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Abstract

PURPOSE The purpose of this chapter is to develop and evaluate an automatic deep
learning method for segmentation of cardiac chambers and large arteries, and localiza-
tion of the three main coronary arteries in radiation therapy planning on computed
tomography (CT). In addition, a second purpose is to determine the planned radiation
therapy dose to cardiac structures for breast cancer therapy.

METHODS AND MATERIALS Eighteen contrast-enhanced cardiac scans acquired with
a dual-layer-detector CT scanner were included for method development. Manual
reference annotations of cardiac chambers, large arteries, and coronary artery loca-
tions were made in the contrast scans and transferred to virtual non-contrast images,
mimicking non-contrast-enhanced CT. In addition, 31 non-contrast-enhanced radiation
therapy treatment planning CTs with corresponding dose-distribution maps of breast
cancer cases were included for evaluation. For reference, cardiac chambers and large
vessels were manually annotated in two 2-dimensional (2D) slices per scan (26 scans,
totaling 52 slices) and in 3-dimensional (3D) scan volumes in five scans. Coronary
artery locations were annotated on 3D images. The method uses an ensemble of convo-
lutional neural networks with two output branches that perform two distinct tasks: (1)
segmentation of the cardiac chambers and large arteries and (2) localization of coronary
arteries. Training was performed using reference annotations and virtual non-contrast
cardiac scans. Automatic segmentation of the cardiac chambers and large vessels and
the coronary artery locations was evaluated in radiation therapy planning CT with
Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD). The
correlation between dosimetric parameters derived from the automatic and reference
segmentations was evaluated with R2.

RESULTS For cardiac chambers and large arteries, median DSC was 0.76 to 0.88, and
the median ASSD was 0.17 to 0.27 cm in 2D slice evaluation. 3D evaluation found a
DSC of 0.87 to 0.93 and an ASSD of 0.07 to 0.10 cm. Median DSC of the coronary artery
locations ranged from 0.80 to 0.91. R2 values of dosimetric parameters were 0.77 to 1.00
for the cardiac chambers and large vessels, and 0.76 to 0.95 for the coronary arteries.

CONCLUSIONS The developed and evaluated method can automatically obtain accurate
estimates of planned radiation dose and dosimetric parameters for the cardiac chambers,
large arteries, and coronary arteries.
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4.1 Introduction

Radiation exposure of the heart during radiation therapy treatment for breast cancer
is known to increase the risk of ischemic heart disease (IHD).1 Multiple studies have
reported an increased risk of IHD with increasing mean heart dose (MHD);1 however,
the dose distribution within the heart is not homogeneous. A study by Jacob et al.2

showed that the dose delivered to the left ventricle and the three main coronary arteries
can differ substantially from the MHD. Van den Bogaard et al.3 showed that replacing
the MHD in a prediction model by the dose to the left ventricle improved prediction of
acute coronary events. Moreover, previous research has shown that a high dose to the
coronary arteries could lead to an increased risk of stenosis in these arteries.4,5

Taking the irradiation dose to specific heart structures into account during radiation
therapy treatment planning can help to mitigate radiation-induced cardiac damage
and to reduce the risk of IHD.2 However, computed tomographic (CT) scans used for
radiation therapy treatment planning are acquired without contrast agent and without
electrocardiograph (ECG) triggering. Hence, visualization of cardiac chambers and the
coronary arteries is suboptimal, which makes manual delineation of those structures
practically infeasible. On the other hand, cardiac structures can be visualized with
high accuracy in coronary CT angiography (CCTA) scans. Therefore, Jacob et al.2 used
image registration to transfer delineations made in CCTA scans to the planning CT
image.2 However, CCTA is not part of routine clinical care for patients with breast
cancer. Accordingly, cardiac contouring atlases have been developed in non-contrast
CT for reproducible manual contouring. Moreover, automatic methods have been
proposed that use registration of non-contrast CT atlases to delineate cardiac structures
on the planning CT scan.6–8

These previous methods focus on the delineation of cardiac chambers. Fewmethods
have been proposed to segment the coronary arteries in non-contrast-enhanced CT
scans. Van den Bogaard et al.9 derived a segmentation of the left anterior descending
artery based on anatomic landmarks and prior segmentation of the left and right ven-
tricle. Morris et al.10 proposed to use additional information from magnetic resonance
imaging scans to develop a method for segmentation of both the cardiac chambers and
the three main coronary arteries.

Recently proposed machine learning methods use training data to learn to segment
cardiac structures. The accuracy of the reference standard used for training in previous
methods is often limited by the lack of contrast or inaccuracies owing to intra-patient
registration. Recently, Bruns et al.11 proposed to obtain reference segmentation in
contrast-enhanced CT acquired with a dual-layer detector CT scanner. By leveraging
the dual-energy information of such scans, the reference annotations can be transferred
to perfectly aligned virtual non-contrast (VNC) CT images, mimicking non-contrast-
enhanced CT images. This way, a deep learning segmentation method could be trained
using reference segmentations with voxel-level accuracy, which showed excellent
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performance in the segmentation of cardiac chambers and large arteries in non-contrast-
enhanced cardiac CT images.

A robust segmentation algorithm could facilitate large-scale studies investigating
the consequences of the dose planned to cardiac structures and coronary arteries
in radiation therapy for breast cancer. Hence, the purpose of this chapter was to
develop and evaluate a deep learning method for the segmentation of cardiac structures
in treatment planning CT scans to allow the calculation of dosimetric parameters in
patients with breast cancer. In this chapter, we build on work by Bruns et al.11 to develop
a deep learning method for segmentation of cardiac chambers and large arteries, and
for localization of the trajectories of the three major coronary arteries in planning CT
scans. We evaluate the quality of the obtained segmentations and whether these provide
accurate dosimetric parameters compared with manually defined segmentations.

4.2 Methods and materials

4.2.1 Data

To develop the segmentation method, 18 CCTA scans from the CLARITY study were
included12 (Fig. 4.1). Scans were acquired on a dual-layer-detector CT scanner (IQon;
Philips Healthcare, Best, The Netherlands) using 120 kVp and 120 mAs. Scans were
reconstructed to 0.35 to 0.50 mm in-plane resolution and 0.9 mm slice thickness. With
the dual-energy information, a CCTA and a VNC image resembling a non-contrast-
enhanced CT could be reconstructed from a single contrast-enhanced acquisition. To
obtain a reference standard for training of a deep learning method, the cardiac struc-
tures and three main coronary arteries were segmented in the CCTA scans. Reference
segmentations of the cardiac chambers and large arteries were made in a semiauto-
matic manner as described by Bruns et al.11 and included the left ventricle myocardium,
left ventricle blood pool (LVBP), right ventricle (RV), left atrium (LA), right atrium
(RA), ascending aorta, and pulmonary artery trunk. Initial segmentations in contrast-
enhanced images were obtained using a previously described algorithm.13 Subsequently,
a medical student performed manual voxel-wise correction of the initial segmentations.
Thereafter, all reference segmentations were verified and then corrected by a resident if
necessary (7 years’ experience in cardiothoracic imaging). To obtain reference segmen-
tations of the coronary arteries, we used an automatic method for tracking coronary
arteries in the CCTA scans.14 Subsequently, an observer (4 years’ experience) selected
the main branches of the left anterior descending (LAD), left circumflex (LCX), and
right coronary artery (RCA), verified the segmentations and then manually corrected
them if necessary.

The evaluation set comprised 31 radiation therapy treatment planning CT scans
of patients from clinical practice (Fig. 4.1). Scans were acquired without contrast
enhancement, without ECG triggering, during free breathing, and with 120 kVp. Scans
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Figure 4.1: Overview of the data and manual annotations used in the study. Abbreviations: DSC

= Dice similarity coefficient; ASSD = average symmetric surface distance.
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were reconstructed to 0.78 to 1.37 mm in-plane resolution, 3 mm slice thickness, and
3 mm slice spacing. Dose distribution maps and manual contours were obtained
from the radiation therapy treatment planning software used in the clinic. Manual
contours included the whole heart without subdivision into separate cardiac structures.
Three-dimensional (3D) CT radiation therapy treatment planning was performed using
Monaco (Elekta; 2016). Because all data regarding breast cancer patients were collected
retrospectively and anonymously, the need for informed consent was waived by the
local institutional review board.

Manual segmentation of the cardiac structureswas performed to define the reference
standard for evaluation. Because of the lack of contrast in the radiation therapy
treatment planning CT images, voxel-wise manual segmentation of the whole 3D
volume is extremely time consuming.11 To maximize the number of scans, and thus
maximize anatomic variation in the test set, segmentations were made in a set of
2-dimensional (2D) axial slices of the heart selected from 26 scans. Two slices per scan
were randomly selected using the clinical whole heart delineations, totaling 54 slices.
This way, the whole heart was likely covered by the included slices. Apical slices were
manually excluded and replaced with a new randomly chosen slice because, in those
slices, the heart was poorly visible.

Given time-consuming manual annotation in 3D imaging, and the need to evaluate
the automatic method to ensure full heart coverage, five scans were also annotated
manually in 3D using voxel-wise annotation of cardiac structures. The reference for
artery localization was set by drawing the centerlines of the three main coronary
arteries in each 3D image volume.

4.2.2 Segmentation of cardiac structures

We built on a method that was proposed for the segmentation of cardiac chambers
and large arteries in non-contrast-enhanced ECG-synchronized cardiac CT imaging.11

Cardiac structures are generally poorly visible in non-contrast-enhanced CT scans,
which renders manual segmentation a practically infeasible task. CT scans with a
contrast agent, however, clearly visualize all of these structures and facilitate their
segmentation. Hence, to segment cardiac chambers and large arteries in non-contrast-
enhanced CT, we trained the method using VNC CT images (Fig. 4.2A, Training).
Owing to voxel-wise correspondence, the reference segmentations and artery locations
made on the contrast-enhanced image were transferred directly with voxel accuracy
to the VNC image for training. Because VNC images closely resemble conventional
non-contrast-enhanced CT images, the trained method can be used for segmentation
of conventional non-contrast-enhanced CT images. After training, the method was
applied to non-contrast-enhanced planning CT images (Fig. 4.2A, Testing).

Our network performed two distinct tasks: segmentation of the cardiac chambers
and large arteries and localization of the coronary arteries. The coronary arteries are
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Figure 4.2: (A) Schematic overview of the deep learning segmentation method. The method is

trained using virtual non-contrast scans with the manually determined reference. Thereafter, the

method is applied to planning CT scans. The segmentations and artery locations are then trans-

ferred to the dose distribution map to calculate dose parameters. (B) The CNN architecture uses

two separate output paths that perform two distinct tasks: (1) segmentation of cardiac chambers

and large arteries, and (2) localization of the coronary arteries. Abbreviations: CNN = convolutional

neural network; CT = computed tomography.
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small structures compared with the other heart structures and are barely visible in non-
contrast-enhanced CT, especially in non–ECG-triggered scans. Hence, simply adding
the arteries to the segmentation maps would pose a challenging problem because of
class imbalance. Therefore, we designed a 3D convolutional neural network (CNN) with
two output branches, a branch for structure segmentation and a branch for localizing
the coronary arteries. Contrary to the branch that segments cardiac structures, the
artery localization branch does not predict voxel labels but predicts, per voxel, the
squared inverse distance to the target artery segmentation using regression.15 This
condition renders a heatmap-like prediction of the artery trajectories. For training,
we converted the reference segmentation of the coronary arteries to a heatmap by
applying an inverse Euclidean distance transform.

Inspired by the method of Bruns et al.,11 the CNN architecture used in this chapter
consists of an encoding path, which is connected to the output branches by six ResNet16

blocks that exploit skip connections for optimal information propagation (Fig. 4.2B).
The architecture is relatively small to ensure optimal network learning from a limited
data set. Because an ensemble of CNNs provides more robust predictions than a single
CNN,17 the final segmentation method consists of an ensemble of 18 CNNs.11 The
data set of VNC images is randomly divided into six folds with 15 scans for training
and three for validation. In each fold, three CNNs are trained with different random
initializations, totaling 18 CNNs. The input of the CNNs consists of slabs, consisting
of five stacked axial image slices of 256 × 256 voxels. For optimal performance in
the target CT images, the VNC images are resampled to the average resolution of
the radiation therapy planning CTs — namely, 1 mm in-plane resolution and 3 mm
slice spacing. All 18 CNNs are trained for 10,000 iterations with minibatches of 32
randomly sampled image slabs, using Adam18 for optimization. The loss function for
segmentation of the cardiac chambers and large arteries is defined as the negative
sum of soft Dice similarity coefficients over all classes. In addition, for the coronary
artery localization, an L1 loss of the predicted heatmap with the reference heatmap is
calculated. For more details regarding the training, we refer to Bruns et al.11 To obtain
the final prediction, predictions of all 18 CNNs are averaged. From the coronary artery
heatmaps, centerlines are extracted. After training, the method was applied to the
test scans fully automatically, and manual correction of the segmentation results was
performed.

4.2.3 Quantitative evaluation

To evaluate the performance of the segmentation algorithm, the automatic segmen-
tations and artery trajectory locations were compared with the manual reference.
Segmentations of the cardiac chambers, aorta, and pulmonary artery were evaluated
using the Dice similarity coefficient (DSC). The DSC reflects the overlap of two segmen-
tations, with a DSC of 1.0 reflecting perfect agreement. The DSC is less appropriate
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for the evaluation of small structures such as the coronary arteries. Therefore, similar
to the DSC, the overlap with the reference was used, defined as the harmonic mean
between recall and precision.19 A distance threshold was used to define true-positive,
true-negative, false-positive, and false-negative centerline locations. The automatic
location was defined as true positive if its distance to the reference location was smaller
than the predefined distance threshold. Two thresholds were evaluated, set to 0.7 cm
and 1.0 cm. Moreover, the average symmetric surface distance (ASSD), which measures
the average distance between two segmentations, was used to evaluate the structure
segmentations and coronary artery locations. An ASSD of 0.0 cm reflects perfect
agreement of segmentations.

Dosimetric parameters derived from the automatic segmentations were compared
with those derived from manual reference segmentations. By combining the automati-
cally and manually obtained segmentations of each anatomic structure with the dose
distribution maps, we calculated dosimetric parameters for the structures of interest
(Fig. 4.2A, Testing). For evaluated axial slices, the Dmean (mean dose) expressed in Grays
(Gy), V1Gy (percentage of the volume of a structure receiving 1 Gy or more), and D5%

(the mean dose to the 5% of the structure that receives the highest dose) were calculated
for each manually and automatically segmented heart structure. Correlation between
the automatically and the manually derived dosimetric parameters was assessed using
R2 of the linear regression.

4.3 Results

4.3.1 Segmentation of cardiac chambers and large arteries

The DSC overlap between automatic and manual segmentations varied between the
different structures (Table 4.1). The highest DSC was observed for the LVBP and the
aorta, with a median of 0.88 (interquartile range [IQR], 0.85–0.90) and 0.88 (IQR, 0.83–
0.92), respectively. The myocardium had the lowest DSC among cardiac structures
(median of 0.76 [IQR, 0.68–0.80]), which is also the most challenging to segment in non-
contrast-enhanced images. The ASSD ranged from 0.17 to 0.27 cm over the different
structures.
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Evaluation in the five scans fully segmented in 3D imaging found a DSC between
0.87 and 0.93 for the different structures (Table 4.1), which is higher for every evalu-
ated structure than the DSC that was found in 2D imaging. Moreover, the ASSD is
substantially lower in the 3D evaluation.

4.3.2 Coronary artery localization

The observedmedian ASSDwas 0.37 cm (IQR, 0.28–0.73 cm), 0.56 cm (IQR, 0.44–0.67 cm)
and 0.51 cm (IQR, 0.40–0.69 cm) for the LAD, RCA, and LCX, respectively (Fig. 4.3B).
The artery localization was within 1.0 cm of the reference with a median overlap of
0.91, 0.81, and 0.80 cm for the LAD, RCA, and LCX, respectively. Median overlap for
0.7 cm was 0.79, 0.55, and 0.59 cm for the LAD, RCA, and LCX, respectively.

4.3.3 Dosimetric parameters

The agreement between dosimetric parameters derived from the automatically gener-
ated segmentations, and the dosimetric parameters derived from manual segmentations
are shown in Figure 4.4. The R2 values of Dmean were >0.90 for the LVBP, LA, RA, MYO,
and AO (Table 4.1). For the RV and pulmonary artery, these values were 0.77 and 0.83,
respectively. The R2 values for the D5% and V1Gy ranged between 0.99 and 0.77 and can
be found in Table 4.1. Evaluation in the five scans annotated in 3D imaging showed a
high correlation for all dosimetric parameters for all structures (Table 4.1).

The agreement of Dmean derived from automatically and manually located arteries
was high, with R2 values of 0.86, 0.93, and 0.95 for the LAD, RCA, and LCX, respectively
(Table 4.2). R2 values for the D5% and V1Gy ranged from 0.76 to 0.94. Figure 4.5 shows
representative dose-volume histograms obtained with the automatic and manual seg-
mentations and artery locations. The DSC, overlap, and ASSD indicate the presence of
imperfections in the segmentations and artery locations. Despite the imperfections, the
doses received by the automatically and manually derived segmentations and locations
were similar.

4.4 Discussion

In this chapter, we developed and evaluated a method for fully automatic segmentation
of heart chambers and large arteries and localization of the coronary arteries in non-
contrast-enhanced radiation therapy planning CT scans. The method consists of an
ensemble of CNNs that was trainedwith VNC images usingmultispectral characteristics
of the scans made with a dual-layer CT scanner. The results show good agreement
between automatic and manual reference segmentations and artery locations. An
analysis of dosimetric parameters showed that the proposed method can generate
accurate measurements showing the planned radiation therapy dose to each evaluated
structure.
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Figure 4.3: (A) Dice similarity coefficient and average symmetric surface distance for the left ven-

tricular blood pool (BP), right ventricle (RV), left atrium (LA), right atrium (RA), left ventricle my-

ocardium (MYO), aorta (AO), and pulmonary artery (PUL). (B). Overlap and ASSD for the left anterior

descending (LAD), left circumflex (LCX) and right coronary artery (RCA).

Table 4.2: Performance of artery localization and correlation of derived dosimetric parameters.

Evaluation LAD RCA LCX

Localization

Median overlap 1.0 cm (IQR) 98% (83%–100%) 88% (70%–100%) 80% (67%–87%)

Median ASSD, cm (IQR) 0.37 (0.28–0.73) 0.56 (0.44–0.67) 0.51 (0.40–0.69)

Correlation dosimetric parameters (R2)

Dmean 0.86 0.93 0.95

D5% 0.76 0.85 0.94

V1Gy 0.94 0.93 0.92

Mean absolute difference dosimetric parameters

Dmean (Gy) 0.86 0.93 0.95

D5% (Gy) 0.76 0.85 0.94

V1Gy 6% 7% 7%

Abbreviations: ASSD = asymmetric surface distance; D5% = the mean dose to the 5% of the structure that receives

the highest dose; Dmean = mean dose; IQR = interquartile range; LAD = left anterior descending; LCX = left

circumflex; RCA = right coronary artery; V1Gy = percentage of the volume of a structure receiving 1 Gy or more.
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Figure 4.4: Comparison of the mean dose (Dmean) derived from manual and automatic structure

segmentations and artery locations. Plots show the Dmean for the left ventricular blood pool (LVBP),

right ventricle (RV), left atrium (LA), right atrium (RA), left ventricularmyocardium (MYO), aorta (AO),

pulmonary artery (PUL), left anterior descending artery (LAD), right coronary artery (RCA), and left

circumflex artery (LCX).

For the development of the deep learning segmentation method, a set of CT scans
acquired with a dual-layer-detector CT scanner was used. Because of the dual-energy
properties of these acquisitions, virtual non-contrast scans can be reconstructed from
an acquisition with contrast. Reference segmentations were made using the CCTA
images, where visibility of the cardiac structures is optimal. Thereafter, reference
segmentations were transferred with voxel level accuracy to the virtual non-contrast
images, resulting in a highly accurate training reference. Previous methods evaluating
radiation therapy dose to cardiac structures used both a radiation therapy planning CT
and a CCTA scan to segment cardiac structures through intra-patient registration,2,20

which is limited by the accuracy of the challenging registration between images with
and without contrast enhancement. A different approach performs automatic atlas-
based contouring of cardiac structures directly on the planning CT, without using
a CCTA scan for contouring in between.7,8,21 However, cardiac structures are barely
differentiable on non-contrast-enhanced CT, making the atlas subject to inter-observer
variability. In addition, inter-patient registration is highly challenging in images
where the structure boundaries are poorly visible. Moreover, because of the lack of
contrast, the performance in small structures, such as the coronary arteries, is often
suboptimal.7,8,22

Recently, Morris et al.10 proposed to use information frommagnetic resonance imag-
ing scans for the segmentation of cardiac structures and coronary arteries in radiation
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Figure 4.5: Dose-volumehistogramsderived frommanual and automatic structure segmentations

and artery locations for a patient with right- and left-sided breast cancer. Not all structures are

present in the evaluated slices. The histograms show the left ventricular blood pool (LVBP), right

ventricle (RV), left atrium (LA), right atrium (RA), left ventricular myocardium (MYO), aorta (AO), left

anterior descending artery (LAD), right coronary artery (RCA), and left circumflex artery (LCX).
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therapy planning CT scans. Compared with that study, we have achieved comparable
DSC scores for the cardiac structures: 0.76–0.88 in our study when evaluated in 2D
slices and 0.87–0.93 when evaluated in 3D volumes, compared with 0.77–0.88 in the 3D
evaluation by Morris et al.10 These results show that deep learning methods are capable
of learning the complex segmentation task, despite poor contrast in the target scans.

In addition, we have evaluated the accuracy of automatically calculated dosimetric
parameters. Our analysis shows that, despite small deviations from the manual ref-
erence, the automatic segmentations can provide dose parameters that have a high
correlation with reference parameters. Because the coronary arteries are relatively
small structures, the geometric overlap (DSC) may be low, whereas the calculated dose
parameters show a high correlation with the reference.21 Moreover, despite the DSC
and ASSD scores showing that small imperfections of the automatic segmentations are
present, the dose-volume histograms of the automatic and manual segmentations are
similar.

In a 2D evaluation, the vast majority of the slices show a high DSC and low ASSD,
but several outliers are present (Fig. 4.4). Similarly, outliers are present in the evaluation
of dosimetric parameters; these are partly due to the evaluation in 2D image slices.
For instance, the transition from the pulmonary artery to the right ventricle is often
not well visible, which causes uncertainty in the reference annotations in the slices
located in the vicinity of this transition. Moreover, on the boundary of a structure
partial volume effects make it poorly visible and manual segmentation of a structure
on a voxel level is prone to large inter-observer variability.23 These uncertainties along
the boundaries of structures are less pronounced in 3D evaluation; this is reflected in
our results by higher DSC and lower ASSD in the five scans used for 3D evaluation.
Overall, the results show that the automatic segmentation shows good agreement with
the manual reference.

Because the planning CT scans used in this chapter are acquired without ECG
synchronization, substantial partial volume effect and cardiac motion are visible in the
scans; this could affect the myocardium and coronary arteries.24 With current treatment
technology, cardiac motion is not monitored or managed during irradiation treatment.
Our presented method that segments cardiac structures could allow cardiac motion to
be incorporated into margins for each cardiac structure and coronary artery during
treatment planning.

The presented automatic method was trained with a relatively small data set, which
might lead to limited robustness in regard to anatomic variation and unseen pathology.
Therefore, we subsequently applied the method in a large set to evaluate performance
in a set comprising larger diversity in anatomic variation. The results demonstrate
that our method generalizes well to these variations in the evaluated set. Nevertheless,
future work should focus on evaluating the method in a data set comprising other
target populations and diversity in image acquisition.

In the current study, the automatic segmentation algorithm is evaluated in a group of
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patients with breast cancer. However, segmentation of cardiac structures and coronary
arteries could also be valuable in patients receiving radiation therapy for other types of
cancer. For example, an increased risk of heart disease owing to radiation therapy has
been observed in patients undergoing treatment for non-Hodgkin lymphoma,25 and
cardiac radiation exposure is associated with major adverse cardiac events in patients
with non-small cell lung cancer.26 Incorporating cardiac structures and coronary arteries
into treatment planning for this or other patient groups could also be beneficial for
cardiac sparing. Because CT scanning parameters and dose distributions can differ per
type of irradiated cancer, careful evaluation of the segmentation results and dosimetric
parameters would be needed. Moreover, to obtain better insight in radiation-related risk
per cardiac structure and to determine their specific dose constraints, future research
focusing on these topics is warranted.

This chapter has several limitations to consider. First, reference segmentations for
evaluation were made in CT scans acquired without intravenous contrast and without
ECG synchronization, which might have affected the reproducibility and accuracy
of the reference segmentations. Despite this potential source of variation, we found
good agreement between automatic and manual segmentations. This finding is in line
with an earlier study by Bruns et al.11 in which the segmentation algorithm produced
accurate segmentations in a set of cardiac patients for whom both contrast and non-
contrast-enhanced CT scans were available. Second, evaluation of the cardiac structure
segmentations in 2D axial slices might have magnified disagreement along the border of
structures. This may be less pronounced if 3D volumes were segmented for evaluation.
However, 2D slice evaluation enabled the use of a larger data set comprising more
anatomic variability than other studies.

4.5 Conclusion

The evaluated automatic method is an effective tool for obtaining estimates of planned
radiation dose and dosimetric parameters for each cardiac chamber, large arteries, and
coronary arteries. This chapter presents a step toward more detailed and spatially
distributed dose planning considering the detailed anatomy of the heart. The method
can facilitate large-scale studies researching the effect of radiation dose on cardiac
structures and coronary arteries.
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