. Since the Ising model uses binary data, responses are decoded 
as either 0 or 1, indicating the symptom’s absence or presence. In an exemplary 
questionnaire consisting of ten items, the sum score of each observation can range 
from zero to ten. Higher scores indicate higher levels of psychopathology. The use 
of sum score analyses in a simulation environment to measure the impact of specific 
perturbations can be used effectively to measure the overall state of a dynamic system 
(Dalege et al., 2017). The NIRA outcome will be computed as the absolute difference 
between the baseline network’s sum score (without interventions) and the sum scores 
after every threshold alteration for alleviating and aggravating interventions. The 
node-specific intervention with the highest absolute difference is the node with the 
strongest projected effect on the network’s behavior.

6.2.2 An empirical application to PTSD
As an empirical illustration, NIRA is applied to a dataset containing PTSD symptoms. 
Three research questions are investigated: (1) Do symptoms differ in their projected 
influences on the network’s behavior after symptom-specific interventions? (2) Are 
identical symptoms identified by NIRA for alleviating interventions and aggravating 
interventions? (3) Is the most efficient target symptom identified by NIRA also the 
most central symptom?
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6.2.2.1 Data
The empirical dataset contains PTSD symptom assessments gathered after the 2008 
Wenchuan earthquake. The sample consisted of 4910 adolescents (49.5% boys; mean 
age 11.4±1.4 years) who experienced the earthquake and was measured 2.5 years after 
the earthquake. Their 17 DSM-IV PTSD symptoms were assessed by the 17 items 
in the Chinese version of the University of California, Los Angeles PTSD Reaction 
Index questionnaire (PTSD-RI; Steinberg et al., 2004), a validated self-rated 5-point 
Likert scale (from 0 = never to 4 = most of the time). Missing item-level values were 
estimated using maximum likelihood (ML) procedures as suggested by (Schafer & 
Graham, 2002). To estimate the Ising models, we binarized the symptom scores into 0 
(original score was 0) and 1 (original score ranged from 1 to 4), respectively, representing 
symptom absence and (at least some level of) symptom presence.

6.2.2.2 Design
NIRA uses the IsingFit R package (van Borkulo et al., 2014) to estimate the Ising Models 
and the qgraph R package (Epskamp et al., 2012) to visualize the networks. NIRA 
is applied twice to the network: once with alleviating interventions and once with 
aggravating interventions. To study the relationship between the size of the original 
threshold values and the ordering of the projected most effective intervention targets, 
the correlation between the novel threshold values after interventions and the NIRA 
outcome will be computed.

6.2.2.3 Comparison with strength centrality
Node centrality indices, precisely strength centrality, are calculated using the qgraph 
R package (Epskamp et al., 2012). Strength centrality is defined as the sum of the 
absolute weighted edge strengths, where the sum is taken over edges connected 
to the relevant node (Cramer et al., 2010). Nodes with higher strength centrality 
have more and stronger connections with neighboring nodes and are therefore often 
hypothesized to be more influential in the spread of symptom activity (Rodebaugh 
et al., 2018). Stability studies have shown that strength centrality is the most robust 
centrality measure of all used centrality indices in psychological networks, especially 
in ordering symptoms (Epskamp, Borsboom, et al., 2018). We will therefore compute 
the correlation between strength centrality and NIRA.

6.3 results

Figure 6.2 shows the estimated Ising model network from the PTSD symptoms. Nodes 
in the networks represent 17 PTSD symptoms from three subdomains: Intrusion, 
Avoidance, and Arousal (see Table 6.1).

Figure 6.2. Estimated Ising network model for 17 PTSD Symptoms in the Wenchuan earth-
quake study (N=4910). Nodes in the networks represent the 17 PTSD symptoms. Symptoms 
are grouped by color based on their clinical subdomain (Intrusion, Avoidance, and Arousal). The 
thickness of node borders represents the absolute value of the nodes’ threshold parameters. 
All symptom thresholds indicate a disposition towards being absent (i.e., they have a negative 
threshold value), except the threshold of node “D1” which has a weak disposition towards being 
present (i.e., the symptom has a weakly positive threshold).

6.3.1 Interventions
First, NIRA was applied to the Ising model using alleviating interventions (see Figure 
6.3; panel A). Results show that symptoms have different projected influences on 
the network’s behavior when targeted with alleviating interventions. For example, 
symptom B1 (Intrusive thoughts) lowers the projected symptom sum score from 10.77 
to 8.83. Contrary, symptom C7 (Foreshortened future) merely lowers the projected 
sum score to 10.01. These results suggest that symptoms may have propelling effects 
on the decrease of PTSD levels. Instead of lowering the overall sum score by one 
point when intervening on one symptom, symptom B1 is projected to lower the 
sum score by two points after an alleviating intervention. Thus, according to NIRA, 
intervening on B1 could have propelling effects on PTSD levels. Second, we applied 
aggravating interventions to the Ising model using NIRA (see Figure 6.3; panel B). Here 
also results show that symptoms have different projected influences after aggravating 
interventions. For example, symptom C7 (Foreshortened future) has the strongest 
projected effect on increasing the sum score (from 10.77 to 12.53). In contrast, symptom 
D4 (Hypervigilance) has the lowest projected effect (increasing the sum score to 11.05). 
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Therefore, the results suggest the presence of propelling effects when the network is 
faced with aggravating interventions.

Table 6.1. The 17 PTSD symptoms from the empirical illustration with their corresponding 
domains.

Domain Symptom Node Prevalence of symptom (proportion)

Raw 
data

Baseline 
model

Alleviating 
intervention

Aggravating 
intervention

Intrusion Intrusive thoughts B1 0.77 0.77 0.31 0.97

Nightmares B2 0.59 0.61 0.16 0.93

Flashbacks B3 0.38 0.41 0.08 0.84

Emotional reactivity B4 0.83 0.85 0.41 0.98

Physical reactivity B5 0.41 0.46 0.1 0.87

Avoidance Avoidance of thoughts C1 0.74 0.77 0.29 0.96

Avoidance of reminders C2 0.56 0.55 0.13 0.91

Amnesia for aspects C3 0.68 0.7 0.22 0.95

Loss of interest C4 0.43 0.46 0.09 0.88

Feeling distant C5 0.41 0.47 0.1 0.87

Feeling numb C6 0.84 0.84 0.39 0.98

Foreshortened future C7 0.24 0.26 0.04 0.74

Arousal Sleep disturbance D1 0.64 0.65 0.18 0.93

Irritability D2 0.74 0.76 0.27 0.95

Difficulty concentrating D3 0.74 0.74 0.27 0.96

Hypervigilance D4 0.88 0.89 0.5 0.99

Exaggerated startle D5 0.56 0.59 0.15 0.92

The table shows the prevalence (proportion) of every symptom in the raw data, the prevalence as 
simulated from the original baseline Ising model (without interventions), and the prevalence after 
every symptom is targeted for an alleviating and aggravating intervention.

To evaluate whether nodes can have different roles in the spread or hinder of symptom 
activity, we compared the results between alleviating and aggravating interventions 
(see Figure 6.3; panel C). The results in Figure 6.3, panel C are ordered based on the 
projected effects from alleviating interventions. Results suggest that alleviating and 
aggravating interventions have different effects on the same nodes. For example, 
symptom B1 (Intrusive thoughts) is projected to be the most effective target for clinical 
interventions, as it has the largest projected effect in lowering PTSD levels after 
alleviating interventions. However, it is not the projected most effective target for 
preventive care, as the network’s behavior is not heavily affected by an aggravating 
intervention on B1.

Figure 6.3. Projected effects of NIRA interventions to the PTSD Ising model. Panel A shows 
results after alleviating interventions (black lines), panel B after aggravating interventions 
(dashed lines), and panel C compares results from both intervention types. The black dots 
represent the network’s sum score and the corresponding lines the 95% confidence interval. The 
x-axis shows the symptoms of which the threshold is altered, including the original projected 
sum score of active symptoms, i.e., when data are simulated from the network without altering 
threshold parameters. Afterward, the projected effects on the network’s sum score are shown 
when data are simulated after every symptom-specific intervention.

Furthermore, we investigated whether the NIRA results could be explained based 
on the original ordering of threshold parameter magnitudes. For both alleviating and 
aggravating interventions, we found moderate relations between the threshold values 
and NIRA outcomes (r=-0.34 and r=-0.31, see Figure 6.4), meaning that threshold 
values in isolation cannot fully explain the results from NIRA. In other words, projected 
effects from symptom-specific NIRA interventions also depend on the edge weight 
parameters in the network.

6



138 139

intervening on psychopathology networks through simulationschapter 6

Figure 6.4. The relation between threshold magnitudes and NIRA outcomes after inter-
ventions. The x-axis shows the magnitude of the threshold parameters after interventions for 
both alleviating interventions (black) and aggravating interventions (grey). The y-axis shows 
the NIRA outcome, computed as the absolute difference between the original sum score of 
the network and after each intervention. The transparent area represents the 95% confidence 
interval. The correlations indicate a moderate relationship between the distribution of the 
threshold parameter magnitudes and their projected effect on the network’s behavior after 
interventions, according to NIRA.

6.3.2 Comparing strength centrality with NIRA
Figure 6.5 shows the results from comparing node strength centrality with alleviating 
and aggravating interventions from NIRA. The correlation between alleviating 
interventions from NIRA and strength centrality is r = 0.51, and between aggravating 
interventions from NIRA and strength centrality is r = 0.43. Table 6.2 shows all results, 
including the ordering of PTSD symptoms based on their strength centrality and 
projected effects from NIRA interventions. These results indicate a moderate to strong 
relationship between NIRA outcomes and strength centrality.

Figure 6.5. Comparing strength centrality with interventions from NIRA. The relation be-
tween node strength centrality and projected effects from NIRA interventions for alleviating 
interventions (black) and aggravating interventions (grey). The area around the lines represents 
the 95% confidence interval.
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Table 6.2. Comparison between strength centrality and NIRA interventions.

Centrality NIRA

Strength Node Alleviating Interventions Aggravating Interventions

1 B4 1.94 B1 1.76 C7

0.99 C6 1.94 C6 1.75 B3

0.98 B3 1.93 B4 1.61 B5

0.86 B1 1.87 D2 1.57 C4

0.83 B5 1.78 D3 1.47 C5

0.43 C4 1.7 D1 1.24 C2

0.34 C2 1.65 B2 1.11 D1

0.34 C5 1.63 C1 1.04 B2

0.31 D2 1.6 C2 1.04 D5

0.08 D1 1.46 C5 0.82 D3

0.02 D3 1.45 D5 0.82 D2

-0.24 C7 1.42 B5 0.78 B1

-0.3 C1 1.38 C4 0.68 C1

-0.42 B2 1.22 B3 0.68 C6

-0.84 D5 1.17 D4 0.6 B4

-1.68 D4 1.12 C3 0.53 C3

-2.69 C3 0.76 C7 0.28 D4

Results from strength centrality analyses and NIRA interventions. Effects from NIRA interventions 
are calculated as the absolute difference between the baseline network (without interventions) 
and the symptom sum score after every node-specific intervention from NIRA. Results are ordered 
from strongest to weakest.

6.4 discussion

NIRA focuses on the clinical relevance of interventions by studying the projected 
propelling effect of a symptom-specific intervention on the behavior of the network as 
a whole. The technique can be used to study the projected effectiveness of different 
symptom-specific interventions. By altering node parameters instead of node states, 
NIRA aims to better represent the clinical practice where symptom interventions 
aim to lower the symptom’s activation probability. Furthermore, NIRA distinguishes 
between alleviating and aggravating interventions. The former interventions could 
be helpful to determine which symptom may be the most effective target for clinical 
interventions, the latter to consider which node symptom may be taken into account 
for preventive care.

As an empirical illustration, we applied the technique to a dataset containing 
assessments of 17 PTSD symptoms in a sample of participants that experienced the 
Wenchuan earthquake in 2008. We estimated an Ising model and applied NIRA. 
Results show that symptoms have different projected influences on the behavior of 
the network after interventions. These results support the idea that some symptoms 
have a different effect on the course of psychopathology than others (Borsboom, 2017; 
Borsboom & Cramer, 2013; Cramer et al., 2016). In the current dataset, symptoms may 
have (nonlinear) propelling effects on lowering or increasing the network’s overall 
symptom activity levels. If there were no propelling effects, intervening on one 
symptom would change the sum score with a maximum of one point. However, we 
found that, for example, symptom B1 (Intrusive thoughts) is projected to lower the 
sum score by two points after an alleviating intervention. Interestingly, we found that 
alleviating and aggravating interventions can have different effects on the same nodes. 
The best target for one type of intervention is not necessarily the best for the other 
intervention. Since the model is nonlinear and thresholds differ for every symptom, 
their relative change after an intervention, compared to the value of the other baseline 
thresholds, is not necessarily the same depending on the type of intervention.

Furthermore, we compared results from centrality analyses using the strength centrality 
index with results from NIRA in the empirical illustration. We found moderate to large 
correlations, meaning the most effective targets according to NIRA are related to but 
may differ from the most central nodes. However, more research is needed for more 
conclusive results, ideally including more types of centrality values (e.g., eigenvector 
centrality, a metric that takes into account the number of edges of neighboring nodes 
and might therefore detect possible propelling effects; Solá et al., 2013).

The presented technique takes a first step in studying the behavior of mental disorders 
when targeted with symptom-specific interventions using simulations. Due to the 
pioneering phase of the current research line, the technique has several boundaries 
and limitations. In this section, we will discuss how the presented technique could be 
further extended in future research. The first limitation is that the current version of 
NIRA can only be used with the Ising model (Ising, 1925). This means that binary data 
need to be at hand or data need to be binarized. Since the Ising model is exponential, 
results may differ (e.g., effect sizes of simulated interventions would decrease) when 
using other network models. The same logic could be applied to network models that 
handle ordinal or Gaussian data, such as the MGM (Haslbeck & Waldorp, 2020) or GGM 
(Epskamp, Waldorp, et al., 2018). For this, the optimal method to alter node parameters 
in different models needs to be investigated. Further research could develop equivalent 
techniques like the one presented here for other network models.

Furthermore, there are several limitations regarding the empirical validity of the 
presented method. One essential feature of the presented technique is that all 
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projected effects depend on the assumption that psychopathology behaves in line with 
the ferromagnetic Ising model (Ising, 1925). This is, of course, almost certainly false. 
It is possible that current statistical network models, such as the Ising model, do not 
truthfully represent the complexity of psychopathology. Instead of applying an existing 
statistical model to psychopathology, one could also try to develop formal models 
bottom-up, aimed to explain psychological phenomena (Borsboom et al., 2020; Burger 
et al., 2020; Fried, 2020; Guest & Martin, 2020; Haslbeck, Ryan, et al., 2021; Robinaugh, 
Haslbeck, et al., 2020; Schiepek, 2003) or psychological capacities (van Rooij & Baggio, 
2021). Using the Ising model to simulate the projected influences of interventions, 
NIRA remains a theoretical exercise, like any other simulation study. Simulation 
studies teach us what to expect if the used model is the true data-generating model 
(Guest & Martin, 2020). Thus, the problem of the technique’s empirical validity is not 
limited to the presented method. An advantage of these theoretical exercises, such as 
simulation-based intervention studies, is that they help generate clear hypotheses that 
can be tested and falsified in an empirical setting (Borsboom et al., 2020). To clinically 
validate the projected effects of NIRA, experiments need to be done to test whether 
clinical interventions on the targeted symptoms affect symptom levels as projected.

Relatedly, it is important to note is that effect sizes from NIRA depend on the 
intervention strength, meaning that propelling effects may disappear with weaker 
interventions. The impact of clinical interventions is currently unknown, as the 
empirical validation of the proposed method remains an open question. We chose 
the current value of two standard deviations as a trade-off between a value that is 
related to original threshold values (instead of an arbitrarily chosen number), yet also 
has enough strength to represent an effective clinical intervention. To emphasize that 
our current choice in the simulations is not the only possibility, we have included a 
sensitivity analysis in the supplementary materials that shows results after altering 
threshold parameters with one instead of two standard deviations. In addition, 
we allow researchers to choose the number of standard deviations that represent 
interventions when using the nodeIdentifyR R package. Future research could focus on 
the different options to represent symptom-specific interventions in psychopathology 
networks. One interesting idea has been proposed by Kruis et al. (in preparation), who 
adhere different values to the symptom variables in the Ising model. A symptom with 
a solid projected influence, such as insomnia (Blanken et al., 2019), could be given 
the binary states X = {0, 3), while a symptom with weak projected influence could 
be given the values X = {0,1). In this case, the insomnia variable will have a stronger 
influence on the dynamics of the model than other symptoms. Another possibility is 
to treat the magnitude of the NIRA intervention (i.e., the value with which we alter 
the threshold parameter) as a random parameter in the population to account for 
individual differences.

In addition, a strong assumption of NIRA is that it is possible to precisely target one 
symptom in a clinical environment. It has been suggested that the ‘fat fingers’ of 
psychologists do not account for this ‘surgical precision’ necessary for symptom-
specific interventions due to the interrelatedness of symptoms (McNally, 2021). For 
example, treatment interventions aiming to decrease the ‘depressed mood’ symptom 
of a patient may focus on changing maladaptive thought patterns (Burger et al., 2020). 
Intervening on these thoughts is likely to affect related symptoms such as ‘loss of 
interest’ directly. Thus, changes in symptom activity would not result from alterations 
in the activation probability of one symptom but originate from simultaneous changes 
in multiple symptoms at the same time. It has even been questioned whether 
psychiatric symptoms are distinguishable entities at an ontological level, on which 
distinct interventions can be administered (de Boer et al., 2021). Some argue that 
mental states are too overlapping to be considered suitable intervention targets 
(Woodward, 2014). In other words, the interdependence of symptoms implies their 
inseparability, rendering it impossible to separate unique contributions of symptoms 
(Olthof et al., under review). In the current chapter, we do not study the precise 
effect of one symptom on another specific symptom but study the behavior of the 
entire network after an intervention. In this way, we consider the interrelatedness of 
symptoms. In addition, the presented technique could also be administered to multiple 
symptoms at the same time by targeting various thresholds simultaneously. Another 
possibility is to combine network models and latent variable models, for example, 
using residual network models (Epskamp, Rhemtulla & Borsboom; 2017, see Figure 6.2 
panel d). Here, one assumes that some of the covariations between symptoms are 
caused by latent variables. Interventions could, in theory, target clustered symptoms 
simultaneously relative to their factor loadings (e.g., a symptom with a strong (weak) 
factor loading on the latent variable is highly (weakly) affected by an intervention, 
meaning its threshold is altered with a large (small) magnitude). Importantly, the 
directionality of the assumed causal model containing both latent variables and a 
network structure affects the intervention’s effect (Marsman et al., 2018). For example, 
an intervention on a symptom caused by a latent variable, without connections to 
other symptoms, will not have propelling effects on the model’s behavior. For an 
extensive discussion on the different causal implications of interventions in network 
and latent variable models, we refer to the paper by Marsman et al. (2018), specifically, 
Figure 12.

Relatedly, the presented technique only proposes the first optimal intervention 
target, as the model parameters are likely to change after the applied intervention 
due to the interrelatedness of symptoms. Therefore, the second symptom that NIRA 
identifies as most influential is not necessary the best intervention target after the first 
symptom has been targeted. In other words, NIRA does not identify the optimal target 
for a second intervention. It could be highly interesting to compute a ‘hierarchical 
tree’ containing all different pathways of possible symptom-specific interventions. 
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For example, to study the minimal pathway to clinically meaningful change. Future 
research could focus on how the computation of such a decision tree could be made 
mathematically tractable and implemented for psychological network models.

An issue that further complicates matters is the wide-known fact that it is implausible 
for population effects to translate to individual processes. In other words, the most 
effective symptom-specific intervention target to lower the population mean of PTSD 
is not necessarily the most effective target in individuals due to the heterogeneity 
of psychological processes (Bringmann et al., 2013; Hamaker, 2012; Molenaar, 2004). 
Ideally, simulation-based idiographic approaches would exist to investigate the most 
effective intervention target for a specific individual, based on his or her trajectory. 
One option is using Vector Auto-Regressive (VAR) models (Bringmann et al., 2013). 
These multilevel models are estimated from intensive longitudinal data (e.g., five 
measurement moments per day for every participant) and regress all symptom variables 
on their former measurement moment, allowing for the estimation of unidirectional 
edges. One possibility to study the effect of interventions in these VAR models is by 
using impulse response functions (IRF), where the system receives an external simulated 
“shock”, or impulse, to study its response over time (Lütkepohl et al., 2015; Yang et al., 
2019). IRF is used in economics (see, for example, Inoue & Kilian, 2013), and we hope 
that psychological research will further expand into that direction. However, until 
these methods are widely available, cross-sectional models can be a good choice 
as first explorations of uncharted territories since cross-sectional data collection is 
efficient in time, money, and patient impact (Spector, 2019).

Until more research focuses on the empirical validity of intervention studies from 
the context of psychological networks, the optimal representation of interventions 
in symptom networks remains an open question. However, we hope the presented 
technique will be a helpful addition to the methodological toolbox for studying the 
projected dynamics of symptom networks. In this way, computational models and 
techniques could aid in improving clinical practices and treatment effectiveness.
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7.1 main conclusions and summary

Many people show resilient responses after facing hardship, meaning they can maintain 
or return to normal psychological functioning (Bonanno, 2021). However, other people 
develop long-lasting psychological complaints that significantly burden their quality 
of life, their social environment, and society as a whole (Cuijpers et al., 2012; Lopez 
et al., 2006). A better understanding of how individual differences in resilience arise 
may eventually help in improving people’s resilience. How can we better investigate 
the potential mechanisms that give rise to resilience? This question lies at the heart 
of my dissertation.

In this dissertation, I have argued that we need to model the interactions between 
symptoms, risk factors, and protective factors to better represent, understand and 
anticipate resilience. The italics illustrate the two parts of the proposed approach. 
First, I argue that computational models and simulations can advance the study of 
resilience. We cannot expose people to potentially traumatic events, and, therefore, 
the use of simulations modeling can help to overcome ethical and practical problems 
in the investigation of resilience. Second, I argue in favor of a complexity approach 
to resilience that focuses on the interactions between components of the mental 
health system.

To achieve this, I combined existing complexity models of mental health with 
simulations modeling to develop a novel framework to investigate psychological 
resilience. The existing complexity models originate in the network theory of 
psychopathology, which proposes that mental disorders act as complex systems 
organized in a network of interconnected symptoms (Borsboom, 2017; Borsboom & 
Cramer, 2013). These symptom networks can be located in a healthy state, meaning 
that most symptoms are absent, or evolve towards a disorder state, in which many 
symptoms are activated. By studying the dynamics of these networks and adding 
simulated clinical interventions – which pull the network towards a healthy state 
– or stressful perturbations – pulling the network towards a disorder state, we can 
investigate how the symptom network may behave under different conditions. In 
this way, one can investigate, for example, how mental health complaints would 
evolve under different situations according to the model. As such, one can derive 
clear, testable, and specific hypotheses on what factors contribute to the system’s 
resilience that can be used for empirical validation (Borsboom et al., 2020; Fried, 2020; 
Haslbeck et al., 2021; Henry et al., 2021).

In this dissertation, resilience is defined as the situation in which the mental health 
system is located in a stable and healthy state. In other words, the system will not 
develop many psychopathology symptoms despite facing adversity. Thus, resilience is 
not viewed as a component of the mental health system (i.e., a variable in the network) 

but as a property of the system. As such, the presented framework accommodates 
the dynamic and multifactorial characteristics of resilience that have been frequently 
reported in the last decade’s literature (e.g., see: Fritz et al., 2018; Ioannidis et al., 2020; 
Kalisch et al., 2017, 2019; Rutter, 2012; Xu & Kajikawa, 2018).

Throughout this dissertation, I have shown how the proposed complexity approach to 
resilience can be applied to statistical network models using simulations. The following 
section gives a brief overview of how every chapter has contributed to this.

7.1.1 Brief chapter overview
Chapter 2 showed how resilience may be assessed from the architecture of symptom 
networks by simulating perturbations. The resilience quadrant was introduced which 
organizes symptom networks based on their most likely state (healthy or disordered) 
and stability (stable or unstable) against perturbations. An important conclusion is that 
symptom thresholds play a part in the network’s resilience, and as such, the network’s 
connectivity alone does not render enough information. Resilient networks are 
generally characterized by high symptom thresholds and weak connections between 
the symptoms. However, different combinations of node and edge parameters can 
lead to the same resilience level indicating various pathways in which a network’s 
resilience could be improved. Notably, the differences in parameter values that result 
in different regimes of the resilience quadrant are slight. This potentially explains why 
resilience is thought to be dependent on complex configurations of factors thought 
to support resilience.

Chapter 3 presented a formal, complex system of mental health, by showing how 
risk and protective factors could be integrated into symptom networks. As such, 
the multifactorial nature of resilience that has been reported in the literature could 
be accommodated (e.g., see Fritz et al., 2018; Lee et al., 2013; MacBeth & Gumley, 
2012; Masten, 2001; Xu & Kajikawa, 2018). Essentially, the chapter proposed that risk 
and protective factors may alter the architecture of symptom networks, such that 
they increase or decrease resilience in a non-trivial way. Therefore, resilience can be 
represented from a multifactorial perspective in which risk and protective factors are 
interconnected and affect the presence and stability of symptoms.

Chapter 4 expanded the mental health model by including integrated fast and slow 
mechanisms that affect mental health and resilience. The model was used in the 
context of psychopathology (fast-changing process) and personality (slow-changing 
process), in which personality factors alter the architecture of the psychopathology. 
The applied model connects empirically informed depression and neuroticism 
networks and shows that simulations from the model result in plausible empirical 
patterns representing essential phenomena. This chapter was implemented in an 

7



150 151

general discussionchapter 7

online simulation tool to make the presented study easy to understand and replicate 
for researchers without a simulations background.

Chapter 5 investigated the relationship between the architecture of symptom networks 
from individual participants and their symptom evolutions. The chapter concluded that 
the density of individual networks strongly correlates with the individuals’ change 
in depressive complaints. These complaints either deteriorated or ameliorated 
over time. Thus, denser individual networks indicate stronger covariances, which is 
necessarily reflected in the variation of the sum score of the depressive complaints. 
Although Chapter 2 found denser network to be less resilient, Chapter 5 portrays a 
novel possibility, namely, the situation in which a higher density in individual networks 
indicates more fluctuations. However, there are several differences in the networks 
used in both chapters. Most importantly, different types of network models were 
used: an Ising network containing only symptoms (Chapter 2), versus a multilevel VAR 
model containing assessments of both positive affect, negative affect, and depressive 
complaints (Chapter 5). Furthermore, Chapter 5 did not study how the individual 
networks would react to simulated perturbations. As such, the conclusions in Chapter 
2 are not necessarily a contradiction to the findings of Chapter 5. Nevertheless, 
Chapter 5 raises the important point that evolutions of cross-sectional models can 
differ from intra-individual models. Thus, future research should further investigate 
the resilience of intra-individual models.

Finally, Chapter 6 presented a novel method and corresponding R-package 
(nodeIdentifyR) to study the projected effects of symptom-specific interventions 
in symptom networks. The proposed method joins a developing novel tradition in 
which projected influences of symptoms in psychopathology models are studied with 
simulated symptom-specific interventions (Ryan & Hamaker, 2021; Burger et al., 2020; 
Castro et al., 2019; Henry et al., 2021; Robinaugh et al., 2016). The chapter offers 
a novel approach to represent the effect of an intervention by altering symptoms 
threshold parameters. The effect of a symptom-specific intervention is computed 
by considering the behavior of the whole network. The method can be applied to 
empirically estimated symptom networks to identify which specific symptoms would 
be the optimal targets for therapeutic intervention. Additionally, the method can 
study which aggravating intervention would have the most unfavorable effect on 
the network. This could provide information on the vulnerabilities in the network 
that may have to be considered for preventive care. By taking a complexity approach 
in which the effects from targeted interventions are studied on the behavior of the 
whole network, the method anticipates propelling effects that are difficult to identify 
without simulations.

7.2 main contributions to the network perspective of 
psychopathology

The research presented in this thesis builds upon the network theory and existing 
network models (e.g., Borsboom, 2017; Borsboom & Cramer, 2013; Cramer et al., 
2010, 2016b; van Borkulo et al., 2014). Network theory has significantly impacted the 
perception of mental health in clinical practice, and network models offered many 
methodological innovations (Bringmann et al., 2021). However, several challenges still 
lay ahead before theoretical and methodological advances are translated to empirical 
research and clinical practice (Bringmann et al., 2021; Fried & Cramer, 2017; McNally, 
2021). I discuss two current challenges of the network theory to which the presented 
work in this dissertation may contribute.

The first current challenge in the network perspective to psychopathology is how to 
interpret cross-sectional network models estimated from one assessment occasion 
(Bringmann et al., 2021; Fried & Cramer, 2017). The edges in these psychopathology 
networks are estimated from observational data, raising the question of what 
exactly can be derived from a network’s structure. For a causal interpretation of 
how symptoms affect each other based on the network’s structure, it is necessary to 
assume a dynamic process of how node  affects its neighboring node  (Dablander 
& Hinne, 2019). However, this assumed dynamic process is often not made explicit. 
The concept of node centrality as an indicator of importance or influence in the 
network has been much debated for this reason (Bringmann et al., 2019; Dablander 
& Hinne, 2019; Hallquist et al., 2019a; McNally, 2021; Rodebaugh et al., 2018). In this 
dissertation, the dynamic process that runs over the network model has been made 
explicit in every chapter by simulating data from the network’s structure. Naturally, 
one may wonder whether the assumed dynamics (e.g., Glauber dynamics in Chapter 2; 
see the supplementary materials) are a realistic representation of how symptoms affect 
each other in life. All chapters that used simulations in this dissertation has raised the 
same question and doubts in every discussion section. However, one can only improve 
the formulas that govern dynamics when they are explicitly assumed. As such, the 
current simulations-based approach opens the door for scientific debates, criticism 
and improvement. Arguably, this is preferable over keeping dynamics implicit, as it 
clarifies the need to develop better insights into the evolution of symptom networks. 
Therefore, the simulations presented in this dissertation take a step forward in the 
interpretability of network models.

The second current challenge is how estimated networks may inform us on the effects 
of interventions (Bringmann et al., 2021). One of the reasons why network theory 
was well received in psychopathology is that it provides more possible intervention 
targets than the traditional latent variable model (Borsboom & Cramer, 2013). Instead 
of intervening on the unobservable entity “depression”, the network theory proposes 
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that a person’s depression level can be diminished by treating specific symptoms 
(Borsboom, 2017). This aligns with the tools and aims of clinical psychologists (Burger 
et al., 2020). From a complex systems perspective, one may expect that intervention 
effects propagate through the network (Blanken et al., 2019). These propelling effects 
are challenging to foresee without simulations (Henry et al., 2021). Thus, again, 
dynamics that run over the model have to be explicitly assumed to simulate the 
projected effects of interventions. The work presented in this dissertation contributes 
to the network perspective to psychopathology with novel methods that simulate the 
projected effects from perturbations and interventions.

7.3 a roadmap to further investigate resilience from a 
complexity perspective

Although the work presented here takes a step forward in several areas of the network 
perspective and resilience research, there are more steps to be made. The sections 
below describe the most important ones for resilience research and provide a roadmap 
for future research.

7.3.1 Advancing the presented models

7.3.1.1 Further the development of mathematical and computational models 
of resilience
This dissertation has adjusted existing, estimated statistical network models to show 
disordered or resilient behavior when faced with perturbations. In this way, the adjusted 
statistical network models were used as data-generating mathematical models. This 
approach has several advantages. First, one can derive testable hypotheses from the 
model’s behavior as the simulations add a dynamic process to the network model 
(Bringmann et al., 2021). For example, the hypothesis that certain symptom-specific 
interventions have a more substantial effect on lowering depression than interventions 
on other symptoms (Chapter 6). Second, the approach is data-driven as the statistical 
models are estimated from data. Therefore, the model’s parameters and the simulated 
data are grounded in empirical observations of symptom co-occurrence. Third, the 
approach is straightforward: researchers do not require specialized mathematical or 
programming skills to play around with the model and simulate data (e.g., see the 
implementation of Chapter 4 in an online, interactive simulation tool). However, the 
downside of the used approach is that the statistical models used were not designed 
to explain resilience. The model’s behavior is bound to the limitations of the statistical 
model and, therefore, not always suitable to explain empirical phenomena relevant for 
resilience research. Chapter 3, for example, discusses the limitation that the influence 
from risk or protective factors to symptom network parameters does not change 
over time. Additionally, the PRP model in Chapter 4 is a mere approximation of a 
complex adaptive process in which the model’s parameters are updated after responding 

to adversity in a resilient or non-resilient fashion. The parameter-updating rules in 
the model were defined and added manually and not governed by the formulas that 
simulate the model’s behavior. As such, the adaptive and developmental characteristic 
of resilience is not fully captured.

An alternative strategy to build a formal model is from the ground up, namely, 
developing a mathematical model that shows resilient behavior (Haslbeck, Ryan, et al., 
2019). Specifically, this entails developing the mathematical formulas (e.g., differential 
equations that describe developmental processes over time) that govern the system’s 
behavior. An excellent example of this approach is the computational model for panic 
disorder (Robinaugh, Haslbeck, Waldorp, et al., 2021). The model successfully shows 
how interconnected variables such as perceived threat, anxiety sensitivity, and 
physiological arousal can show vicious cycles of panic attacks and jump towards a 
persistent disordered state. The advantages of this approach are that the model can be 
crafted to explain specific characteristics of interest, for example, changing the model’s 
parameters over time to represent the evolution of resilience (Buyalskaya et al., 2021).

However, this bottom-up approach also has some pitfalls. Developing a mathematical 
and computational complexity model of psychopathology is a lengthy process and 
relies on advanced mathematical and computational skills (Haslbeck et al., 2021), in 
which not many psychologists are trained. Furthermore, even though the model is 
designed to explain empirical phenomena, the computational model’s parameters are 
not grounded in empirical data (Robinaugh et al., 2021). In other words, the model’s 
parameters are chosen based on their plausibility and the behavior that they produce 
but not estimated from observations. Therefore, the proposed model still needs 
iterations of empirical validation and a translation towards a statistical model before 
researchers can use it for their data. The adjustment of existing statistical models 
could be a first step towards building a formal model from the ground up. One may 
evaluate what existing models can and cannot do and use them as first approximations. 
Ideally, there would be a constant theory formation cycle in the scientific community 
in which experts work together to develop theoretical models, implement them in 
computational and statistical models, and evaluate their empirical explanatory power 
and usefulness (Borsboom et al., 2020; Fried, 2020; Haslbeck et al., 2021). Hopefully, 
this dissertation’s thinking tools and straightforward simulation approach can add to 
a lingua franca that connects interdisciplinary researchers.

7.3.1.2 Integrate resilience mechanisms of protective factors
As resilience is highly multifactorial, heterogeneous, and develops over time, finding 
the right level of analysis that can be used to compare individuals is not an easy 
task (Infurna, 2021). Researchers have argued in favor of more investigations into the 
mechanisms of protective factors that account for resilience (Fritz et al., 2018; Sapienza 
& Masten, 2011; Werner, 2000). Importantly, these protective factors should not be 
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viewed as the counterpart of symptoms (Bonanno, 2012; Friborg et al., 2009; Masten, 
2001). For example, protective variables such as self-compassion potentially indicate 
the presence of resilience mechanisms, which can create an upwards spiral of more 
positive coping strategies (MacBeth & Gumley, 2012; Pinto-Gouveia et al., 2014). It 
has been suggested that self-compassion improves emotion regulation, which helps 
in processing stressors and adversity (Trompetter et al., 2017). Self-compassion may 
lead to positive cognitive reappraisal and acceptance of adverse situations, leading to 
more resilience (Allen & Leary, 2010). Additionally, self-compassion may hamper less 
maladaptive emotion regulation strategies, such as avoidance, thought suppression, 
and rumination (Barnard & Curry, 2011). These mechanisms would not have been 
discovered by only focusing on the absence of symptoms.

Ideally, protective mechanisms and symptom evolutions would be integrated into a 
model of mental health. This dissertation included the study of protective factors 
into the theoretical framework by proposing that these factors help pull the symptom 
network towards a stable and healthy state. Chapter 3 estimated a network that 
included some protective factors, and Chapter 5 studied the relationship between 
positive affect and depressive complaints. However, the focus was not on the study 
of resilience mechanisms of protective factors. Future research may use the proposed 
approach, in which studies that collected more data on protective factors may find 
more interesting results on potential mechanisms of protective factors. As such, we 
may broaden our focus from symptom development to developing protective factors 
and resilience mechanisms.

7.3.1.3 Develop resilience models that reflect intra-individual processes
The presented models and methods in this dissertation may be helpful to study the 
resilience of different participant groups, such as comparing clinically depressed 
patients with healthy individuals. In addition, population data are helpful to determine 
which risk and protective factors may be related to the development of symptoms. 
However, cross-sectional models cannot assess individuals’ resilience or predict specific 
individual response trajectories. Models that reflect intra-individual processes are 
necessary to personalize a formal resilience framework. As Chapter 5 showed, the 
same network architecture may not represent the same symptom evolutions in 
individuals. The simulations in Chapter 2 thus need to be expanded to simulation and 
perturbation methods that can be used with longitudinal, intra-individual models such 
as the networks used in Chapter 5 (e.g., VAR-models). One possibility to study the 
effect of perturbations in these individual models is by using impulse response functions 
(IRF), in which the network receives an external simulated “shock”, or impulse, to 
study its response over time (Lütkepohl et al., 2015; Yang et al., 2019; Bos, 2021). IRF 
is used in economics (e.g., Inoue & Kilian, 2013), and hopefully, psychological research 
will further expand into that direction. Nonetheless, until these personalized methods 
are widely available, cross-sectional models are a good option to explore uncharted 

territories as collecting population data is efficient in time, money, and patient impact 
(Spector, 2019).

7.3.2 Advancing the presented methods

7.3.2.1 Incorporating different types of adversity in the simulations
In this dissertation, adverse events were simulated with perturbations. These 
perturbations affected the presence of symptoms (Chapters 2 and 4) or the probability 
that symptoms occur (Chapter 6). Additionally, perturbations were aimed at the whole 
network (Chapters 2 and 4) or targeted at specific symptoms (Chapter 6). However, 
the perturbations did not represent diverse adverse life events, although it is known 
that different types of adversity have a distinct impact on a person’s mental health 
(Fried et al., 2015). For example, developing a depressive episode after losing a loved 
one could qualify as a normal response due to the situation’s severe impact. In contrast, 
after a bad day at work, the same response may indicate a more susceptible mental 
health state. To better represent resilience in response to different adverse events, 
one could adjust the simulated perturbations to represent different types of adversity. 
The simulated perturbations used in Chapters 2 and 4 (i.e., the Glauber dynamics, 
see the supplementary materials) are very flexible and could be altered to represent 
different types of adversity. For example, one could perturb a few symptoms instead 
of targeting all symptoms, representing a minor adverse event. Furthermore, one could 
force several symptoms to be present constantly instead of perturbing symptoms 
for a brief moment, representing the presence of chronic stressors. Additionally, one 
could perturb a random number of symptoms to study how the network reacts to 
different adverse events.

7.3.2.2 Connecting the simulations and perturbations to actual timescales
A related topic for future research is that the simulated perturbations used in this 
dissertation are not connected to a real timescale. The perturbations in Chapters 2 and 
4 mimic a continuous process by only allowing one symptom to change per simulated 
observation. However, the simulated observations do not reflect an actual timescale, 
for example, in which one simulated observation would indicate one day. Time is an 
essential element of resilience as definitions often state that a person has to recover 
‘relatively rapidly’ from hardship to show a resilient response (e.g., Bonanno, 2005; 
Kalisch et al., 2017; Riley & Masten, 2005). If one wanted to include the velocity of a 
stress response to resilience assessment, simulations would need to reflect a timescale 
(e.g., a symptom can only evolve every x number of days).

One possible way to handle this is to define resilience in different time horizons 
(Linkov et al., 2014). For example, setting a cut-off score for the symptom levels 
that still indicate a healthy state on an immediate time horizon (e.g., the same day of 
the adverse event), intermediate time horizon (e.g., a few months after the adverse 
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event), and long-term time horizon (e.g., a few years after the adverse event). One 
could determine what symptom development or psychological functioning level 
would qualify as a resilient response for different adverse events and time horizons. 
Moreover, one could determine resilience by analyzing the speed of recovery from 
daily, real-life perturbations using observational data (Kalisch et al., 2021; Kuranova 
et al., 2020). Still, it remains an open question how to connect plausible time scales 
to simulations that aim to anticipate or predict resilient responses. Hopefully, the 
simulation methods presented in this dissertation could function as a starting point 
from which improvements can be developed.

7.3.3 Empirically validating the presented methods and models
The crucial step to go from a complexity perspective of resilience towards a better 
clinical and preventative practice is to validate the proposed methods and models 
empirically (Bringmann et al., 2021; McNally, 2021). As discussed before, the models 
used in this dissertation were not originally designed to explain resilient behavior. 
Instead, existing statistical models were adjusted to accommodate resilience 
phenomena described in the literature. Therefore, it is not evident that the simulations 
in this dissertation will also have extensive ecological validity. For example, it is unlikely 
that a response to a stressful event will play out precisely as the Ising model proposes. 
Instead, the main contribution of the work in this dissertation is that it goes towards 
the formalization of resilience from a complexity perspective. As such, it can produce 
testable hypotheses, which is a step forward from only estimating network models 
or offering verbal theories (Borsboom et al., 2020).

Notably, Chapters 2 and 6 generate testable hypotheses appropriate for future 
research. The novel method presented in Chapter 6 (NIRA) studies which symptom-
specific intervention has the largest projected effect on the overall symptomatology 
level. The method offers the testable hypothesis that the recommended symptom-
specific intervention target leads to a higher treatment efficacy compared with other 
targets. A first step into the empirical validation of this method would be to better 
understand how treatments play out empirically on a symptom-specific level. Network 
Intervention Analysis (NIA) offers insight into the sequential process of symptom-
specific direct and indirect treatment effects when experimental data are available 
(Blanken et al., 2019). One could combine NIA and NIRA to validate the simulated 
symptom evolutions empirically. NIA can be used to investigate whether the propelling 
effects anticipated by NIRA played out as projected. For example, one could first 
apply NIRA to a baseline network of a group of patients to identify the optimal 
treatment targets according to the simulations. After treatment, one could apply 
NIA to investigate whether the treatment targeted the intended symptoms. In this 
way, one can start a research line into the empirical validity of simulated intervention 
methods that may optimize treatment efficacy.

Alternatively, the nodeIdentifyR method for NIRA could be extended with an 
edgeIdentifyR. Instead of studying the projected effects of node-specific interventions, 
one could study the effects of intervening on specific connections between symptoms. 
The uncoupling of symptoms approximates the aims in clinical practice (Burger et 
al., 2020). For example, CBT intends to disentangle and break maladaptive cycles 
between emotions and behaviors that could otherwise lead to self-enforcing symptom 
evolutions (Rothbaum et al., 2000). Treatments could therefore be conceptualized 
as trying to diminish the co-occurrence of symptoms, in which the presence of a 
dysfunctional belief does not lead to a pattern of catastrophic cognitions (Hayes et 
al., 2015). For example, research into eating disorders has found that symptoms related 
to a negative body image, such as ‘overvaluation of weight’, occupy a central position 
in estimated networks of eating disorders (Smith et al., 2019). The hypothesis is that 
the connection between such symptoms and maladaptive behaviors, such as binge 
eating or excessive exercise, would be the most critical links to break (DuBois et al., 
2017). It may be challenging to address the symptoms directly, as symptoms related to 
body image indicate core expressions of eating disorder pathology (i.e., these nodes 
may have strong thresholds) (Calugi et al., 2021). Instead, CBT may help to block the 
maladaptive behaviors that follow. A future application of the edgeIdentifyR could 
investigate whether an intervention on the link between such a central node and other 
symptoms has a substantive projected effect on diminishing the overall complaints.

Furthermore, one could study the empirical validity of the Resilience Quadrant 
(Chapter 2). To this end, one could follow the longitudinal design of a study that was 
done by van Borkulo and colleagues (2015). In this longitudinal study, the researchers 
compared the connectivity of baseline networks between two groups. The first group 
did not suffer from MD episodes anymore at a later timepoint (remittent MD), while 
the MD complaints of the second group did not vanish (persistent MD). Symptom 
thresholds need to be added to the analysis of the network’s architecture to investigate 
whether the architecture of the baseline networks is more resilient in the remitting 
group than the persisting group. As such, one can study whether the architecture from 
the baseline networks leads to the differences in symptom development as proposed 
by the resilience quadrant.

Additionally, to validate the simulation-based approach to the Resilience Quadrant, 
one may aim to infer the underlying stability landscape of network models by 
constructing their potential landscape using simulations (Cui, Lichtwarck-Aschoff et 
al., submitted; Cui, Olthof et al., submitted). If this stability landscape is constructed 
(for example, for the Ising model network used in Chapter 2), one could compare 
whether the simulated perturbations render the same underlying stability landscape 
as the potential landscape.
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7.4 final remarks

In this dissertation, I developed a framework to investigate psychological resilience 
from a complex systems perspective using simulations. The framework opens novel 
possibilities for assessing the resilience of symptom networks and shows different 
possibilities for the expansion of these models to accommodate behavior from the 
resilience research literature. However, the framework could also be used in a broader 
sense in different fields, such as larger behavioral transitions outside of the mental 
health context. Investigating how susceptible systems are to change, and studying 
the optimal targets for interventions, could be valuable applications of the proposed 
methods in other fields. One could investigate how long-term, stable behavioral 
transitions in society (e.g., the sustainable energy transition) could be achieved using 
the proposed framework. For example, to anticipate otherwise unforeseen secondary 
effects from targeted interventions.

This dissertation was written in the middle of a global COVID-19 pandemic. For me, the 
pandemic further displayed the need to embrace a complexity approach. A complexity 
approach is fundamental to understanding how people adapt to adversity in a dynamic 
and interconnected world. Societies are becoming increasingly interdependent and 
will face urgent and global crises over the next decade (such as the climate crisis). 
Adapting a modeling approach that studies different scenarios helps understand how 
different interventions may play out, as these cannot be understood in isolation. 
We may isolate characteristics of people in research laboratories, but the pandemic 
showed how difficult it is to isolate people in the real world.
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a.1 introduction

This supplementary chapter aims to provide the reader with the programming 
background and skills necessary to independently carry out analyses of the network 
approach to psychopathology. To date, the network approach is almost uniquely 
implemented in R, making it an essential tool for carrying out psychological network 
analyses.

A.1.1 The R environment

A.1. 1. 1. Why use R?
Using R for psychometric analyses is no longer reserved for specialists or extremely 
enthusiastic methodologists. During the past decade, psychometric analyses in R have 
expansively increased, making it, currently, the norm for doing general psychometric 
analyses (Mair, 2018). There are good reasons for this: R is a powerful programming 
language for statistical analyses, data visualization, data mining, and general 
programming. Furthermore, R is freely available, open source, and is accompanied by a 
large and lively community. Many statistical analyses, such as the ones discussed in this 
book, are implemented in R packages, making the use of novel statistical methods easy.

A.1.2 Installing and setting up R and RStudio
We suggest installing two different programs for using R: the base program R itself, 
as well as an integrated development environment (IDE): RStudio. R is the base 
programming language, which can be operated through the terminal or command 
prompt. The popular IDE RStudio presents a clear and easy-to-use environment to 
work in, which includes in addition to the R console itself also a plain text editor for 
editing R code, several useful panes for displaying plots, help files, loaded objects, 
and more. While it is possible to carry out all analyses presented in this book without 
using RStudio (e.g., by directly working in the computer terminal), we suggest using 
RStudio and assume it is used throughout this book.

Please note that R and RStudio need to be installed separately from different websites, 
and that these programs have to be updated separately as well. The latest version of R 
can be installed from https://www.r-project.org/, and the latest version from RStudio 
can be installed from https://rstudio.com/products/rstudio/download/. It is advisable 
to always work with the latest version of both programs.

https://www.r-project.org/
https://rstudio.com/products/rstudio/download/
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After installing both R and RStudio, you can open RStudio to get started. It can then 
immediately be seen that the RStudio program consists of four main panes:

Console The console pane processes commands, meaning that you can enter and 
execute commands here. However, we suggest using the Source pane for 
executing (and saving) your commands. The console is similar to the terminal 
of the R base program and it will not allow saving your script.

Source The source pane is a plain text editor, meaning it shows plain text in the 
form of numbers, symbols, and letters. Here, you can write and edit your 
code, as well as save it in the form of a script. It is highly recommended to 
work from your script and send your commands to the console, instead of 
directly working from the console.

Plots/Help This pane has two functions. The first is to show graphical output, for 
example, figures such as scatterplots or barplots created from your code. 
Graphical output can be saved in several formats, such as .pdf, .tiff, or .jpeg. 
The second function of this pane is to show you documentation of functions 
(functions will be further discussed in Section A.4). Any function in R is 
accompanied by documentation. Documentation gives information on what 
functions do, which arguments can be specified, and what the output will 
be. Many manuals also include example code on how to use the function. 
Documentation for every function can be found under the help tab or by 
using the question mark followed by the name of the function ?name. For 
example, running the following command ?mean gives the documentation 
for the function which calculates the mean of an object.

Workspace The workspace shows which objects are currently loaded in your 
environment. Objects can consist of, for example, loaded data sets or 
created objects such as matrices and vectors. Please note that it is not 
recommended to save your workspace when closing RStudio, as in every 
future session the same objects will be reloaded and this may create issues in 
new scripts or overwrite functions. In addition, always loading your objects 
from your script is better practice for reproducibility.

It is recommended to have the console and source panes on top, since they are the 
most important, and plots and workspace panes below (see Figure A.1). Pane layouts 
can be set with Tools > Global Options > Pane Layout. In Tools > Global Options > 
Appearance the theme of RStudio, including background colors and text colors, can 
be changed.

Figure A.1. Example of RStudio with the four panes ordered in the recommended setup, clock-
wise from top left: the R Console pane, the Script pane, the Workspace pane, and the Plots/
Help pane. Note that the color of RStudio is set here according to a theme, which can be set 
using Tools > Global Options > Appearance.

a.2 basics of r programming

This section will discuss some of the basics of R programming, starting with how R 
can be used as a calculator, and ending with how to write the first forms of an R script 
that can be saved and loaded later.

A.2.1 Using R as a calculator
To start programming in R, experiment with the console pane. For example, write the 
following command, followed by pressing enter:

1 + 1

R will now return the number 2, telling you that the sum of 1 and 1 equals 2. The full 
output in the console is:

[1] 2

The 2 refers to the answer of our question (‘what is 1 + 1?’). The [1] indicates that the 
first element of the answer is the number 2. This is specific to R: R will often return 
vectors, series of numbers, even if the vector is only one element long (i.e., a single 
number). So, in full, this output tells us that a vector is returned, and that its first 
element equals 2. For now, you can ignore the [1] completely.
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Next, try to enter:

1 +

followed by pressing enter. Now, something else happened: the console prompt > 
changed into +. This is because R is still expecting input. If you type another number 
and press enter the command will finish and output will be returned. Alternatively, if 
you press escape the command will be cancelled, allowing you to enter new commands 
into R.

Of course, R can do more than just add numbers. Several other operators work as 
might be expected. For example, * can be used to multiply numbers, / can be used to 
divide numbers, ^ can be used to raise numbers to some power, and brackets ( and ) 
can be used to group commands and give precedence over evaluating some commands 
first. In addition, there are several functions, which will be explained in more detail 
later, that can be used for mathematical operations: sqrt(...) computes a square root 
(√...), exp(...) computes the exponential function log(e...), log(...) computes a 
logarithm (ln(. . .)), and so forth.

A.2.2 Writing R code in a script
While the console is the pane that actually accepts R commands, as well as the pane 
in which most output is returned, it is highly recommended to never write code in 
the console pane directly. Instead, R code should be written in an R script such that 
the commands can be saved and used later again. In addition, scripts allow for more 
complicated sequences of R commands to be written. Often, you need to evaluate 
many commands sequentially, e.g., commands to read, transform, plot, or analyze 
data. Furthermore, saving code in scripts makes your code reproducible for other 
researchers.

To create an R script, select File > New File > R script. Immediately also save the script 
using File > Save As. Always use the R extension to save R scripts. Now, R commands 
can be written in the script pane instead of the console pane. Sending commands from 
the source pane to the console is done by selecting the relevant code and pressing 
“Run”, or alternatively, pressing control+enter/ cmd+enter. This sends the selected 
commands to the console, where they will be processed.

A.2.3 Comments
Including comments in your script helps other researchers, or your future self, 
understand your code. Comments are added by using the hashtag # before writing 
code; any line of R code will no longer be evaluated from the moment # is encountered. 
These comments can then be used to explain what the purpose of the code is or why 
it is added. Alternatively, comments can be used to omit part of the code temporarily 

(this is termed ‘commenting out’ some code). Tutorial Box 1 gives some examples of 
how a comment can be used.

Tutorial Box 1. Placing comments in the code to clarify code.

Any code past a # symbol will not be evaluated by R. For example, the code:

1 + 1 # + 1

will return 2, not 3, as the code 1 + 1 is evaluated, and the last bit is not. As such, the # can 
be used to clarify code. For example, a clarification can be added after a line of code:

1 + 1 # This sums the numbers 1 and 1

or before a line of code:

# Sum the numbers 1 and 1:

1 + 1

We recommend to use comments very liberally in the code. For example, it is not 
uncommon for almost every line of R code in an analysis script to be accompanied by a 
comment.

A.2.4 Programming style and coding conventions
Carrying out statistical analyses in R implies writing code. This means not only having 
to learn the correct programming commands for conducting specific analyses, but also 
learning rules on what code should look like. The set of rules that determine the coding 
format are called coding conventions, which are related to general programming 
style. Just like there are guidelines for how to write research papers (e.g., American 
Psychological Association, 2020), many guidelines also exist for how to write clear 
code. While it is never mandatory to adhere to a specific coding convention, writing 
code according to coding conventions does greatly increase its readability and clarity, 
making it easier to share with other people and to maintain code over time.

Although there is no clear best style guide for programming in R, the “tidyverse style 
guide” by Hadley Wickham is often viewed as one of the most important ones10. It 
should be noted, however, that style guides are inherently opinionated, and therefore 
arguments can be made in favor and against every element included in any style guide. 
This book will not rely on strong rules on particular programming style. However, we 
would like to make readers aware that style guides exist, and encourage thinking about 
the format of code when doing analyses in R.

10 https://style.tidyverse.org/

https://style.tidyverse.org/
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a.3 basic r data structures

While it certainly can be nice and useful to write mathematical expressions in R, the 
output of such expressions has to be stored such that it can be used in later commands. 
In addition, when data are analyzed, they need to be stored inside R as well, such that 
they can be called later. Saving the output from commands or storing data in R can be 
done by using objects. This section discusses objects in more detail.

A.3.1 Assigning objects
Objects can contain anything in R. For example, a single number can be stored in 
an object, but also more complicated data structures and books worth of text. The 
<- operator is used to store values into objects. For example, the following statement 
saves the number 1 in the object a:

a <- 1

Now, instead of writing 1, the object a can be used. For example:

1 + a

will again return the number 2. Alternatively, the = operator also functions to 
store values into objects. We do not recommend using =, however, because <- is 
unambiguous, explicating the left part becomes what is on the right part, while 
the = operator is ambiguous. Furthermore, = cannot be used within function calls to 
assign objects.

R expressions that are not stored into an object are printed in the console. When 
entering a command where an expression is saved into an object, the result of the 
object is not printed in the console. To see the value of the object, you need to run the 
name of the object into the console. For example, the following statement evaluates 
1 + 1 = 2 and stores the result into the object b, but does not print the result:

b <- 1 + 1

To get the result, we can ask R to print the result with print(b) or just by typing b. 
All currently loaded objects are listed in the workspace pane. When quitting R, you 
will be asked if you would like to save the objects in your workspace. As emphasized 
above, it is recommended to never do this.

A.3.2 Naming objects
You can use any combination of letters, numbers, and some symbols, such as the 
underscore _, to form object names, as long as the object does not start with a number. 
It is important to give your objects informed names, which describe the content of 
your object. In this way, it will be easier for other people to read and understand your 
code. Various conventions and standards exist regarding object naming. Object names 

in R are case sensitive: object, Object, and OBJECT are different objects. The tidyverse 
style guide recommends to only use lowercase letters, numbers, and underscores. 
Underscores should be used to separate words, for example, data_wave_1 instead 
of datawaveone. Another frequently used style, without using underscores or other 
operators, is lowerCamelCase. Here, the first letter of the first word is lowercase, and 
the following first letters of words are uppercase. For example: sampleSize, rawData, 
and nMales.

A.3.3 Object modes
Objects in R can be of different types, called object modes. There are three main 
object modes for the standard output in R (a vector): numeric, character, and logical. 
Tutorial Box 2 gives examples of each of these object modes. Numeric objects store 
numbers, on which you can apply mathematical operations. Character objects, also 
called strings, store any form of text between tick marks (which can be double tick 
marks, “, or single tick marks, ’). You cannot apply mathematical functions on character 
objects, since character strings are not numbers (even if they look like numbers). 
Logical objects indicate if something is true or false, and consist of the Boolean objects 
TRUE or FALSE. Commonly used shortcuts you may see in code are T and F. However, 
we strongly advise not to use these shortcuts. This is because F can be overwritten 
and stored as another object, for example F <- 1. In this case, F no longer refers to 
FALSE but to the number 1. This is problematic, as R sometimes interprets the number 
1 as TRUE without warning. When a logical statement is preceded by an exclamation 
mark (!) the logical result is reversed (!TRUE becomes FALSE and !FALSE becomes 
TRUE). Logical modes are used in two ways: in functions, to assign logical modes to 
arguments, and in performing logical tests.
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Tutorial Box 2. Examples of three object modes that can be used in R: numeric, character, 
and logical.

The following code creates a numeric object:

numericObject <- 1

This object can subsequently be used as a number:

numericObject + 1 # This will return the value 2

The following object is a string and not a number:

characterObject <- "1"

This object cannot be used as a number:

characterObject + 1 # This will result in an error.

Finally, we can also store a logical object:

logicalObject <- TRUE

Interestingly, this object can be used as a number, as TRUE also refers to 1 and FALSE to 0. 
In addition, the logical values are also returned when asking R a logical test. For example:

1 == 0 # This will return the message FALSE

A.3.4 Missing data
Missing data are encoded in R with NA, which means ‘not available.’ Missing data are 
handled differently for different functions. To find the right argument for handling 
missing data in the function you are using, review the documentation for that specific 
function using ?.

A.3.5 Vectors
A vector is an object that stores multiple values. These values can include numbers, 
but also characters such as letters, or missing data (encoded with NA). To assign a 
series of values to a vector, you can use the combine function c(...) by simply adding 
the series you want to combine into a vector. Every element of the series is separated 
by a comma. A second way to create a vector, is to use the colon : to create a series 
of successive numbers. Vectors can also be indexed using square brackets ([ and ]), 
which means selecting a certain cell or collection of cells from the vector. This can be 
used to check the values of these cells, to use them for analyses, or to change them. 
Tutorial Box 3 gives some examples of how vectors can be used.

Tutorial Box 3. Examples of vectors in R.

The combine function c() can be used to create a vector. For example, the following 
code will create the vector 1 2 3 4 5 :

numericVector <- c(1, 2, 3, 4, 5)

Because this is an integer sequence, the same vector could also be formed using:

numericVector <- 1:5

A vector can also contain missing elements, which are encoded as NA: 

vectorMissing <- c(1, 2, 3, NA, 5, 6, NA, 8, 9, 10)

Many functions in R tend to return errors when elements of a vector are missing. For 
example, the mean( ) function can be used to compute the mean of a vector, but using it 
on a vector with missing elements will lead to an error:

mean(vectorMissing) # Results in an error

Instead, missing data must be handled in a way that is acceptable for the function used. 
For the example above, we could remove all missing elements using na.omit( ):

mean(na.omit(vectorMissing))

or an argument of the mean( )  function can be used to do the same:

mean(vectorMissing, na.rm = TRUE)

Always refer to the help file of a function for information on how to handle missing data. 
Finally, vectors can be indexed using square brackets that follow the name of the vector. 
The square brackets can contain integers indicating the elements of the vector (starting 
with 1), or a logical vector of the same length as the original vector with TRUE indicating 
an element should be returned. For example, vectorMissing[1:3] selects only the first 
three elements of the vector and vectorMissing[!is.na(vectorMissing)] selects all 
elements that are not NA.

a.4 functions and packages

The introduction of vectors also introduced the concept of functions. A function 
is a small program: it takes input, does something, and gives output. For example, 
the combine function c(...) takes some values, combines them, and gives a vector 
consisting of those values as output. Some other examples of common functions are 
mean(x), sd(x), and sum(x) to compute the mean, standard deviation, and sum over 
elements of a vector called x.

Functions always have the same form, namely, their name, and then the corresponding 
arguments within brackets: name(argument, argument, argument, ...). Some 
arguments have default settings, meaning that the parameters of that argument are 
set. This makes the functions more generic to use, however, you can always change 
the parameters of every argument when using functions.
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To know which arguments can be provided, and which default arguments apply, every 
function in R is accompanied by documentation. Reference cards also give a good 
overview of R functions for frequently used analyses, which can be found online. 
Furthermore, you can use online search engines and the R community to find the 
exact function names and arguments for the analyses you want to execute. You can 
also write your own functions using function(). However, this is part of advanced 
programming skills and will not be discussed throughout this book. Several freely 
available online resources on this topic exist.

Packages are extensions contributed to R containing extra functions. Developmental 
versions of R packages can often be found on Github, and stable versions of R packages 
are commonly stored on the Comprehensive R Archive Network (CRAN). Several pack- 
ages are necessary for carrying out the analyses described in this book. All packages 
need to be installed once by using install.packages()11. For example, the following 
command installs the package bootnet.

install.packages(“bootnet”)

This may take a long time, and only has to be run occasionally, to ensure the package 
is up to date. It is not recommended to leave a call to install.packages(...) in an R 
script (or if it is included, include a comment sign # before the call so it is not always 
evaluated). After installing a package, the package also needs to be loaded using the 
function library(...). For example, the bootnet package can be loaded with:

library(“bootnet”)

Alternatively, the function require() can be used. This makes all exported functions 
from the bootnet package available to the user. Contrary to install.packages(...), 
the library(...) command does have to be used at the beginning of every script that 
uses functions from a package.

a.5 advanced object structures

We already discussed different modes of objects in R and vectors that combined several 
objects. Typically, data in R are presented in more advanced structures than vectors. 
For example, networks can be encoded using two-dimensional matrices, and data are 

11 Sometimes R may struggle to install an R package and return an error. If R asks if you want to install 
a package from source, it is best to answer ‘no’ unless you have your system set up to install packages 
from source. Answering ‘no’ does not stop installation but rather continues with installing pre-com-
piled packages from CRAN, which is easier. Most R packages depend on other R packages, which 
should be installed automatically. Sometimes, however, this does not work. Whenever R returns an 
error that some package is not installed or cannot be loaded, try installing that package first. Some-
times then a new error may be returned pointing out a different package that needs to be installed.

typically stored in a form of a matrix, in which columns can have different modes (data 
frames). This section will introduce these more advanced object structures.

A.5.1 Matrices
An important function when doing network analyses is the matrix() function. 
Technically, a matrix is a vector with two dimensional attributes. Rows indicate 
horizontal lines of cells, while columns indicate vertical lines of cells. The first argument 
of a matrix is a vector (i.e., the data) to fill the matrix with, the second argument the 
number of rows, and the third argument the number of columns. Indexing in matrices 
can be done using square brackets, where the first value indicates the row number 
and the second value the column number, separated by a comma. Some examples of 
how to use matrices are shown in Tutorial Box 4, and documentation for the matrix 
function can be found with ?matrix.

Tutorial Box 4. Example code for creating and indexing matrices.

The matrix function can be used to create a matrix:

myMatrix <- matrix(1:9, nrow = 3, ncol = 3)

Note that the matrix is filled columnwise. To fill the matrix rowwise, we can instead use:

myMatrix <- matrix(1:9, nrow = 3, ncol = 3, byrow = TRUE)

Next, we can index the matrix using square brackets. For example, myMatrix[1,2] selects 
the cell at row 1 and column 2, myMatrix[1:2,1:2] select the block with the first two 
rows and columns, and myMatrix[1:2, ] selects the first two rows and all columns.

A.5.2 Lists
Lists can consist of any (combination of) data modes. Lists are like coat racks that 
can store any type and combination of object modes, even other lists! For example, 
numeric matrices and vectors consisting of characters can be combined into a list. The 
first element will be the matrix, while the second element will be the vector. Every 
element of a list can be named. To index from a list, the $ operator or double square 
brackets ([[ and ]]) can be used. An example can be seen in Tutorial Box 5.
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Tutorial Box 5. Examples of constructing and indexing lists.

We can create a list with two objects, one vector consisting of character elements, and 
one matrix consisting of numeric elements, with the following code:

myList <- list(characterVector = c("a","b","c","d"), numericMatrix = matrix                                                                                                        

         (data=c(1,2,3,4), nrow = 2, ncol = 2))

To confirm that the list consists of two objects, one character vector and one numeric 
matrix, we can use the structure function with str(myList). To index the list, we can use 
double square brackets. For example, the following selects only the first element of the list:

myList[[1]]

We can do the same by using the name of the element:

myList$characterVector

Finally, we can also index elements of lists. For example, the following selects the first 
element of the first object of the list:

myList[[1]][1]

A.5.3 Data frames
Data frames are the most used objects for storing data sets; most data sets, such as 
data sets imported from the statistical program SPSS, will be represented as data 
frames in R. Technically, a data frame is a list in which each element is a vector of the 
same size. This allows the data frame to also be represented (and indexed) as a matrix. 
Data frames can store different variables, such as numeric variables, indicating scores 
on a questionnaire, but also characters, such as “male” and “female”. Since they are 
technically a list, you can index data frames using the $ operator. However, you can 
also index data frames in the same way matrices are indexed. Tutorial Box 6 shows 
how a data frame can be created.

Tutorial Box 6. Working with data frames.

We can create a data frame with two variables indicating a participant’s score and gender, 
consisting of a numeric vector and a character vector:

myDataFrame <- data.frame( score = c(3, 6, 2, 4), gender = c("male",

"female", "other", "female"))

To index the data frame, the $ operator, single square brackets and double square 
brackets can be used. For example, all these commands will index the second column 
(gender):

myDataFrame$gender 
myDataFrame[,"gender"] 
myDataFrame[["gender"]] 
myDataFrame[,2] 
myDataFrame[[2]]

A popular R package for manipulating data frames is the dplyr package (Wickham et al., 
2021). The dplyr package contains several powerful functions for manipulating data. For 
example, the select function can also be used to select a variable:

select(myDataFrame, gender)

and the group_by and summarize commands can be used to compute something for 
every level of one or more grouping variables:

summarize(group_by(myDataFrame,gender),

mean= mean(score))

This code computes the mean for every level of gender. The dplyr package exports a 
handy pipe operator, %>%, which can be used to express, for example, f(g(x)) as x %>% 
g %>% f, in which x is some R object and f and g are some R functions. This can be used 
to write chains of commands easier (reading from left to right instead of from inside to 
outside):

myDataFrame %>% group_by(gender) %>%

summarize(mean = mean(score))

a.6 working with data in r

Now that you are familiar with the way R works, it is time to start looking at real data. 
To do this, data need to be loaded into R as an object, after which it can be used for 
analysis.

A.6.1 Working directory
The working directory is the folder on your computer in which R is currently operating. 
This means that your data will be loaded from this folder, and any output created 
(e.g., new data and plots) will be saved to this folder. You can request your current 
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working directory with the function getwd(). A common error that can occur is that a 
file is requested which is not located in the working directory. To solve this issue, you 
need to change your working directory or add the needed (data)file to your current 
working directory. To set your current working directory, you can use the function 
setwd(). Another way to set your working directory is by clicking Session Set Working 
Directory Choose Directory. This will allow you to set your working directory to a 
location of choice. Finally, as also shown in Figure A.2, you can also set your working 
directory by clicking Session > Set Working Directory > To Source File Location. This 
sets your working directory to the same folder as where your current script is saved, 
which is convenient, since this allows you to easily load and save objects, (data)files, 
and scripts within the same folder.

Figure A.2. Setting up the working directory.

A.6.2 Importing data into R
After the working directory is correctly specified, there are several ways to load 
data sets into R. First, data sets can be loaded into R from different sources (e.g., 
CSV, SAS, SPSS, Microsoft Excel) by clicking File > Import Dataset. This option will in 
addition provide you the code to import data, which you can also use directly. Second, 
datasets can be loaded into R directly, by using a command to read your data. The 
most common format to read data into R is the Comma-Delimited (CSV) format. 
Please note that reading SPSS or Microsoft Excel data files into R requires installing 
and loading dedicated R packages. Tutorial Box 7 shows examples of code that can 
be used to read data into R.

Tutorial Box 7. Importing data from plain text files and SPSS files.

If data mydata is stored in a plain text file with the extension .csv and located in the same 
directory as the script, then, after setting the working directory to the same location as 
the script with Session > Set working directory > To source file location, the data can be 
loaded into R and stored in an object called data with:

# Read a CSV data file into R

Data <- read.csv(“mydata.csv”)

Possible, some arguments need to be used to specify how exactly the data are stored. 
See for more information ?read.csv

If the data mydata are instead stored in an SPSS file with the extension .sav, the following 
commands can be used to read the data and store them in an object called data:

#Read an SPSS data file into R

install.packages(“foreign”)

library(“foreign”)

data <- read.spss(“mydata.sav”, to.data.frame=TRUE)

Both the functions read.csv() and read.sav() return the data in a data frame.

A.6.3 Correlation & covariance
After the data are loaded into R, they can be used for statistical analysis. For example, 
the data could be used to estimate a correlation matrix, which will play an important 
role in some of the analyses discussed in this book. The function cor() computes a 
correlation from a data frame (or any other type of numerical data) and the function 
cov() computes the covariance. The argument method selects the method for 
computing the correlation or covariance. The default is using Pearson correlations, 
(method = “pearson”), but other options include Spearman (method = “spearman”), 
and Kendall (method = “kendall”) correlations.

a.7 conclusion

This chapter introduced the reader to basic concepts of the statistical programming 
language R. However, it can be noted that R is a very extensive programming language, 
and the full extent of programming in R cannot readily be captured in a single chapter. 
For example, we did not discuss actual programming in R (such as using if-statements 
and for-loops), how to write functions, how to write efficient R code, or how to do 
more complicated statistical analyses. As R is a very popular open-source programming 
language, there is a wealth of freely available guides available online that teach these 
more advanced topics of programming in R for the interested reader.
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abstract

El modelo de la psicopatología como red de síntomas propone centrarse en las 
interacciones dinámicas y causales entre los síntomas constitutivos del problema 
clínico. La idea principal es que la activación de un síntoma clínico lleva a la activación 
de otro síntoma vecino. Las conexiones entre ellos pueden ser biológicas, psicológicas 
o sociales. Los trastornos mentales son concebidos como estados estables alternativos 
de redes de síntomas fuertemente conectados. Esto permite un modelo explicativo 
común para todos los trastornos mentales, un modelo integral de psicopatología. A 
pesar del éxito de este nuevo camino metodológico, la mayoría de la información 
relevante se encuentra publicada en inglés. En este artículo, se presenta, en idioma 
español, la teoría de la psicopatología como red de síntomas y su modelo, su relevancia 
para la investigación, docencia y práctica clínica de la psicología y la psiquiatría, a los 
fines de incrementar su difusión y diseminación.

introducción

El diagnóstico constituye uno de los primeros pasos de la atención clínica. Existen 
diversas perspectivas sobre el diagnóstico en el campo de la psicología clínica y la 
psiquiatría. Las clasificaciones de los problemas clínicos se proponen según variados 
autores y modelos teóricos. Esta diversidad se suma a las dificultades en los diferentes 
contextos en los que el diagnóstico y la evaluación tienen lugar: la comunicación con 
los pacientes, el trabajo con otros profesionales de la salud (médicos de distintas 
especialidades, enfermeros, trabajadores sociales, terapeutas ocupacionales, etcétera) 
y la relación con organismos de salud (ministerios, secretarías, universidades, hospitales 
y centros de investigación o asistencia). Cada contexto presenta sus particularidades y 
desafíos específicos. Por ejemplo, el derecho de los pacientes a conocer su diagnóstico 
y las opciones para tratar su problema clínico presenta características diferentes a las 
necesidades de establecer definiciones operativas por parte de centros de investigación 
que busquen determinar los problemas clínicos frecuentes de determinada sociedad. 
En el ámbito de la investigación, resulta sumamente útil y necesario contar con 
definiciones operativas de los problemas clínicos que permitan comparar estudios de 
prevalencia, realizar investigaciones psicopatológicas, seguir la evolución de los cuadros, 
llevar adelante estudios de etiopatología, diseñar y estudiar pruebas psicométricas, y, 
finalmente, evaluar el impacto de intervenciones psicológicas, biológicas y sociales en 
el corto, mediano y largo plazo. Por su parte, el trabajo interdisciplinario en el contexto 
institucional, como lo constituye, por ejemplo, un hospital universitario, requiere 
la comunicación entre profesionales con diferentes conocimientos, habilidades y 
destrezas, marcos teóricos, y perspectivas sobre la asistencia. En ese contexto, resulta 
necesario contar con consensos sobre las definiciones de los problemas clínicos que 
se deben asistir.

https://doi.org/10.16888/interd.2022.39.2.11
https://doi.org/10.16888/interd.2022.39.2.11
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Los sistemas diagnósticos operacionalizados (DSM) tienen el ambicioso objetivo de 
definir los problemas clínicos de acuerdo a consensos basados en la investigación 
empírica existente actualmente. Se centran en la descripción de los problemas clínicos 
sin adentrarse en hipótesis explicativas, aunque implícitamente suponen un modelo 
biomédico, al que se hará referencia oportunamente. Estos sistemas pretenden brindar 
definiciones para la investigación, la docencia y la práctica clínica que superen los 
interminables debates entre diferentes autores y escuelas y, efectivamente, son una 
herramienta provisional y necesaria para realizar estudios epidemiológicos, evaluar 
intervenciones en ensayos clínicos, difundir información para la prevención, detección 
y tratamiento de diversos problemas de salud mental, entre otras tareas esenciales. 
Sin embargo, una de sus ventajas es también un grave problema: carecen de una teoría 
explicativa. Como se ha dicho sobre el DSM-5, resulta “más un diccionario descriptivo 
que un manual de psicopatología” (Echeburúa, Salaberría, y Cruz-Sáez, 2014). 
Necesariamente es así porque el desacuerdo reina en el campo de la salud mental: 
no se logra un consenso en el nivel teórico, sino solamente en el nivel descriptivo, y 
muchas veces ni siquiera en este nivel, dado que la descripción difícilmente puede 
separarse de la explicación.

En este mar de debates y controversias, se presenta una teoría (Borsboom y Cramer, 
2013) que tiene la ventaja de guiar tanto la conceptualización de los trastornos 
psicológicos como su tratamiento (Hayes, Yasinski, Barnes, y Bockting, 2015). Se trata 
de un modelo que podría llegar a transformar el campo de la psicopatología de muchas 
maneras, al tender un puente entre las necesidades clínicas y científicas (McNally, 
2016). En el mundo de habla hispana, son escasos los estudios realizados desde esta 
perspectiva (Blanco et al., 2019; Fonseca-Pedrero, 2018; Romero-Montes, Sánchez-
Chávez, Lozano-Vargas, Ruíz-Grosso y Vega-Dienstmaier, 2016; Vega-Dienstmaier, 
2015), por lo que este artículo se propone contribuir a su difusión entre investigadores, 
clínicos, docentes y estudiantes avanzados hispanoparlantes.

el modelo categorial de enfermedad latente

La organización y clasificación actual del Manual Diagnóstico y Estadístico de los 
trastornos mentales de la Asociación Americana de Psiquiatría (APA, 2013) se basa 
en la descripción de síndromes o conjuntos de síntomas como expresión de una 
enfermedad latente según el modelo biomédico predominante (Hofmann, 2014). Desde 
esta perspectiva, por ejemplo, la anhedonia o el insomnio tardío son expresiones de la 
depresión, así como la tos y la fiebre podrían ser expresiones de alguna enfermedad, 
como el coronavirus-SARS-2 (COVID-19). Sin embargo, existe una gran diferencia, 
pues si alguien contrae COVID-19 existe la posibilidad, muy frecuente, de cursar la 
enfermedad sin síntomas, y solo se determina su presencia a través de un test que 
comprueba la infección. Por el contrario, en el caso de la depresión no solamente 
no existe un test biológico que compruebe su presencia o ausencia, lo cual podría 

atribuirse, como se hace, a una limitación provisional del estado actual de conocimiento 
sobre su base neurobiológica, sino que, además, no resulta pensable postular una 
enfermedad depresiva que se curse sin síntomas. Ni siquiera la categoría de “depresión 
enmascarada” o “silenciosa” carece de síntomas, sino que sus síntomas están presentes, 
aunque son más somáticos y menos afectivos. Es decir, si bien puede comprobarse que 
los síntomas se asocian entre sí con cierta regularidad, la suposición de una entidad 
latente que explique su agrupamiento resulta poco informativa y no se ha podido 
respaldar con evidencia sólida, por lo cual queda en un nivel especulativo resultante 
de trasladar, sin mayores cambios, el modelo biomédico al campo de los trastornos 
mentales. Es decir, el sistema presenta una gran ventaja a nivel descriptivo, pero al 
pasar a un nivel explicativo existen controversias que dificultan un consenso.

Además, debe mencionarse el enorme problema clínico que acarrea la frecuente 
comorbilidad (Cramer, Waldorp, Van Der Maas, y Borsboom, 2010) que, en el campo 
de los trastornos mentales, resulta ser más la regla que la excepción. Los pacientes 
presentan un promedio de dos trastornos mentales y, sin cumplir formalmente los 
criterios para ambos, en la práctica clínica, los pacientes presentan síntomas de otros 
trastornos. Finalmente, la misma clasificación presenta síntomas que son comunes a 
dos o más trastornos, lo que da lugar a un solapamiento entre categorías que resulta 
bastante problemático. Por ejemplo, el insomnio puede ser tanto el síntoma de un 
trastorno depresivo como de un trastorno de ansiedad generalizada (TAG) o de un 
trastorno primario del sueño. Estos síntomas son denominados “síntomas puente”, 
como se puede ver en la Figura B.1. Los trece abreviados se organizan del siguiente 
modo:

Síntomas de Trastorno Depresivo Mayor (TDM). Tris: Estado de ánimo deprimido. 
Inte: Disminución importante del interés o el placer. Suici: Pensamientos de muerte 
recurrentes, ideas suicidas recurrentes, intento de suicidio o un plan específico. Mot: 
Agitación o retraso psicomotor. Culp: Sentimientos de inutilidad o culpabilidad excesiva 
o inapropiada. Pes: Pérdida importante de peso, sin hacer dieta, o aumento de peso.

Síntomas puente. En este caso, los síntomas puente se refieren a los que comparten 
las categorías de trastorno depresivo mayor y trastornos de ansiedad generalizada. 
Sue: Fatig: Fatigabilidad o falta de energía. Con: Alteraciones en la concentración 
(disminución de la concentración en el TDM, alteraciones en el TAG).

Síntomas de Trastorno de Ansiedad Generalizada (TAG). Ans: Ansiedad y 
preocupación excesiva (anticipación aprehensiva). Inco: Incontrolabilidad (al individuo 
le es difícil controlar la preocupación). Irri: Irritabilidad. Inqu: Inquietud o sensación 
de estar atrapado o, como se dice comúnmente en la Argentina, con los nervios de 
punta. Mus: Tensión muscular.
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Figura B.1. Ejemplos de redes de síntomas relacionados.

De acuerdo al sistema DSM, puede darse la siguiente situación: dos pacientes, los 
casos A y B, reciben el diagnóstico de trastorno depresivo mayor (TDM). A pesar de 
presentar el mismo diagnóstico categorial y ser considerados para las mismas opciones 
de tratamiento, estos dos pacientes comparten solo un síntoma (alteraciones del 
sueño). Por su parte, el paciente C recibe el diagnóstico de trastorno de TAG y, al ver 
los síntomas con independencia de la categoría diagnóstica, puede comprobarse que 
comparte tres síntomas con el paciente B, con diagnóstico de TDM. Los síntomas 
que comparten B y C son los síntomas puente: alteraciones del sueño, fatigabilidad 
o falta de energía y dificultades en la concentración. Es decir que, a pesar de tener 
diferentes trastornos mentales clasificados por el sistema DSM en diferentes grupos 
(los trastornos depresivos y los trastornos de ansiedad), los pacientes B y C comparten 
más síntomas, y probablemente otras características clínicas, que los pacientes A y 
B, que reciben la misma categoría diagnóstica y, obviamente, son incluidos dentro 
del mismo grupo de trastornos. Finalmente, el caso D recibe el diagnóstico de TAG 
y comparte solamente dos síntomas con el caso C, que recibe el mismo diagnóstico 
(irritabilidad y ansiedad / preocupación excesiva), pero se acerca más al caso B, con 
diagnóstico de TDM.

Además, la perspectiva biomédica explica el agrupamiento regular de los síntomas, 
los síndromes, desde un modelo categorial. Desde este enfoque, la categoría 
diagnóstica no difiere de otra enfermedad médica y subyace como entidad discreta 
a los síntomas. Los modelos dimensionales se presentaron como una alternativa, por 

ejemplo, en el campo de la personalidad (Sánchez, Montes y Somerstein, 2020). Desde 
un enfoque transdiagnóstico, se enfatiza la importancia de procesos comunes a las 
diferentes entidades. En los enfoques psicológicos, por ejemplo, la rumiación o el 
perfeccionismo serían los aspectos comunes a las diferentes entidades. Tanto este 
enfoque transdiagnóstico como aquel, categorial, ven los síntomas como expresiones 
de entidades o procesos latentes (Figura B.2). Tanto desde una perspectiva biomédica 
como desde los enfoques psicológicos transdiagnósticos, existen dos niveles: el 
superficial o sintomático y el profundo, del cual los síntomas son su expresión ya que 
allí estarían las causas: los procesos psicológicos o biológicos que serían el problema 
a resolver.

Figura B.2. Modelo biomédico: síntomas como expresión superficial de una enfermedad o 
trastorno latente.

las relaciones entre los síntomas

El modelo de la psicopatología como red de síntomas difiere tanto del modelo 
categorial como del dimensional al no suponer variables latentes como la causa de la 
coexistencia de determinados síntomas (Borsboom y Cramer, 2013; Borsboom, 2017; 
Cramer et al., 2010). Para este enfoque, dicha coexistencia emerge de las interacciones 
dinámicas y causales que se establecen entre los síntomas. Entonces, los síntomas no 
son expresiones de una enfermedad, sino que son constitutivos del problema clínico. 
La hipótesis central de esta perspectiva es la existencia de conexiones causales entre 
los síntomas. Dichas conexiones son biológicas, psicológicas y sociales. Se trata de 
complejos mecanismos que, al ser suficientemente fuertes, permiten que la activación 
de un síntoma lleve a la activación de otros síntomas. Por ejemplo, en una red de 
síntomas depresivos, el insomnio causa la activación de otro síntoma, como la falta de 
energía, y luego este activa la irritabilidad; a su vez, la irritabilidad produce deterioro 
interpersonal y dispara la preocupación, que fortalece el insomnio. Cuando toda la 
red o sistema de síntomas se activa, se presenta un estado que se automantiene y del 
cual es difícil salir, es decir, produce un trastorno psicológico o mental.
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Esta hipótesis central se aplica a todos los trastornos mentales que pasarían a ser 
concebidos como estados estables alternativos de redes de síntomas fuertemente 
conectados (Borsboom, 2017). Por lo tanto, la hipótesis lleva a un modelo explicativo 
común para todos los trastornos mentales, un “modelo integral de psicopatología” 
(Ibídem).

Figura B.3. Red de síntomas depresivos. Las aristas representan asociaciones únicas entre los 
síntomas, es decir, controladas por la presencia de todos los síntomas en la red. Las asociaciones 
pueden ser positivas, indicando que la presencia de un nodo aumenta la probabilidad de acti-
vación de un nodo vecino, o negativas, donde la ausencia de un nodo aumenta la probabilidad 
de activación de un nodo vecino.

¿qué es una red? nodos y aristas

La teoría de redes es un campo matemático que estudia las relaciones complejas 
entre variables y entidades, y se aplica a una amplia variedad de disciplinas, como por 
ejemplo redes de telecomunicaciones (e. g., Balasundaram y Butenko, 2008), redes 
de transporte (e. g., Derrible y Kennedy, 2011), redes sociales (e. g., Wrzus et al., 2013) 
y neurociencia (e. g., Lynall et al., 2010). En general, las redes consisten en nodos que 
representan la variable o la entidad de interés y aristas que representan la relación 
entre los nodos.

El enfoque está en la teoría de redes de psicopatología, en la que los nodos representan 
variables como síntomas de psicopatología y las aristas, las relaciones estimadas entre 

estas variables (Borsboom y Cramer, 2013), como demuestra la Figura B.4. Estas 
relaciones pueden ser positivas o negativas (la activación de un síntoma lleva a la 
activación / desactivación de otro síntoma), unilaterales o bidireccionales (por ejemplo, 
la relación entre fatiga y anhedonia puede ser igual en cualquier sentido o la relación de 
fatiga hacia anhedonia puede ser diferente de la de anhedonia hacia fatiga), y, en general, 
las relaciones tienen un valor que representa su magnitud (Epskamp y Fried, 2018).

Figura B.4. Una red de psicopatología. Los datos corresponden al estudio Estado de salud 
mental de la población argentina y variables asociadas 2019 (Etchevers, Garay, Castro Solano y 
Fernández Liporace, 2019), en el cual se tomó la SCL-27 a una muestra representativa de 1469 
habitantes de Argentina. Los nodos representan síntomas del SCL-27 (Symptom Check List, de 
27 ítems; Hardt y Gerbershagen, 2001), versión argentina (Castro Solano y Góngora, 2018). Las 
aristas representan las relaciones estimadas entre los nodos, donde el color azul indica que se 
trata de una relación positiva, y la amplitud representa magnitud. La SCL-27 mide síntomas de 
6 dimensiones, denotados en la leyenda. Se puede observar cómo los síntomas forman racimos 
entre las dimensiones.

Es importante notar la diferencia entre la teoría y los modelos estadísticos de esta 
perspectiva de redes (Haslbeck et al., 2021). La teoría propone relaciones causales 
entre síntomas, en los que la activación de un síntoma de depresión como el insomnio 
puede causar otro síntoma como la preocupación excesiva. Como, en general, los 
datos obtenidos sobre los síntomas son observacionales (medidos en una entrevista 
clínica), los modelos estadísticos no pueden determinar relaciones causales y usan 
métodos como correlaciones parciales para estimar la varianza única entre variables 
(Epskamp y Fried, 2018).



186 187

supplementary materials b - spanish introduction to the network approach

&

de las comorbilidades a las redes complejas

Una de las grandes ventajas que ofrece la teoría de redes es explicar el llamado 
fenómeno de la comorbilidad (Cramer et al., 2010). Dicha comorbilidad supone 
entidades diagnósticas claras y distintas que se presentan conjuntamente como dos 
morbilidades diferentes (Bekhuis et al., 2018). Desde la perspectiva de la red causal 
compleja, los límites entre los trastornos se borran, y ya no se trata de entidades 
bien diferenciadas, sino de síntomas que se presentan en forma conjunta con cierta 
regularidad en la medida en que comparten vínculos biopsicosociales que llevan a 
que unos activen otros y que la red se mantenga (Goekoop y Goekoop, 2014). Es 
decir, la presencia de ciertos síntomas de modo conjunto no se explica porque sean 
expresiones de enfermedades latentes como en el modelo biomédico más difundido. 
Los síntomas no se presentan conjuntamente de modo aleatorio; por el contrario, 
es más probable que unos síntomas se presenten junto a otros (Hofmann, Curtiss 
y McNally, 2016). Desde la perspectiva de la red causal compleja, esta presentación 
regular de los síntomas obedece a los vínculos entre ellos mismos. En lugar de postular 
una entidad latente, el análisis en red se centra en los síntomas observables, sin 
tampoco determinar a priori un síntoma cardinal o eje central de la red.

Asimismo, el análisis en red permite revisar conceptos como vulnerabilidad y resiliencia. 
Una red vulnerable sería aquella en la cual, fácilmente, un síntoma lleva a la activación 
de otros. Por el contrario, una red resiliente tendría la característica opuesta: si se 
toma el ejemplo anterior, el insomnio podría producir cansancio, pero no irritabilidad 
o alteraciones anímicas (Cramer et al., 2016).

la relevancia para la práctica clínica

En el ámbito de la psicología clínica resulta particularmente útil considerar las 
relaciones causales entre los síntomas. En las terapias cognitivo-conductuales, tanto 
en el análisis funcional de la conducta como en la conceptualización cognitiva del 
caso, se postulan hipótesis acerca de la relación entre los síntomas del problema 
clínico y sus consecuencias en la vida de las personas. Estos enfoques ideográficos se 
articularon de manera discordante con los sistemas de clasificación categoriales en la 
práctica clínica. Así, un paciente cumple criterios para dos o más trastornos mentales, 
pero en la práctica, es el psicólogo clínico quien elabora hipótesis acerca de cómo se 
relacionan dichos trastornos. Por ejemplo, un paciente con un trastorno de ansiedad 
social y una dependencia del alcohol es visto como un caso en el que la persona 
ha intentado manejar los síntomas de ansiedad mediante el alcohol, al cual se ha 
vuelto dependiente. No son dos entidades independientes con enfermedades latentes 
distintas, sino que están articuladas. Es decir, se trabaja con modelos sintomáticos, algo 
enfatizado por varios autores, particularmente, en el caso de los síntomas psicóticos, 
véase Hagen, Turkington, Berge y Gråwe, 2013. A propósito de síntomas psicóticos, 

también puede pensarse la relación entre factores cognitivos de mantenimiento de 
creencias delirantes (Pérez Navarro, 2020).

Como señalan Hofmann, Curtiss y McNally (2015), el modelo de Borsboom y su equipo 
es particularmente relevante para las terapias cognitivo-conductuales al permitir 
entender el cambio terapéutico. Hayes, Yasinski, Barnes y Bockting (2015) utilizan la 
teoría de sistemas dinámicos para estudiar el cambio terapéutico, y se centran en las 
relaciones entre los síntomas de la depresión a lo largo del proceso terapéutico. Más 
recientemente, Hofmann, Curtiss y Hayes (2020) propugnan modelos no lineales de 
cambio psicológico basados en redes complejas que permiten entender relaciones 
múltiples y bidireccionales entre numerosas variables y avanzan en una dirección 
similar a la perspectiva de redes causales complejas.

la relevancia para la investigación

Además de brindar un nuevo marco teórico para la práctica clínica, la perspectiva de la 
psicopatología como red de síntomas va acompañada de nuevos métodos cuantitativos 
para la investigación. La mayoría de los métodos disponibles para estimar los modelos se 
pueden utilizar desde el software libre y gratuito R (R Core Team, 2020). Con base en los 
datos (por ejemplo, los síntomas presentes / ausentes según un cuestionario clínico), hay 
diferentes modelos que se pueden estimar. La mayoría de los métodos son exploratorios 
y estiman las relaciones entre síntomas desde datos observados. Por ejemplo, el Gaussian 
Graphical Model para datos continuos (Epskamp et al., 2018a) que se puede estimar a 
través del paquete estadístico R qgraph (Epskamp et al., 2012), o el Ising Model para 
datos binarios (van Borkulo et al., 2014a) que, a su vez, se puede evaluar al usar el paquete 
estadístico R IsingFit (van Borkulo et al., 2014b). Con estos datos exploratorios, se pueden 
visualizar las redes y, en base a las figuras, se pueden generar hipótesis nuevas sobre el 
desarrollo de síntomas y en qué casos se podría intervenir terapéuticamente (Borsboom 
y Cramer, 2013). Actualmente, también se desarrolló un método nuevo para estimar 
modelos confirmatorios de redes confirmativas (Epskamp, 2020).

Una aplicación nueva e interesante sobre la base de la estimación estadística de redes 
de síntomas es la estimación de modelos ideográficos (Bringmann et al., 2016; Epskamp 
et al., 2018). Estos modelos intraindividuales se estiman con datos longitudinales, 
obtenidos, por ejemplo, usando Experience Sampling Method, por los cuales a una 
persona se le pregunta sobre su estado de ánimo varias veces por día (Epskamp et al., 
2018). De esta manera, la investigación puede estudiar procesos individuales dentro 
de la psicología clínica.

Finalmente, la perspectiva de la psicopatología como red de síntomas brinda nuevas 
posibilidades para comparar grupos: por ejemplo, si la estructura de una red de 
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síntomas depresivos (por ejemplo, la magnitud de las aristas) difiere de manera 
significante entre hombres y mujeres (van Borkulo et al., in press).

conclusiones

Sobre la base del campo matemático de la teoría de las redes, el modelo de red causal 
compleja aplicado a los problemas de salud mental se caracteriza por centrarse en 
las interacciones dinámicas y causales que se establecen entre los síntomas, que 
guían tanto la conceptualización de los trastornos psicológicos como su tratamiento 
al tender un puente entre las necesidades clínicas y científicas. Los síntomas son 
constitutivos del problema clínico. Las conexiones causales entre los síntomas son 
complejas en la medida en que afectan niveles biológicos, psicológicos y/o sociales, 
ya que la activación de un síntoma lleva a la activación de otros síntomas. Los 
trastornos mentales son concebidos como estados estables alternativos de redes de 
síntomas fuertemente conectados y es posible, así, un modelo explicativo, un modelo 
integral de psicopatología para entender el llamado fenómeno de la comorbilidad, 
la vulnerabilidad y la resiliencia de otro modo. Además, es coherente con el modelo 
cognitivo-conductual de los trastornos mentales, que es el que más apoyo empírico 
posee en la actualidad. En el campo de la investigación, la teoría brinda nuevos 
métodos formales para estimar y visualizar estas redes, tanto al nivel interindividual, 
mediante la distribución de síntomas psicopatológicos entre personas en la población 
general, como al nivel intraindividual, al estimar redes personalizadas. Estos avances 
tienen implicaciones directas sobre cómo definir el diagnóstico y elegir el tratamiento, 
y sugiere una agenda certera para futuras investigaciones en psiquiatría, psicología y 
disciplinas asociadas.

Puede concluirse que la perspectiva de la psicopatología como red causal compleja de 
síntomas presenta ventajas en varios niveles y puede presentarse como una alternativa al 
modelo diagnóstico más difundido, el sistema DSM. Este enfoque resuelve el problema 
de las comorbilidades, el solapamiento entre categorías, la búsqueda de entidades 
latentes o subyacentes y se acerca más a las perspectivas clínicas en el campo de la 
psicología, como los modelos cognitivo-conductuales, lo que permite abrir nuevas líneas 
de investigación que contribuyan a reducir la brecha entre investigadores y clínicos.
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c.1 constructing the four symptom networks for the 
simulations

In Chapter 2, we present a proof-of-concept in which we construct four symptom 
networks that can be placed in the four regimes of the resilience quadrant. Here, we 
will explain how we constructed the four networks. To make sure that the constructed 
networks are somewhat bound to empirically estimated parameter values, we first 
estimate a symptom network from empirical data containing assessments of nine 
Major Depressive Disorder (MDD) symptoms as our baseline model. Second, we alter 
the parameters of the baseline model in such a way that the resilience levels of the 
networks change.

C.1.1 The baseline MDD model

C.1.1.1 Data
The data are collected in the Virginia Adult Twin Study of Psychiatric and Substance 
Use Disorders (VATSPSUD; Kendler et al., 1999) and contain binary data on the 
presence/absence of nine MDD symptoms from 8973 twins from the Mid-Atlantic 
Twin Registry. The symptoms are: (1) Depressed most of the day, nearly every day, 
(2) Markedly diminished interest or pleasure in all, or almost all, activities most of the 
day, nearly every day, (3) Significant weight loss when not dieting or weight gain (e.g., 
change of more than 5% of body weight in a month), or decrease or increase in appetite 
nearly every day, (4) Insomnia or hypersomnia nearly every day, (5) Psychomotor 
agitation or retardation nearly every day, (6) Fatigue or loss of energy nearly every 
day, (7) Feelings of worthlessness or excessive or inappropriate guilt nearly every day, 
(8) Diminished ability to think or concentrate, or indecisiveness, nearly every day, and 
(9) Recurrent thoughts of death, recurrent suicidal ideation without a specific plan, or 
a suicide attempt or a specific plan for committing suicide. Symptoms were measured 
during a psychiatric interview using an adaptation of the Structured Clinical Interview 
for DSM-III-R (Spitzer et al., 1992).

C.1.1.2 Model
We estimate the symptom network model using the Ising model (Ising, 1925). The 
Ising model is a relatively simple model which has been frequently applied to mental 
health and specifically depression for its ability to show complex behavior in line with 
the development of psychiatric disorders (Ising, 1925; see van Borkulo et al., 2014, 
Marsman et al., 2018 and Finneman et al., 2021 for an extensive description of the 
Ising model used in psychology). Symptoms are encoded as either “present” (1) or 
“absent” (0). The Ising model is symmetric, meaning that the relationships between 
the nodes are undirected; e.g., the relationship from “insomnia” to “depressed mood” 
is the same as the relationship from “depressed mood” to “insomnia”. The connections 
between symptoms are called edge weights and are estimated with logistic regression 
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analyses. The internal dispositions of symptoms are called threshold parameters, which 
are calculated as the intercept of the logistic regression equation (van Borkulo et al., 
2014).

C.1.2 Alter the parameters of the baseline model
To construct the resilient network, we decrease the edge weight parameters of the 
baseline MDD model by multiplying the baseline edge weights with 0.8, and increase 
the threshold parameters by multiplying the baseline thresholds with 1.2. For the 
remitting network, we multiply the parameters in the opposite direction but with 
smaller values, in order increase the instability of the network’s dynamics. We multiply 
the edge weights of the baseline model with 1.1 and the threshold parameters of the 
baseline model with 0.95. For the relapsing network, we multiply the edge weights of 
the baseline model with 1.1 and the thresholds with 0.9. To construct the chronically 
depressed network, we increase the connectivity of the depressed model by multiplying 
the edge weights of the baseline model with 1.2 and decrease the threshold parameters 
(i.e., making the preference for absence weaker) by multiplying the baseline thresholds 
with 0.8. In the simulations with the Glauber dynamics (see Supplementary Section: 
C.2.1. Simulating observations without perturbations) we set the beta parameter to 1.5 
instead of the usual setting of 1. This leads to a stronger effect from the parameters 
and more stable simulations.

c.2 simulating the projected and perturbed observations

In this section, we explain the techniques used to simulate the projected observations 
and perturbed observations for the four Ising network models as described in Chapter 2.

C.2.1 Simulating observations without perturbations
The symptom development patterns of the Ising model will always strive to be in the 
configuration of symptoms that costs less energy (Dalege et al., 2019). The energy for 
every possible configuration of symptoms (i.e., all combinations of absent and present 
symptoms) depends on the threshold parameters and the edge weight parameters. 
The energy for every symptom combination in the Ising model is calculated with the 
Hamiltonian in Formula 1.

 (1)

Formula 1 gives the Hamiltonian energy for two symptoms  and , but can be 
extended for networks with more symptoms. The energy for the configuration  of 
the network (for example, both symptoms are present) is calculated from the threshold 

 of symptom , the edge weights  between symptom  and its neighboring 
symptom , and the current presence or absence  of both symptoms.

c - supplementary materials to chapter 2

C.2.2 Simulating observations with perturbations
Ising model dynamics can be simulated using an algorithm called Glauber dynamics 
(Glauber, 1963). Glauber dynamics are an established method for simulating dynamics 
from an Ising model (e.g., see Levin et al., 2008). The idea behind the method is that 
for every simulated observation only one symptom can change its state from presence 
to absence or vice versa, in order to mimic a continuous process of development. The 
algorithm selects one random symptom for every novel simulated observation. The 
state of the symptom is then flipped, meaning that if the symptom was currently 
present it gets deactivated (denoted by changing the state of the symptom from a 1 
→ 0) and vice versa12. The difference between the current state and the flipped state 
of the symptom is calculated by computing the energy difference between the two 
situations (see Formula 1). The energy difference between the current and flipped state 
of the symptom determines the probability that the symptom either changes its state 
or remains in the current state; the lower the energy of the alternative state, the higher 
the probability the symptom’s state will change. A stochastic process is added to the 
simulation by adding a transition probability. In our simulations we simulate 10.000 
observations for every network, to ensure the stability of our results.

To simulate the alleviating and aggravating interventions as described in the 
manuscript, we perturb the simulations every 1000th observation (see Figure 2.4 in 
the chapter). Thus, perturbations are administered 10 times. We stop the Glauber 
dynamics algorithm every 1000th observation, and force all symptoms to be present 
or absent, depending on whether we are simulating an alleviating or aggravating 
intervention. Afterwards, the algorithm continues in its ordinary fashion, calculating 
which symptom configuration is most likely for every observation. Depending on the 
parameters for every network model, the symptoms ‘recover’ from this intervention, 
or they maintain stuck in a situation with high or low symptom activation.

12 Following the suggestions as made in Haslbeck, Epskamp, Marsman & Waldorp (2018), we use the 
transformed {0,1} parameters of the Ising model (instead of the {-1,1} parameters) to compute the 
Glauber dynamics with networks that are estimated from {0,1} binary data.

&
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d.1 supplementary table

Table D.1. SCL-27 variable names

Variable label Variable description

SCL-1 Feeling very self-conscious with others

SCL-2 Feeling blue

SCL-3 Feeling afraid to go out of your house alone

SCL-4 Feeling fearful

SCL-5 Thoughts of death or dying

SCL-6 Your mind going blank

SCL-7 Trouble remembering things

SCL-8 Feeling that people are unfriendly or dislike you

SCL-9 Feeling low in energy or slowed down

SCL-10 Nausea or upset stomach

SCL-11 Hot or cold spells

SCL-12 Others not giving you proper credit for your achievements

SCL-13 Faintness or dizziness

SCL-14 Feeling that people will take advances of you if you let them

SCL-15 Feeling hopeless about the future

SCL-16 A lump in your throat

SCL-17 Feeling that most people cannot be trusted

SCL-18 Heart pounding or racing

SCL-19 Having ideas or beliefs that others do not share

SCL-20 Feeling afraid you will faint in public

SCL-21 Feeling inferior to others

SCL-22 Thoughts of ending your life

SCL-23 Feeling uneasy when people are watching or talking about you

SCL-24 Trouble concentrating

SCL-25 Having to avoid certain things, places or activities that frighten you

SCL-26 Trouble getting your breath

SCL-27 Feeling afraid in open spaces or on the streets
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d.2 supplementary figure

Figure D.1. Centrality plot showing node strength of SCL-27 nodes. The x-axis shows node 
strength on standardized z-scores, the y-axis shows all SCL-27 variables. The upper variables 
have highest node strength, and the lower variables have lowest node strength.
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e.1 inspecting measurement occasions

One of the assumptions of the multilevel VAR model is equal time intervals between 
measurement occasions. The full version of the daily surveys, which contained 
assessments of mood and depression complaints, were sent out on the first three 
days and afterward on two randomly selected days of the week, therewith violating 
the assumption of equal time intervals between measurement occasions. Inspecting 
the response rate of the full survey over the study period showed a clear three-day 
interval pattern; see the upper panel of Figure E.1. In addition, we see an apparent 
occurrence of peaks within these three-day intervals. Therefore, we decided to group 
days into measurement occasions defined by a three-day window. This insured data 
at every measurement occasion; see the lower panel of Figure E.1.

Figure E.1. The response rate for the full survey over the study period from March 20th, 
2020 until June 26th, 2020. Inspecting the number of participants who completed assessments 
compared to the number of participants who completed measurement occasions, we found no 
significant loss of participants, see Figure E.2. In line with recommendations for the multilevel 
VAR model, we selected participants with at least twenty measurement occasions (Jordan, 
Winer & Salem, 2020).
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Figure E.2. Number of participants and measurement occasions. The upper panel shows the 
number of participants completed assessments. The lower panel shows the number of partic-
ipants and the number of completed measurement occasions. The dotted line represents the 
cut-off value of 20 measurement occasions recommended to estimate a MLVAR network model.

e.2 sample charactaristics

Table E.1. Demographic characteristics of final sample (n=228)

Characteristics Mean SD

Age 44.8 19.2

N Percentage

Gender

Female 186 81.6%

Male 42 18.4%

Race/ethnicity

African-American 1 0.4%

Asian 21 9.2%

White 207 90.8%

Hispanic/Latinx 5 2.2%

More than one race 4 1.8%

Cultural Background

North-America 206 90.4%

South-America 2 0.9%

Africa 1 0.4%

Asia 4 1.8%

Europe 10 4.4%

Oceania 5 2.2%

Annual household income

$0-$25,000 21 9.2%

$25,001-$50,000 36 15.8%

$50,001-$75,000 42 18.4%

$75,001-$100,000 40 17.5%

$100,001-$150,000 32 14%

$150,001-$250,000 31 13.6%

$250,000+ 26 11.4%

Education

High School Diploma 5 2.2%

Some college 19 8.3%

College degree 56 24.6%

Some post-bacc education 29 12.7%

Graduate, medical or professional degree 119 52.2%
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Table E.2. Mean and standard deviation for PHQ-9, PA, and NA variables at baseline for 
the final sample.

Mean SD

Selected sample (n=228)

 PHQ9 5.90 4.14

 Inspired 2.07 1.03

 Alert 2.95 1.07

 Excited 1.8 0.88

 Enthusiastic 2.04 1.03

 Determined 2.61 1.15

 Afraid 1.84 1

 Upset 1.67 0.86

 Nervous 2.12 1.02

 Scared 1.97 0.97

 Distressed 1.92 0.89

e.3 clustering analysis

Based on original results, a distinct separation between the different network 
components (i.e., positive affect (PA), negative affect (NA), and depressive complaints) 
seemed less evident in the temporal network compared to the contemporaneous and 
between-persons network. Relatively more edges between components than within 
components were present within the temporal network. In order to vindicate these 
results, post-hoc clustering analyses were performed using two different algorithms: 
Spinglass and Walktrap. In addition, a sensitivity analysis was performed for both 
clustering techniques, i.e., the algorithm was repeated hundred times to ensure a 
median number of clusters.

The Spinglass algorithm cannot account for nodes not connected to any of the 
other nodes within the network. As the node “PsychMot” is disconnected from any 
of the remaining nodes in the network, it cannot be considered. Sensitivity analysis 
for Spinglass suggested, in line with the original network components, a median of 
3 clusters for the contemporaneous network as well as for the between-persons 
network, see the two right panels of Figure E.3. For the temporal network, a median of 
5 clusters was detected; see the left panel of Figure E.3. Suggested cluster membership 
for each node differed per iteration, therefore the group membership as depicted in 
Figure 3 should be taken as exemplary. Results for the Walkrap algorithm were in line 
with results from Spinglass for the contemporaneous and between-persons network; 
a median of 3 clusters was found, see the two right panels of Figure E.4. For the 
temporal network, a median of 4 clusters was detected; see the left panel of Figure 
E.4. Node cluster membership was consistent, however, detected clusters consisted 
of PA, a combination of PA, NA, and depression complaints, or depression complaints.

Interestingly, both clustering techniques confirmed the original three components 
(i.e., PA, NA, and depression complaints) in the contemporaneous network and the 
between-person network. However, these components were not confirmed for the 
temporal network. In addition, node cluster membership for the temporal network, 
as indicated by Spingglass, was highly unstable, and clusters consisted of a mixture of 
nodes from multiple components using Walktrap, corroborating the notion that from 
one measurement occasion upon the next, there is a more direct interplay between 
affect and depression, while, within a given time frame, or on average, there is a clearer 
demarcation between PA, NA, and depressive complaints.
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Figure E.3. Results for clustering analysis with Spinglass algorithm. The left panel displays 
the average fixed-effects temporal network model, portraying relations from one measurement 
occasion onto the next. The middle panel displays the average fixed-effects contemporaneous 
network model, portraying effects that play a role in the same measurement occasion after 
controlling for the temporal effects. The right panel displays the between-persons network 
model is displayed, indicating effects between persons (i.e., the interindividual differences). 
Blue edges indicate positive relations, whereas red edges indicate negative relations. Nodes 
are colored according to the suggested cluster. Spinglass cannot account for nodes that are not 
attached to the network. Therefore, the node “PsychMot’ is not colored; it does not belong to 
any cluster. A median of 5 clusters was detected for the temporal network. However, sensitivity 
analyses found that the suggested membership for each note differed for the temporal network; 
therefore, the colors depicted here should be considered exemplary. For the contemporaneous 
network, a median of 3 clusters was detected as well as for the between-persons network. For 
a legend of node names, see Table E.3.

Figure E.4. Results for clustering analysis with Walktrap algorithm. The left panel displays 
the average fixed-effects temporal network model, portraying relations from one measurement 
occasion onto the next. The middle panel displays the average fixed-effects contemporaneous 
network model, portraying effects that play a role in the same measurement occasion after 
controlling for the temporal effects. The right panel displays the between-persons network 
model is displayed, indicating effects between persons (i.e., the interindividual differences). 
Blue edges indicate positive relations, whereas red edges indicate negative relations. Nodes 
are colored according to their suggested cluster. A median of 4 clusters was detected for the 
temporal network. For the contemporaneous network, a median of 3 clusters was detected as 
well as for the between-persons network. For a legend of node names, see Table E.2.

Table E.3. Legend of node names.

Node names

Insp: Inspired

Alt: Alert

Exc: Excited

Ent: Enthusiastic

Det: Determined

Afr: Afraid

Ups: Upset

Ner: Nervous

Scar: Scared

LoI: Loss of Interested

DepMood: Depressed Mood

SleepDis: Sleep disturbances

Fatigue: Fatigue

Appet: Loss of appetite

Worth: Feelings of Worthlessness

Con: Concentration problems

PsychMot: Psychomotor agitation or retardation

e.4 sensitivity checks

We observed a strong correlation between the maximum absolute change in PHQ-9 
score and the temporal network density (r = 0.77). Interestingly, when splitting the 
change in PHQ-9 score into alleviation or aggravation, we saw that this pattern is 
present in both directions: a larger change in PHQ-9 score is associated with a more 
strongly connected temporal network. In order to inspect the robustness of our 
findings, we conducted two sensitivity checks.

E.4.1 Detrending
As a first sensitivity check, we inspected whether trends in the data influence the 
observed correlation. To investigate this, we first tested for trends in the data using 
kpss.test() in R. Next, we detrended individual data by fitting linear regression models 
on each variable, regressing out a linear trend on measurement occasion, at an alpha 
of 0.05. Afterward, we estimated the multilevel VAR model on the detrended data. 
We computed density measures for each individual’s network and correlated this with 
their absolute maximum change in PHQ-9 scores. Results indicated a slightly stronger 
correlation (r = 0.79) between temporal network density and absolute maximum 
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change in PHQ-9 score, see Figure E.5. We, therefore, conclude trends in the data do 
not affect the main conclusions made in the chapter.

Figure E.5. Correlation between individual temporal network density and the (absolute) 
maximum change in PHQ-9 score after detrending the data.

E.4.2 Network density for affect items and PHQ-9 change score
As a second sensitivity check, we investigated the possibility that the correlation was 
driven by the fact that the network includes the PHQ-9 items such that the temporal 
density is, at least in part, based on the same information (i.e., PHQ-9 items) that is 
also used to relate the density to (i.e., the absolute maximum change in PHQ-9 total 
score). Therefore, we investigated the relation between network density and maximum 
change in PHQ-9 score when including only the affect states into the networks.

We re-estimated mlVAR networks including only positive and negative affect items. 
Based on these networks, we re-calculated the network density for each individual 
(i.e., the average absolute strength of their temporal associations). We correlated this 
network density with the absolute maximum change in PHQ-9 total score. As can be 
expected, removing the PHQ-9 items from the network decreased the strength of the 
observed correlation. However, we still clearly observed a positive association between 
the network density and the absolute change in PHQ-9 score (r = 0.4), see Figure E.6.

Figure E.6. Correlation between individual temporal network density including only positive 
and negative affect and the (absolute) maximum change in PHQ-9 score.
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f.1 sensitivity analyses with smaller interventions

We conducted a sensitivity analysis to study how NIRA results change when 
interventions are represented by altering the threshold parameters with one standard 
deviation from the thresholds’ distribution - instead of two standard deviations.

Results indicate that the projected effects from NIRA are smaller compared to the 
results reported in our study, as can be expected from the weaker intervention. 
However, the projected effects from NIRA still differ over the distinct nodes. Potential 
propelling effects diminish, as node-specific interventions decrease the network’s sum 
score with a maximum of one. In other words, the symptom-specific intervention is 
projected to deactivate the targeted symptom, but no neighboring symptoms.

Figure F.1. Projected effects from alleviating NIRA interventions when interventions are 
weaker than the ones reported in the main study.
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Figure F.2. Projected effects from aggravating NIRA interventions when interventions are 
weaker than the ones reported in the main study.

f.2 stability analyses of nira using bootstrapping

We tested the stability of NIRA outcomes using bootstrapping (Epskamp et al., 2018). 
The test is conducted using the same principles as the algorithm itself, however, as a 
starting point, a sample size of 100.000 observations is used. The input network for 
this test remains the PTSD network used in the empirical illustration of Chapter 6. 
The steps of the algorithm previously described in section 6.2.1 are followed (except 
for the increased sample size) until the sum score distributions are yielded. The test 
stores the 11 distributions of 100.000 sum scores and now selects 90.000 observations 
from the original 100.000. For this sample size the sum score distributions are also 
stored, and the average Pearson correlation between these sum score distribution 
and the sum score distribution of 100.000 observations is computed. These steps 
are repeated with sample sizes of 80.000, 70.000, 60.000, 50.000, 40.000, 30.000, 
20.000, 10.000, 5000, 1000 and 500. In every step, more cases are dropped from the 
original 100.000 observations. Therefore, the test technique can best be described 
as a case dropping bootstrap, which was inspired by the bootnet R package (Epskamp 
et al., 2019), in which a similar technique is presented.

Figure F.3 shows the test results. Each point represents the average Pearson correlation 
between the sum score distributions of 100.000 observations and the sum score 

distributions of the corresponding number of observations shown on the x-axis. The 
grey area surrounding the points represents the 95% confidence interval given the 
correlation and the relevant sample size. From this figure a drop can be seen in the 
correlations with a cut-point after the sample sizes under 5000. On the other hand, 
all computed correlations are above 0.97, which is extremely high. To be on the safe 
side, we use the algorithm with a default sample size of 5000. However, even with 
smaller sample sizes, the algorithm has proven to be a reliable and stable method.

Figure F.3. Stability Analyses of the NIRA using Bootstrapping.
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f.3 ising model dynamics

For a complete overview of the dynamics of the Ising model, we refer to the papers 
by Haslbeck et al., (2020) and van Borkulo et al. (2014). Here follows an explanation 
similar to the one in chapter 4.

Symptom activation patterns follow from the probability distribution of the Ising 
model. The Ising model for two nodes ( ) is given by formula (1), which extends 
to  nodes (Haslbeck, Epskamp, Marsman, & Waldorp, 2020):

(1)

In this formula,  and  are elements of {0,1},  is the probability that the 
two nodes are in a specific state ,  denotes the threshold of the node , and 

 denotes the edge weights of the neighboring nodes  and .  is a normalizing 
constant that denotes the sum of the potentials of all possible states.
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summary

Mental disorders place a huge burden on the person suffering, such as having a lower 
quality of life, but also on their environment and society at large. Often, mental 
disorders arise after facing stressful and adverse events, such as the death of a loved 
one, physical illness, or poverty. However, this is not always the case. For example, 
many people experience at least one potentially traumatizing event in their life (such as 
90 % of people in Western countries), but only 8% of the population is diagnosed with 
Post-Traumatic Stress Disorder. Although many people develop some mental health 
problems directly after facing adversity, these problems often disappear relatively 
rapidly. In other words, most people ‘bounce back’ towards good mental health. This 
capacity to maintain or relatively quickly return to normal psychological functioning 
after suffering from adversity is called resilience.

Because resilience is always defined in relation to some negative event, it is difficult to 
study the concept scientifically. The obvious reason for this is of an ethical nature: we 
cannot expose participants to potentially traumatic events for the sake of science. But 
even if we can come up with smart workarounds in our scientific design, resilience has 
proven to be a complicated concept to investigate. Resilience is not a static concept, 
meaning that one could be resilient against one type of adversity (e.g., losing one’s 
job), but not against another negative event (e.g., losing one’s parent). Additionally, 
resilience levels change over time: one may be resilient at one point in life but not 
in another. These fluctuations in resilience are associated with different protective 
factors and risk factors, which help or hinder a person in maintaining good mental 
health. Examples of protective factors are having a positive outlook on life, a good 
financial basis, and a big social support system. On the contrary, risk factors such as a 
neurotic personality or having suffered from a difficult childhood are likely to indicate a 
vulnerability for the development of mental disorders. Now, these risk and protective 
factors do not operate in isolation but also interact among themselves. For example, 
having suffered from childhood abuse can make it more difficult to maintain healthy 
relationships with romantic partners, which, in turn, can lead to other problems. How 
can we investigate these complex interactions between protective factors, risk factors, 
and resilience?

An example of how resilience can be viewed as a result of complex interactions 
comes from the research of ecosystems. Ecosystems are represented as complex 
systems containing various interacting elements that can end up in self-sustaining 
states. A good example of such an ecosystem is a lake. A lake contains elements such 
as fish, nutrients and algae, which all depend on each other. The lake can be clear, 
representing a situation in which all the elements thrive and maintain a healthy balance 
of vegetation, fish population and nutrients. However, this healthy balance can be 
disturbed, for example, if the algae in the lake start growing. This increased number of 
algae can limit the light that reaches the bottom of the lake, reducing the vegetation 
that can grow there. In turn, this decrease in vegetation confines the fish population 
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and nutrients, and, as such, leads the lake to have turbid water. This causal chain of 
disruption is not easily reversed, which is why the turbid water situation is understood 
as a self-sustaining state. An ecosystem, such as the lake, can be implemented in a 
computational model and studied under different conditions and perturbations (i.e., 
stressors or disruptions) using simulations, which is called simulation modeling. This 
approach has been extended over the past decades, for example, to understand the 
effects of the climate crisis on specific ecosystems like rainforests. By generating 
testable hypotheses from the model, one can observe the accuracy of predictions and 
improve models and theories.

Taking this approach to psychology opens exciting possibilities for the study of 
resilience. In this dissertation, I combined existing complexity models of mental 
health with simulation modeling to develop a novel framework for the investigation of 
psychological resilience. The existing complexity models originate in the network theory 
of psychopathology, which proposes that mental disorders act as complex systems 
organized in a network of interconnected symptoms. These symptom networks can 
be located in a healthy state, meaning that most symptoms are currently absent, or 
evolve towards a disorder state, in which many symptoms are activated. By studying 
the dynamics of these networks and adding simulated clinical interventions – which pull 
the network towards a healthy state – or stressful perturbations – pulling the network 
towards a disorder state, we can investigate how the symptom network may behave 
under different conditions. As such, we can assess the resilience of these symptom 
networks – according to their model.

The proposed approach provides an alternative to the ethical and methodological 
challenges to study resilience that were mentioned before. Instead of having to expose 
people to real adversity, we can use models representing people’s mental health 
and perturb these models using simulations. Additionally, these complexity models 
conceptualize the interrelations between all relevant factors instead of representing 
resilience as one outcome variable. Thus, in the proposed framework, resilience is not 
an entity within the network (such as a variable that could be isolated), but a property 
of the network.

However, the existing symptom networks need to be expanded on several aspects 
to accommodate a framework that incorporates findings from the resilience research 
literature. The chapters in this dissertation all discuss one of these issues.

Chapter 2 shows how we can assess the resilience of symptom networks using 
simulations. Complex systems produce their own patterns of behavior, depending on 
how the elements of the system are interrelated. Thus, to understand the behavior 
of a complex system, we need to understand the system’s constitution (i.e., which 
nodes in the network are connected to each other, and how easily will these nodes 

be activated?). The chapter shows how the architecture of symptom networks relates 
to their resilience against perturbations. A network’s architecture consists of the edge 
weights between the symptoms, which represent the strength of the connections, and 
the thresholds of every symptom, which represents their disposition for activation. 
Resilient networks are generally characterized by high symptom thresholds and weak 
connections between the symptoms. However, different combinations of node and 
edge parameters can lead to the same resilience level indicating various pathways in 
which a network’s resilience could be improved. Notably, the differences in parameter 
values that result in different resilience levels are slight. This potentially explains why 
resilience is thought to be dependent on complex configurations of factors that support 
resilience. These findings are presented by introducing the resilience quadrant that 
organizes symptom networks based on their most likely state (healthy or disordered) 
and stability against perturbations (stable or unstable). A resilient network is located 
in a stable and healthy state.

Chapter 3 moves from network models of mental disorders towards models of mental 
health, by expanding symptom networks with external risk and protective factors. The 
chapter presents a formal, complex system of mental health that can accommodate 
the factors that are often related with the development of resilience in the research 
literature. Essentially, the chapter proposes that these external factors may alter 
specific parameters of the symptom network, and as such, make the network more 
vulnerable or more resilient against perturbations. The chapter presents several 
simulation studies that show what this process may look like. As such, resilience can 
be represented from a multifactorial perspective in which risk and protective factors 
are interconnected and affect the presence and stability of symptoms.

Chapter 4 expands the complexity model of mental health with slow and fast 
processes. This is because the different risk and protective factors that influence 
resilience most likely operate on different timescales. An example of a slow process 
that could affect mental health is personality. People’s personality can change, but this 
happens over the span of a lifetime. It is unlikely that you will score very differently 
on a personality test from one year to another, but more differences are expected 
when comparing test results from when you’re 20 years old and when you’re 70 years 
old. In the proposed network model of mental health, personality factors (the slow 
process) alter the architecture of the psychopathology network (the fast process) in a 
non-trivial way. We apply the model to the examples of neuroticism (the slow process) 
and depression (the fast process). The applied model connects empirically informed 
depression and neuroticism networks and shows that simulations from the theoretical 
model result in plausible empirical patterns representing essential phenomena. This 
chapter was implemented in an online simulation tool to make the presented study 
easy to understand and replicate.
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Chapter 5 investigates how risk and protective factors may interact with the evolution 
of depressive complaints within and across individuals over longer periods of time. 
The study in this chapter focuses on the interplay between fluctuations in positive and 
negative affect, and the course of depressive complaints. We analyzed data from 228 
participants who completed at least 20 assessments spanning between 9-14 weeks. 
We estimated longitudinal networks including positive affect, negative affect, and 
depressive complaints. After inspecting these individual networks, we found that 
people who were represented by denser networks (more and stronger connections 
between the variables), showed either an alleviation or aggravation of depression 
complaints over time. This means that the density of network models could indicate 
the fluctuations of the variables over time, when zooming in on individual trajectories.

Chapter 6 presents a novel method and corresponding R-package (nodeIdentifyR) to 
study the projected effects of symptom-specific interventions in symptom networks. 
The effect of a symptom-specific intervention is computed by considering the behavior 
of the whole network. The method can be applied to empirically estimated symptom 
networks to identify which specific symptoms would be the optimal targets for 
therapeutic interventions. Additionally, the method can study which symptom-specific 
stressful perturbation would have the most unfavorable effect on the network. This 
could provide information on the vulnerabilities in the network that may have to be 
considered for preventive care. By taking a complexity approach in which the effects 
from targeted interventions are studied on the behavior of the whole network, the 
method anticipates propelling effects that are difficult to identify without simulations.

Finally, Chapter 7 provides the general discussion of the dissertation with an overview 
of the challenges that lay ahead to further advance the proposed framework. For 
example, developing novel complexity (network) models that can vary over time 
to better understand how people develop resilience. Additionally, future research 
could focus more on the protective mechanisms that improve someone’s resilience. 
Although this dissertation has opened up the symptom networks to include positive 
mental health variables from a methodological and conceptual aspect, it did not study 
protective mechanisms from a substantive point of view. Future research may use the 
proposed framework to broaden our focus from symptom development towards the 
development of protective factors and resilience mechanisms. Furthermore, more 
research is needed to apply the proposed framework to intra-individual processes, 
such that we could assess the resilience of an individual network. Lastly, the next 
step to further develop this framework is the empirical validation of both complexity 
models, specifically, the network models, as the simulated dynamics as proposed in 
this dissertation. In this chapter, I give an overview of different options to start such 
validations.

As such, this dissertation developed a framework to investigate psychological resilience 
from a complex systems perspective using simulations. The framework opens novel 
possibilities for assessing the resilience of symptom networks and shows different 
possibilities for the expansion of these models to accommodate behavior from the 
resilience research literature. However, the framework could also be used in a broader 
sense in different fields, such as larger behavioral transitions outside of the mental 
health context. A modeling approach that studies different scenarios can help to 
understand how different interventions may play out, as these cannot be understood 
in isolation. One could investigate how long-term, stable behavioral transitions in 
society (e.g., the sustainable energy transition) could be achieved using the proposed 
framework. Thus, investigating resilience as a property of complex systems through 
simulations could open up many novel and exciting research programs.
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Psychologische stoornissen brengen een enorme belasting voor de persoon die eraan 
lijdt met zich mee, zoals een lagere levenskwaliteit, maar zijn ook belastend voor 
de naaste omgeving en de samenleving in het algemeen. Vaak ontstaan psychische 
stoornissen na stressvolle en moeilijke gebeurtenissen, zoals de dood van een dierbare, 
ziekte of financiële problemen. Dit is echter niet altijd het geval. Veel mensen maken 
bijvoorbeeld ten minste één potentieel traumatiserende gebeurtenis in hun leven mee 
(zoals 90% van de mensen in Westerse landen), maar bij slechts 8% van de bevolking 
wordt een posttraumatische stressstoornis vastgesteld. Hoewel veel mensen direct 
na een tegenslag geestelijke gezondheidsproblemen ontwikkelen, verdwijnen deze 
problemen vaak betrekkelijk snel. Met andere woorden, de meeste mensen “stuiteren 
terug” naar een goede geestelijke gezondheid. Dit vermogen om te blijven functioneren 
of relatief snel terug te keren naar normaal psychisch functioneren na tegenslag wordt 
veerkracht genoemd.

Omdat veerkracht altijd wordt gedefinieerd in relatie tot een negatieve gebeurtenis, 
is het moeilijk om het concept wetenschappelijk te bestuderen. De voor de hand 
liggende reden hiervoor is van ethische aard: we kunnen deelnemers niet blootstellen 
aan potentieel traumatische gebeurtenissen omwille van de wetenschap. Maar 
zelfs als we slimme omwegen kunnen bedenken in onze wetenschappelijke opzet, 
blijkt veerkracht een ingewikkeld concept om te onderzoeken. Veerkracht is geen 
vaststaand concept, wat betekent dat iemand veerkrachtig kan zijn tegen één 
soort tegenslag (bijvoorbeeld het verliezen van zijn baan), maar niet tegen een 
andere negatieve gebeurtenis (bijvoorbeeld het verliezen van een ouder). Bovendien 
verandert het niveau van veerkracht in de loop van de tijd: iemand kan op een bepaald 
moment in haar leven veerkrachtig zijn, maar op een ander moment juist niet. Deze 
schommelingen in veerkracht hangen samen met verschillende beschermende factoren 
en risicofactoren, die iemand helpen of juist hinderen bij het behouden van een goede 
geestelijke gezondheid. Voorbeelden van beschermende factoren zijn het hebben 
van een positieve kijk op het leven, een goede financiële basis, en een groot sociaal 
supportsysteem. Risicofactoren zoals een neurotische persoonlijkheid of een moeilijke 
jeugd wijzen daarentegen op een kwetsbaarheid voor de ontwikkeling van psychische 
stoornissen. Deze risicofactoren en beschermende factoren staan niet op zichzelf, 
maar werken ook onderling op elkaar in. Zo kunnen ervaringen met misbruik tijdens 
iemands jeugd het moeilijker maken om gezonde relaties met romantische partners te 
onderhouden, wat op zijn beurt tot weer andere problemen kan leiden. Hoe kunnen 
we deze complexe interacties tussen beschermende factoren, risicofactoren en 
veerkracht onderzoeken?

Een voorbeeld van hoe veerkracht kan worden gezien als een resultaat van complexe 
interacties komt uit het onderzoek naar ecosystemen. Ecosystemen worden 
bestudeerd als representaties van complexe systemen. Deze systemen bevatten 
verschillende elementen die op elkaar inwerken en zo in een toestand terecht kunnen 
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komen die zichzelf in stand houdt. Een goed voorbeeld van zo’n ecosysteem is een 
meer. Een meer bevat elementen zoals vissen, voedingsstoffen en algen, die allemaal 
van elkaar afhankelijk zijn. Het meer kan helder zijn, oftewel in een toestand zijn 
waarin alle elementen gedijen en een gezond evenwicht van vegetatie, vispopulatie 
en voedingsstoffen in stand wordt gehouden. Dit gezonde evenwicht kan echter 
worden verstoord, bijvoorbeeld wanneer de algen in het meer beginnen te groeien. 
Deze toename van het aantal algen kan het licht dat de bodem van het meer bereikt 
beperken, waardoor de vegetatie die er kan groeien afneemt. Deze afname van de 
vegetatie beperkt op haar beurt de vispopulatie en de voedingsstoffen, en leidt als 
zodanig tot troebel water in het meer. Deze causale keten van verstoringen is niet 
gemakkelijk omkeerbaar, en daarom wordt de situatie van troebel water opgevat 
als een zichzelf in stand houdende toestand. Een ecosysteem, zoals het meer, kan 
worden geïmplementeerd in een computationeel model en worden bestudeerd onder 
verschillende omstandigheden en perturbaties (d.w.z. stressoren of verstoringen) met 
behulp van simulaties, wat simulatiemodellering wordt genoemd. Deze aanpak is in de 
afgelopen decennia uitgebreid, bijvoorbeeld om inzicht te krijgen in de effecten van 
de klimaatcrisis op specifieke ecosystemen zoals regenwouden. Door uit het model 
toetsbare hypothesen te genereren, kan men de nauwkeurigheid van de voorspellingen 
nagaan en de modellen en theorieën verbeteren.

Deze benadering opent spannende mogelijkheden voor de studie van psychologische 
veerkracht. In dit proefschrift heb ik bestaande complexiteitsmodellen van 
psychopathologie gecombineerd met simulatiemodellen om een nieuw raamwerk 
te ontwikkelen voor het onderzoeken van psychologische veerkracht. De 
bestaande complexiteitsmodellen vinden hun oorsprong in de netwerktheorie van de 
psychopathologie, die stelt dat psychologische stoornissen zich gedragen als complexe 
systemen die georganiseerd zijn in een netwerk van onderling verbonden symptomen. 
Deze symptoomnetwerken kunnen zich in een gezonde toestand bevinden, wat 
betekent dat de meeste symptomen momenteel afwezig zijn, of zich ontwikkelen 
naar een stoornis-toestand, waarin veel symptomen geactiveerd zijn. Door de 
dynamiek van deze netwerken te bestuderen en gesimuleerde klinische interventies 
toe te voegen - die het netwerk naar een gezonde toestand trekken - of gesimuleerde 
stressvolle verstoringen toe te voegen- die het netwerk naar een stoornis-toestand 
trekken -, kunnen we onderzoeken hoe het symptoomnetwerk zich onder verschillende 
omstandigheden kan gedragen. Op die manier kunnen we de veerkracht van deze 
symptoomnetwerken, op basis van het gebruikte model, beoordelen.

De voorgestelde aanpak biedt een alternatief voor de eerder genoemde ethische 
en methodologische uitdagingen bij het bestuderen van veerkracht. In plaats van 
mensen aan echte tegenspoed bloot te stellen, kunnen we modellen gebruiken die 
de geestelijke gezondheid van mensen weergeven en deze modellen door middel 
van simulaties verstoren. Bovendien conceptualiseren deze complexiteitsmodellen 

de onderlinge relaties tussen alle relevante factoren in plaats van veerkracht als één 
uitkomstvariabele te bestuderen. In het voorgestelde raamwerk is veerkracht dus geen 
entiteit binnen het netwerk (zoals een variabele die kan worden geïsoleerd), maar een 
eigenschap van het netwerk.

De bestaande symptoomnetwerken moeten echter op verschillende punten worden 
uitgebreid om bevindingen uit de onderzoeksliteratuur over veerkracht in dit nieuwe 
raamwerk te integreren. De hoofdstukken in dit proefschrift bespreken allemaal één 
van deze aspecten.

Hoofdstuk 2 laat zien hoe we de veerkracht van symptoomnetwerken met behulp 
van simulaties kunnen beoordelen. Complexe systemen produceren hun eigen 
gedragspatronen, afhankelijk van hoe de elementen van het systeem met elkaar 
samenhangen. Om het gedrag van een complex systeem te begrijpen, moeten we dus 
eerst de organisatie van het systeem begrijpen (d.w.z., welke knopen in het systeem 
zijn met elkaar verbonden, en hoe gemakkelijk worden deze knopen geactiveerd). 
Dit hoofdstuk laat zien hoe de architectuur van symptoomnetwerken samenhangt 
met hun veerkracht tegen verstoringen. De architectuur van een netwerk bestaat uit 
de verbindingsgewichten tussen de symptomen, die de sterkte van de verbindingen 
weergeven, en de drempelwaarde van elk symptoom, die hun dispositie voor activatie 
weergeven. Veerkrachtige netwerken worden over het algemeen gekenmerkt door 
hoge drempelwaarden en zwakke verbindingen tussen symptomen. Verschillende 
combinaties van verbindingsgewichten en drempelwaarden kunnen echter leiden 
tot hetzelfde veerkrachtniveau, wat wijst op de verschillende wegen waarlangs de 
veerkracht van een netwerk kan worden verbeterd. Opmerkelijk is dat de verschillen 
in parameterwaarden die resulteren in verschillende veerkrachtniveaus gering 
zijn. Dit verklaart mogelijk waarom veerkracht verondersteld wordt afhankelijk te 
zijn van complexe configuraties van factoren die veerkracht ondersteunen. Deze 
bevindingen worden gepresenteerd door het veerkrachtkwadrant te introduceren. 
Het veerkrachtkwadrant ordent symptoomnetwerken op basis van hun meest 
waarschijnlijke toestand (gezond of ongezond) en stabiliteit tegen verstoringen (stabiel 
of instabiel). Een veerkrachtig netwerk bevindt zich in een stabiele, gezonde toestand.

Hoofdstuk 3 vertrekt van netwerkmodellen van psychologische stoornissen naar 
modellen van geestelijke gezondheid, door symptoomnetwerken uit te breiden met 
externe risico- en beschermende factoren. Het hoofdstuk presenteert een formeel, 
complex systeem van geestelijke gezondheid dat ruimte biedt aan de factoren die 
in de onderzoeksliteratuur vaak in verband worden gebracht met de ontwikkeling 
van veerkracht. Het hoofdstuk stelt voor dat deze externe factoren specifieke 
parameters van het symptoomnetwerk kunnen veranderen, en als zodanig het netwerk 
kwetsbaarder of veerkrachtiger kunnen maken tegen verstoringen. Het hoofdstuk 
presenteert verschillende simulatiestudies die laten zien hoe dit proces eruit kan 
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zien. Op die manier kan veerkracht worden voorgesteld vanuit een multifactorieel 
perspectief waarin risico- en beschermende factoren met elkaar verbonden zijn en 
de aanwezigheid en stabiliteit van symptomen beïnvloeden.

Hoofdstuk 4 breidt het complexiteitsmodel van geestelijke gezondheid uit met 
langzame en snelle processen. De reden hiervoor is dat de verschillende risico- en 
beschermende factoren die van invloed zijn op veerkracht hoogstwaarschijnlijk op 
verschillende tijdschalen werken. Een voorbeeld van een langzaam proces dat van 
invloed kan zijn op de geestelijke gezondheid is persoonlijkheid. De persoonlijkheid 
van mensen kan veranderen, maar dit gebeurt in de loop van een mensenleven. Het is 
onwaarschijnlijk dat je op een persoonlijkheidstest van jaar tot jaar heel anders scoort, 
maar we verwachten meer verschillen wanneer je iemands testresultaten vergelijkt 
tussen een leeftijd van 20 jaar en 70 jaar. In het voorgestelde netwerkmodel van 
geestelijke gezondheid veranderen persoonlijkheidsfactoren (het langzame proces) 
de architectuur van het symptoomnetwerk van mentale stoornissen (het snelle 
proces) op een niet-triviale manier. We passen het model toe op de voorbeelden van 
neuroticisme (het trage proces) en depressie (het snelle proces). Het toegepaste model 
verbindt empirisch onderbouwde depressie en neuroticisme netwerken met elkaar. 
Dit geïntegreerde theoretische model laat zien dat simulaties resulteren in plausibele 
empirische patronen. Dit hoofdstuk is geïmplementeerd in een online simulatie-tool 
om de gepresenteerde studie eenvoudig te begrijpen en te repliceren.

In hoofdstuk 5 wordt onderzocht hoe risico- en beschermende factoren kunnen 
interacteren met de ontwikkeling van depressieve klachten. De studie in dit hoofdstuk 
richt zich op de wisselwerking tussen fluctuaties in positief en negatief affect, en de 
ontwikkeling van depressieve klachten. Deze wisselwerking wordt over een langere 
periode bekeken, zowel binnen dezelfde individuen, als tussen verschillende individuen. 
We analyseerden gegevens van 228 deelnemers die ten minste 20 assessments 
aflegden over een periode van 9-14 weken. We hebben longitudinale netwerken 
geschat, inclusief positief affect, negatief affect, en depressieve klachten. We vonden 
dat mensen die vertegenwoordigd werden door sterker verbonden netwerken (meer 
en sterkere verbindingen tussen de variabelen), ofwel een verlichting ofwel een 
verergering van depressieve klachten vertoonden in de loop van de tijd. Dit betekent 
dat de dichtheid van netwerkmodellen de fluctuaties van de variabelen over tijd zou 
kunnen tonen, wanneer wordt ingezoomd op individuele trajecten.

Hoofdstuk 6 presenteert een nieuwe methode en bijbehorend R-pakket 
(nodeIdentifyR) om de geprojecteerde effecten van symptoom-specifieke interventies 
in symptoomnetwerken te bestuderen. Het effect van een symptoom-specifieke 
interventie wordt berekend door het gedrag van het gehele netwerk te beschouwen. 
De methode kan worden toegepast op empirisch geschatte symptoomnetwerken 
om te identificeren welke specifieke symptomen de optimale targets zouden zijn 

voor therapeutische interventies. Bovendien kan de methode bestuderen welke 
symptoom-specifieke stressvolle verstoring het meest ongunstige effect zou hebben 
op het netwerk. Dit zou informatie kunnen opleveren over de kwetsbaarheden in het 
netwerk die mogelijk in aanmerking moeten worden genomen voor preventieve zorg. 
Door een complexiteitsbenadering aan te nemen waarbij de effecten van gerichte 
interventies op het gedrag van het hele netwerk worden bestudeerd, anticipeert de 
methode op voortdurende effecten die zonder simulaties moeilijk te identificeren zijn.

Tot slot geeft hoofdstuk 7 de algemene discussie van het proefschrift met een overzicht 
van de uitdagingen om het voorgestelde raamwerk verder te ontwikkelen. Bijvoorbeeld, 
het ontwikkelen van nieuwe complexiteit (netwerk) modellen die over tijd kunnen 
variëren om beter te begrijpen hoe mensen veerkracht ontwikkelen. Daarnaast zou 
toekomstig onderzoek zich meer kunnen richten op de beschermende mechanismen 
die veerkracht verbeteren. Hoewel dit proefschrift de symptoomnetwerken vanuit 
methodologisch en conceptueel oogpunt heeft opengesteld voor het opnemen 
van positieve mentale gezondheidsvariabelen, heeft het deze variabelen niet vanuit 
een inhoudelijk oogpunt bestudeerd. Toekomstig onderzoek kan het voorgestelde 
raamwerk gebruiken om onze focus te verbreden van symptoomontwikkeling naar de 
ontwikkeling van beschermende factoren en veerkrachtmechanismen. Verder is meer 
onderzoek nodig om het voorgestelde raamwerk toe te passen op intra-individuele 
processen, zodat we de veerkracht van een individueel netwerk kunnen beoordelen. 
Tenslotte is de volgende stap in de verdere ontwikkeling van dit raamwerk de 
empirische validatie van zowel complexiteitsmodellen, specifiek, de netwerkmodellen, 
als de gesimuleerde dynamieken zoals voorgesteld in dit proefschrift. In dit hoofdstuk 
geef ik een overzicht van verschillende opties om met deze validaties te beginnen.

In dit proefschrift heb ik een raamwerk ontwikkeld om psychologische veerkracht te 
onderzoeken vanuit een complex systeemperspectief met behulp van simulaties. Het 
raamwerk opent nieuwe mogelijkheden voor het beoordelen van de veerkracht van 
symptoomnetwerken en laat verschillende mogelijkheden zien voor het uitbreiden 
van deze modellen om de onderzoeksliteratuur over veerkracht te accommoderen. 
Het raamwerk zou echter ook in bredere zin gebruikt kunnen worden in andere 
domeinen, zoals grotere gedragstransities buiten de context van de geestelijke 
gezondheidszorg. Een modelbenadering die verschillende scenario’s bestudeert, kan 
helpen om te begrijpen hoe verschillende interventies kunnen uitpakken, aangezien 
deze niet los van elkaar kunnen worden begrepen. Men zou kunnen onderzoeken 
hoe lange termijn, stabiele gedragstransities in de samenleving (bv. de duurzame 
energietransitie) kunnen worden bereikt met behulp van het voorgestelde kader. 
Het onderzoeken van veerkracht als een eigenschap van complexe systemen door 
middel van simulaties zou op die manier wegen kunnen openen naar veel nieuwe en 
interessante onderzoeksprogramma’s.
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the simulations.
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of the manuscript.
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