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Abstract

We show the existence of a broad class of affine Markov processes on the cone of positive self-adjoint
ilbert–Schmidt operators. Such processes are well-suited as infinite-dimensional stochastic covariance
odels. The class of processes we consider is an infinite-dimensional analogue of the affine processes

n the cone of positive semi-definite and symmetric matrices studied in Cuchiero et al. (2011).
As in the finite-dimensional case, the processes we construct allow for a drift depending affine linearly

n the state, as well as jumps governed by a jump measure that depends affine linearly on the state. The
act that the cone of positive self-adjoint Hilbert–Schmidt operators has empty interior calls for a new
pproach to proving existence: instead of using standard localization techniques, we employ the theory
n generalized Feller semigroups introduced in Dörsek and Teichmann (2010) and further developed
n Cuchiero and Teichmann (2020). Our approach requires a second moment condition on the jump

easures involved, consequently, we obtain explicit formulas for the first and second moments of the
ffine process.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this article we show the existence of time-homogeneous affine Markov processes on
he cone of positive self-adjoint Hilbert–Schmidt operators. The affine class is known for its
ractability and flexibility.

∗ Corresponding author.
E-mail addresses: S.G.Cox@uva.nl (S. Cox), sven@karbach.org (S. Karbach), A.Khedher@uva.nl

(A. Khedher).
1 Corresponding author is funded by The Dutch Research Council (NWO) (Grant No: C.2327.0099). The authors

gratefully acknowledge Christa Cuchiero for fruitful discussions.
https://doi.org/10.1016/j.spa.2022.05.008
0304-4149/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2022.05.008
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2022.05.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:S.G.Cox@uva.nl
mailto:sven@karbach.org
mailto:A.Khedher@uva.nl
https://doi.org/10.1016/j.spa.2022.05.008
http://creativecommons.org/licenses/by/4.0/


S. Cox, S. Karbach and A. Khedher Stochastic Processes and their Applications 151 (2022) 191–229

e
b

A
φ

f
g

t
a

p
c
m
m
m
i
L
4
w

T
o
µ

e
u

w

t
T
t

a
m
i
a

It is tractable because the Fourier–Laplace transform of such processes depends in an
xponentially affine way on the initial state vector of the process. More specifically, denote
y (H, ⟨·, ·⟩) the Hilbert space of self-adjoint Hilbert–Schmidt operators on a Hilbert space

(H, ⟨·, ·⟩H ) and by H+
⊆ H the cone of positive self-adjoint Hilbert–Schmidt operators.

H+-valued time-homogeneous Markov process (X t )t≥0 is affine, if there exist functions
:R+

× H+
→ R+, ψ :R+

× H+
→ H+ such that

E
[
e−⟨X t ,u⟩

|X0 = x
]

= e−φ(t,u)−⟨x,ψ(t,u)⟩, t ≥ 0 , (1.1)

or all u ∈ H+. The functions φ and ψ are typically solutions of ordinary differential equations
iven in terms of the parameters of the model.

The affine class is flexible because the parameters of the model satisfy certain assumptions
hat allow for desired features such as constant and bounded linear drifts and constant and
ffine state-dependent jumps of infinite-variation.

Our motivation for studying affine processes in the state space H+ lies in the fact that such
rocesses are well-qualified as models for infinite dimensional covariance processes, i.e., they
an be used for the modeling of stochastic volatility in, for example, bond and commodity
arkets. See e.g. [17,6,2,3] for the modeling of forward price dynamics in bond and commodity
arkets as a process with values in a Hilbert space. In particular, in [4] a stochastic volatility
odel is constructed that involves a covariance process driven by Lévy noise and taking values

n the positive Hilbert–Schmidt operators. Our model extends the covariance model in [4] from
évy driven processes to processes allowing for state-dependent jumps (see also [7, Section
.1]). More specifically, the affine processes we consider in this paper are of pure-jump type
here the jumps can be state-dependent and of infinite variation.
Let us state our main result in an abbreviated form, see also Theorem 2.8 and its proof:

heorem 1.1. Let (b, B,m, µ) be a tuple consisting of a vector b ∈ H, a bounded linear
perator B ∈ L(H), a measure m on the Borel-σ -algebra B(H+

\{0}) and a H-valued measure
on B(H+

\ {0}), satisfying the admissibility assumptions posed in Definition 2.3. Then there
xists an affine process (X t )t≥0 in H+, such that the functions φ and ψ in Eq. (1.1) are the
nique solution to the so called generalized Riccati equations associated to (b, B,m, µ):

∂

∂t
φ(t, u) = ⟨b, ψ(t, u)⟩ −

∫
H+\{0}

(
e−⟨ξ,ψ(t,u)⟩

− 1 + ⟨χ (ξ ), ψ(t, u)⟩
)
m(dξ ), (1.2a)

∂

∂t
ψ(t, u) = B∗(ψ(t, u)) −

∫
H+\{0}

(
e−⟨ξ,ψ(t,u)⟩

− 1 + ⟨χ (ξ ), ψ(t, u)⟩
)µ(dξ )

∥ξ∥2 , (1.2b)

ith initial values φ(0, u) = 0 and ψ(0, u) = u for u ∈ H+.

More specifically, the processes we consider have a constant drift vector b, a linear drift
erm B, a constant jump measure m, and a state-dependent jump measure µ. In addition to
heorem 1.1, and as a by-product of our method of proof, we establish explicit formulas for

he first and second moments of the affine processes, see Proposition 4.17.
Note that Eq. (1.2b) is a non-linear differential equation on the cone of positive self-

djoint Hilbert–Schmidt operators which, in general, cannot be solved explicitly. Numerical
ethods for approximating solutions to infinite-dimensional Riccati equations are considered

n e.g. [15,34]. A numerical approximation method tailored for this specific equation will be
nalyzed in forthcoming work [23].

There is a vast number of articles dealing with affine processes in several state spaces in finite
dimensions, we mention, for example, [8,14,26,25,36,21,9]. In [14,9], the authors considered
192
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affine processes respectively on the canonical state space Rd
+
×Rm , d,m ∈ N, and on the cone of

positive semi-definite symmetric matrices. Both articles give sufficient and necessary admissible
parameter conditions and characterize the class of stochastically continuous affine processes by
means of their Markovian generator. The literature on affine processes in infinite-dimensional
state spaces is more sparse. Existence of affine diffusion processes on Hilbert spaces was
investigated in [35]. In [20], the author investigated affine processes in general locally convex
vector spaces and in [10], existence of affine Markovian lifts of finite-dimensional Volterra
processes was shown. The Markovian lift process takes values in a certain cone in a space of
measures and shares many features of the affine processes which we consider.

The biggest challenge we face is that like many infinite-dimensional cones, the cone of
positive self-adjoint Hilbert–Schmidt operators has empty interior. One consequence is that one
cannot employ classical localization arguments to establish existence of the desired processes;
we take a different approach outlined below. Another consequence is that it is difficult to
incorporate a diffusion term. Indeed, it remains an open question whether and under what
conditions infinite-dimensional affine processes on positive Hilbert–Schmidt operators allow
for a diffusion term.

Our new approach involves approximating the transition semigroup associated with our
Markov process by simpler transition semigroups corresponding to affine finite-activity jump
processes. We then exploit the generalized Feller theory introduced in [13] and the approxi-
mation results [10, Proposition 3.3 and Theorem 3.2] as well as a version of the Kolmogorov
extension theorem proven in [10, Theorem 2.11] to show that the limiting semigroup gives rise
to a generalized Feller process. Note that the idea of showing the existence of affine processes
with jumps of infinite variation through an approximation with simpler affine processes was
already used on e.g. convex sets in finite dimensions, where it is known that affine processes
are (classical) Feller processes (see [14,9]). However, our approach is somewhat different,
and a considerable amount of effort goes into verifying that the approximating generalized
Feller semigroups satisfy all necessary conditions to ensure convergence. In particular, a subtle
analysis of the regularity of φ and ψ is conducted and we derive a uniform growth bound for
the approximating semigroups.

1.1. Layout of the article

In Section 2 we provide the definition of admissible parameter sets and we state our main
result (Theorem 2.8) on the existence of affine pure-jump processes on the cone of positive self-
adjoint Hilbert–Schmidt operators. Moreover, we specify the exact form of the weak generator
of these Markov affine processes on the linear span of the Fourier basis elements in terms
of the introduced admissible parameter set. A brief outline of the proof of Theorem 2.8 is
presented in Section 2 and the full proof is left to Section 4. In Section 3 we show the existence
and uniqueness of the solution to the generalized Riccati equations (1.2) and we study the
regularity of this solution with respect to its initial value. We briefly discuss the issue of solving
the Riccati equations numerically in Section 3.2. We recall the generalized Feller setting in
Section 4.1. Then in Sections 4.2 and 4.3 we make use of the results in Section 3 and some
intricate approximation techniques for generalized Feller semigroups to complete the proof of
Theorem 2.8. In Appendices A–C, we, respectively, add a comparison theorem that we need
in our derivations, collect some ‘standard’ results on integration with respect to vector-valued
measures, and provide a regularity result of the solution to our considered generalized Riccati

equations.
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1.2. Notation

We set N = {1, 2, . . .} and N0 = {0, 1, . . .}. For a vector space X and U ⊆ X we denote the
linear span of U by lin(U ). For (X, τ ) a topological space and S ⊆ X we let B(S) denote the
Borel-σ -algebra generated by the relative topology on S. Let (H, ⟨·, ·⟩H ) be a Hilbert space.
Then we denote by C(S, H ) the space of H -valued functions on S that are continuous with
respect to the relative topology and we denote by Cb(S, H ) the space of bounded H -valued
ontinuous functions on S. This is a Banach space when endowed with the supremum norm
· ∥C(S). Notice that when H = R, we typically omit H in the notation: C(S) := C(S,R).
et L(X ) denote the space of bounded linear operators from a Banach space X to X . This

s a Banach space when equipped with the operator norm ∥ · ∥L(X ). If G is a linear operator
n a Banach space X , we denote its domain by dom(G) and denote by I the identity in L(X ).
e denote unbounded operators by a calligraphic font and bounded ones by the standard font,

.g., G versus G. Let L(2)(H × H, H ) denote the space of continuous bilinear forms from
H × H to H . The adjoint of an operator A : H → H is denoted by A∗. An operator A ∈ L(H )
is positive if ⟨Ax, x⟩H ≥ 0 for all x ∈ H . We let L2(H ) denote the space of Hilbert–Schmidt

perators from H to H , this is a Hilbert space when endowed with the inner product

⟨A, B⟩L2(H ) =

∞∑
n=1

⟨Aen, Ben⟩H ,

here (en)n∈N is an orthonormal basis for H and ⟨·, ·⟩L2(H ) is independent of the choice of the
rthonormal basis (see, e.g., [37, Section VI.6]). A nonempty subset K of a vector space is
alled a wedge if K + K ⊆ K and αK ⊆ K for all α ≥ 0, if moreover K ∩ (−K ) = {0} then
e call K a cone. A cone K in a vector space X induces a partial ordering: we write x ≤K y

f y − x ∈ K (and x ≥K y if x − y ∈ K ). If K ⊂ H is a wedge, we define the dual of K by

K ∗
= {x ∈ H : ⟨x, y⟩H ≥ 0 for all y ∈ K }, (1.3)

nd we say that K is self-dual if K = K ∗. Note that if K is self-dual then 0 ≤K x ≤K y
mplies ∥x∥

2
H ≤ ⟨x, y⟩H ≤ ∥x∥H∥y∥H , i.e.,

0 ≤K x ≤K y ⇒ ∥x∥H ≤ ∥y∥H (1.4)

in other words, K is monotonic).
We say that a cone K is regular if for all y, x1, x2, . . . ∈ K satisfying x1 ≤K x2 ≤K · · · ≤K y

there exists an x ∈ H such that limn→∞ ∥xn − x∥H = 0. A cone K is said to have generating
dual if B∗

= K ∗
− K ∗. It is true that K has generating dual if and only if K is normal,

i.e. 0 ≤K x ≤K y for y ∈ K , implies ∥x∥ ≤ λ∥y∥ where λ > 0, see e.g. [22]. In finite
dimensions, self-dual normal cones have non-empty interior. However, in infinite dimensions,
the property H = K − K does in general not imply that K has non-empty interior, see [27].
Let (S,S) be a measurable space and U ⊆ H . A mapping µ : S → U is called a U -valued
measure (on S) if it is weakly countably additive, i.e., if for every pairwise disjoint sequence

1,U2 . . . ∈ S satisfying ∪n∈NUn = U it holds that

⟨µ(U )x, y⟩H =

∑
k∈N

⟨µ(Uk)x, y⟩H

for all x, y ∈ H . We know from the work of Pettis [33] that if µ :F → H is weakly σ -additive,
hen it is also strongly σ -additive. For a H -valued measure µ and h ∈ H we define the signed

easure ⟨µ, h⟩ :F → R by ⟨µ, h⟩(A) = ⟨µ(A), h⟩H , A ∈ F . Throughout this work we are
equired to integrate with respect to vector-valued measures, for a better readability we added
section on this matter to Appendix B.
194
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1.3. Setting

Throughout this article we let (H, ⟨·, ·⟩H ) be a separable infinite-dimensional real Hilbert
space. For notational brevity we reserve ⟨·, ·⟩ to denote the inner product on L2(H ), and ∥ · ∥

or the norm induced by ⟨·, ·⟩. In addition, we define H to be the space of all self-adjoint
ilbert–Schmidt operators on H and H+ to be the cone of all positive operators in H:

H := {A ∈ L2(H ) : A = A∗
}, and H+

:= {A ∈ H : ⟨Ah, h⟩H ≥ 0 for all h ∈ H}.

ote that H is a closed subspace of L2(H ), and that H+ is a self-dual cone in H (indeed,
H+)∗ ⊆ H+ by the spectral theorem for compact operators, and the reverse inclusion is trivial).
onsequently, H is monotonic. Moreover, H+ is regular (see, e.g., [24, Theorem 1]), we have
= H+

− H+ and H+ has empty interior.
We define the truncation function χ : H → H by χ (ξ ) = ξ1{∥ξ∥≤1} and fix it throughout

his work.

. Affine processes on H+ and statement of main result

In this section we give a detailed definition of affine processes on the state space H+

nd introduce the notion of admissible parameter sets. We compare our admissible parameter
onditions with the matrix valued case, this is done in Remark 2.4. Given an admissible
arameter set we deduce first properties of the right-hand side functions of the differential
quations in (1.2). At the end of this section we state our main result of this article in
heorem 2.8, which guarantees the existence of affine Markov processes on H+ associated
ith a given admissible parameter set and specifies the form of their weak generator on the
ourier-basis elements. However, we postpone the proof to Section 4.3 and only give a brief
utline at the end of this section.

We consider a time-homogeneous Markov process X with state space H+ and transition
emigroup (Pt )t≥0 acting on functions f ∈ Cb(H+),

Pt f (x) =

∫
H+

f (ξ )pt (x, dξ ) , x ∈ H+,

here pt (x, ·), t ≥ 0, x ∈ H+, is the transition kernel of X . Moreover for x ∈ H+, we denote
he law of X given X0 = x by Px .

efinition 2.1. The Markov process (X, (Px )x∈H+ ) is called affine if its Laplace transform has
xponential-affine dependence on the initial state, i.e., if

Pt e−⟨x,u⟩
=

∫
H+

e−⟨u,ξ⟩ pt (x, dξ ) = e−φ(t,u)−⟨x,ψ(t,u)⟩ , (2.1)

or all t ≥ 0, and u, x ∈ H+, for some functions φ :R+ ×H+
→ R+ and ψ :R+ ×H+

→ H+.

We follow the approach in [9] and consider the Laplace transform instead of the character-
stic function which is justified by the non-negativity of X .

Note, that we do not require stochastic continuity of the affine process here, as in this
ork we are not aiming to provide a characterization of affine processes. As discussed in the

ntroduction, our existence result requires an analysis of the corresponding generalized Riccati
quations. In particular, a direct consequence of our approach (see Theorem 2.8) is that the
rocesses we consider are regular in the sense of [9, Def. 2.2]. We recall this concept for the

eader’s convenience:
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Definition 2.2. We call the affine process regular, whenever the functions
∂φ(t, u)
∂t

|t=0+ and
∂ψ(t, u)
∂t

|t=0+,

xist and are continuous at u = 0.

As we will see, the established class of affine processes satisfies an even stronger regularity
condition, see Section 3.3. In finite dimensions stochastically continuous affine processes are
always regular (see [26]), however, there exist finite-dimensional affine processes that are not
stochastically continuous. Arguably, such processes are of minor interest in applications. In
infinite dimensions the regularity condition is somewhat more restrictive, as it implies e.g. that
the operator B in Definition 2.3 must be bounded. We refer to [23, Section 3] for a construction
of an infinite-dimensional affine process involving unbounded B.

In order to identify pure-jump affine processes, we introduce an admissible parameter set
n the following definition. We think of b as the constant drift vector, B the linear term in
he drift, m the constant jump measure, and µ the state-dependent jump measure.

Recall that Appendix B summarizes theory on integration with respect to a Hilbert space
alued measure.

efinition 2.3. An admissible parameter set (b, B,m, µ) consists of

(i) a measure m :B(H+
\ {0}) → [0,∞] such that

(a)
∫
H+\{0}

∥ξ∥2 m(dξ ) < ∞ and
(b)

∫
H+\{0}

|⟨χ (ξ ), h⟩| m(dξ ) < ∞ for all h ∈ H and there exists an element Im ∈ H
such that ⟨Im, h⟩ =

∫
H+\{0}

⟨χ (ξ ), h⟩ m(dξ ) for every h ∈ H ;

(ii) a vector b ∈ H such that

⟨b, v⟩ −

∫
H+\{0}

⟨χ (ξ ), v⟩ m(dξ ) ≥ 0 for all v ∈ H+
; (2.2)

(iii) a H+-valued measure µ :B(H+
\ {0}) → H+ such that∫

H+\{0}

⟨χ (ξ ), u⟩
⟨µ(dξ ), x⟩

∥ξ∥2 < ∞,

for all u, x ∈ H+ satisfying ⟨u, x⟩ = 0 ;
(iv) an operator B ∈ L(H) with adjoint B∗ satisfying⟨

B∗(u), x
⟩
−

∫
H+\{0}

⟨χ (ξ ), u⟩
⟨µ(dξ ), x⟩

∥ξ∥2 ≥ 0,

for all x, u ∈ H+ satisfying ⟨u, x⟩ = 0.

emark 2.4 (Comparison to the Finite-Dimensional Case). Definition 2.3 is analogous to
he definition of an admissible parameter set for Rd

+
-valued processes see [14, Def. 2.6])

nd the case of positive semi-definite and symmetric matrices, see [9, Def. 2.3]. However,
s mentioned in the introduction, we do not consider any diffusion terms in this work. A more
ubtle difference is that we require second moment conditions on the measures m(dξ ) and
µ(dξ )
∥ξ∥2 , whereas no moment conditions are needed in the finite-dimensional setting. These second

oment conditions are a consequence of our generalized Feller approach, for which we take
he weight function ρ = ∥ · ∥

2
+ 1. See Remark 4.18 for a detailed discussion regarding the

ecessity of these moment conditions to our approach.
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In what follows we will frequently use the following observation:

∀ξ, u ∈ H+
:

− min(⟨ξ, u⟩, 1)1{∥ξ∥>1} ≤ e−⟨ξ,u⟩
−1 + ⟨χ (ξ ), u⟩

≤
1
2 |⟨ξ, u⟩|

21{∥ξ∥≤1} ≤
1
2∥ξ∥2

∥u∥
21{∥ξ∥≤1}.

(2.3)

iven admissible parameters (b, B,m, µ), we define F : H+
→ R and R : H+

→ H,
respectively, by

F(u) = ⟨b, u⟩ −

∫
H+\{0}

(
e−⟨ξ,u⟩

− 1 + ⟨χ (ξ ), u⟩
)
m(dξ ), (2.4a)

R(u) = B∗(u) −

∫
H+\{0}

(
e−⟨ξ,u⟩

− 1 + ⟨χ (ξ ), u⟩
)µ(dξ )

∥ξ∥2 . (2.4b)

ote that the admissibility conditions (see Definition 2.3), Corollary B.4, and (2.3) ensure
hat F and R are well-defined. We also have that F and R are continuous and grow at most
uadratically:

emma 2.5. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3 and let
F and R be given by (2.4). Then F and R are continuous on H+.

Proof. This follows immediately from (2.3) and Theorem B.5. □

emma 2.6. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3 and let
F and R be given by (2.4). Then for all u ∈ H+ we have

|F(u)| ≤

(
∥b∥ +

∫
H+\{0}

∥ξ∥2m(dξ )
)

(1 + ∥u∥
2) , (2.5)

nd

∥R(u)∥ ≤
(
∥B∗

∥L(H) + ∥µ(H+
\ {0})∥

)
(1 + ∥u∥

2) . (2.6)

roof. This follows immediately from the admissibility conditions, (2.3), (B.7), and (B.4). □

Inspired by the finite-dimensional theory, we consider a system of ordinary differential
quations associated with the admissible parameter set (b, B,m, µ) as introduced in the
qs. (1.2). The equations are commonly known as the associated generalized Riccati equations
hich is due to the typically quadratic growth of F and R. By using the formulas for F and

R in (2.4) Eqs. (1.2) can be rephrased as:{
∂φ

∂t (t, u) = F(ψ(t, u)) , t ≥ 0; φ(0, u) = 0 ,
∂ψ

∂t (t, u) = R(ψ(t, u)) , t ≥ 0; ψ(0, u) = u .
(2.7)

Definition 2.7. Let u ∈ H+. We say that (φ(·, u), ψ(·, u)) : [0,∞) → R×H is a solution to (2.7)
if (φ(·, u), ψ(·, u)) is continuously differentiable, takes values in R+

×H+, and satisfies (2.7).

For a transition semigroup (Pt )t≥0 defined on bounded measurable functions on H+ we
recall the notion of a weak generator (A, dom(A)) of (Pt )t≥0 (see [32, Definition 9.36])
.e. f ∈ C (H+) belongs to dom(A), whenever A f (x) := lim Pt f (x)− f (x) exists for every
b t→0+ t
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w

x ∈ H+; A f ∈ Cb(H+) and

Pt f (x) = f (x) +

∫ t

0
PsA f (x)ds, x ∈ H+.

The following theorem is our main result, it asserts the existence of affine pure-jump processes
on the cone of positive self-adjoint Hilbert–Schmidt operators admitting for state-dependent
jumps of infinite variation and it specifies the form of the weak generator on a space of
functions containing the Fourier basis elements. For the proof see Section 4.3, which relies
on Sections 3 and 4.

Theorem 2.8. Let (b, B,m, µ) be an admissible parameter set (cf. Definition 2.3). Then there
exist constants M, ω ∈ [1,∞) and a time-homogeneous H+-valued Markov process X with
transition semigroup (Pt )t≥0 such that

E[∥X t∥
2
|X0 = x] ≤ Meωt (∥x∥

2
+ 1) (2.8)

and

Pt
(
e−⟨·,u⟩

)
(x) = e−φ(t,u)−⟨x,ψ(t,u)⟩,

for all t ≥ 0 and u, x ∈ H+, where (φ(·, u), ψ(·, u)) is the unique solution to the associated
generalized Riccati equations in (2.7). Moreover let (A, dom(A)) be the weak generator of
(Pt )t≥0, then lin

{
e−⟨·,u⟩

: u ∈ H+
}

⊆ dom(A) and for every f ∈ lin
{
e−⟨·,u⟩

: u ∈ H+
}

we
have:

A f (x) = ⟨b + B(x), f ′(x)⟩ +

∫
H+\{0}

(
f (x + ξ ) − f (x) − ⟨χ (ξ ), f ′(x)⟩

)
ν(x, dξ ), (2.9)

here ν(x, dξ ) := m(dξ ) +
⟨µ(dξ ),x⟩

∥ξ∥2 .

Outline of the proof. The proof is based on the approximation procedure that we conduct in
detail in Section 4.2, where we work in the realm of generalized Feller semigroups, see the
preliminaries given in Section 4.1. Here we limit ourselves to give a brief outline of the proof
that shall give a rough guidance for the upcoming sections and condensing the main ideas
therein. The detailed proof is then given in Section 4.3. Inspired by [10], we approximate the
Kolmogorov type operator A in (2.9) by operators (A(k))k∈N corresponding to processes of
pure-jump type with finite activity, i.e. for every k ∈ N we replace the constant jump measure
m(dξ ) in formula (2.9) by 1{ξ≥1/k}m(dξ ) and the linear jump measures µ(dξ ) by 1{ξ≥1/k}µ(dξ ).
The approximation operators A(k) generate strongly continuous semigroups (P (k)

t )t≥0 on a
space of functions, being weakly continuous with sub-quadratic growth, see Proposition 4.13.
Having established the existence of affine processes of pure-jump type associated with the
strongly continuous semigroups (P (k)

t )t≥0, we next apply a Trotter–Kato type result from [10]
to obtain the limiting semigroup (Pt )t≥0, see Proposition 4.16. To this end we first need to
establish growth bounds on (P (k)

t )t≥0, that are uniform in k, see Proposition 4.15. This requires
understanding the associated generalized Riccati equations (1.2). We provide global existence
and uniqueness results in Section 3. The crucial importance of the associated ODEs is that they
substitute for the Kolmogorov equations, hence semigroup theoretic arguments involving the
Kolmogorov type operators or the abstract Cauchy problem can be reduced to ODE theoretic
arguments.

Lastly, we apply a version of Kolmogorov’s extension theorem (see Theorem 4.5) to
the limiting semigroup (P ) , which then yields the existence of an underlying Markovian
t t≥0
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process. This process associated via the semigroup to the operator (A, dom(A)) is the desired
ffine process identified by the admissible parameter set (b, B,m, µ).

The second equation for ψ(·, u) in the generalized Riccati equations (2.7) is a non-linear
ifferential equation on the cone of positive self-adjoint Hilbert–Schmidt operators. This type of
nfinite-dimensional differential equations has been of interest in the literature as they also show
p e.g. in optimal control problems and stochastic filtering theory [11,19,29]. Hence several
rticles deal with the problem of numerical tractability of this type of equations. See, e.g. [34]
here Galerkin approximation and convergence theory was developed for operator-valued
iccati differential equations formulated in the space of Hilbert–Schmidt operators and [15]
here the author studied a backward Euler approximation scheme and convergence results for

his type of equations. In a subsequent article [23], we investigate the Galerkin approximation
urther and draw a connection to matrix-valued affine processes. As the tractability of affine
rocesses hinges on the ability to numerically approximate the Riccati equations (1.2), we have
ncluded a short discussion of the results in [23] in Section 3.2.

An example of a stochastic volatility model where the covariance process is an affine
arkov process on H+ is the infinite-dimensional lift of the BNS model constructed in [4]

o model forward rates in commodity markets. In [7, Section 4] we constructed several other
xamples to model stochastic volatility in this context of forward rates in commodity markets
nd we showed that our model class allow multiple modeling options for the instantaneous
ovariance process, including state-dependent jump intensity. Moreover, in [18] we studied
nfinite-dimensional stochastic volatility models with a stationary affine covariance process on

+.

3. Analysis of the generalized Riccati equations

In this section we investigate the generalized Riccati equations given by (2.7). In Section 3.1
e introduce Lipschitz continuous approximations of the mappings R and F in (2.4) and use

hese approximations to show existence and uniqueness of a solution to (2.7). In Section 3.3 we
stablish regularity properties of R and F and use this to show that the solution map depends
n a differentiable way on its initial value.

.1. Solving the generalized Riccati equations (2.7)

The goal of this subsection is to prove the existence of a unique solution to the generalized
iccati equations given an admissible parameter set (b, B,m, µ). A common approach in the
nite-dimensional case, e.g. in the case of the cone of positive semi-definite and symmetric
atrices, is to use a localization argument exploiting the fact that the function R is analytic

n the interior of the cone. Note, however, that in general R fails to be Lipschitz continuous
n the boundary of the cone. The cone of positive self-adjoint Hilbert–Schmidt operators has
n empty interior, a property that is shared by many cones in infinite dimensions. This has the
onsequence that localization arguments for solving Eqs. (2.7) on the interior of R+

×H+ are
not valid anymore. Instead, for every k ∈ N we introduce approximations F (k) of F in Eq. (3.2)
and R(k) of R in Eq. (3.3), which involve only finite-activity jump-measures, see (3.1). These
approximations are Lipschitz continuous on H+, and in Proposition 3.7 we show that the
solution to the generalized Riccati equations associated with (b, B,m(k), µ(k)) converges to the

(unique) solution to Eq. (2.7).
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We begin by introducing the approximating functions for F and R: for k ∈ N we set

m(k)(dξ ) := 1{∥ξ∥>1/k}m(dξ ) and µ(k)(dξ ) := 1{∥ξ∥>1/k}µ(dξ ), (3.1)

and we introduce the functions F (k)
:H+

→ R and R(k)
:H+

→ H defined respectively as
follows

F (k)(u) = ⟨b, u⟩ −

∫
H+\{0}

(
e−⟨ξ,u⟩

− 1 + ⟨χ (ξ ), u⟩
)
m(k)(dξ ) , (3.2)

R(k)(u) = B∗(u) −

∫
H+\{0}

(
e−⟨ξ,u⟩

− 1 + ⟨χ (ξ ), u⟩
)µ(k)(dξ )

∥ξ∥2 . (3.3)

We denote the generalized Riccati equations associated to (b, B,m(k), µ(k)) by:{
∂φ(k)

∂t (t, u) = F (k)(ψ (k)(t, u)) , t ≥ 0; φ(k)(0, u) = 0 ,
∂ψ (k)

∂t (t, u) = R(k)(ψ (k)(t, u)) , t ≥ 0; ψ (k)(0, u) = u .
(3.4)

The notion of quasi-monotonicity will be needed to guarantee that the solution to (3.4) stays
in R+

× H+.

Definition 3.1. Let (V, ∥·∥V ) be a Hilbert space and let K ⊂ V be a self-dual cone. In addition,
let D ⊆ V and let f : D → V , then f is called quasi-monotone with respect to K if for all
v1, v2 ∈ D satisfying v1 ≤K v2 and for all u ∈ K satisfying ⟨v2 − v1, u⟩ = 0 we have

⟨ f (v2) − f (v1), u⟩ ≥ 0.

Intuitively, quasi-monotone functions are pointing ‘inwards’ at the boundary points, which
ensures that solutions stay in a cone (see Theorem A.1). For details on quasi-monotone
functions on Banach spaces and their connection to differential equations see [12, Section 5.3].

The following lemma states that the admissibility of parameters implies that R(k), k ∈ N, is
quasi-monotone with respect to H+. The proof is analogous to the proof of [9, Lemma 5.1],
we present an abridged version.

Lemma 3.2. Let B and µ satisfy the admissibility conditions (iii) and (iv) in Definition 2.3.
Then for all k ∈ N the function R(k) given by (3.3) is quasi-monotone with respect to H+.

Proof. The admissibility condition (iv) in Definition 2.3 (which makes sense thanks to
condition (iii) in Definition 2.3) and the monotonicity of the exponential function imply the
quasi-monotonicity of R(k). □

By removing the small jumps and since m and µ have finite first moment, we obtain
Lipschitz continuous mappings on H+:

Lemma 3.3. Let B and µ satisfy the admissibility conditions (iii) and (iv) in Definition 2.3.
Let k ∈ N and R(k) given by (3.3). Then for all u, v ∈ H+ we have

∥R(k)(u) − R(k)(v)∥ ≤
(
∥B∥L(H) + 2k∥µ(H+

\ {0})∥
)
∥u − v∥ (3.5)

Proof. Observe that for all u, v, ξ ∈ H+ we have⏐⏐e−⟨ξ,u⟩
− e−⟨ξ,v⟩

⏐⏐
 ≤ ∥ξ∥∥u − v∥.
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Thus, (B.4) and (B.7) imply that

∥R(k)(u) − R(k)(v)∥ ≤
B∗(u − v)

+


∫
H+\{0}∩{

1
k<∥ξ∥<1}

⟨ξ, u − v⟩
µ(dξ )
∥ξ∥2


+


∫
H+\{0}∩{∥ξ∥> 1

k }

(e−⟨ξ,u⟩
− e−⟨ξ,v⟩)

µ(dξ )
∥ξ∥2


≤
(
∥B∥L(H) + 2k∥µ(H+

\ {0})∥
)
∥u − v∥. □

ote that R is typically not Lipschitz continuous on the whole H+:

emark 3.4. Note that⏐⏐e−⟨ξ,u⟩
− e−⟨ξ,v⟩

+ ⟨ξ, u − v⟩
⏐⏐ ≤

⏐⏐⏐⏐∫ ⟨ξ,v⟩

⟨ξ,u⟩

s ds
⏐⏐⏐⏐ ≤ ∥ξ∥2(∥u∥ ∨ ∥v∥)∥u − v∥ (3.6)

or all ξ, u, v ∈ H+. This implies that R is in general Lipschitz continuous only on bounded
ets in H+.

By Lemmas 3.2 and 3.3 we have that R(k) is Lipschitz continuous on H+ and quasi-
monotone with respect to H+. Hence classical infinite dimensional ODE theory guarantees
the existence of a global solution to Eqs. (3.4):

Proposition 3.5. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3 and
let R(k), k ∈ N, be given by Eq. (3.3). Then for every k ∈ N and u ∈ H+ there exists a solution
(φ(k)(·, u), ψ (k)(·, u)) to (3.4). Moreover,

ψ (k)(t, u) ≤H+ ψ (k)(t, v), ∀u, v ∈ H+ satisfying u ≤H+ v, (3.7)

for all t ≥ 0 and

∥ψ (k)(t, u) − ψ (k)(t, v)∥ ≤ exp
((

∥B∥L(H) + 2k∥µ(H+
\ {0})∥

)
t
)
∥u − v∥ (3.8)

or all t ≥ 0 and u, v ∈ H+.

roof. Let k ∈ N. By Lemma 3.3 the function R(k) is Lipschitz continuous on H+,
y (3.5) with v = 0 the function R(k) satisfies the linear growth condition ∥R(k)(u)∥ ≤

∥B∥L(H) + 2k∥µ(H+
\ {0})∥

)
∥u∥ and by Lemma 3.2 R(k) is quasi-monotone with respect

o H+, thus by [30, VI.3. Theorem 3.1 and Proposition 3.2] there exists a unique global
olution ψ (k)(·, u) : [0,∞) → H+ to the second equation of (3.4). Now, setting φ(k)(t, u) =∫ t
0 F (k)(ψ (k)(s, u)) ds, for all t ≥ 0, we obtain by continuity of F (k) and ψ (k)(·, u) a solution

(φ(k)(·, u), ψ (k)(·, u)) to (3.4) satisfying the inequality (3.7). Finally, observe that Lemma 3.3
implies that

∂

∂t
∥ψ (k)(t, u) − ψ (k)(t, v)∥2

= 2
⟨
ψ (k)(t, u) − ψ (k)(t, v), R(k)(ψ (k)(t, u)) − R(k)(ψ (k)(t, v))

⟩
≤ 2

(
∥B∥L(H) + 2k∥µ(H+

\ {0})∥
)
∥ψ (k)(t, u) − ψ (k)(t, v)∥2.

his and Gronwall’s lemma implies the second inequality (3.8). □

The next proposition guarantees the existence of a unique solution to the original generalized
iccati equations (2.7) on [0,∞). First, we prove the following lemma:
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Lemma 3.6. Let B and µ satisfy the admissibility conditions (iii) and (iv) in Definition 2.3,
et R(k) and R be respectively given by Eqs. (3.3) and (2.7). Then for every M > 0 we have

lim
k→∞

sup
u∈H+:∥u∥≤M

∥R(k)(u) − R(u)∥ = 0 .

roof. It follows immediately from (B.7) and (2.3) that

∥R(k)(u) − R(u)∥ ≤ ∥µ({ξ ∈ H+
: ∥ξ∥ ≤

1
k })∥∥u∥

2. (3.9)

The assertion follows from the above and the continuity of µ, see (B.2). □

roposition 3.7. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3. Then
for every u ∈ H+ there exists a unique solution (φ(·, u), ψ(·, u)) to (2.7). Moreover,

ψ(t, u) ≤H+ ψ (k)(t, u) ∀ k ∈ N, t ≥ 0 and u ∈ H+,

and ψ(t, u) = limk→∞ ψ
(k)(t, u) for all t ≥ 0 and u ∈ H+, as well as

ψ(t, u) ≤H+ ψ(t, v), ∀ t ≥ 0 and u, v ∈ H+ with u ≤H+ v, (3.10)

and

∥ψ(t, u)∥ ≤ exp
((

∥B∥L(H) + 2∥µ(H+
\ {0})∥

)
t
)
∥u∥, ∀ t ≥ 0, u ∈ H+. (3.11)

inally, for all M, T ≥ 0 there exists a K (M, T ) ≥ 0 such that for all u, v ∈ H+ satisfying
∥u∥, ∥v∥ ≤ M and all t ∈ [0, T ] it holds that

∥ψ(t, u) − ψ(t, v)∥ ≤ K (M, T )∥u − v∥. (3.12)

roof. First of all note that uniqueness of a solution follows from the fact that R is Lipschitz
ontinuous on bounded sets, see Remark 3.4. Observe that by (B.5), (2.3), and (3.3) we have,
or all u ∈ H+ and k ∈ N,

R(k)(u) − R(k+1)(u) =

∫
H+∩{

1
k+1<∥ξ∥≤ 1

k }

(
e−⟨u,ξ⟩

− 1 + ⟨ξ, u⟩
) µ(dξ )

∥ξ∥2

≥H+ 0. (3.13)

ow fix u ∈ H+. By Proposition 3.5 we know that there exists a unique global solution
(k)(·, u) to Eq. (3.4) for every k ∈ N. This combined with (3.13) implies that for all k ∈ N

nd t ≥ 0 we have

∂ψ (k+1)

∂t
(t, u) − R(k+1)(ψ (k+1)(t, u)) =

∂ψ (k)

∂t
(t, u) − R(k)(ψ (k)(t, u))

≤H+

∂ψ (k)

∂t
(t, u) − R(k+1)(ψ (k)(t, u)).

It follows from Lemma 3.3 and Theorem A.1 with K = H+, F = R(k+1), f = ψ (k+1)(·, u)
and g = ψ (k)(·, u) that

ψ (k+1)(t, u) ≤H+ ψ (k)(t, u) , t ≥ 0. (3.14)

As moreover ψ (k)(t, u) ≥H+ 0 for all t ≥ 0 and k ∈ N, the regularity of the cone H+ implies
that for all t ≥ 0 there exists a ψ(t, u) ∈ H+ such that

ψ(t, u) = lim ψ (k)(t, u). (3.15)

k→∞
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Note that by (3.14), the monotonicity of H+, and the continuity of ψ (1)(·, u) we have, for all
T > 0,

sup
k∈N,s∈[0,T ]

∥ψ (k)(s, u)∥ ≤ sup
s∈[0,T ]

∥ψ (1)(s, u)∥ < ∞ . (3.16)

t follows from this, (3.15), the dominated convergence theorem, and Lemmas 3.6 and 2.6 that
or all t ≥ 0 we have

ψ(t, u) = lim
k→∞

ψ (k)(t, u)

= u + lim
k→∞

∫ t

0
R(k)(ψ (k)(s, u))ds

= u + lim
k→∞

∫ t

0

(
R(k)(ψ (k)(s, u)) − R(ψ (k)(s, u))

)
ds

+ lim
k→∞

∫ t

0
R(ψ (k)(s, u))ds

= u +

∫ t

0
R(ψ(s, u))ds.

he equation above combined with Lemma 2.6 implies that the map ψ(·, u) is continu-
us, whence Lemma 2.5 and the fundamental theorem of calculus imply that ψ(·, u) ∈
1([0,∞),H) and

∂ψ

∂t
(t, u) = R(ψ(t, u)), t ≥ 0; ψ(0, u) = u. (3.17)

oreover, the continuity of F and of ψ(·, u) ensures that by setting

φ(t, u) =

∫ t

0
F(ψ(s, u))ds, t ≥ 0, (3.18)

e obtain that (φ(·, u), ψ(·, u)) is a solution to (2.7).
Next, note that (3.10) follows from (3.7) and (3.15). Moreover, (3.11) follows from (3.8)

ith k = 1, (3.14), (3.15), and the fact that ψ (1)(t, 0) ≡ 0. Finally, (3.12) follows from the
ipschitz continuity of R on bounded sets (see Remark 3.4), (3.11), and the same reasoning

as we used to obtain (3.8). □

3.2. Numerical approximation of the generalized Riccati equations (2.7)

The appeal of affine processes lies in their tractability, more specifically, in the fact that
the characteristic function is given in terms of the solution to a Riccati equation (see (1.1) and
(1.2)/(2.7)). This is particularly relevant when numerical approximations of the SDE describing
the associated process X converge slowly and/or are difficult to implement (e.g. because the
SDE contains a square-root term or state-dependent jumps). However, the tractability of affine
processes relies on the assumption that the Riccati equation can be (approximatively) solved,
which is not immediately clear, especially in the infinite-dimensional setting.

In a forthcoming article [23], we reduce the infinite-dimensional generalized Riccati equa-
tions (2.7) to finite-dimensional (essentially matrix valued) equations using Galerkin-type
approximations, and provide error bounds for these approximations. As solvers are available
for the finite-dimensional setting, this paves the way for explicit numerical examples.

More specifically, let u ∈ H+, d ∈ N, and let Pd :H → Hd be an appropriately chosen
projection onto a finite-dimensional subspace H (in particular, such that P (H+)| ≃ Sd ,
d d Hd +
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the cone of symmetric and positive semi-definite matrices, and where Hd is a d-dimensional
ubspace of H ). Denoting the associated d ×d-dimensional Galerkin approximation of ψ(·, u)
the solution to (1.2b)) by ψd (·,Pd (u)), [23] provides an upper bound for the error

sup
t∈[0,T ]

∥ψd (t,Pd (u)) − ψ(t, u)∥

n terms of ∥(I − Pd )µ(H+
\ {0})∥, ∥(I − Pd )etB∗

u∥, and the Lipschitz constant of the function
R|Bu (M)∩H, where Bu(M) is the ball with origin u and radius M = supt∈[0,T ] ∥ψ(t, u)∥, see
lso Remark 3.4. Moreover, in [23] we show that the Galerkin approximation ψd (·,Pd (u)) is
ssentially the solution to a matrix-valued generalized Riccati equation as in [9].

.3. Regularity with respect to the initial value of the solution

Having established the existence of a unique solution to (2.7), we now turn to the regularity
f the solution with respect to the initial value. To this end we first must introduce a fitting
oncept of differentiability:

efinition 3.8. Let X and Y be Banach spaces and D ⊆ X a convex subset. We say that a
unction f : D ⊆ X → Y has a one-sided derivative at x ∈ D in the direction v ∈ X , whenever

x + λv ∈ D for all λ sufficiently small and the limit

lim
λ→0+

f (x + λv) − f (x)
λ

,

xists in Y . We denote this limit by d+ f (x)(v). We define the second one-sided derivative in
x ∈ D in direction (v,w) ∈ X × X as

lim
λ→0+

d+ f (x + λw)(v) − d+ f (x)(v)
λ

,

henever x + λw ∈ D and d+ f (x + λw)(v) exists for all λ sufficiently small and moreover
the limit exists in Y . We denote the second one-sided derivative of f at x in directions (v,w)
by d2

+
f (x)(v,w).

Lemma 3.9. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3 and let
F and R be given by (2.4). For u ∈ H+ define dR(u) ∈ L(H) by

dR(u)v = B∗(v) +

∫
H+\{0}

⟨ξ, v⟩e−⟨ξ,u⟩
− ⟨χ (ξ ), v⟩

µ(dξ )
∥ξ∥2 , v ∈ H, (3.19)

nd dF(u) ∈ L(H,R) by

dF(u)v = ⟨b, v⟩ +

∫
H+\{0}

⟨ξ, v⟩e−⟨ξ,u⟩
− ⟨χ (ξ ), v⟩m(dξ ), v ∈ H. (3.20)

oreover define d2 R(u) ∈ L(2)(H × H,H) by

d2 R(u)(v,w) = −

∫
H+\{0}

⟨ξ, v⟩⟨ξ,w⟩e−⟨ξ,u⟩
µ(dξ )
∥ξ∥2 , v, w ∈ H. (3.21)

nd d2 F(u) ∈ L(2)(H × H,R) by

d2 F(u)(v,w) = −

∫
⟨ξ, v⟩⟨ξ,w⟩e−⟨ξ,u⟩m(dξ ), v, w ∈ H. (3.22)
H+\{0}
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Then the operator dR(u) is quasi-monotone for all u ∈ H+, and for all u0, u1 ∈ H+ and
v,w ∈ H we have

∥dR(u0)(v)∥ ≤ ∥B∗
∥L(H)∥v∥ +

µ(H+
\ {0})

 (1 + ∥u0∥)∥v∥ (3.23)

∥dR(u0)(v) − dR(u1)(v)∥ ≤
µ(H+

\ {0})
 ∥u0 − u1∥∥v∥, (3.24)

∥d2 R(u0)(v,w)∥ ≤
µ(H+

\ {0})
 ∥v∥∥w∥, (3.25)

nd u ↦→ d2 R(u)(v,w) is continuous. Moreover, F and R are two-times one-sided differ-
ntiable in u in the direction (v,w) for all u, v, w ∈ H+, and for all u, v, w ∈ H+ we
ave:

d+ R(u)(v) = dR(u)v, (3.26)

d2
+

R(u)(v,w) = d2 R(u)(v,w), (3.27)

d+F(u)(v) = dF(u)v, (3.28)

d2
+

F(u)(v,w) = dF(u)(v,w). (3.29)

roof. The quasi-monotonicity of dR follows directly from the admissibility assumption. As⏐⏐⟨ξ, v⟩e−⟨ξ,u⟩
− ⟨χ (ξ ), v⟩

⏐⏐ ≤ ∥ξ∥∥v∥(1{∥ξ∥>1} + ∥ξ∥∥u∥1{∥ξ∥≤1})

for all u, ξ ∈ H+ and all v ∈ H, we obtain (3.23). Estimate (3.24) is obtained similarly,
estimate (3.25) is immediate from the definition, and the continuity of u ↦→ d2 R(u)(v,w)
ollows from the dominated convergence theorem (Theorem B.5).

We next confirm the asserted differentiability of the map u ↦→ R(u). Let u, v ∈ H+ then

d+ R(u)(v) = lim
λ→0+

R(u + λv) − R(u)
λ

= B∗(v) − lim
λ→0+

∫
H+\{0}

e−⟨ξ,u+λv⟩
− e−⟨ξ,u⟩

λ
+ ⟨χ (ξ ), v⟩

µ(dξ )
∥ξ∥2

= B∗(v) −

∫
H+\{0}

lim
λ→0+

e−⟨ξ,u+λv⟩
− e−⟨ξ,u⟩

λ
+ ⟨χ (ξ ), v⟩

µ(dξ )
∥ξ∥2 (3.30)

= B∗(v) +

∫
H+\{0}

⟨ξ, v⟩e−⟨ξ,u⟩
− ⟨χ (ξ ), v⟩

µ(dξ )
∥ξ∥2 .

here the interchange of the integral and the limit in Eq. (3.30) is justified, since λ ↦→ e−⟨u+λv,ξ⟩

s a convex mapping, hence its differential quotient is non-decreasing in λ and non-negative and
hus we can apply the monotone convergence theorem to obtain that the one-sided derivative
f R exists in u in the direction v and (3.26) holds. An analogous derivation for F leads
o Eq. (3.28).

The proof that the second one-sided directional derivative of both F and R exist and
hat (3.27)–(3.29) hold is again analogous. Note in particular that for the existence of the second
erivatives we use that the measures m(dξ ) and µ(dξ )

∥ξ∥2 have finite second moments. □

Proposition 3.11 states that the solution (φ(·, u), ψ(·, u)) to (2.7) is such that the mappings
u ↦→ ψ(t, u) and u ↦→ φ(t, u) are twice one-sided differentiable in 0 in all directions. The
techniques to prove this are well-known, however, as we are dealing with a non-standard
concept of differentiability we provide the details of the proof in Appendix C.
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Remark 3.10. In fact, one can prove that u ↦→ ψ(t, u) and u ↦→ φ(t, u) are twice one-sided
ifferentiable in u for every u ∈ H+, in every direction (v,w) ∈ H+

× H+. We do not need
his, but we do need the existence of the first derivative in u ∈ H+ for u sufficiently small in
rder to obtain the second derivative. See also Appendix C.

roposition 3.11. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3,
or every u ∈ H+ let (φ(·, u), ψ(·, u)) be the solution to (2.7), and let dR, dF, d2 R,
nd d2 F be defined by (3.19)–(3.22). Then the maps u ↦→ ψ(t, u) and u ↦→ φ(t, u)
re twice one-sided differentiable in 0 in all directions (v,w) ∈ H+

× H+. Moreover,
+ψ(t, 0)(v), d2

+
ψ(t, 0)(v,w) ∈ H+ for all v,w ∈ H+ and the mappings t ↦→ d+φ(t, 0)(v)

nd t ↦→ d+ψ(t, 0)(v) solves the following pair of differential equations:

∂

∂t
d+φ(t, 0)(v) = dF(0)

(
d+ψ(t, 0)(v)

)
, t ≥ 0; d+φ(0, 0)(v) = 0, (3.31)

∂

∂t
d+ψ(t, 0)(v) = dR(0)

(
d+ψ(t, 0)(v)

)
, t ≥ 0; d+ψ(0, 0)(v) = v, (3.32)

oreover, the mappings t ↦→ d2
+
ψ(t, 0)(v,w) and t ↦→ d2

+
φ(t, 0)(v,w) solve the following

air of differential equations:
∂

∂t
d2

+
φ(t, 0)(v,w) = d2 F(0)(d+ψ(t, 0)(v), d+ψ(t, 0)(w))

+ dF(0)
(
d2

+
ψ(t, 0)(v,w)

)
, t ≥ 0; d2

+
φ(0, 0)(v,w) = 0,

(3.33)
∂

∂t
d2

+
ψ(t, 0)(v,w) = d2 R(0)

(
d+ψ(t, 0)(v), d+ψ(t, 0)(w)

)
+ dR(0)(d2

+
ψ(t, 0)(v,w)), t ≥ 0; d2

+
ψ(0, 0)(v,w) = 0. (3.34)

roof. See Appendix C. □

For u = 0 we derive explicit formulas for the solutions to the pairs of differential equations
n (3.32) and (3.34) of Proposition 3.11, as those will be needed for proving Lemma 4.14 in
he approximating case and for Proposition 4.17. First, note that

d+ R(0)(v) = B∗(v) +

∫
H+∩{∥ξ∥≥1}

⟨ξ, v⟩
µ(dξ )
∥ξ∥2 .

ecall the definition of dR(0) from (3.19). The solution of Eq. (3.32) is then given by

d+ψ(t, 0)(v) = etdR(0)v. (3.35)

y inserting formula (3.35) into Eq. (3.34) (note that etdR(0)v ∈ H+) and solving this
nhomogeneous linear equation we obtain

d2
+
ψ(t, 0)(v,w) =

∫ t

0
e(t−s)dR(0)d2 R(0)(esdR(0)v, esdR(0)w)ds. (3.36)

4. Existence of affine pure-jump processes in H+

In this section we use the well-posedness and regularity results of the generalized Riccati
equations (2.7) from Section 3 to show the existence of an affine process in H+ associated

to a given admissible parameter set (b, B,m, µ) conform Definition 2.3. Due to the lack of
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local compactness of the underlying state space, standard Feller theory cannot be employed
in our context and we use the theory of generalized Feller processes as introduced in [13].
The existence proof is based on the approximation procedure roughly sketched at the end
of Section 2. In this section we rigorously build up this approximation procedure in the
generalized Feller setting. Essentially, we approximate the transition semigroup (Pt )t≥0, that
an be associated to an affine process in H+ with infinite-activity jump behavior, by simpler
ransition semigroups corresponding to affine finite-activity jump processes. The considered
emigroups are strongly continuous semigroups on a certain Banach space of real functions
eing weakly-continuous on compact sets and having at most quadratic growth in the tails. We
riefly introduce the generalized Feller setting, that is we define generalized Feller semigroups
nd processes in Section 4.1 and consequently in Section 4.2 we apply approximation results
rom the theory of strongly continuous semigroups adapted to the generalized Feller setting
y [10].

.1. Preliminaries: generalized Feller semigroups

We recall the concept of generalized Feller semigroups introduced in [13] and further
eveloped in [10].

Throughout this section let (Y, τ ) be a complete regular Hausdorff space.

efinition 4.1. A function ρ : Y → (0,∞) such that for every R > 0 the set K R :=

x ∈ Y : ρ(x) ≤ R} is compact is called an admissible weight function. The pair (Y, ρ) is called
eighted space.

Let ρ : Y → (0,∞) be an admissible weight function. For f : Y → R we define ∥ f ∥ρ ∈

0,∞] by

∥ f ∥ρ := sup
x∈Y

| f (x)|
ρ(x) . (4.1)

ote that ∥ · ∥ρ defines a norm on the vector space Bρ(Y ) :=
{

f : Y → R : ∥ f ∥ρ < ∞
}

which
renders (Bρ(Y ), ∥·∥ρ) a Banach space. Recall that Cb(Y ) denotes the space of bounded R-valued
τ -continuous functions on Y . As any admissible weight function satisfies infx∈Y ρ(x) > 0, we
have that Cb(Y ) ⊆ Bρ(Y ).

Definition 4.2. We define Bρ(Y ) to be the closure of Cb(Y ) in Bρ(Y ).

The following useful characterization of Bρ(Y ) is proven in [13, Theorem 2.7]:

Theorem 4.3. Let (Y, ρ) be a weighted space. Then f ∈ Bρ(Y ) if and only if f |K R ∈ C(K R)
or all R > 0 and

lim
R→∞

sup
x∈Y\K R

| f (x)|
ρ(x) = 0 . (4.2)

e can now present the definition of a generalized Feller semigroup, as introduced in [13,
ection 3].

efinition 4.4. A family of bounded linear operators (Pt )t≥0 in L(Bρ(Y )) is called a generalized
eller semigroup (on Bρ(Y )), if

(i) P = I , the identity on B (Y ),
0 ρ
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(ii) Pt+s = Pt Ps for all t, s ≥ 0,
(iii) limt→0+ Pt f (x) = f (x) for all f ∈ Bρ(Y ) and x ∈ Y ,
(iv) there exist constants C ∈ R and ε > 0 such that ∥Pt∥L(Bρ (Y )) ≤ C for all t ∈ [0, ε],
(v) (Pt )t≥0 is a positive semigroup, i.e., Pt f ≥ 0 for all t ≥ 0 and for all f ∈ Bρ(Y )

satisfying f ≥ 0.

By [13, Theorem 3.2] any generalized Feller semigroup is strongly continuous. Moreover,
generalized Feller semigroups allow for a Kolmogorov extension theorem, see [10, Theorem
2.11] for a proof:

Theorem 4.5. Let (Pt )t≥0 be a generalized Feller semigroup on Bρ(Y ) satisfying Pt 1 = 1 for
ll t ≥ 0. Then there exist a filtered measurable space (Ω , (Ft )t≥0) with a right-continuous
ltration and a family of functions X t :Ω → Y , t ≥ 0, such that X t is Ft measurable for all
≥ 0 and for any initial value x ∈ Y there exists a probability measure Px such that

EPx [ f (X t )] = Pt f (x) (4.3)

or every t ≥ 0 and every f ∈ Bρ(Y ). Moreover, for all x ∈ Y the process (X t )t≥0 is a
ime-homogeneous Px -Markov process, i.e., for all x ∈ Y , 0 ≤ s < t , f ∈ Bρ(Y ) we have

EPx [ f (X t ) | Fs] = Pt−s f (Xs), (4.4)

lmost surely with respect to Px .

Let (Pt )t≥0 be a generalized Feller semigroup satisfying Pt 1 = 1 for all t ≥ 0. The process
X t )t≥0, the existence of which is guaranteed by Theorem 4.5, is called a generalized Feller
rocess with initial value x with respect to the measure Px .

From now on we write Ex for expectations with respect to the probability measure Px .

emark 4.6. Let (Pt )t≥0 be a generalized Feller semigroup and let x ∈ Y , then by a Riesz
epresentation-type result (see [10, Theorem 2.4 and Remark 2.8]) Ptρ(x) ∈ R can be defined
y the integral of ρ with respect to the measure representing the linear functional f ↦→ Pt f (x),

f ∈ Bρ(Y ). Moreover, as there exist M > 1, ω ∈ R such that |Pt f (x)| ≤ M exp(ωt)ρ(x)∥ f ∥ρ

or all f ∈ Bρ(Y ), we obtain

Ptρ ≤ M exp(ωt)ρ (4.5)

or t ≥ 0. If moreover (Pt )t≥0 is associated to a Markov process (X t )t≥0 such that Eq. (4.3)
olds, we obtain:

Ex [ρ(X t )] = Ptρ(x) ≤ M exp(ωt)ρ.

his can be seen by Eq. (4.5) and a monotone convergence argument by choosing for every
∈ N the approximations ρn =

∑n
i=1⟨·, ei ⟩

2
∧ n ∈ Bρ(Y ), where (ei )i∈N is an ONB of H, then

n → ρ in pointwise as n → ∞ and ρn ≤ ρn+1 for all n ∈ N.

.2. Approximation of semigroups associated to affine processes in H+

We equip the Hilbert space H with its weak topology σ (H,H′) (which, by the Riesz
epresentation theorem, is the weak-∗-topology). Note that as H+ is self-dual, it is closed

′ +
n (H, σ (H,H )). For brevity of notation we let Hw denote the complete regular Hausdorff

208



S. Cox, S. Karbach and A. Khedher Stochastic Processes and their Applications 151 (2022) 191–229

I

a
i{
i
s

T

L

P
s
t
C

P

i

s

T

space (H+, σ (H,H′)H+ ), where σ (H,H′)H+ denotes the relative topology σ (H,H′) on H+.
n addition, we define ρ :H+

→ R by

ρ(x) := 1 + ∥x∥
2 , x ∈ H+ , (4.6)

nd observe that ρ is an admissible weight function on H+
w by the Banach–Alaoglu theorem,

.e., (H+
w , ρ) is a weighted space. Note that for every R > 0, the pre-image

x ∈ H+
: ρ(x) ≤ R

}
is compact in H+ equipped with the norm topology, if and only if H

s finite-dimensional. As we assume throughout the article that H is infinite-dimensional, we
ee that ρ is not an admissible weight function in the norm topology.

The linear span of the set of Fourier basis elements
{
e−⟨·,u⟩

: u ∈ H+
}

is denoted by

D := lin
({

e−⟨·,u⟩
: u ∈ H+

})
. (4.7)

he relevance of this set lies in the following lemma.

emma 4.7. The set D is dense in Bρ(H+
w ).

roof. It suffices to prove that for every ε > 0 and every f ∈ Cb(H+
w ) there exists an fε ∈ D

uch that ∥ f − fε∥ρ < ε. To this end, observe that for every ε > 0 and every f ∈ Cb(H+
w )

here exists an R > 0 such that supx∈H+,∥x∥>R
f (x)
ρ(x) < ε

2 , and apply Stone–Weierstrass to
(H+

w ∩ {x ∈ H+
: ∥x∥ ≤ R}). □

Corollary 4.8. The space Bρ(H+
w ) is separable.

roof. Let U be a countable dense set in (H+, ∥ · ∥) (recall from Section 1.3 that H+ is
separable). Then by Lemma 4.7 the set

{∑n
j=1 q j e−⟨·,u j ⟩ : n ∈ N, q j ∈ Q, u j ∈ U

}
is dense

n Bρ(H+
w ). □

Throughout the remainder of this section let (b, B,m, µ) be an admissible parameter set,
ee Definition 2.3. First, we define for k ∈ N, B̃(k)

∈ L(H) and b̃(k)
∈ H+ by

B̃(k)(x) := B(x) −

∫
H+∩{0<∥ξ∥≤1}

ξ
⟨µ(k)(dξ ), x⟩

∥ξ∥2 , x ∈ H+ ,

b̃(k)
:= b −

∫
H+∩{0<∥ξ∥≤1}

ξ m(k)(dξ ) ,

where m(k) and µ(k) are as defined in (3.1). Note that the fact that B ∈ L(H) and that µ is
an H+-valued measure, as well as (B.7) and (3.1) ensure that B̃(k)

∈ L(H) is well-defined.
Moreover, (i) in Definition 2.3 and (2.2) ensure that b̃(k)

∈ H+ is well-defined. For x ∈ H+

and k ∈ N we consider the following deterministic equation in differential form:{
dx(x,k)

t =
(
b̃(k)

+ B̃(k)(x(x,k)
t )

)
dt, t ≥ 0,

x(x,k)
0 = x .

(4.8)

Standard infinite-dimensional ODE theory ensures that for all x ∈ H+ and k ∈ N the unique
classical solution to (4.8) is given by

x(x,k)
t := et B̃(k)

x +

∫ t

0
e(t−s)B̃(k)

b̃(k)ds , t ≥ 0 . (4.9)

he following lemma provides some properties of x(x,k), x ∈ H+, k ∈ N.
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Lemma 4.9. Let (b, B,m, µ) be an admissible parameter set cf. Definition 2.3. For x ∈ H+

and k ∈ N let x(x,k) be given by (4.9). Then

0 ≤H+ x(x,k+1)
t ≤H+ x(x,k)

t (4.10)

for all k ∈ N, x ∈ H+, and t ≥ 0.

Proof. It follows immediately from Definition 2.3 (iv) that H ∋ x ↦→ b̃(k)
+ B̃(k)(x) ∈ H

is quasi-monotone with respect to H+. As b̃(k)
∈ H+, Theorem A.1 with K = H+, F(·) =

b̃(k)
+ B̃(k)(·), f ≡ 0, and g(·) = x(x,k)

·
ensures that x(x,k)

t ∈ H+ for all t ≥ 0, x ∈ H+, k ∈ N.
Moreover, for all k ∈ N and x ∈ H+ we have

b̃(k)
+ B̃(k)(x) −

(
b̃(k+1)

+ B̃(k+1)(x)
)

≥H+ 0.

This implies that for every x ∈ H+, k ∈ N, and t ≥ 0 we have

∂x(x,k+1)
t
∂t −

(
b̃(k+1)

+ B̃(k+1)(x(x,k+1)
t )

)
=

∂x(x,k)
t
∂t −

(
b̃(k)

+ B̃(k)(x(x,k)
t )

)
≤H+

∂x(x,k)
t
∂t −

(
b̃(k+1)

+ B̃(k+1)(x(x,k)
t )

)
.

gain applying Theorem A.1 with K = H+, F(·) = b̃(k)
+ B̃(k)(·), f (t) = x(x,k+1)

t and
g(t) = x(x,k)

t , t ≥ 0, implies that x(x,k+1)
t ≤H+ x(x,k)

t for all t ≥ 0. □

For k ∈ N, t ≥ 0 and f ∈ Bρ(H+
w ) define P (det,k)

t f :H+
→ R by

(P (det,k)
t f )(x) := f (x(x,k)

t ) , x ∈ H+. (4.11)

emma 4.10. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3. Let
∈ N, t ≥ 0, f ∈ Cb(H+

w ) and let P (det,k)
t f :H+

→ R be defined by (4.11). In addition, let

M := max{1 + 2∥B̃(1)
∥

−2
L(H)∥b̃(1)

∥
2, 2} , (4.12)

ω := 2∥B̃(1)
∥L(H) . (4.13)

hen P (det,k)
t f ∈ Cb(H+

w ),

∥P (det,k)
t f ∥ρ ≤ M eωt

∥ f ∥ρ , (4.14)

nd

∥P (det,k)
t f ∥√

ρ ≤
√

M eωt/2
∥ f ∥√

ρ . (4.15)

roof. For every t ≥ 0 the operator et B̃(k)
is strong-to-strong continuous, hence it is also weak-

o-weak continuous, and thus P (det,k)
t f ∈ Cb(H+

w ). Next note that Lemma 4.9 implies that

1+∥x(x,k)
t ∥

2

1+∥x∥2 ≤
1+∥x(x,1)

t ∥
2

1+∥x∥2 ≤
1+2 e2t∥B̃(1)

∥L(H) (∥B̃(1)
∥
−2
L(H)∥b̃(1)

∥
2
+∥x∥

2)

1+∥x∥2

≤ M eωt
(4.16)

or all x ∈ H+. Using the above estimate and (4.11) we obtain

∥P (det,k)
t f ∥ρ = sup

x∈H+

(P(det,k)
t f )(x)
1+∥x∥2 = sup

x∈H+

f (x(x,k)
t )

1+∥x∥2 ≤ ∥ f ∥ρ sup
x∈H+

1+∥x(x,k)
t ∥

2

1+∥x∥2

≤ M eωt
∥ f ∥ .
ρ
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Similarly,

∥P (det,k)
t f ∥√

ρ = sup
x∈H+

f (x(x,k)
t )

√
1+∥x∥2

≤ ∥ f ∥√
ρ sup

x∈H+

√
1+∥x(x,k)

t ∥2
√

1+∥x∥2
≤

√
M eωt/2

∥ f ∥√
ρ . □

ecall that if (A, dom(A)) is the generator of a strongly continuous semigroup S = (St )t≥0 on
Banach space X , then a subspace D ⊆ dom(A) is a core for A if D is dense in dom(A) for

he graph norm ∥ · ∥dom(A) = ∥ · ∥X + ∥A · ∥X (see [16, Chapter II, Def. 1.6]). By [16, Chapter
I, Prop. 1.7] any subspace D ⊆ dom(A) that is dense in X and invariant under S is a core.

emma 4.11. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3. For all
∈ N, t ≥ 0, f ∈ Bρ(H+

w ) let P (det,k)
t f :H+

→ R be defined by (4.11). Then (P (det,k)
t )t≥0 is a

eneralized Feller semigroup on both Bρ(H+
w ) and B√

ρ(H+
w ) for all k ∈ N. Moreover D is a

ore for the generator G(k)
det of (P (det,k)

t )t≥0 on Bρ(H+
w ) and for all f ∈ D we have

(G(k)
det f )(x) = ⟨b̃(k)

+ B̃(k)(x), f ′(x)⟩, x ∈ H+. (4.17)

roof. Let k ∈ N. It follows from Lemma 4.10 that (P (det,k)
t )t≥0 is a family of bounded linear

perators on both Bρ(H+
w ) and B√

ρ(H+
w ). Moreover, properties (i), (ii), and (v) in Definition 4.4

re trivially satisfied. Property (iv) follows from Lemma 4.10. Finally, property (iii) follows
rom Theorem 4.3 and the fact that limt→0+ ∥x(x,k)

t − x∥ = 0.
It is easily verified that D is a subspace of Bρ(H+

w ) that is invariant for (P (det,k)
t )t≥0. We

now from Lemma 4.7 that D is dense in Bρ(H+
w ), thus by [16, Chapter II, Prop. 1.7] it

emains to prove that D ⊆ dom(G(k)
det) and that (4.17) holds. To this end, let u ∈ H+ and

onsider f (·) = e−⟨u,·⟩
∈ D. For f of this latter form, we define f ′(x) := −e−⟨u,x⟩u, for

, x ∈ H+ and f ′′(x) to be the bounded linear map on H+ defined for u, x ∈ H+ by
f ′′(x)(v) := e−⟨u,x⟩u⟨u, v⟩, v ∈ H+. Now, observe that for B̃(x) := B̃(k)(x) + b̃(k), we have

(P(det,k)
t f )(x)− f (x)

t − ⟨ f ′(x), B̃(x)⟩

=

∫ 1

0

⟨
f ′(s(x(x,k)

t − x) + x),
x(x,k)

t − x
t

− B̃(x)

⟩
ds

+

∫ 1

0

∫ 1

0

⟨
f ′′

(
us
(
x(x,k)

t − x
)
+ x

) (
s
(
x(x,k)

t − x
))
, B̃(x)

⟩
duds,

(4.18)

here we used Lemma C.1 twice, which is applicable as the one-sided derivatives of f ,
onsidered as a function on H+, exist. Observe that

lim
t→0+

sup
x∈H+

⏐⏐⏐ 1
t

(
x(x,k)

t −x
)
−

(
B̃(k)x+b̃(k)

)⏐⏐⏐
√
ρ(x)

≤ lim
t→0+

sup
x∈H+

∥B̃(k)
∥L(H)∥et B̃(k)

−I∥L(H)∥x∥+
1
t ∥b̃(k)

∥
∫ t

0 ∥e(t−s)B̃(k)
−I∥L(H)ds

√
1+∥x∥2

= 0.
(4.19)

oreover we have

lim sup |x(x,k)
t −x |
√
ρ(x) ≤ lim sup ∥et B̃(k)

−I∥L(H)∥x∥+
∫ t

0 ∥e(t−s)B̃(k)
b̃(k)

∥ds
√
ρ(x) = 0. (4.20)
t→0+ x∈H+ t→0+ x∈H+
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Since supx∈H+ |ρ(x)|−
1
2 ∥ f ′(x)∥ < ∞ and supx∈H+ ∥ f ′′(x)∥L(H) < ∞, it follows from

qs. (4.18), (4.19), and (4.20) that

lim
t→0+

 (P(det,k)
t f )(x)− f (x)

t − ⟨ f ′(x), B̃(k)(x) + b̃(k)
⟩


ρ

= 0. (4.21)

his, the linearity of G(k)
det and the fact that D is invariant for P (det,k)

t (and thus P (det,k)
t f ∈

Bρ(H+
w ) whenever f ∈ D) implies that D ⊆ dom(G(k)

det) and that (4.17) holds. □

We now introduce the family of measures ν(k)
: H+

× B(H+
\ {0}) → [0,∞) for every

x ∈ H+ given by

ν(k)(x, dξ ) = m(k)(dξ ) +
⟨µ(k)(dξ ), x⟩

∥ξ∥2 (4.22)

nd define the operator G(k)
jump : dom(G(k)

jump) ⊆ Bρ(H+
w ) → Bρ(H+

w ) by

dom(G(k)
jump)

=

{
f ∈ Bρ(H+

w ) :
(

x ↦→

∫
H+\{0}

( f (ξ + x) − f (x)) ν(k)(x, dξ )
)

∈ Bρ(H+

w )
}

(4.23)

nd for f ∈ dom(G(k)
jump):

G(k)
jump f (x) :=

∫
H+\{0}

( f (ξ + x) − f (x)) ν(k)(x, dξ ), x ∈ H+. (4.24)

ote that for all k ∈ N the measure ν(k)(x, dξ ) is finite, i.e. ν(k)(x,H+
\ {0}) < ∞ for all

x ∈ H+, but it is an affine function in x and hence unbounded in the first component. For
hat reason G(k)

jump f may not be in Bρ(H+
w ) for all f ∈ Bρ(H+

w ). However, the following lemma
nsures that Cb(H+

w ) ⊆ dom(G(k)
jump):

emma 4.12. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3. Let
∈ N, and let G(k)

jump be as defined in (4.23) and (4.24). Then Cb(H+
w ) ⊆ dom(G(k)

jump).

roof. Let f ∈ Cb(H+
w ) and let g f :H+

→ R be defined by

g f (x) =

∫
H+\{0}

f (x + ξ ) ⟨µ(k)(dξ ),x⟩

∥ξ∥2 (4.25)

e will prove that g f ∈ Bρ(H+
w ) using Theorem 4.3. All other terms in the definition of G(k)

jump f
an be dealt with in a similar (simpler) way.

To see that g f is continuous on K R := {ρ ≤ R} for all R > 0 it suffices to show that g f

is sequentially continuous on K R for every R > 0 as the weak topology restricted to K R is
metrizable. Fix R > 0 and let (xn)n∈N be a sequence in K R converging (weakly) to an x ∈ K R .
By the dominated convergence theorem (Theorem B.5) and the fact that supn∈N ∥xn∥ ≤

√
R

e obtain

lim
n→∞

⏐⏐g f (xn) − g f (x)
⏐⏐ ≤ lim

n→∞

∫
H+\{0}

( f (xn + ξ ) − f (x + ξ ))µ
(k)(dξ )
∥ξ∥2

 ∥xn∥

+ lim
n→∞

⏐⏐⏐⏐∫
H+\{0}

f (x + ξ ) ⟨µ(k),xn−x⟩(dξ )
∥ξ∥2

⏐⏐⏐⏐ = 0.
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Finally, observe that limR→∞ supx∈H+:ρ(x)≥R |ρ(x)|−1
|g f (x)| = 0 as f is bounded and

H+\{0}

µ(k)(dξ )
∥ξ∥2 ∈ H (recall (B.7)). By Theorem 4.3 this ensures that g f ∈ Bρ(H+

w ), which
completes the proof of the lemma. □

In the next proposition we achieve an important intermediate stage, that allows us to
conclude the existence of generalized Feller processes in H+ admitting for bounded drifts and
finite-activity jump behavior, as well as satisfying the exponential affine formula (1.1):

Proposition 4.13. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3. Let
k ∈ N, and let (φ(k)(·, u), ψ (k)(·, u)) be the unique solution to (3.4) (cf. Proposition 3.5). Let
D ⊆ Bρ(H+

w ) be given by (4.7) and G(k)
det and G(k)

jump be as defined in (4.17), respectively (4.24).
onsider the operator G(k)

det + G(k)
jump : dom(G(k)

det) ∩ dom(G(k)
jump) ⊆ Bρ(H+

w ) → Bρ(H+
w ). Then

⊆ dom(G(k)
det) ∩ dom(G(k)

jump). Moreover, there exists a generalized Feller semigroup (P (k)
t )t≥0

ith generator (G(k), dom(G(k))) such that

(i) D ⊆ dom(G(k)),
(ii) G(k) f = (G(k)

det + G(k)
jump) f for all f ∈ D,

(iii) P (k)
t 1 = 1 for all t ≥ 0, and

(iv) for all u, x ∈ H+, t ≥ 0 we have(
P (k)

t e−⟨·,u⟩

)
(x) = e−φ(k)(t,u)−⟨x,ψ (k)(t,u)⟩. (4.26)

roof of Proposition 4.13. Roughly speaking, we can ensure the existence of a generalized
eller semigroup P (k)

t satisfying (ii) in Proposition 4.13 by verifying that all conditions
f [10, Proposition 3.3] are satisfied. However, the assertions of [10, Proposition 3.3] do not
mmediately give us (i), (iii), and (iv). In order to obtain these statements we need to dig into
he proof of [10, Proposition 3.3], which makes this proof somewhat technical and tricky. To
nhance the readability, we split the proof in to several parts.

tep 1: Verifying the assumptions of [10, Proposition 3.3]. We consider, in the notation of
hat Proposition, (X, ρ) = (H+

w , ρ), A = G(k)
det, ω as in (4.13), M1 = M where M is as

n (4.12), µ(x, E) = ν(k)(x, E − x ∩ H+) (recall the definition of ν(k) from (4.22); here
E − x := {y ∈ H : y + x ∈ E}), and B = G(k)

jump. By Lemma 4.11, G(k)
det is the generator of

generalized Feller semigroup (P (det,k)
t )t≥0 of transport type on both Bρ(H+

w ) and B√
ρ(H+

w ).
n particular, by [13, Theorem 3.2], (P (det,k)

t )t≥0 defines a strongly continuous semigroup on
oth Bρ(H+

w ) and B√
ρ(H+

w ), i.e., it automatically holds that the domain of G(k)
det is dense and that

P (det,k)
t )t≥0 allows for exponential bounds (see Lemma 4.10 for explicit bounds). Lemma 4.12

implies that G(k)
jump f is weakly continuous on compact sets {ρ ≤ R} for all R ≥ 0 and all

f ∈ Cb(H+
w ).

Moreover, one easily verifies that there exists a constant K (possibly depending on k) such
that for all x ∈ H+ we have∫

H+\{0}

ρ(y + x) ν(k)(x, dy) ≤

∫
H+\{0}

(1 + 2∥x∥
2
+ 2∥y∥

2) ν(k)(x, dy) ≤ K |ρ(x)|2 ,

(4.27)∫ √
ρ(y + x) ν(k)(x, dy) ≤

∫
(1 + ∥x∥ + ∥y∥) ν(k)(x, dy) ≤ Kρ(x) , (4.28)
H+\{0} H+\{0}
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and ∫
H+\{0}

ν(k)(x, dy) ≤ K
√
ρ(x) . (4.29)

ext, observe that by Lemma 4.9 and the fact that (0, B, 0, µ) is also an admissible parameter
et, we have et B̃(k)

ξ ∈ H+ whenever ξ ∈ H+. Thus

P (det,k)
t ρ(ξ + x) = 1 + ∥x(ξ+x,k)

t ∥
2

= 1 + ∥et B̃(k)
ξ + x(ξ,k)

t ∥
2

= P (det,k)
t ρ(x) + 2⟨et B̃(k)

ξ, x(ξ,k)
t ⟩ + ∥ et B̃(k)

ξ∥2
≥ P (det,k)

t ρ(x)
(4.30)

or all x, ξ ∈ H+. This together with estimates similar to (4.16) yields (note that ∥ et B̃(k)
ξ∥ ≤

et B̃(1)
ξ∥, and recall ω from (4.13))⏐⏐⏐⏐⏐ supt≥0 e−ωt P (det,k)

t ρ(ξ + x) − supt≥0 e−ωt P (det,k)
t ρ(x)

supt≥0 e−ωt P (det,k)
t ρ(x)

⏐⏐⏐⏐⏐
=

supt≥0 e−ωt P (det,k)
t ρ(ξ + x) − supt≥0 e−ωt P (det,k)

t ρ(x)

supt≥0 e−ωt P (det,k)
t ρ(x)

≤

supt≥0 e−ωt
⏐⏐⏐∥ et B̃(k)

ξ∥2
+ 2∥ et B̃(k)

ξ∥∥x(x,k)
t ∥

⏐⏐⏐
1 + ∥x∥2 ≤

∥ξ∥2
+ 2∥ξ∥(∥x∥ +

√
M)

1 + ∥x∥2

≤
(M + 2∥ξ∥2)(1 + ∥x∥)

1 + ∥x∥2 ≤
2M+4∥ξ∥2

1+∥x∥

(4.31)

or all x, ξ ∈ H+. It follows that for all x ∈ H+ we have∫
H+\{0}

⏐⏐⏐⏐⏐⏐
supt≥0 e−ωt

(
P (det,k)

t ρ
)

(ξ + x) − supt≥0 e−ωt
(

P (det,k)
t ρ

)
(x)

supt≥0 e−ωt
(

P (det,k)
t ρ

)
(x)

⏐⏐⏐⏐⏐⏐ ν(k)(x, dξ )

≤ sup
y∈H+

⏐⏐⏐⏐∫
H+\{0}

(
2M+4∥ξ∥2

1+∥y∥

)
ν(k)(y, dξ )

⏐⏐⏐⏐ =: ω̃k < ∞.

(4.32)

his ensures that all conditions of [10, Proposition 3.3] are satisfied.

tep 2: Presenting the assertions of [10, Proposition 3.3]. As in the proof of [10, Proposi-
ion 3.3], we introduce the operator G(k,n)

jump ∈ L(Bρ(H+
w )) which satisfies

(G(k,n)
jump f )(x) =

∫
H+\{0}

( f (ξ + x) − f (x)) n
ρ(ξ+x)∧n ν

(k)(x, dξ )

or all x ∈ H+, f ∈ Bρ(H+
w ). Note that D ⊆ dom(G(k)

jump) by Lemma 4.12. For future reference
(see Proposition 4.19) we also introduce ρ̃k : H+

→ R, ρ̃k(x) = supt≥0 e−ωt P (det,k)
t ρ(x). It

ollows from [10, Remark 2.9] that ρ̃k is an admissible weight function and that ∥·∥ρ ≤ ∥·∥ρ̃k ≤

M ∥·∥ρ . Moreover, it follows from the proof of [10, Proposition 3.3] (with A = G(k)
det and

Bn = G(k,n)
jump ) that G(k)

det + G(k,n)
jump is the generator of a generalized Feller semigroup (P (k,n)

t )t≥0

n Bρ(H+
w ) for all n ∈ N, such that

(a) ∥P (k,n)
t ∥L(Bρ̃k (H+

w )) ≤ e(ω+ω̃k )t for all t ≥ 0, n ∈ N,

(b) ∥P (k,n)
t ∥L(Bρ (H+

w )) ≤ M e(ω+ω̃k )t for all t ≥ 0, n ∈ N,
(c) lim ∥(G(k,n)

− G(k) ) f ∥ = 0 for all f ∈ D .
n→∞ jump jump ρ
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It moreover follows from the proof of [10, Proposition 3.3] that there exists a generalized Feller
semigroup (P (k)

t )t≥0 on Bρ(H+
w ) with generator G(k) satisfying

lim
n→∞

sup
s∈[0,t]

∥(P (k,n)
s − P (k)

s ) f ∥ρ = 0, for all f ∈ Bρ(H+

w ), t ≥ 0. (4.33)

tep 3: Proof of (i) and (ii). Fix f ∈ D. Let uk,n(t) = P (k,n)
t f , t ≥ 0 and n ∈ N, let uk(t) =

P (k)
t f , t ≥ 0, and let vk(t) = P (k)

t (G(k)
det +G(k)

jump) f . Observe that u′

k,n(t) = P (k,n)
t (G(k)

det +G(k,n)
jump ) f .

y (a), (b), and (4.33) we have, for all T ≥ 0, that

lim
n→∞

sup
t∈[0,T ]

(
∥uk,n(t) − uk(t)∥ρ + ∥u′

k,n(t) − vk(t)∥ρ
)

= 0. (4.34)

his implies that uk is differentiable and u′

k(t) = vk(t), which implies that f ∈ dom(G(k)) and
(k) f = u′

k(0) = (G(k)
det + G(k)

jump) f .

tep 4: Proof of (iii). In order to verify that P (k)
t 1 = 1 for all t ≥ 0, observe that G(k,n)

jump1 = 0

(whence etG(k,n)
jump 1 = 1 for all t ≥ 0), whence the Trotter product formula (see, e.g., [16,

Chapter III, Corollary 5.8]) implies that P (k,n)
t 1 = 1 for all t ≥ 0. It follows that P (k)

t 1 = 1 for
ll t ≥ 0.

tep 5: Proof of (iv). Recall the definition of R(k) and F (k) from (3.2) and (3.3). Recall from
emmas 4.11 and 4.12 that e−⟨·,u⟩

∈ D ⊆ dom(G(k)
det) ∩ dom(G(k)

jump) for all u ∈ H+, and that

G(k)(e−⟨·,u⟩)(x) = (G(k)
det + G(k)

jump)(e−⟨·,u⟩)(x)

=

(
−⟨b̃(k)

+ B̃(k)(x), u⟩ +

∫
H+\{0}

(
e−⟨ξ,u⟩

− 1
)
ν(k)(x, dξ )

)
e−⟨x,u⟩

=
(
−F (k)(u) − ⟨x, R(k)(u)⟩

)
e−⟨x,u⟩ (4.35)

or all u, x ∈ H+. On the other hand, Proposition 3.5 implies that

∂

∂t
e−φ(k)(t,u)−⟨x,ψ (k)(t,u)⟩

=
(
−F (k)(ψ (k)(t, u)) − ⟨x, R(k)(ψ (k)(t, u))⟩

)
e−φ(k)(t,u)−⟨x,ψ (k)(t,u)⟩

for all u, x ∈ H+. Therefore for all u ∈ H+ it holds that the function [0,∞) ∋ t ↦→

e−φ(k)(t,u)−⟨·,ψ (k)(t,u)⟩
∈ D ⊆ dom(G(k)) is a classical solution to the following abstract Cauchy

problem:⎧⎨⎩
∂

∂t
v(t) = G(k)v(t),

v(0) = e−⟨·,u⟩.

By the uniqueness of the classical solution we conclude (4.26). □

From Proposition 4.13 on the existence of the generalized Feller semigroup (P (k)
t ) with

P (k)
t 1 = 1, together with the version of Kolmogorov’s extension Theorem 4.5, we conclude

that there exists a generalized Feller process associated to (P (k)
t )t≥0, denoted by (X (k)

t )t≥0, such
hat Ex

[
f (X (k)

t )
]

= P (k)
t f (x) for every f ∈ Bρ(H+

w ). Item (a) and Eq. (4.33) in the proof of

Proposition 4.13 result in exponential bounds on ∥P (k)
∥ + that depend on k ∈ N. In
t L(Bρ (Hw ))
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order to proceed, we need to establish bounds that are uniform in k. We begin with a lemma
hat builds on top of the results in Proposition 3.11:

emma 4.14. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3. More-
ver for every k ∈ N, let (φ(k)(·, u), ψ (k)(·, u)) be the solution of (3.4), the existence of
hich is established in Proposition 3.5, and the mappings d+φ(·, 0), d+ψ(·, 0), d2

+
φ(k)(·, 0)

and d2
+
ψ (k)(·, 0) be as in Proposition 3.11 for the admissible parameter set (b, B,m(k), µ(k)).

Moreover, let (X (k)
t )t≥0 be the generalized Feller process associated to (P (k)

t )t≥0. Then for every
, w ∈ H and t ≥ 0 the following formulas hold true:

Ex

[
⟨X (k)

t , v⟩
]

= d+φ(t, 0)(v) + ⟨x, d+ψ(t, 0)(v)⟩, (4.36)

nd

Ex

[
⟨X (k)

t , v⟩⟨X (k)
t , w⟩

]
= −d2

+
φ(k)(t, 0)(v,w) − ⟨x, d2

+
ψ (k)(t, 0)(v,w)⟩

+
(
d+φ(t, 0)(v) + ⟨x, d+ψ(t, 0)(v)⟩

)
×
(
d+φ(t, 0)(w) + ⟨x, d+ψ(t, 0)(w)⟩

)
. (4.37)

roof. Let k ∈ N arbitrary, but fixed. Recall from Remark 4.6 that for all t ≥ 0:

Ex

[
∥X (k)

t ∥
2
]
< ∞, ∀x ∈ H+. (4.38)

e first show that the formulas (4.36) and (4.37) hold for v,w ∈ H+ and subsequently extend
hese to v,w ∈ H. Let u ∈ H+, x ∈ H+ and t ≥ 0, then we set

Φ(k)(t, u, x) := e−φ(k)(t,u)−⟨x,ψ (k)(t,u)⟩,

nd by the affine property of (X (k)
t )t≥0 from Eq. (4.26) we have

Ex

[
e−⟨X (k)

t ,u⟩

]
= Φ(k)(t, u, x). (4.39)

y Proposition 3.11 the right-hand side of Eq. (4.39) is one-sided differentiable in u ∈ H+ in
he direction v for every v ∈ H+. In particular, by applying the chain-rule at u = 0 we have:

d+Φ
(k)(t, 0, x)(v) =

(
−d+φ

(k)(t, 0)(v) − ⟨x, d+ψ
(k)(t, 0)(v)⟩

)
Φ(k)(t, 0, x)

= −d+φ
(k)(t, 0)(v) − ⟨x, d+ψ

(k)(t, 0)(v)⟩, (4.40)

here d+φ
(k)(t, 0) = d+φ(t, 0) and d+ψ

(k)(t, 0) = d+ψ(t, 0) for all t ≥ 0 and k ∈ N, see
emma 3.9. Moreover, note that for θ ∈ R+ the random variable e−⟨X (k)

t ,θv⟩ is integrable and
or Px -almost all ω ∈ Ω the mapping θ ↦→ e−⟨X (k)

t (ω),θv⟩ is differentiable. Due to Eq. (4.38) the
erm

sup
θ∈[0,1]

|
d

dθ
e−⟨X (k)

t ,θv⟩
| = sup

θ∈[0,1]
|−⟨X (k)

t , v⟩e
−⟨X (k)

t ,θv⟩
|

is integrable. Hence, all the requirements for switching the derivative with respect to θ and the
expectation with respect to Px are fulfilled, thus the left-hand side of Eq. (4.39) together with
Eq. (4.40) yields:

Ex

[
⟨X (k)

t , v⟩
]

= d+φ(t, 0)(v) + ⟨x, d+ψ(t, 0)(v)⟩. (4.41)

Again due to Eq. (4.38) we obtain by differentiating both sides of Eq. (4.39) at u = 0 twice in
the direction v and w the formula in (4.37). Note that for every v ∈ H there exist v+, v−

∈ H+
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such that v = v+
− v−, by linearity of the formula (4.36) in v, we have:

Ex

[
⟨X (k)

t , v⟩
]

= Ex

[
⟨X (k)

t , v
+
⟩

]
− Ex

[
⟨X (k)

t , v
−
⟩

]
= d+φ(t, 0)(v+) − d+φ(t, 0)(v−)

+ ⟨x, d+ψ(t, 0)(v+) − d+ψ(t, 0)(v−)⟩

= d+φ(t, 0)(v) + ⟨x, d+ψ(t, 0)(v)⟩.

y introducing the linear functional

⟨⟨·, v ⊗ w⟩⟩ :H ⊗ H → R defined by ⟨⟨x ⊗ x, v ⊗ w⟩⟩ := ⟨x, v⟩⟨x, w⟩, (4.42)

e can write Ex

[
⟨X (k)

t , v⟩⟨X (k)
t , w⟩

]
= Ex

[
⟨⟨X (k)

t ⊗ X (k)
t , v ⊗ w⟩⟩

]
for every v,w ∈ H+ and

e have

Ex

[
⟨⟨X (k)

t ⊗ X (k)
t , v ⊗ w⟩⟩

]
= −⟨⟨d2

+
φ(k)(t, 0) + d2

+
ψ (k)(t, 0)∗(x), v ⊗ w⟩⟩

+ ⟨⟨d+φ(t, 0) ⊗ d+φ(t, 0), v ⊗ w⟩⟩

+ ⟨⟨d+φ(t, 0) ⊗ d+ψ(t, 0)∗(x), v ⊗ w⟩⟩

+ ⟨⟨d+ψ(t, 0)(x) ⊗ d+φ(t, 0), v ⊗ w⟩⟩

+ ⟨⟨d+ψ(t, 0)∗(x) ⊗ d+ψ(t, 0)∗(x), v ⊗ w⟩⟩, (4.43)

here we conveniently identified functionals on H with elements of H. Written in this form
he right-hand side in formula (4.37) reveals its linearity in v⊗w and for v⊗w ∈ L2(H), we
ave

v ⊗ w = v+
⊗ w+

− v+
⊗ w−

− v−
⊗ w+

+ v−
⊗ w−

nd thus expanding both sides by linearity in Eq. (4.37), shows the validity of the formula for
ll v,w ∈ H. □

Note that by inserting the formulas from (3.35)–(3.36) and (3.19)–(3.22) into the correspond-
ng terms in (4.36) and (4.37), the latter become explicit up to the parameters (b, B,m, µ). To
ave some space, we give those explicit formulas only for the limit case in Proposition 4.17.

Using the formulas from Lemma 4.14, we establish uniform growth bounds for the
emigroups (P (k)

t )t≥0 in the next proposition. Let us note here that in general we do not obtain
n uniform growth bound w ∈ R+ with M = 1:

roposition 4.15. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3 and
or every k ∈ N let (P (k)

t )t≥0 be the generalized Feller semigroup on Bρ(H+
w ) associated with

b, B,m(k), µ(k)), the existence of which is guaranteed by Proposition 4.13. Then there exist a
onstant w ∈ R+ and M ≥ 1, both independent of k ∈ N, such that

∥P (k)
t ∥L(Bρ (H+

w )) ≤ M ewt for all k ∈ N, t ≥ 0. (4.44)

roof. Recall from Remark 4.6, that in order to show the existence of a M ≥ 1 and w ∈ R+

uch that Eq. (4.44) holds, it suffices to show the existence of a ϵ > 0 and C ≥ 0, independent
f k ∈ N, such that

Ex

[
ρ(X (k))

]
≤ Cρ(x) , ∀t ∈ [0, ϵ] and x ∈ H+. (4.45)
t
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Let k ∈ N be arbitrary, but fixed and denote by (en)n∈N an ONB of H, then by Parseval’s
dentity and monotone convergence we have:

Ex

[
ρ(X (k)

t )
]

= Ex

[
1 + ∥X (k)

t ∥
2
]

= 1 +

∞∑
n=1

Ex

[
⟨X (k)

t , en⟩
2
]
,

for every t ≥ 0 and x ∈ H+. By Eq. (4.37), in particular using the notation in Eq. (4.43), we
have for all n ∈ N:

Ex

[
⟨X (k)

t , en⟩
2
]

= ⟨⟨−d2
+
φ(k)(t, 0) − d2

+
ψ (k)(t, 0)∗(x), en ⊗ en⟩⟩

+ ⟨⟨
(
d+φ(t, 0) + d+ψ(t, 0)∗(x)

)⊗2
, en ⊗ en⟩⟩. (4.46)

We show separately for the first and second terms on the right-hand side of Eq. (4.46) that,
when summing over all n ∈ N, we find a ϵ > 0 and C ≥ 0 such that Eq. (4.45) holds. Since

∞∑
n=1

⟨d+φ(t, 0) + d+ψ(t, 0)∗(x), en⟩
2

= ∥d+φ(t, 0) + d+ψ(t, 0)∗(x)∥2,

we deduce for the second term on the right hand side of (4.46):
∞∑

n=1

⟨⟨
(
d+φ(t, 0) + d+ψ(t, 0)∗(x)

)⊗2
, en ⊗ en⟩⟩ ≤ C(t)(1 + ∥x∥

2),

or

C(t) =
(
∥d+φ(t, 0)∥ + ∥d+ψ(t, 0)∗∥L(H)

)2
.

he terms ∥d+φ(t, 0)∥ and ∥d+ψ(t, 0)∗∥L(H) are bounded for all t ≥ 0. Therefore, we deduce
he existence of ϵ > 0 and C ≥ 0, independent of k ∈ N, such that

∞∑
n=1

⟨⟨
(
d+φ(t, 0) + d+ψ(t, 0)∗(x)

)⊗2
, en ⊗ en⟩⟩ ≤ C(1 + ∥x∥

2), (4.47)

or all t ∈ [0, ϵ] and x ∈ H+. We continue with the first term on the right hand side of (4.46).
ecall formulas (3.20), (3.22), (3.33), (3.35) and (3.36), from which we obtain:

⟨⟨d2
+
ψ (k)(t, 0)∗(x), en ⊗ en⟩⟩

= −

∫ t

0

∫
H+\{0}

⟨esdR(0)∗ξ, en⟩
2⟨x, e(t−s)dR(0)⟩µ(k)(dξ )

∥ξ∥2 ds, (4.48)

nd

⟨⟨d2
+
φ(k)(t, 0), en ⊗ en⟩⟩ = −

∫ t

0

(∫
H+\{0}

⟨esdR(0)∗ξ, en⟩
2 m(k)(dξ )

+ ⟨⟨d2
+
ψ (k)(s, 0)∗(b), en ⊗ en⟩⟩

)
ds

+

∫ t

0

∫
H+∩{∥ξ∥≥1}

⟨⟨d2
+
ψ (k)(s, 0)∗(ξ ), en ⊗ en⟩⟩ m(dξ )ds .

(4.49)
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Hence the two terms on the right hand side of Eq. (4.46) can be estimated by
∞∑

n=1

∫ t

0

∫
H+\{0}

⟨esdR(0)∗ξ, en⟩
2
⟨x, e(t−s)dR(0)

⟩
µ(k)(dξ )
∥ξ∥2 ds

≤
(∫ t

0
∥esdR(0)∗

∥
2
L(H)∥e(t−s)dR(0)

∥L(H)∥µ(H+
\ {0})∥ds

)
∥x∥,

and
∞∑

n=1

⟨⟨d2
+
φ(k)(t, 0), en ⊗ en⟩⟩

≤ 2(∥b∥ + ∥µ(H+
\ {0})∥ +

∫
H+\{0}

∥ξ∥2
+ ∥ξ − χ (ξ )∥m(dξ ))

×

∫ t

0

∫ s

0
∥eτdR(0)∗

∥
2
L(H)∥e(s−τ )dR(0)

∥L(H)dτds ,

here we used that for all k ∈ N:

∥µ(k)(H+
\ {0})∥ ≤ ∥µ(H+

\ {0})∥ < ∞

nd ∫
H+\{0}

∥ξ∥2
+ ∥ξ − χ (ξ )∥m(k)(dξ ) ≤

∫
H+\{0}

∥ξ∥2
+ ∥ξ − χ (ξ )∥m(dξ ) < ∞.

herefore there exist ϵ > 0 and C̃ ≥ 0 such that
∞∑

n=1

⟨⟨−d2
+
φ(k)(t, 0) − d2

+
ψ (k)(t, 0)∗(x), en ⊗ en⟩⟩

≤ C̃(1 + ∥x∥
2),

for all t ∈ [0, ϵ] and x ∈ H+. Taking the sum of the latter constant C̃ and the constant C
found in Eq. (4.47) yields (4.45). □

In the next step we show that the family (Pt )t≥0, defined by Pt := limk→∞ P (k)
t for t ≥ 0,

gives rise to a generalized Feller semigroup and deduce the existence of a generalized Feller
process (X t )t≥0 with generator G as in formula (2.9).

Proposition 4.16. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3. Then
there exists a generalized Feller semigroup (Pt )t≥0 on Bρ(H+

w ) such that(
Pt e−⟨·,u⟩

)
(x) = e−φ(t,u)−⟨x,ψ(t,u)⟩, (4.50)

for all t ≥ 0 and x, u ∈ H+, where (φ(·, u), ψ(·, u)) is the unique solution to the generalized
Riccati equation (2.7). The semigroup (Pt )t≥0 gives rise to a generalized Feller process (X t )t≥0
in (H+

w , ∥ · ∥
2
+ 1) such that

Ex [ f (X t )] = Pt f (x), t ≥ 0, x ∈ H+,

and the generator G of (Pt )t≥0 is of the form in Eq. (2.9) on D.

Proof. Hereto we check that the conditions of Theorem 3.2 in [10] hold. From Proposition 4.15,
we know that the sequence of semigroups (P (k)) with generators (G(k)) satisfy the
t t≥0,k∈N k∈N
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following growth bound

∥P (k)
t ∥L(Bρ (H+

w )) ≤ Mewt , ∀ n ∈ N and t ≥ 0 , (4.51)

here w ∈ R.
Recall the definition of D from Eq. (4.7) and recall from Lemma 4.7 that D is a dense

ubspace of Bρ(H+
w ). Thus (i) in Theorem 3.2 in [10] is satisfied.

Note that the operator G(n), n ∈ N, applied to the function e−φ(k)(s,u)−⟨·,ψ (k)(s,u)⟩, with
φ(k)(·, u), ψ (k)(·, u)) being a solution to (3.4), gives (see also Eq. (4.35))(

G(n)e−φ(k)(s,u)−⟨·,ψ (k)(s,u)⟩
)

(x)

= e−φ(k)(s,u)G(n)e−⟨·,ψ (k)(s,u)⟩(x)

=
(
−F (n)(ψ (k)(s, u)) − ⟨R(n)(ψ (k)(s, u)), x⟩

)
e−φ(k)(s,u)−⟨x,ψ (k)(s,u)⟩ ,

or x, u ∈ H+, s ≥ 0 From the latter and Eq. (4.26), we infer

1
∥x∥2 + 1

⏐⏐G(n) P (k)
s e−⟨·,u⟩(x) − G(k) P (k)

s e−⟨·,u⟩(x)
⏐⏐

≤
e−φ(k)(s,u)−⟨x,ψ (k)(s,u)⟩

∥x∥2 + 1

[
b(n,k)

s,u + ∥x∥a(n,k)
s,u

]
, (4.52)

here

a(n,k)
s,u :=

R(n)(ψ (k)(s, u)) − R(k)(ψ (k)(s, u))


nd

b(n,k)
s,u :=

⏐⏐F (n)(ψ (k)(s, u)) − F (k)(ψ (k)(s, u))
⏐⏐

rom Eqs. (2.3) and (3.16) we have, for all 0 ≤ s ≤ T < ∞:⏐⏐⏐(e−⟨ξ,ψ (k)(s,u)⟩
− 1 − ⟨χ (ξ ), ψ (k)(s, u)⟩

) (
1{∥ξ∥>1/n} − 1{∥ξ∥>1/k}

)⏐⏐⏐
≤ ∥ψ (k)(s, u)∥2

∥ξ∥21{∥ξ∥≤1}

≤ sup
s∈[0,T ]

∥ψ (1)(s, u)∥2
∥ξ∥21{∥ξ∥≤1} =: g(ξ ) .

bserve that for h ∈ H+, we have
∫
H+\{0}

g(ξ ) ⟨µ(dξ ),h⟩

∥ξ∥2 < ∞ . Hence Lemma B.3 implies that
g(·)/∥·∥

2
∈ L1(H+, µ) and from Theorem B.5, we deduce that sups∈[0,T ] a(n,k)

s,u converges to 0 as
n, k → ∞. By the admissibility condition (i) in Definition 2.3, we infer

∫
H+\{0}

g(ξ ) m(dξ ) <
∞ and applying the dominated convergence theorem we also deduce that sups∈[0,T ] b(n,k)

s,u
converge to 0 as n, k → ∞. Observing that φ(k)(s, u) ∈ R+ and ψ (k)(s, u) ∈ H+ for all
s ≥ 0, we can bound e−φ(k)(s,u)−⟨x,ψ (k)(s,u)⟩ by 1 for all x ∈ H+ and get from Eq. (4.52), that
for all s > 0:G(n) P (k)

s e−⟨·,u⟩
− G(k) P (k)

s e−⟨·,u⟩

ρ

≤ sup
x∈H+

∥x∥ + 1
∥x∥2 + 1

(
a(n,k)

s,u + b(n,k)
s,u

)
≤

(
sup

s∈[0,T ]
a(n,k)

s,u + sup
s∈[0,T ]

b(n,k)
s,u

)
Cu∥e−⟨·,u⟩

∥∞ ,
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where Cu = supx∈H+ (∥x∥+1)/(∥x∥
2
+1). Thus condition (ii) in Theorem 3.2 in [10] is satisfied

ith ∥ · ∥D = ∥ · ∥∞ and we deduce the existence of a generalized Feller semigroup (Pt )t≥0

with the same growth bound as the semigroup (P (k)
t )t≥0 and such that Pt f = limk→∞ P (k)

t f ,
for all f ∈ Bρ(H+

w ), uniformly on compacts in time. Since Pt 1 = 1, for all t ≥ 0, we deduce
from Theorem 4.5 that there exists a generalized Feller process (X t )t≥0 such that Pt f (x) =

Ex [ f (X t )] for all t ≥ 0 and x ∈ H+. The exponential affine formula (4.50) follows from
formula (4.26) and the fact that limk→∞ φ

(k)(t, u) = φ(t, u) and limk→∞ ψ
(k)(t, u) = ψ(t, u)

for all t ≥ 0 and u ∈ H+. From this we further derive the particular form of the generator G
on the space D by noting that t ↦→ Pt e−⟨·,u⟩(x) uniquely solves the abstract Cauchy problem
associated to (G, dom(G)) and hence by mimicking the proof of the approximation case in
Proposition 4.13, we conclude formula (2.9). □

Analogous to the approximating processes (X (k)
t )t≥0, for k ∈ N in Lemma 4.14, we now

deduce explicit formulas for the expressions Ex [⟨X t , v⟩] as well as for Ex
[
⟨X t , v⟩

2
]
, where

x ∈ H+, t ≥ 0 and v ∈ H+.

roposition 4.17. Let (b, B,m, µ) be an admissible parameter set conform Definition 2.3.
ecall the definition of dR(0), d2 R(0), dF(0), and d2 F(0) from (3.19)–(3.22). Then for all
, w ∈ H+ the following formulas hold true:

Ex [⟨X t , v⟩] =

∫ t

0
⟨b, esdR(0)v⟩ +

∫
H+∩{∥ξ∥>1}

⟨ξ, esdR(0)v⟩ m(dξ )ds + ⟨x, etdR(0)v⟩ (4.53)

and

Ex [⟨X t , v⟩⟨X t , w⟩]

= −

∫ t

0
d2 F(0)(esdR(0)v, esdR(0)w) ds

−

∫ t

0

∫ s

0
dF(0)

(
e(s−u)dR(0)d2 R(0)(eudR(0)v, eudR(0)w)

)
du ds

−

∫ t

0

⟨
x, e(t−s)dR(0)d2 R(0)(esdR(0)v, esdR(0)w)

⟩
ds

+

(∫ t

0
dF(0)(esdR(0)v) ds +

⟨
x, etdR(0)v

⟩)
×

(∫ t

0
dF(0)(esdR(0)w) ds +

⟨
x, etdR(0)w

⟩)
. (4.54)

oreover, for v ∈ H+, ⟨·, v⟩ ∈ dom(G) and

G⟨·, v⟩(x) = ⟨b + B(x), v⟩ +

∫
H+∩{∥ξ∥>1}

⟨ξ, v⟩ ν(x, dξ ) , x ∈ H+ . (4.55)

roof. Formulas (4.53) and (4.54) can be obtained analogous to the computation of the
ormulas (4.36) and (4.37) derived for the approximating case, combined with the explicit
ormulas (3.35)–(3.36). As in the proof of Lemma 4.14 we use Proposition 3.11 and the finite
econd moments of the process (X t )t≥0 to interchange the operations of the expectation and
he one-sided derivatives. To obtain more explicit formulas, we consider the analogous of the
ormulas (4.36) and (4.37) and recall that d+φ(t, 0)(v), d2

+
φ(t, 0)(v, v) can be expressed in

erms of dF(0), d2 F(0), d+ψ(t, 0)(v), and d2
+
ψ(t, 0)(v,w), see (3.31) and (3.33). Then, we

recall the expressions (3.35) and (3.36) for d ψ(t, 0)(v), and d2 ψ(t, 0)(v,w).
+ +
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To prove (4.55), observe that using the analogue of (4.36), we get
1
t

⏐⏐⏐Pt ⟨·, v⟩(x) − ⟨x, v⟩ − ⟨b + B(x), v⟩ −

∫
H+∩{∥ξ∥>1}

⟨ξ, v⟩ ν(x, dξ )
⏐⏐⏐

≤
1
t

⏐⏐⏐d+φ(t, 0)(v) − ⟨b, v⟩ −

∫
H+∩{∥ξ∥>1}

⟨ξ, v⟩ m(dξ )
⏐⏐⏐

+
1
t
∥x∥

d+ψ(t, 0)(v) − v − B∗(v) −

∫
H+∩{∥ξ∥>1}

⟨ξ, v⟩
µ(dξ )
∥ξ∥2

 .
he latter together with formulas (3.31) and (3.32), yield

lim
t→0+

sup
x∈H+

1
t

⏐⏐⏐Pt ⟨·, v⟩(x) − ⟨x, v⟩ − ⟨b + B(x), v⟩ −
∫
H+∩{∥ξ∥>1}

⟨ξ, v⟩ ν(x, dξ )
⏐⏐⏐

1 + ∥x∥2

≤

⏐⏐⏐dF(0)(v) − ⟨b, v⟩ −

∫
H+∩{∥ξ∥>1}

⟨ξ, v⟩ m(dξ )
⏐⏐⏐

+

dR(0)(v) − B∗(v) −

∫
H+∩{∥ξ∥>1}

⟨ξ, v⟩
µ(dξ )
∥ξ∥2


nd recalling the formulas for dR(0) and dF(0) respectively in (3.19) and (3.20), we conclude

that ⟨·, v⟩ ∈ dom(G), for v ∈ H+ and that (4.55) holds. □

emark 4.18. As observed in Remark 2.4, the second moment conditions are a consequence
f our generalized Feller approach with weight function ρ = ∥ · ∥

2
+ 1. More specifically, the

uniform bounds established in Proposition 4.15 rely on the existence of second moments as
established in Lemma 4.14. A natural question to ask is whether one could perform the analysis
with a different (weaker) weight function. However, in the proof of Lemma 4.11 we consider
the square root of the weight function

√
ρ, more specifically, we need that

√
ρ(x) ≥ c∥x∥,

x ∈ H+, for some constant c ∈ (0,∞).
Naturally, the second moments of m and µ are also used to derive the explicit formulas

or the first and second moments of the affine process in Proposition 4.17. Finally, we note
hat the existence of a first moment of µ(dξ )

∥ξ∥2 is already used in Lemma 3.3 to ensure that the
approximating mappings R(k) are Lipschitz continuous.

In general we do not obtain a version of the process X in Proposition 4.16 with càdlàg
aths. By Theorem 2.13 in [10] a càdlàg version exists when the associated semigroup (Pt )t≥0

is quasi-contractive on Bρ(H+
w ), i.e., if one can take M = 1 in Proposition 4.15. We do not

know whether this holds in general. However, we can show that X admits a càdlàg version in
he finite activity setting:

roposition 4.19. Assume the setting of Proposition 4.16 and assume moreover that m(H+
\

{0}) < ∞ and that H+
\ {0} ∋ ξ ↦→ ∥ξ∥−2 is µ-integrable. Then there exists a version of X

ith càdlàg paths.

roof. By [10, Theorem 2.13] it in fact suffices to prove that the generalized Feller semigroup
Pt )t≥0 associated to X is quasi-contractive on Bρ̃(H+

w ), where ρ̃ : H+
→ [0,∞) is an

dmissible weight function such that its associated norm ∥·∥ρ̃ is equivalent to ∥·∥ρ . Note that in
he finite activity setting we can apply Proposition 4.13 with k = ∞ (with the understanding
hat m(∞)

:= m and µ(∞)
:= µ) to directly obtain (P ) (i.e., no approximation over k
t t≥0
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is necessary). In particular ω̃∞ < ∞, where ω̃∞ is defined by taking k = ∞ in (4.32). It
hen follows from statement (a) on “Step 2: Presenting the assertions of [10, Proposition 3.3]”
hat (Pt )t≥0 is quasi-contractive on Bρ̃∞

(H+
w ) where ρ̃∞ is an admissible weight function with

ssociated norm equivalent to ∥ · ∥ρ . □

In the next section we give the proof of Theorem 2.8. The proof is based on collecting
he results from this section and transferring from a generalized Feller setting to the classical
etting that we used for presenting the results in Section 2.

.3. Proof of Theorem 2.8

Let (b, B,m, µ) be an admissible parameter set. Then by Proposition 4.16 there exists a
eneralized Feller semigroup (Pt )t≥0 and the associated generalized Feller process (X t )t≥0 in
+ such that

Ex [ f (X t )] = Pt f (x) for t ≥ 0,

nd the Markov property (4.4) holds. The existence of constants M, ω ∈ [1,∞) such that (2.8)
s satisfied follows from Remark 4.6. The space H is a separable Hilbert space and hence
he Borel-σ -algebras B(H+) and B(H+

w ) coincide. This means that the transition kernels
pt (x, dy))t≥0 defining the semigroup (Pt )t≥0 stay unaffected under the change of topology
nd hence the process (X t )t≥0 is also a Markov process in H+ with the strong topology.

The asserted exponential-affine formula in (2.1) is precisely formula (4.50) from Proposi-
ion 4.16. By this and Proposition 3.7 we have for all x ∈ H+:

lim
t→0+

Pt e−⟨·,u⟩(x) − e−⟨·,u⟩(x)
t

= lim
t→0+

e−φ(t,u)−⟨x,ψ(t,u)⟩
− e−⟨x,u⟩

t
= (−F(u) − ⟨x, R(u)⟩)e−⟨x,u⟩. (4.56)

n particular, we see that A(D) ⊆ Cb(H+) and since (Pt )t≥0 is a strongly continuous semigroup
n Bρ(H+

w ) we have
(
Pt e−⟨·,u⟩

)
(x) = e−⟨·,x⟩(x) +

∫ t
0

(
PsAe−⟨·,u⟩

)
(x)ds. Consequently, we have

shown that D ⊆ dom(A) and from formula (4.56) we see that formula (2.9) holds true on D.

5. Conclusions and outlook

With Theorem 2.8 we have proven the existence of affine Markov processes in the cone
of positive self-adjoint Hilbert–Schmidt operators by a novel approach inspired by [10]. In
particular, our approach relies on the theory of generalized Feller processes, taking the weight
function ρ = ∥ · ∥

2
+ 1. This approach requires the existence of first and second moments of

the jump measures m and µ. A beneficial by-product is that we obtain explicit formulas for the
first and second moments of the affine Markov process, see Proposition 4.17. See Remark 4.18
for a discussion regarding the necessity of the second-moment condition.

Below, we discuss and motivate three further directions of research.

On relaxing the condition on existence of moments.
A possible direction of further research is to investigate whether one can adapt the proof in

such a way to allow for the weight function ρ = ∥·∥+1. In this case a first moment conditions
on m and µ should suffice. On a more abstract level, the question arises whether it is possible
to establish existence without any moment conditions, as can be done in the finite dimensional
setting where the cone of interest does not have empty interior. Another tantalizing question
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is to what degree an infinite dimensional affine process on the cone of positive self-adjoint
Hilbert–Schmidt operators allows for diffusion. It is clear from [5] that certain constructions
are possible.

On the construction of stochastic volatility models.
Our main motivation for considering affine processes on the space of positive self-adjoint

ilbert–Schmidt operators is that such processes qualify as infinite dimensional stochastic
ovariance processes. Hence we consider in [7] stochastic volatility models in Hilbert spaces,
here the introduced class of affine pure-jump processes will be used for modeling the
perator-valued instantaneous variance process. Specifically, we will consider a process (Yt )t≥0
n a Hilbert space (H, ⟨·, ·⟩) given by

dYt = AYt dt + σt Q1/2 dWt , t ≥ 0 , (5.1)

here A : dom(A) ⊆ H → H is a possibly unbounded operator with dense domain dom(A),
Wt )t≥0 is a cylindrical Brownian motion in H , Q ∈ H+, and (σt )t≥0 is an operator valued
tochastic process given by the square-root of an affine pure-jump process, the existence of
hich is guaranteed by our main result Theorem 2.8.

n considering a different state space for the covariance process.
Note that we take σ in (5.1) to be the square root of an affine process in order to obtain

hat Y is again affine. However, this means that the ‘natural’ state space for σ is not the cone
f positive self-adjoint Hilbert–Schmidt operators, but the cone of positive self-adjoint trace
lass operators. Unfortunately, this is no longer a cone in a Hilbert space. As self-duality of the
one was used at various instances in the proof of Theorem 2.8, it is not clear how much can
e salvaged if we consider trace class operators. This would be a further interesting direction
f research.

ppendix A. A comparison theorem

A more general version of the following comparison theorem can be found, e.g., as [12,
heorem 5.4].

heorem A.1. Let (H, (·, ·)) be a Hilbert space, K ⊂ H a cone, let T > 0, and let
F : [0, T ]×H → H. Assume that F(t, ·) is quasi-monotone with respect to K for all t ∈ [0, T ],
nd that there exists a constant L ∈ [0,∞) such that

∥F(t, x) − F(t, y)∥H ≤ L∥x − y∥H , t ∈ [0, T ], x, y ∈ H. (A.1)

et f, g ∈ C1([0, T ], H ) satisfy f (0) ≤K g(0) and f ′(t) − F(t, f (t)) ≤K g′(t) − F(t, g(t)) for
ll t ∈ [0, T ]. Then f (t) ≤K g(t) ∈ K for all t ∈ [0, T ].

ppendix B. Integration with respect to a vector-valued measure

We summarize some results on vector-valued measures and integration. The theory goes
ack to the work of Bartle, Dunford, and Schwartz (see, e.g., [1]) and Lewis [28]. A good
verview can be found in [31, Chapter 2]. As we work in the Hilbert-space setting (in particular,
s Hilbert spaces are reflexive), the theory simplifies considerably.

Throughout this section let (S,F) be a measurable space, let (H, ⟨·, ·⟩H ) be a real Hilbert

pace, and let µ :F → H be an H -valued measure.
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Definition B.1. We say that f : S → R is µ-integrable if the following two conditions are
atisfied:

(i) f is ⟨µ, h⟩-integrable for all h ∈ H (i.e., f : S → R is measurable and
∫

S | f |d|⟨µ, h⟩| <

∞ for all h ∈ H ), and
(ii) for all A ∈ F there exists an h A ∈ H such that for all h ∈ H we have ⟨h A, h⟩H =∫

A f d⟨µ, h⟩.

In this case we denote h A by
∫

A f dµ. In addition, we define

L1(S, µ) := { f : S → R : f is µ-integrable} (B.1)

xample B.2. If f is a F-simple function, then f ∈ L1(S, µ).

The following characterization is useful (see also [28, p. 163]):

emma B.3. We have that f ∈ L1(S, µ) if and only if f is ⟨µ, h⟩-integrable for all h ∈ H.

roof. Let ( fn)n∈N be a sequence of simple functions such that fn → f µ-a.s. and | fn| ≤ | f |

or all n ∈ N. Let A ∈ F . Note that the mapping T : H → R, T (h) =
∫

A f d⟨µ, h⟩ is linear
nd that

T (h) = lim
n→∞

∫
A

fnd⟨µ, h⟩ = lim
n→∞

⟨

∫
A

fn dµ, h⟩H ,

or all h ∈ H by the dominated convergence theorem. It follows from this and the uniform
oundedness principle that supn∈N ∥

∫
A fn dµ∥H < ∞, whence T ∈ H∗. The Riesz represen-

ation theorem thus ensures that there exists an h A ∈ H such that ⟨h A, h⟩H = T (h) for all
h ∈ H . □

Corollary B.4. If f ∈ L1(S, µ) and g : S → R is measurable and satisfies |g| ≤ f µ-a.s., then
g ∈ L1(S, µ). In particular, L1(S, µ) contains all bounded measurable R-valued functions on
S.

By [28, Corollary 1.4] we have, for any (En)n∈N in F converging to E ∈ F , that

lim
n→∞

µ(En) = µ(E). (B.2)

Moreover, the dominated convergence theorem remains valid for H -valued measures:

Theorem B.5 (Theorem 2.1.7 in [31]). Let g ∈ L1(S, µ), let f : S → R be µ-measurable and
let ( fn)n∈N be a sequence of µ-measurable functions on S satisfying | fn(s)| ≤ g(s) for all

∈ S, n ∈ N, and limn→∞ fn(s) = f (s) for all s ∈ S. Then f, fn ∈ L1(S, µ), n ∈ N, and

lim
n→∞

∫
S

fndµ−

∫
S

f dµ


H
= 0 . (B.3)

inally, let K ⊂ H be a self-dual cone and assume that µ :F → K is a K -valued measure. In
his case we have 0 ≤K µ(E) ≤K µ(F) for all E, F ∈ F satisfying E ⊆ F , and thus also (by

onotonicity of K )

∥µ(E)∥ ≤ ∥µ(F)∥ . (B.4)
H H
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Moreover, as K is self-dual, ⟨µ, h⟩ is a positive measure for all h ∈ K , whence (again by
elf-duality) we have

f ∈ L1(S, µ), f ≥ 0 ⇒

∫
S

f dµ ∈ K . (B.5)

n particular, if f ∈ L1(S, µ) is positive, and E ∈ F , then∫
E

f dµ ≤K ess sup
s∈E

f (s)µ(E). (B.6)

his combined with the monotonicity of K implies that for every every f ∈ L1(S, µ) and
very E ∈ F we have (by considering f + and f − separately) that∫

E
f dµ


H

≤ ess sup
s∈E

| f (s)|∥µ(E)∥H . (B.7)

ppendix C. Proof of Proposition 3.11

To prove Proposition 3.11, we need the following consequence of the fundamental theorem
f calculus:

emma C.1. Let X, Y be Banach spaces, let F : D ⊂ X → Y , let x, y ∈ D and assume that the
ne-sided derivative of F in z exists in the direction y − x for all z ∈ {x + s(y − x) : s ∈ [0, 1]}
nd that the mapping

[0, 1] ∋ s ↦→ d+F(x + s(y − x))(y − x) ∈ Y (C.1)

s continuous. Then F(y) − F(x) =
∫ 1

0 d+F(x + s(y − x))(y − x) ds.

Proof. The continuity of [0, 1] ∋ s ↦→ d+F(x + s(y − x))(y − x) ∈ Y and the
undamental theorem of calculus imply that the right derivative of the mapping [0, 1] ∋

↦→

(
F(x + t(y − x)) − F(x) −

∫ t
0 d+F(x + s(y − x))(y − x) ds

)
∈ Y equals zero. As any

unction with right derivative equal to zero is constant, this leads to the desired assertion. □

roof of Proposition 3.11. Note that in order to prove that the second directional derivative
n 0 of a mapping exists, we need that its first directional derivative exists in u ∈ H+ for all
∈ H+ sufficiently small. Hence, we begin by proving that the first derivative of u ↦→ ψ(t, u)

exists in u in the direction v for all u, v ∈ H+ and all t ∈ [0,∞). To this end we fix u, v ∈ H+.
Recall the definition of the operators dR(u) ∈ L(H) and d2 R(u) ∈ L(2)(H × H,H)

from (3.19) and (3.21). Define the operator Cθ (t) ∈ L(H), θ, t ∈ [0,∞), by

Cθ (t)w =

∫ 1

0
dR (ψ(t, u) + s(ψ(t, u + θv) − ψ(t, u))) w ds (C.2)

(note that the integral is well-defined as the integrand is continuous in s by (3.24) and bounded
by (3.11) and (3.23)). Lemma C.1, (3.26), the fact that (1 − s)ψ(t, u) + sψ(t, u + θv) ∈ H+

for all s ∈ [0, 1], t ∈ [0,∞), and the fact that ψ(t, u + θv) ≥H+ ψ(t, u) for all t ∈ [0,∞)
by (3.10) imply that

Cθ (t)(ψ(t, u + θv) − ψ(t, u)) = R(ψ(t, u + θv)) − R(ψ(t, u)), θ, t ∈ [0,∞).

This and (2.7) imply
∂

(ψ(t, u + θv) − ψ(t, u)) = Cθ (t)(ψ(t, u + θv) − ψ(t, u)), θ, t ∈ [0,∞).

∂t
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It follows that

ψ(t, u + θv) − ψ(t, u) = θ exp
(∫ t

0
Cθ (s) ds

)
v, θ, t ∈ [0,∞)

note that
∫ t

0 Cθ (s) ds is well-defined in L(H) as the L(H)-valued integrand is continuous in s
y (3.24) and bounded due to (3.23)). This implies that for all θ ∈ (0,∞) we haveψ(t, u + θv) − ψ(t, u)

θ
− exp

(∫ t

0
C0(s) ds

)
v


=

(exp
(∫ t

0
Cθ (s) ds

)
− exp

(∫ t

0
C0(s) ds

))
v

 . (C.3)

Using the identity ∥eA
− eB

∥L(H) ≤ ∥A − B∥L(H)e∥A∥L(H)∨∥B∥L(H) , A, B ∈ L(H), we obtain
rom (C.2), (C.3), (3.11), (3.12), and (3.24) that the one-sided derivative d+ψ(t, u)(v) exists.

Moreover, the fact that C0(t)v = dR(ψ(t, u))v implies that t ↦→ d+ψ(t, u)(v) is the solution
to the following ODE

∂

∂t
d+ψ(t, u)(v) = dR(ψ(t, u))

(
d+ψ(t, u)(v)

)
, t ≥ 0; d+ψ(0, u)(v) = v. (C.4)

his together with the quasi-monotonicity of dR(ψ(t, u)) (see Lemma 3.9) and Theorem A.1
mplies that d+ψ(t, u)(v) ∈ H+. Regarding the derivative of φ, note that estimates analogous
o (3.23) and (3.24) hold for dF , which, in combination with the fact that d+ψ(t, u)(v) ∈

+, (2.7), (3.28), and Lemma C.1 implies that
φ(t, u + θv) − φ(t, u)

θ

=

∫ t

0

∫ 1

0
dF(ψ(s, u) + r (ψ(s, u + θv) − ψ(s, u))) dr

ψ(s, u + θv) − ψ(s, u)
θ

ds

or all θ ∈ (0,∞), t ∈ [0,∞). This in combination with (3.12) and (3.10) implies that the
ominated convergence theorem can be applied to obtain that d+φ(t, u) exists for all t and

satisfies
∂

∂t
d+φ(t, u)(v) = dF(ψ(t, u))

(
d+ψ(t, u)(v)

)
, t ≥ 0; d+φ(0, u)(v) = 0. (C.5)

his proves in particular that u ↦→ (φ(t, u), ψ(t, u)) is differentiable in 0 in the direction
∈ H+ for all v ∈ H+ and that the corresponding derivatives solve the ODEs (3.31) and

3.32).
We now turn to the second derivative in 0. To this end, fix v,w ∈ H+ and observe that

emma C.1, the boundedness and continuity of d2 R (see Lemma 3.9), (3.27) and the fact that
(t, θv), d+ψ(t, θv) ∈ H+ for all θ ∈ [0,∞) imply that

∂

∂t
(d+ψ(t, θv)(w) − d+ψ(t, 0)(w)) =

∫ 1

0
d2 R(sψ(t, θv))(d+ψ(t, θv)(w), ψ(t, θv)) ds

+ dR(0) (d+ψ(t, θv)(w) − d+ψ(t, 0)(w))

or all θ ∈ [0,∞), t ∈ [0,∞). As d+ψ(0, θv)(w) − d+ψ(0, 0)(w) = 0 this implies
d+ψ(t, θv)(w) − d+ψ(t, 0)(w)

θ

=

∫ t

e(t−r )dR(0)
∫ 1

d2 R(sψ(r, θv))
(

d+ψ(r, θv)(w),
ψ(r, θv)

)
ds dr (C.6)
0 0 θ

227



S. Cox, S. Karbach and A. Khedher Stochastic Processes and their Applications 151 (2022) 191–229

θ

d
(
v

R

for all θ ∈ (0,∞), t ∈ [0,∞). Note that (3.12), (3.24), and (C.4) imply that limθ→0+ d+ψ(t,
v)(w) = d+ψ(t, 0)(w). Moreover, we have already established that limθ→0+

ψ(t,θv)
θ

=

+ψ(t, 0)(v). Combining these observations with (3.11), (3.25), and (C.6) implies that d2
+
ψ

t, 0)(v,w) exists and that d2
+
ψ(t, 0)(v,w) satisfies (3.33). We leave it to the reader to now

erify that also d2
+
φ(t, u)(v,w) exists and that d2

+
φ(t, u)(v,w) satisfies (3.34). □
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