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Abstract
A tight and consistent link between resolutions is crucial to further expand the impact of multiscale
modeling for complex materials. We herein tackle the generation of condensed molecular
structures as a refinement—backmapping—of a coarse-grained (CG) structure. Traditional
schemes start from a rough coarse-to-fine mapping and perform further energy minimization and
molecular dynamics simulations to equilibrate the system. In this study we introduce
DeepBackmap: A deep neural network based approach to directly predict equilibrated molecular
structures for condensed-phase systems. We use generative adversarial networks to learn the
Boltzmann distribution from training data and realize reverse mapping by using the CG structure
as a conditional input. We apply our method to a challenging condensed-phase polymeric system.
We observe that the model trained in a melt has remarkable transferability to the crystalline phase.
The combination of data-driven and physics-based aspects of our architecture help reach
temperature transferability with only limited training data.

1. Introduction

Computational modeling of soft-matter systems inherently requires the consideration of a wide range of
time and length scales, where microscopic interactions can impact meso- to macroscopic changes [1]. Setting
aside quantum mechanics, even force-field-based molecular dynamics (MD) quickly reaches its limits when
probing long relaxation times. Circumventing such limitations remains an area of active research, motivated
in part by the promises of computational soft materials discovery [2]. Various strategies aim at breaking the
natural limitations of MD, from enhanced-sampling techniques [3] to dedicated hardware [4] to hierarchical
multiscale modeling [1, 5, 6].

Multiscale modeling relies on several levels of resolution, striving to make best use of each level. At the
lower end, a coarse-grained (CG) resolution will map groups of atoms to single interaction sites or beads.
The CG model aims at reproducing specific features of the high-resolution model, such as structure or
thermodynamics [7–9]. The reduced representation eliminates some molecular friction, smoothens the
energy landscape, and thereby effectively accelerates sampling of the conformational space.

While mapping from fine to coarse is straightforward, going the reverse way is no trivial task.
Backmapping means reintroducing lost degrees of freedom: from CG beads to atoms. The reduced CG
resolution implies that one CG configuration will correspond to an ensemble of atomistic microstates. Ideally,
the CG model should perfectly reproduce the Boltzmann distribution of the atomistic system along the CG
degrees of freedom—the many-body potential of mean force. As such, backmapping aims at generating an
atomistic structure drawn from the probability distribution of atomistic microstates, given the CG
configuration.

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. (a) Backmapping consists of reintroducing missing degrees of freedom from a coarse-grained to an atomistic resolution.
(b) DeepBackmap generates Boltzmann-equilibrated atomistic structures conditional on the coarse-grained configuration using
an adversarial network. We apply it to the backmapping of a condensed-phase molecular system made of polystyrene chains.

The general strategy of existing backmapping schemes is to insert an initial set of atomistic coordinates
into the CG structure [10]. A generic approach is to randomly place the atoms close to their corresponding
CG bead center [11, 12]. To relax the initial atomistic structure energy minimization is required and a
subsequent MD simulation has to be performed to equilibrate the system to obtain the correct Boltzmann
distribution. The computational cost for the subsequent minimization and equilibration procedures can
become significant for high-dimensional systems. This is also true for backmapping large numbers of CG
configurations [13]. Furthermore, generating the initial atomistic structure often requires human intuition
to avoid trapping in local minima. For example, the protocol of Wassenaar et al needs to introduce geometric
modifiers to correctly reproduce the distribution of torsion angles in phospholipids [12].

Another, more specific, approach is to superimpose presampled fragments from a correctly sampled
distribution of all-atom structures onto the CG configuration [1, 14–16]. In this case the effort of subsequent
energy minimization and MD simulation can be reduced dramatically, but are still required to reproduce the
desired Boltzmann distribution.

In this work we introduce DeepBackmap, a backmapping scheme based on deep convolutional neural
networks (deep CNNs). Our method can be used to predict equilibrated atomistic structures directly from
the CG configuration without running any energy minimization or MD simulation. Our approach works
well even for a limited amount of training data making it advantageous to study systems that are expensive to
sample. This is achieved using generative adversarial networks (GANs) [17–19], a particular type of
generative model based on deep networks: During training, an auxiliary critic learns a distance metric
between generated and training data. While the critic is trained to maximize the distance, the objective of the
generator is to minimize it.

To extend GANs to a conditional model, an auxiliary input can be introduced to both, the generator and
the critic, which is taken to be the conditional variable [20, 21]. Here we use conditional GANs to learn a
coarse-to-fine mapping that re-introduces degrees of freedom with the correct conditional statistical weight.
To this end, we use the CG structure as an auxiliary input.

While generating low-energy geometries for molecular compounds remains a challenge that is still
tackled largely by MD simulations, machine learning (ML) approaches receive growing attention. Recent
approaches using ML include autoregressive models [22, 23], invertible neural network [24], Euclidean
distance matrices [25], graph neural networks [26], and variational auto-encoders (VAEs) [27]. Intuitively,
VAEs are in particular interesting for the reverse-mapping task, since they can be used to not only learn the
CG variables but also the decoding back to atomistic detail, as it was shown by Wang and Gómez-Bombarelli
[27]. Here instead, we focus on the last step for a pre-existing CG model. Backmapping involves the
reintroduction of degrees of freedom, and thereby a single CG configuration will map to many atomistic
microstates. Therefore the model needs to learn to generate this (Boltzmann-distributed) collection of
microstates, using noise and complex statistical dependencies that are conditional on the CG configuration.
Prior work has shown the benefits of adversarial training when aiming at high-quality generative tasks [28].
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Our study uses a convolutional GAN, which has shown the ability to model highly complex and detailed
probability distributions (statistical dependency structures) in computer vision applications [29]. The
seemingly unintuitive training protocol of GANs circumvents the hard problem of fitting the posterior
distribution to training data. Instead of explicitly learning the distribution, they only tune a sampler
(the generator) to produce samples indistinguishable from the training distribution (for the critic). For
high-dimensional data sets, such as the joint distribution of many atoms in molecules, previous methods
become either intractable or lose resolution, dependencies, or both.

The convolutional network architecture requires a regular discretization of 3D space, prohibiting scaling
to larger spatial structures. We therefore combine the convolutional generator with an autoregressive
approach that, in an outer loop, reconstructs the fine-grained structure incrementally, atom by atom. In each
step, we use only local information, making the method scalable to arbitrary system sizes and applicable to
condensed phase systems.

We test our approach on a dense polymeric system: syndiotactic polystyrene (sPS). sPS not only shows
complex structural features in the amorphous melt, it can also crystallize [30–32]. An illustration of the CG
and the atomistic representation of the molecule can be found in figure 1.

A thorough investigation of soft-matter systems often requires the consideration of different state points.
The temperature transferability of the model is thereby an important aspect. Similar to the work of Brasiello
et al [16], where a database of all-atom structures sampled in a melt is used to reverse-map CG structures at
lower temperatures, we train our model solely on data obtained in a high-temperature melt and probe the
model’s transferability to lower temperatures. Remarkably, the model still performs well through the phase
transition into the crystalline phase. This indicates that the microscopic degrees of freedom learned by the
model have weak temperature dependence: local information is relatively insensitive to the state point, while
the larger-scale features are captured by the CG structure.

2. MLmodel

In the following, we discuss our approach. We start with a description of the molecular simulation scenario
our method handles, and then discuss in detail how the deep backmapping algorithm works.

2.1. Setup
We define notation for the CG and atomistic resolutions, as well as the backmapping procedure:

CG resolution Let {AI = (RI,CI)|I= 1, . . . ,N} denote the set of N coarse grained beads. Each bead has position
Ri ∈ R3 and bead type Ci.

Atomistic
resolution

Let {ai = (ri, ci)|i= 1, . . . ,n} denote the set of n atoms, with position ri ∈ R3 and atom type ci. We
denote φI ⊂ {ai|i= 1, . . . ,n} as the set of atoms contained in the CG bead AI.

Backmapping Backmapping requires us to generate a set of n atom positions r1, . . . ,rn conditional on the CG
structure, given by the N beads A1, . . . ,AN, as well as the atom types c1, . . . , cn. We express this prob-
lem as a conditional probability p(r1, . . . ,rn|c1, . . . , cn,A1, . . . ,AN).

We now propose a ML technique that takes examples of corresponding coarse- and fine-grained
examples as input and from this training data learns the conditional distribution p. Specifically, we do not
learn p directly, which is well-known to be a hard problem for high-dimensional phase spaces [17], but
rather infer a sampler that can generate further samples from p, see figure 2.

2.2. Outer loop: autoregressive model
Rather than learning to sample from p(r1, . . . ,rn|c1, . . . , cn,A1, . . . ,AN) directly, we propose to factorize p in
terms of atomic contributions, where the generation of one specific atom becomes conditional on both CG
beads as well as all the atoms previously reconstructed [23]. Based on this factorization we can train a
generative network, G, to generate and refine the atom positions sequentially.

The backmapping scheme hereby consists of two steps: (i) An initial structure is generated using the
factorization

p(r1, . . . ,rn|c1, . . . , cn,A1, . . . ,AN) =
n∏

i=1

p
(
rS(i)|rS(1), . . . ,rS(i−1), cS(1), . . . , cS(i),A1, . . . ,AN

)
, (1)

where S sorts the atoms in the order of reconstruction and {rS(1), . . . ,rS(i−1)} correspond to atoms that have
been already reconstructed. The dependence on earlier predictions of Gmakes our approach autoregressive.
This procedure would be exact in a Markovian regime where each atom interacts directly only with its
predecessor and successor (so-called ‘chain structures’ [33]). Unfortunately the complexity of
condensed-phase liquids calls for more feedback to avoid steric clashes; (ii) Intuitively, we cannot optimally
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Figure 2. Adversarial autoregressive approach: The generator, G, sequentially samples atom positions conditional on the CG
structure and the existing atoms. A critic network, C, estimates the discrepancy between reference and generated atoms.

place an atom without its whole environment present. This issue is compounded for ring-like structures, like
the phenyl group in polystyrene. To this end we perform a variant of Gibbs sampling, which iteratively
resamples along the sequence S several times [34]. Each further iteration still updates one atom at a time, but
uses the knowledge of all other atoms. Experiments confirmed that such Gibbs sampling leads to a good
approximation of p, even with a small number of iterations and fixing the atom ordering.

2.3. Representation
Iterative sampling algorithms, such as the Gibbs sampler, have high computational cost. We hereby optimize
our approach by means of a robust learning algorithm that can capture complex dependencies in the local
environment directly.

The problem of learning complex, high-dimensional and high-order dependencies in generative models
has received considerable attention in computer vision. The most successful technique for this task are
generative deep CNNs [35] trained by adversarial training [17, 29]. There is also growing evidence that deep
networks are also effective in capturing the statistics of physical systems [23, 24].

In order to leverage deep CNNs for our task, an explicit spatial discretization of the ambient space,
similar to pixels in an image, is required. The standard technique is to use a voxel-based representation [36].
To this end, we represent atoms and CG beads with a smooth density, γ(x) and Γ(x), respectively.

The particle densities are modeled using Gaussian distributions, such that for atom i we define

γi(x) = exp

(
− (x− ri)2

2σ2

)
, (2)

where x is the spatial location in Cartesian coordinates, expressed on a discretized grid due to the voxel
representation. The density is centered around particle position ri with Gaussian width σ, treated as a hyper
parameter. CG beads are similarly represented.

2.3.1. Locality
The high costs of large regular 3D grids are the reason for employing deep CNNs only locally and using the
previously described outer loop to build-up larger structures incrementally using autoregressive sampling. To
make the model scalable to large system sizes, we assume locality by limiting the information about the
environment to a cutoff rcut.

We encode the local environment of an atom i or CG bead I by means of the density of particles placed
around it, denoted ξi, I and ΞI , respectively. We sum over all atoms or beads within a cubic environment of
size 2rcut. We shift all atom and bead positions around the CG bead of interest, I. Further, we rotate the local
environment to a local axis system. This improves generalization from limited training examples by
removing three translational and two of the rotational degrees of freedom, i.e. the ML algorithm does not
need to learn the corresponding coordinate invariance from (additional) examples.
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Specifically, we align the bond between consecutive CG beads I− 1 and I to the local z axis using a
rotation matrixMI to construct the local environment of atom i

ξi,I(x) =
i−1∑
j=0

γS( j)(MI(x−RI)), (3)

which extends over the region−rcut < xα < rcut and α runs over the three Cartesian coordinates. Similarly
the CG environment is constructed as

ΞI(x) =
N∑

J=0

ΓJ(MI(x−RI)). (4)

In this work we set rcut = 6Å, such that several CG beads are included in the local environment
(see supplementary figure S2 (https://stacks.iop.org/MLST/1/045014/mmedia)). Importantly, ξi, I and ΞI are
discretized on a regular grid.

2.3.2. Feature embedding
A convolutional neural network (CNN) takes an image (typically 2D or 3D) as input where every pixel or
voxel is vector-valued. For example, an RGB image consists of three feature channels: One channel for every
primary color. Here, we store a number of feature channels in each voxel that represent the presence of other
atoms or beads of a certain kind. In the most basic version, we could use a single feature channel to encode
all other atoms. However, this would make it impossible to distinguish their type and might also lead to
clutter. The opposite extreme would be to assign a separate feature channel to each atom. The downside here
is not only increased memory costs but, more importantly, the loss of permutation invariance of the atoms.

As shown in figure 3(a), we create separate feature channels for each atom type. Atom types are
distinguished not only by element but additionally by chemical similarity, i.e. atoms of a given type can be
treated as identical in the MD simulation. Specifically, we classify similarity following the force field for sPS
by Mueller-Plathe [37]. For atoms of the same type, we further add channels to distinguish the functional
form of interaction to the current atom of interest. Interaction types distinguish between bond, bending
angle, torsion, and Lennard-Jones. Similarly, we use separate channels to encode the different CG bead types.

Formally, let f ∈ {1,2, . . . ,NF} denote the index of the NF different feature channels. We define the
activation function, hf (S(j)), to denote association with a channel f

hf (S( j)) =

{
1, if atom S( j) has feature f

0, otherwise,
(5)

and Hf ( J) to similarly encode the bead type. We then build a density map for each channel for both atomic
environments

ξi,I(x, f ) =
i−1∑
j=0

γS( j)(MI(x−RI))hf (S( j)), (6)

and CG environments

ΞI(x, f ) =
N∑

J=0

ΓJ(MI(x−RI))Hf (J). (7)

2.4. Generative model
Training a generative model is challenging as it requires to measure and optimize closeness of the target
distribution and the generated distribution of the model. A direct maximum likelihood training, where the
model’s parameters are tuned such that the likelihood of observing the data given the model is optimized, is
infeasible in high dimensions because the normalization factor—the partition function—cannot be
computed efficiently.

Approaches to circumvent these limitations include approximate techniques like variational
autoencoders, where a stochastic lower bound of the log-likelihood is optimized. Another solution are
likelihood-free methods, such as adversarial training [17], that operate indirectly, by building a sampler and
comparing its output to actual data with a second, ‘adversarial’ network. In recent literature, this approach
appears to yield the strongest results, in particular on high-dimensional and hard to model image spaces
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Figure 3. (a) Representation and conditional input. Existing atoms and CG beads are split into separate channels according to
their atom/bead type. In addition, the atomic information is further split in terms of intra- and intermolecular interactions. All
channels are used as input for the generator network, G. (b) Recurrent training. Starting from an atomistic configuration taken
from training data (black) the predicted atoms (red) will be added to the local environment description for predicting the next
atom in the sequence.

[29]. The next best option are auto-regressive models, which tackle the complexity issue by learning single
decisions at a time [22]. We use this approach in the outer loop but employ the more expressive GAN for
modeling the local placement of atoms.

Formally, to perform adversarial training, a second network is introduced, called critic C, to distinguish
between training samples and samples from the generative model G. The generator competes with the critic
C and is trained to generate samples that C can not distinguish anymore from training samples. In the
conditional adversarial framework [20, 21] both networks G and C are provided with auxiliary information
like a class label to generate samples related to this information. In this study, we use a conditional generative
adversarial network to generate new atom positions from a random noise vector z∼N(0, 1) and the
conditional input ui := {ξi,I,ΞI, ci} consisting of the local environment representation ξi,I and ΞI , as well as
the current atom type ci. In a first step, the generator G predicts a smooth-density representation
γ̂i := G(z,ui).

2.4.1. From densities to coordinates
While the smooth-density representation γ̂i is adequate for a CNN, we ultimately wish to collapse these back
to point coordinates. We simply compute a weighted average, discretized over the voxel grid

r̂i =

ˆ
dx γ̂i(x)≈

∑
m

∑
k

∑
l

xmklγ̂i(xmkl). (8)

This step is performed for each generated density separately, one atom at a time. We note that this
density-collapse step is differentiable and can thus be easily incorporated in a loss function.
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2.4.2. Training
Training of a GAN model is split in two networks: the adversarial critic and the generative network. The
following describes the two loss functions.

We train a critic network C to distinguish between reference densities γi related to the conditional input
ui = {ξi,I,ΞI, ci} and generated densities γ̂i = G(ui,z). The critic aims at both (i) distinguishing reference
from generated samples and (ii) ensuring smoothness of the classification with respect to the generator’s
parameters. Both criteria can be fulfilled using a variant of adversarial models where the critic C is used to
approximate the Wasserstein distance [18].

The loss function is constructed using the Kantorovich-Rubinstein duality, which requires C to be
constrained to the set of 1-Lipschitz functions. A differentiable function is 1-Lipschitz if and only if it has
gradients everywhere with norm at most one. A soft version of this constraint is enforced with a penalty on
the gradient norm [19]

LC = E
i

[
C(ui,γi)−C(ui,G(ui,z))+λgp (∥∇ũi,γ̃iC(ũi, γ̃i)∥2 − 1)2

]
, (9)

where (ui, γ̃i) is interpolated linearly between pairs of points (ui,γi) and (ui,G(ui,z)). The prefactor λgp

scales the weight of the gradient penalty.
For the generator we combine two aspects to help generate faithful structures: (i) the critic that compares

reference and generated samples, C(ui,G(ui,z)), and (ii) a physical prior, Φ. Φ aims at accelerating
convergence by helping the generator refine its output. It combines both force-field-based energy
contributions, EFF, and a geometric center-of-mass distance contribution, dCOM. The prior depends on the
set of atoms corresponding to a CG bead, φI for reference atoms and φ̂I for generated atoms, as well as
reference atoms N I in the local neighborhood of different beads:

Φ(φI, φ̂I,NI) = EFF(φI, φ̂I,NI)+ dCOM(φI, φ̂I). (10)

The force-field-based term penalizes discrepancies between samples with respect to specific intra- and
intermolecular interactions within all neighborhoods N I .

EFF(φI, φ̂I,NI) =
∑
t

|εt(φI,NI)− εt(φ̂I,NI)| , (11)

where t runs over the interaction types: intramolecular bond, angle, and dihedral, and non-bonded
Lennard-Jones. The set of interactions follow the reference atomistic force field. In the following,
let θI = {i|ai ∈ φI} be the set of atom indices for atoms contained in φI . The second term in the physical
prior penalizes discrepancies in the center-of-mass geometry between samples

dCOM(φI, φ̂I) = |g(φI)− g(φ̂I)| , (12)

where g refers to the center of mass

g(φI) =

∑
i∈θI

miri∑
i∈θI

mi
, (13)

withmi being the mass of atom ai.
Overall this leads to the following loss function for the generator

LG = E
I

[
E
i∈θI

[
C(ui,G(ui,z))

]
+λΦ

[
Φ(φI, φ̂I,NI)

]]
(14)

where the prefactor λΦ scales the weight of the physical prior.
The two loss functions, LC and LG are trained iteratively and alternatingly until the process reaches

equilibrium. Monitoring the training process of a GAN is difficult, since it is not possible to measure the
accuracy of the model. As an alternative we turn to the evolution of the adversarial loss for the
generator/critic, which is known to correlate with the sample quality and therefore is a useful measure for the
training progress [19]. Furthermore, we keep track of the force-field-based loss EFF and the geometric term
dCOM. The corresponding plots can be found in figure S7.
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2.4.3. Implementation details
We choose a 3D CNN architecture with residual connections for G and C [38]. See figure S6 for a detailed
network description. The evolution of the different loss terms can be found in figure S7.

The model is trained for 38 660 steps (≈25 epochs) in total using a batch size of 36. For stability reasons,
we start training with λΦ = 0 and increase it smoothly to λΦ = 0.01 from step 6000 to 10 000. Training is
performed using the Adam optimizer with learning rates 5 · 10−5 for the generator and 10−4 for the critic.
The prefactor scaling the weight of the gradient penalty term is set to λgp = 0.1. To obtain reliable gradients
for the generator, the critic should be trained until optimality. Therefore the critic C is trained five times in
each iteration while the generator G is trained just once.

We train the model recurrently on atom sequences containing either all heavy (carbon) or light
(hydrogen) atoms corresponding to a single CG bead. During training, the initial atomistic environment
representation ξi,I for each sequence is generated from training data and contains the atoms present
(according to the order S) in the local neighborhood N I of bead I. After each step, the generated atom density
is added to the local environment representation for the next atom in the sequence, as illustrated in
figure 3(b), until all atoms of the sequence are generated.

In the Gibbs-sampling step, information of all preceding and subsequent atoms is used to refine the
positions of light atoms. On the other hand for heavy atoms we remove hydrogens from the current and
adjacent beads such that misplaced hydrogens will not hinderG to find suitable positions for the heavy atoms.

Note that our architecture is not fully rotationally equivariant. While promising work has been done to
design rotationally equivariant networks [39, 40], extending these approaches to generative tasks is not
straightforward. Here instead, we reduce the rotational degrees of freedom by aligning the region considered
by the generator according to the position of the central bead and the difference vector to the previous bead.
This leaves one rotational degree of freedom around the director axis, for which we augment the training set
by means of rotations. During prediction we feed different orientations about said axis and choose the
structure with the lowest energy from the generated ensemble.

3. Computational methods

3.1. Reference data
The atomistic data in this study was reported in Liu et al [32]; the underlying force field is based on the work
of Mueller-Plathe [37]. Replica Exchange MD simulation, a temperature-based enhanced sampling
technique, was used to sample the system. All simulations were performed using the MD package
GROMACS 4.6 [41]. MD simulations are performed in the NPT ensemble using the velocity rescaling
thermostat and the Parrinello-Rahman barostat. An integration timestep of 1 fs is used. For additional details
regarding the simulations the reader is referred to the work of Liu et al [32].

Our training/test data consists of pairs of corresponding fine- and CG snapshots. To this end, we start
from the atomistic frame and apply a fine-to-coarse mapping to obtain the CG structures. We use
uncorrelated snapshots from three different trajectories simulated at T= 568 K, 453 K, and 313 K. The
system includes 36 polystyrene chains and each chain consists of 10 monomers.

The fine-to-coarse mapping is based on the CG model developed by Fritz et al [31]. It represents the CG
molecule as a linear chain, where each monomer is mapped onto two CG beads of different types, denoted A
for the chain backbone and B for the phenyl ring (see figure 1). Bonds are created between the backbone
beads A-A and between backbone and phenyl ring beads A-B. The coarse grained model, parameterized in
the melt, is transferable to the crystalline phase and stabilizes the experimentally observed α and β
polymorphs [32].

3.2. Baseline model
We compare our results with a generic backmapping scheme developed by Wassenaar et al [12]. This method
places each particle on the weighted average position of the coarse grained beads it belongs to and optionally
adds a random displacement. The protocol continues with corrections to the structure using geometric
modifiers, setting the alignment of the next particle as cis, trans, out, or chiral with respect to the others.
Note that those modifiers need first be manually defined by the user.

The corrected structure is then relaxed by a force-field based energy minimization. The first cycle of
energy minimization consists of 200 steps and is performed with non-bonded interactions turned off. The
second cycle of energy minimization consists of 5000 steps with all interactions turned on. Clearly the energy
minimized structures will not capture the right Boltzmann distribution and therefore the protocol of
Wassenaar continues with several cycles of position restrained MD simulations. Since we aim for a
backmapping scheme that performs well without running molecular dynamics simulation, we stop the
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Figure 4. Polymorphism of Polystyrene. At high temperature (T= 568 K) the system stabilizes an amorphous phase. At lower
temperatures the CG model mostly stabilizes the α polymorph at T= 453 K and the β polymorph at T= 313 K. We train
DeepBackmap solely on the high-temperature ensemble (T= 568 K) and test its transferability to the lower temperatures.

protocol after the energy minimization and compare the methods without running any further MD
simulations.

4. Results

We apply DeepBackmap to a challenging condensed-phase molecular system: syndiotactic polystyrene.
Despite its simple chemical structure, polystyrene displays a rich conformational space. Its syndiotactic form
can crystallize, and exhibits complex polymorphic behavior. Upon thermal annealing, a polystyrene melt
undergoes a phase transition from amorphous to a crystalline phase at T≈ 450 K. The CG model was shown
to stabilize the two main crystal polymorphs α and β (see figure 4) [32].

We probe the model’s ability to transfer across temperatures. To this end, we train DeepBackmap solely
on high-temperature, amorphous configurations, but validate it at several temperatures (figure 4). The
training set consisted of only 12 snapshots simulated at T= 568 K. The model was then applied to MD
configurations at T= 568 K, 453 K, and 313 K, each containing 78 samples that were not used during
training. For brevity we only report results about the highest and lowest temperature. We evaluate the
performance of the model regarding its ability to reproduce structural and energetic features of the reference
atomistic configurations, as well as a comparison with the baseline method.

4.1. Local structural and energetic features
Figure 5 shows distribution functions for structural and energetic properties. We first analyze the hold-out
validation data at T= 568 K (right column), the temperature at which DeepBackmap was trained on. Our
method generates configurations that are remarkably close to the reference Boltzmann distribution (‘AA’),
especially when considering the current state of the art. The distributions of intramolecular carbon backbone
angle and dihedral show very good agreement (figures 5(a)–(d)). On the other hand, the baseline method
displays too narrow distributions and spurious peaks. While the distribution for the carbon improper
dihedral of the aromatic structure is slightly too narrow, we emphasize the small range of angles
(figures 5(e)–(f)), due to the imposed planarity of the ring. The baseline method significantly suppresses
fluctuations around the planar structure.

The Lennard-Jones energies shown in figures 5 (g)–(h) obtained for each chain separately also match
remarkably well with the reference distribution—this aspect is of tremendous importance to generate
well-equilibrated structures in a condensed environment. We do observe slightly large high-energy tails,
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Figure 5. Canonical distributions for various force-field interaction terms at (left) T= 313 K and (right) T= 568 K for reference
structures (‘AA’), structures generated with the baseline, energy-minimization-based backmapping method (‘baseline’), and our
method (‘DeepBackmap’). (a)–(b) C-C-C backbone angle, (c)–(d) C-C-C-C backbone dihedral, (e)–(f) C-C-C-C improper
dihedral, (g)–(h) Lennard-Jones energies, and (i)–(j) radial distribution functions, g(r), of the non-bonded carbon atoms.

often due to an accumulation of errors of misplaced atoms impacting the subsequent placement of neighbors
in our autoregressive approach. On the other hand, the baseline model systematically and drastically
over-stabilizes the system. This stems from the energy minimization itself, which does not account for the
diversity of microstates at a specific canonical state point. Practically this is commonly resolved by applying a
thermostat to recover the right state point. Here, because we aim at a comparison between backmapping
schemes prior to any MD, we omit this last step.

4.2. Transferability to low temperatures
While we fix the original training of DeepBackmap to the high-temperature ensemble, we hereby test it at
low temperature (T= 313 K), without reparametrization. Beyond a mere shift in temperature, the system
undergoes a phase transition, going from an amorphous phase to a crystalline state with different
polymorphs. The distributions in figures 5(a)–(g) (left column) show remarkably accuracy: DeepBackmap
retains its performance displayed for the training temperature. Upon cooling the distributions do show a
number of significant changes: narrower distribution in the angle, vanishing of the side peak in the backbone
dihedral, and large shift of the Lennard-Jones energies.
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The transferability of DeepBackmap is highlighted when compared to the baseline model, which retains
much of its features found at high temperature. This is especially apparent for the side peak of the backbone
dihedral.

4.3. MD simulation
Backmapped structures are often used as starting points for further MD simulations. All backmapping
schemes rely on some amount of energy minimization—some need very little thanks to a good starting
structure, but others require lengthy preparations including temperature ramp-up phase and
thermostat/barostat equilibration. Here we use the latter case as a baseline test to compare to our
methodology.

Figure SI.7 displays the evolution of the potential energy during MD simulations without heat-up at
T= 313 K starting from structures generated with the different methods. Initial velocities are generated
according to a Maxwell distribution. The evolution of the potential energy of structures generated with
DeepBackmap follows closely the evolution of reference AA structures. The potential energy reaches a steady
value after 100 ps. On the other hand, energy minimized structures from the baseline method settle at
significantly higher energies indicating badly initialized structures that get trapped into local minima with
high energy barriers.

Last, we compare the computational cost of the two methods. Running the full baseline
method—including a 1 ns MD run with thermostat to recover the right canonical state point—on an
Intel(R) Core(TM) i7-7700 CPU 3.60 GHz takes roughly 1300 s for each configuration. The wall-clock time
using our method on an Intel(R) Xeon(R) Gold 6138 CPU 2.00 GHz together with a Tesla Volta V100 GPU is
approximately 2000 s. The time spent on the GPU is roughly 3/4 of the total wall-clock time. The two
methods are therefore roughly on par. We further emphasize that our current implementation is only a proof
of concept and has not been optimized for efficiency yet, both regarding the data processing and network
architecture.

4.4. Large-scale structural features
To further evaluate the large-scale structural features, we turn to the pair correlation function, g(r).
Figures 5(i)–(j) focuses here on non-bonded carbon pairs. We can see an excellent agreement between the
reference AA g(r) and the DeepBackmap results for both temperatures. This clearly indicates that the local
packing of the polystyrene chains is well reproduced, even for different state points that were not used during
training. As expected the baseline method does not reproduce the pair correlation satisfyingly, especially fails
in the crystalline phase.

Beyond the pair statistics, we wish to probe the accuracy of the reconstruction at higher order. We build a
two-dimensional map representing proximity relationships between condensed-phase structures. We focus
on the local environment around each backbone carbon atom that directly links to a side chain (i.e. every
other backbone carbon). The pairwise distance between two such environments is encoded using a similarity
kernel based on SOAP representations [42]. Hydrogens are ignored from the representation. To compare two
structures we compute a covariance matrix containing all the pairwise distances between atomic
environments, followed by a regularized entropy match kernel [43]. We further apply Sketchmap to obtain a
reduced-dimensional projection of the conformational space [44, 45]. Figure 6 displays a number of clusters
that correspond to different environments. The low-temperature reference data shows a single cluster
(figure 6(a) in black), corresponding to the β phase, while the high-temperature reference shows more
diversity (i.e. α, amorphous phase, and others). DeepBackmap overlaps significantly with the reference
points at both temperatures, highlighting the high structural fidelity. This is not the case for the
energy-minimized structures of the baseline model, as they cover different areas of the low-dimensional map.
The baseline also fails to reproduce the correct number of clusters: at both temperatures the baseline model
displays three to four clusters, highlighting a lack of temperature sensitivity.

5. Conclusions

In this study we propose a new backmapping scheme based on deep neural networks. The model inserts
atomistic details based on large-scale structures from a CG snapshot. To this end we use a conditional
generative network where the CG information is used as an auxiliary input. We train our model,
DeepBackmap, combining an adversarial loss function with a physical prior. The method is scalable to
arbitrary system sizes since only local information is used. Our method is able to generate well-equilibrated
high-resolution structures of condensed-phase systems. Critically, and unlike current methods, our approach
does not need MD (MD) simulations to yield the correct Boltzmann distribution.
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Figure 6. Low-dimensional structural space of condensed-phase configurations at (a) T= 313 K and (b) T= 568 K. For each
panel, snapshots are backmapped from identical coarse-grained configurations, highlighting the overlap between reference and
DeepBackmap, but disconnect from the baseline method.

We applied our methodology to a complex condensed-phase system made of syndiotactic-polystyrene
chains. The model displays remarkable transferability properties: while trained solely on high-temperature
melt configurations, DeepBackmap performs well at significantly low temperatures, where the system is in a
crystalline state. This indicates that the local correlations learned by the model are transferable across
different state points, aided by the physics we incorporated into the GAN.

We rationalize these remarkable features in terms of scale separation: the large-scale features are encoded
in the CG configurations, while the model only need to generate equilibrated local correlations. Local
features are less affected by temperature, since the underlying covalent interactions operate primarily on an
energy scale significantly larger than kBT. As such the backmapping operates on two different sources of
information: (i) the conditional CG configurations and (ii) the learned local correlations. Most of the
temperature dependence is carried by the former, such that DeepBackmap can accurately produce an
accurate Boltzmann distribution across a phase transition from training at a single (high) temperature. On
the other hand, it is not clear that training only at low temperature—especially below a phase
transition—should lead to satisfying transferability at high temperatures, given the larger, broader
conformational space spanned.

Beyond the evident advantages of generating equilibrated molecular structures, our approach offers the
perspective of a tighter integration of multiscale models: The information of the CG is efficiently recycled
into the higher resolution. Avoiding unnecessary equilibrations upon upscaling will help connect models at
different scales—an important task at the dawn of the exascale computing era.
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