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S U M M A RY

In this thesis, Causal Modeling & Dynamical Systems: A New Perspective On Feedback,
we propose novel solutions to causal modeling in the presence of latent confounding
(“latent common causes”) and cyclic causal relationships (“feedback loops”). Our
proposed solutions bridge the gap between the worlds of causal models and
dynamical systems.

Our main contributions are as follows:

• We propose a general theory of statistical causal modeling with structural
causal models (SCMs) suitable for modeling latent confounding, cyclic, and
nonlinear causal relationships (Bongers et al., 2021; Chapter 2). We show
that in the presence of cycles, many convenient properties of acyclic SCMs
do not hold in general, such as the existence of a (unique) solution or that
of a Markov property. We prove that for SCMs in general, many of these
convenient properties hold under certain solvability conditions.

• We provide a marginalization operation for SCMs (Bongers et al., 2021;
Section 2.5), suitable for obtaining a marginal SCM on a subset of the variables.
We show that for cyclic SCMs, marginalization does not always exist without
further assumptions. We prove that this marginalization operation preserves
the probabilistic and causal semantics under certain local unique solvability
conditions. Similarly, one can marginalize the graph of an SCM, called the
“latent projection” of the graph. We show that, in general, the marginalization
of an SCM does not respect the latent projection of its associated graph, but
we prove that it does under an additional local ancestral unique solvability
condition.

• We provide conditions for identifying directed paths and bidirected edges
in the graph of an SCM (Bongers et al., 2021; Section 2.7). We show that
the presence or absence of a (bi-)directed path or edge cannot always be
identified from a difference in observational and/or interventional distribu-
tions. Moreover, if cycles are present, “nonancestral” effects may exist, that
is, an intervention on a variable may change the distribution of some of its
nondescendants in the graph. We prove that this counterintuitive behavior of
“nonancestral” effects will not happen under suitable solvability conditions.

• We propose simple SCMs (Bongers et al., 2021; Section 2.8). The class of
simple SCMs extends the subclass of acyclic SCMs to the cyclic setting while
preserving many of their convenient properties, such as the existence and
uniqueness of observational and interventional distributions, being closed
under intervention and marginalization, satisfying a Markov property. We
illustrate that the class of simple SCMs forms a convenient and practical
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extension of acyclic SCMs that can be used for causal modeling, learning, and
reasoning.

• We propose structural dynamical causal models (SDCMs) (Bongers, Blom,
and Mooij, 2022; Section 3.3). The SDCM framework enables modeling of
stochasticity, time-dependence, and causality in a natural way, and contains the
classes of structural causal models (SCMs) and random differential equations
(RDEs) as special cases. An SDCM can be thought of as the stochastic-process
version of an SCM, where the static random variables of the SCM are replaced
by dynamic stochastic processes and their derivatives. We provide a graphical
representation for SDCMs and conditions for the existence and uniqueness of
solutions for given initial conditions. We demonstrate that SDCMs provide
the basis for modeling the causal mechanisms that underlie the dynamics of
systems encountered in science and engineering.

• We provide an equilibration operation for SDCMs (Bongers, Blom, and
Mooij, 2022; Section 3.4), suitable for equilibrating an SDCM to an SCM such
that the static solutions of the SCM contain the equilibrium solutions of the
SDCM, without requiring any assumption on the number of equilibrium
solutions of the SDCM. This establishes a bridge between the frameworks
of SDCMs and SCMs at equilibrium, which sheds some new light on the
causal interpretation of SCMs, particularly on the counterintuitive behavior
of “nonancestral” effects at equilibrium. This bridge enables one to study the
causal semantics of a large class of stochastic dynamical systems, including
those that have multiple equilibria.

• We propose a Markov property for SDCMs (Bongers, Blom, and Mooij, 2022;
Section 3.3.7) that is suitable for both the solutions of the SDCM and the
evaluation of the solutions at any point in time under certain conditions.
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1
I N T R O D U C T I O N A N D B A C K G R O U N D

In this chapter, we introduce and explain background material about probabilistic
models, probabilistic graphical models, causal models, and dynamical models. We
end the chapter with a short introduction to the research questions studied in this
thesis.

1.1 artificial intelligence and causality

Human beings are remarkably proficient at identifying relevant objects and con-
cepts that enable them to reason about which actions to take in a given situation.
Our species can do this even without an encompassing understanding of all the
underlying mechanisms and natural laws at work. Infants, for instance, understand
the physical world around them by relying on objects that can be tracked over
time in a consistent way (Lake et al., 2017; Dehaene, 2020). At an early age, they
can infer that objects act upon each other when they come into contact with each
other (Spelke, 1990). This ability of children to build a conceptual representation of
the world on which they can perform causal reasoning, allows them to quickly learn
new tasks, as previously acquired knowledge and understanding of the world can
be re-used and re-evaluated. This ability of humans to solve real-world tasks by
re-using and re-purposing their knowledge and skills in novel scenarios lies at the
heart of our intelligence.

In the field of machine learning, which is one of the most widely pursued branches
in artificial intelligence (AI), one of the main objectives is to build machines that
themselves can acquire new knowledge and skills through experience in the form
of data. A common approach to the problem of learning is to fit a model to
data in the hope that this learned model will generalize well to new data or
experiences (Mitchell, 1997). Despite its success, this approach to learning provides
a rather superficial description of reality that only holds if new data and experiences
are coming from a distribution that does not differ (too much) from the training
distribution.

The field of causal learning seeks to learn a model that fits not only the data
at hand but can also describe the effect of intervention in terms of changes in
distribution. A causal model differs from a statistical model in that a set of variables
determines each variable through a causal relationship, called the causal mechanism,
that remains invariant when other mechanisms are subjected to intervention. This
invariance means that mechanisms can vary independently of one another, which
can and will happen under different experimental conditions (Pearl, 2009). This
invariance property of the causal mechanisms allows for a modular representation
of the world. Each module represents a causal mechanism, for which some can
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2 introduction and background

behave similarly across different tasks and environments. When learning a causal
model, one only needs to adapt a few modules in its internal representation of the
world, while others can be re-used without further training. Learning such causal
models has been shown to be more efficient and allows for better generalization (see,
e.g., Schölkopf et al., 2021).

A core problem in causal learning is that the used models often rest on the
assumption of acyclicity, or in other words, that no feedback loops are allowed.
Although this assumption can be a reasonable approximation and simplifies the
theoretical analysis, in many practical cases feedback loops are present and should
not simply be ignored. Feedback is a very common phenomenon. For example, it is
involved in how our body keeps a constant temperature, how the price of a product
is determined, and how learning is facilitated throughout our education system.
The aim of this work1 is to further advancement of the field of causal modeling in
the presence of feedback.

1.2 probabilistic models

Machine learning models are often described in terms of probabilistic models which
provide a statistical description of the system of interest. In probabilistic models, we
assume some level of uncertainty over the values of the variables x := (x1, . . . , xn)

in the model. A probabilistic model is usually represented in terms of random
variables. Let X : Ω→ X be the observed random variable, that assigns a proba-
bility to each (measurable) subset of X , where Ω denotes the sample space of some
background probability space2 (Ω,F , P) and X is some space3 of interest. For
simplicity, we assume in this chapter that random variables have a probability
density,4 which for X is given by the (joint) probability density

p(x) := p(X = x) .

We will use capital letters (e.g., X, Y , Z) for random variables and lowercase letters
(x, y, z) for values taken by the corresponding random variables. The statement
X = x describes an event which corresponds with a set of samples in the sample
space Ω.

1 Our work is strongly influenced by Pearl’s account on the mathematization of causal modeling (Pearl,
2009).

2 A probability space (Ω,F , P) consists of a measurable space (Ω,F ), where Ω is a non-empty set and
F ⊆ 2Ω is a σ-algebra, together with a probability measure P : F → [0, 1] which is a finite measure
on F (i.e., σ-additive) such that P(Ω) = 1.

3 We assume here that X is a standard measurable space (see Definition 2.F.1 in Appendix 2.F) for which
a general existence result for regular conditional probability distributions holds (see, e.g., Klenke,
2014).

4 More precisely, we assume that they have a probability density w.r.t. some product measure. For
a random variable X : Ω → X , a measure µ on the measurable space X , and a measurable map
p : X → [0, ∞), we say that a random variable X has a probability density p(x) w.r.t. a measure µ, if for all
measurable sets U of X we have

PX (U) =
∫

U
p(x)dµ ,

where PX is the induced probability distribution of X on X .



1.3 probabilistic graphical models 3

Consider a probabilistic model with joint probability density p(x, y). There
are two basic operations for determining the probabilities of events of interest,
namely the marginalization and conditioning operation. The marginalization operation
corresponds to summing up/integrating probabilities over all values of a specific
variable Y , also called marginalization over Y , and gives the marginal probability
density

p(x) =
∫

p(x, y)dy .

This identity which connects the joint to the marginal probability density, is also
known as the sum rule and allows us to look only at a subsystem of variables
of interest. The conditioning operation specifies the probability in y given that x is
known with absolute certainty, and gives the conditional probability density

p(y | x)

which satisfies
p(x, y) = p(x)p(y | x) .

This identity is also known as the product/chain rule and results in the well-known
Bayes’ rule

p(x | y) =
p(x)p(y | x)

p(y)
.

Often in learning problems, such as in classification or regression problems, we
are not interested in the probability density p(x), but rather in the conditional
probability density p(y | x), in which case x and y denote respectively the input
and target of the model.

Conditional models can be insensitive to certain input variables, which is captured
by the notion of conditional independence. Two random variables X and Y are said
to be conditionally independent given Z, denoted by

X ⊥⊥Y | Z ,

if
p(x | y, z) = p(x | z) ,

whenever p(y, z) > 0. In other words, knowing the value of Y does not provide any
additional information about X given that we know Z.

1.3 probabilistic graphical models

A probabilistic graphical model is a probabilistic model for which a graph expresses
the conditional independencies between random variables. The graph provides an
economical representation of the probabilistic model, allowing for efficient inference
and expressing different modeling assumptions (i.e., causal modeling assumptions).
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1.3.1 Bayesian networks

One of the most commonly known probabilistic graphical models are Bayesian
networks, also known as probabilistic graphical models for directed acyclic graphs (DAGs).
A DAG consists of nodes linked by directed arrows such that there is no cycle in
the graph. The joint probability density over the variables of such a probabilistic
model satisfies the recursive factorization property relative to a DAG G, that is,

p(x1, . . . , xn) =
n

∏
i

p(xi | xpaG (i)
) ,

where paG(i) denotes the parents of node i in the DAG G. For non-root nodes, a
factor corresponds to a conditional probability density, where we condition on its
parents. For root nodes, the set of parents is the empty set such that the probability
density is unconditional.

The elegance of Bayesian network is rooted in the equivalence of the recursive
factorization property and various versions of the Markov property (Lauritzen et al.,
1990; Lauritzen, 1996; Forré and Mooij, 2017). The directed global Markov property
for DAGs, also known as the d-separation criterion (Pearl, 1985), is one of the most
widely used Markov properties. A probabilistic model satisfies the directed global
Markov property relative to a DAG G (see Definition 2.A.6 in the Appendix 2.A.2 for a
more exact formulation) if for all subsets A, B and C of nodes in G

A
d
⊥
G

B |C =⇒ XA ⊥⊥ XB |XC ,

where the term on the left reads as A is d-separated from B given C in G (see
Definition 2.A.4). This allows us to read off a set of conditional independence
relations that are satisfied in the probabilistic model from the graph by checking
which d-separation statements hold. We can see the graph of the model as a carrier
of independence assumptions.

Probabilistic graphical models for DAGs have two major shortcomings, namely
that (i) they are not closed under marginalization/latent projection,5 and (ii) they
do not allow for cycles in the directed graph. This hinders application where we
almost always have incomplete data and/or some feedback loops between observed
variables. Several extensions have been proposed for these models to address the
problem of not being closed under marginalization/latent projection, resulting in
probabilistic graphical models for acyclic directed mixed graphs (ADMGs) (Richardson,
2003), i.e., DAGs with bidirected edges, and more generally, for marginalized directed
acyclic graphs (mDAGs) (Evans, 2016), i.e., DAGs with hyperedges. The problem
of not allowing for cycles has been addressed in the case of discrete (Pearl and
Dechter, 1996; Neal, 2000) and linear models (Spirtes, 1993, 1994, 1995; Koster, 1996;
Richardson, 1996c; Hyttinen, Eberhardt, and Hoyer, 2012). The more general case
where nonlinear relationships are allowed was recently addressed by (Forré and

5 The latent projection is a marginalization operation for directed graphs (see Definition 2.5.7 and Verma
(1993)).
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Mooij, 2017), where they addressed both problems (i) and (ii) at once, resulting
in general probabilistic graphical models for HEDGes, i.e., directed graphs with
hyperedges.

1.4 causal models

We use the term causal model to denote a model that describes the causal mechanisms
of a system. The causal mechanisms of such a model are assumed to stay invariant
when other mechanisms are subjected to intervention. This modularity assumption
allows us to describe the effect of external intervention by only changing the affected
causal mechanisms/modules while letting the others remain invariant.

1.4.1 Causal Bayesian networks

A well-known class of causal models are causal Bayesian networks (Pearl, 2009), which
are Bayesian networks where each factor p(xi | xpaG (i)

) in the joint probability den-
sity represents a causal mechanism of the variable Xi. Perhaps the simplest causal
Bayesian network is one that is specified by the following recursive factorization

p(x, y) = p(x)p(y | x) ,

which graph in terms of random variables X and Y is depicted in Figure 1.1 (left).
The directed edge in the graph represents a causal relationship, namely that X is
a cause of Y . The causal mechanism p(y | x) determines the probability of Y for
every intervened value X = x. The causal mechanism p(x) of X does not change
after any intervention on Y , since it is an unconditional probability density. This
illustrates that causation is an inherently asymmetric concept, manipulating a cause
will change its effect, not necessarily vice versa. This shows that the graph of a
causal Bayesian network is not only a carrier of independence assumptions but also
a carrier of causal assumptions.

The close connection between causality and statistical dependence was already
postulated by Reichenbach (1956), who postulated the common cause principle,6

also known as “no correlation without causation”. Informally, this principle states
that, if two variables X and Y are statistically dependent, then either one is a
cause of the other or they have a common cause that renders them conditionally
independent. This postulate can be derived from the framework of causal Bayesian
networks by observing that a statistical dependence between variables X and Y
can be described by any of the causal Bayesian networks depicted in Figure 1.1.
This means that any observational distribution over X and Y can be realized by
any of the three models. Thus, without any causal assumptions, the three models
cannot be distinguished from each other. Therefore, a causal model can be more
informative than a probabilistic one.

6 This principle implicitly assumes no selection bias, i.e., there is no conditioning on a (latent) common
effect.
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X Y X Y X Y

Z

Figure 1.1: Graphs of different causal Bayesian networks with different recursive factoriza-
tions.

The task of causal learning goes beyond learning a model based on statistical
associations alone because these models allow us to exploit causal assumptions
and causal knowledge. But how do we acquire causal knowledge in the first place?
The gold standard for causal discovery is randomized controlled experimentation (Fisher,
1935). The basic idea in such experiments is to randomly assign subjects to a
treatment and control group from which we can estimate the effect of the treatmen-
t/intervention by comparing the difference in outcome between both groups. This
forms the basis of many scientific experiments; however, it can often be difficult,
unethical, or too expensive to perform such an experiment. To remedy this, re-
searchers found ways to acquire causal knowledge, not from randomized controlled
experimentation but from purely observational data instead. The key observation
was that one could recover causal relationships from the statistical patterns in the
data. For example, Rebane and Pearl (1987) observed that one could determine the
causal direction between two variables X and Y by observing that X correlates with
Y and that there exists a third variable Z that correlates with Y but not with X, as
in the collider

X Y Z .

This led to various causal discovery methods, such as the IC and PC algorithm for
causal Bayesian networks (Spirtes, Glymour, and Scheines, 2000; Pearl, 2009).

The simplicity of causal Bayesian networks, by interpreting the conditional factors
as causal mechanisms, makes them conceptually appealing. However, they still
inherit the shortcomings (i) and (ii) of Bayesian networks. The problem that causal
Bayesian networks are not closed under marginalization/latent projection and do
not allow for cycles is rooted in the recursive factorization property. A better way
to define the causal mechanisms is in terms of functional parent-child relationships
rather than conditional factors, which provide a new perspective on causality.

1.4.2 Structural causal models

In this work, we focus on the class of structural causal models (SCMs) (Pearl, 2009).
Traditionally, in a structural causal model7 the causal mechanism of a variable Xi is
described by the assignment

Xi = fi(XpaG (i)
, Ei) ,

7 Formal treatment of structural causal models with cycles and latent variables is given in Chapter 2.
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where fi is a deterministic measurable function depending on the parents of Xi

in the directed graph G and Ei an unobserved random variable that is not in G.
We call the observed random variables Xi and unobserved random variables Ei

respectively the endogenous and exogenous variables. Often, the exogenous variable
Ei ensures us that endogenous variable Xi = fi(xpaG (i)

, Ei) represents a conditional
probability p(xi | xpaG (i)

). The assignments are also called the structural equations
of the model. The structural equations are assumed to stay invariant when other
equations are subjected to intervention. Interventions can be straightforwardly
formalized as an operation that modifies a subset of the structural equations and
the graph accordingly. The simplest type of intervention is the perfect intervention
which forces a certain variable, say Xi, to take on some fixed value xi. Such a perfect
intervention, denoted by do(Xi = xi), replaces the structural equations of Xi by the
intervened structural equation Xi = xi, whereby we remove all edges in the graph
G that have an arrowhead pointing towards Xi.

A special subclass of SCMs is the class of acyclic SCMs, where the directed graph
G is acyclic. If, in addition, the random variables E1, . . . , En are jointly independent,
then the model is called a Markovian SCM. For a Markovian SCM, various equiv-
alent versions of the Markov property and the equivalent recursive factorization
property hold, and gives the same recursive factorization that characterizes causal
Bayesian networks. Acyclic SCMs, also known as semi-Markovian SCMs, have been
widely studied and are well-understood (see, e.g., Verma, 1993; Richardson, 2003;
Evans, 2016). Although they do not satisfy a recursive factorization property that
factors all the causal mechanisms, they do obey various equivalent versions of the
Markov property. Furthermore, they induce a unique distribution over the observed
variables, and they are closed under marginalization/latent projection.

An important advantage of SCMs over causal Bayesian networks is that they can
represent cyclic causal relationships. To give a concrete example, consider the linear
model given by the structural equations

X1 = E1

X2 = E2

X3 = αX4 + X1 + E3

X4 = βX3 + X2 + E4 ,

where α, β 6= 0, αβ 6= 1, and E1, . . . , E4 are jointly independent Gaussian random
variables. Its graph is depicted in figure 1.2. Performing different perfect interven-
tions on X3 yields different probabilities for X4, and vice versa. Although there
does not exist a recursive factorization property for this model, the global directed
Markov property holds for this model and for linear SCMs in general (Spirtes, 1993,
1995; Forré and Mooij, 2017).

Although some progress has been made in the discrete (Pearl and Dechter,
1996; Neal, 2000) and linear case (Spirtes, 1994, 1995; Koster, 1996; Richardson,
1996c; Hyttinen, Eberhardt, and Hoyer, 2012), one encounters various technical
complications in the general cyclic case. For example, Spirtes (1994, 1995) showed
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X1 X2

X3 X4

Figure 1.2: Graph of a cyclic SCM.

that the directed global Markov property in terms of the d-separation criterion does
not hold anymore for the slightly modified nonlinear model (see Figure 1.2)

X1 = E1

X2 = E2

X3 = X1X4 + E3

X4 = X2X3 + E4 ,

and proposed an alternative criterion in terms of a “collapsed graph”. More recently,
Forré and Mooij (2017) showed that an alternative formulation of the Markov prop-
erty in terms of the σ-separation criterion, a generalized version of the d-separation
criterion, holds for such general cyclic probabilistic graphical models.

The main difficulty of such SCMs with cycles is that many convenient properties
do not hold anymore after intervention. For example, performing the intervention
do(X1 = −1, X2 = −1) on the previous model gives an intervened model for which
σ-separation does not hold anymore. Furthermore, the structural equations have
either multiple solutions for the random variables X3 and X4 or no solution at all
(depending on E3 being equal to E4 or not), which hinders the causal interpretation
of such models.

1.5 dynamical systems

The task of causal modeling is to construct a modular representation of a system
in terms of causal mechanisms. However, many systems in the real world are
represented by dynamical systems described by a system of differential equations
that allow for modeling time-dependent behavior. An ordinary differential equation is
a system of coupled differential equations which relate the time derivative of each
function Xi(t) to the functions X(t) as follows

dXi

dt
= fi(X) ,

where fi is a deterministic function depending on X and X is a function on R that
takes values in Rn. An ordinary differential equation together with an initial value
X(t0) = X[0] ∈ Rn at t0 ∈ R is called an initial value problem. The Picard-Lindelöf
theorem guarantees that, at least locally, if f is Lipschitz, then the initial value
problem has a unique solution X(t) for t ≥ t0 and is of the form

X(t) = X[0] +
∫ t

t0

f (X)dt .
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Thus, X(t) is, at least locally, deterministically determined by its past values. Such
temporal precedence can be interpreted as that “the cause always precedes its effect
in time”, which is often assumed to be essential for defining causation. However,
temporal information often is not enough to distinguish causal effects from spurious
associations caused by unknown factors (Pearl, 2009). For example, that the rooster
crows immediately before sunrise does not imply that the rooster causes the sun to
rise. Assuming that one thing preceding another can be used as a proof of causation
without taking all the unknown factors into account is also known as the “post hoc
ergo propter hoc” fallacy8 and may lead to false causal knowledge.

Over the years, several efforts have been made to develop a notion of causality
for dynamical systems. One approach is to discretize time by intervals ∆t such that
the differential equation can be rewritten as a difference equation given by

X(t + ∆t) = X(t) + ∆t · f (X(t)) .

For any point in time, the future of X(t) is determined by this equation. Discretizing
time has the benefit that one can easily incorporate stochasticity in the model by tak-
ing X(t) a random variable at every point in time. Often, one allows for additional
stochasticity in the parameters in the model by making f dependent on an addi-
tional random noise function E(t) that, for example, can model different unknown
factors. Examples of such models are the simultaneous equation models (Fisher,
1970; Lacerda et al., 2008), vector autoregressive (VAR) models (Sims, 1980; Lütke-
pohl, 2005) and dynamic Bayesian networks (Dagum, Galper, and Horvitz, 1992;
Ghahramani, 1998). Often, a causal interpretation is given to such models by as-
suming that the causal mechanisms are correctly described by the function f , and
possibly E (assuming that one has taken all unknown factors into account). In
principle, these models fit directly into the framework of acyclic SCMs by labeling
the random variables with time. For continuous time, a causal interpretation has
been given to a system of differential equations that are driven by a certain type of
noise, the so-called stochastic differential equations (see, e.g., Florens and Fougere,
1996; Hansen and Sokol, 2014). In the deterministic setting, several approaches
attribute a causal interpretation to first-order systems of ODEs (see, e.g., Iwasaki
and Simon, 1994; Mooij, Janzing, and Schölkopf, 2013; Pfister, Bauer, and Peters,
2019; Blom and Mooij, 2021). Often, one simply takes fi as the causal mechanism
that describes the equation of motion of each variable Xi. Iwasaki and Simon (1994)
study the notion of causality in ODEs using Simon’s causal ordering algorithm.

One important advantage of dynamical systems is that they can model feedback.
For example, consider the mass-spring system in physics, depicted in Figure 1.3
(top left), that consists of three point masses mi with positions Qi(t), between the
walls at Q0(t) = 0 and Q4(t) = L and momenta Pi(t) (i = 1, 2, 3) that are coupled

8 The Latin phrase “post hoc ergo propter hoc” means “after this, therefore because of this”. This
fallacy informally states that “If an event followed another event, then the first event must have been
caused by the second event.”.
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m1 m2 m3

Q0 = 0 Q4 = L

m1 m2 m3

Q0 = 0 Q4 = L

N

Q1 Q2 Q3 Q1 Q2 Q3

Figure 1.3: Mass-spring system of three point masses m1, m2 and m3 before (top left) and
after holding the mass m2 fixed (top right). The graphs of the SCM that describe
the positions of the masses at equilibrium before (bottom left) and after holding
m2 fixed (bottom right).

to each other by springs with spring constant κi and length `i (i = 0, . . . , 3). The
equation of motion for each mass mi can be described by the differential equations

dPi

dt
=

ki

mi
(Qi+1 −Qi − `i) +

ki−1

mi
(Qi−1 −Qi + `i−1)−

bi

mi
Pi

dQi

dt
= Pi/mi ,

where bi ≥ 0 (i = 1, 2, 3) denotes some friction coefficients. Any two masses
connected (i.e., coupled) by a spring may exert forces on each other. Under friction
(i.e., bi > 0 for all i), there is a unique equilibrium position where the sum of forces
vanishes for every mass mi. Temporarily moving some masses out of equilibrium
position will bring them in a damped oscillatory motion that will converge to their
unique stable equilibrium positions.

The stationary behavior of dynamical systems can be described by an SCM
under certain stability conditions. In the deterministic setting, Mooij, Janzing, and
Schölkopf (2013) showed that for globally asymptotically stable systems, an SCM
could be obtained by equilibrating a system of first-order ordinary differential
equations. The idea is that one obtains a set of labeled equilibrium equations by setting
the time derivatives of the variables equal to zero and labeling each equation with
the variable of its corresponding derivative. If possible, the structural equations of
an SCM can be derived from the labeled equilibrium equations by solving them
w.r.t. their corresponding variables. For example, the above mass-spring system
yields the SCM with structural equations

Qi =
ki(Qi+1 − `i) + ki−1(Qi−1 + `i−1)

ki + ki−1

Pi = 0

for each Qi and Pi respectively, which graph for the Qi’s is depicted in Figure 1.3
(bottom left). This SCM describes how the equilibrium states of the dynamical
systems change under interventions. For example, holding the mass m2 fixed
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at position 2
5 L by performing the intervention9 do(Q2 = 2

5 L, P2 = 0) yields the
intervened SCM depicted in Figure 1.3 (right), which illustrates that holding Q2

fixed at a certain position can have an effect on both Q1 and Q3 at equilibrium.
While a system of first-order ODEs provides a rather comprehensive description

of a system, learning such a system requires time series data with a sufficiently high
temporal resolution, which can be costly, impractical, or even impossible. In the case
of a globally asymptotically stable system, the more compact SCM representation,
where we discard all the temporal information, has advantages for learning and
prediction purposes at equilibrium. On the other hand, first-order ODEs form a
well-established and well-understood framework where the modeling of feedback
forms no problem at all.

1.6 research questions and contributions

The contributions of this thesis are guided by the following research questions:

Research question 1: How can we extend the class of acyclic SCMs to the cyclic setting
while preserving many of their convenient properties?

In chapter 2 and (Bongers et al., 2021) we propose a general theory of statistical
causal modeling with SCMs suitable for modeling latent confounding, cyclic and
nonlinear causal relationships. We provide a definition of an SCM that slightly
deviates from previous notions of (acyclic) SCMs because we separate the model
from the (endogenous) random variables that solve it. This slight modification
makes interventions on SCMs always well-defined, even if the resulting intervened
SCM does not have a (unique) solution.

We provide the notions of (local) solvability and unique solvability (Section 2.3) that
describe the existence and uniqueness of (local) measurable solution functions for a
subsystem of structural equations. These notions play a central role in extending
many convenient properties of acyclic SCM to the cyclic setting. We show that
solvability of an SCM is a sufficient and necessary condition for the existence of
a solution of an SCM. Moreover, unique solvability implies the uniqueness of the
induced observational distribution. We show that, in general, cyclic SCMs may
have no solution, solutions with a unique distribution, or solutions with different
distributions.

We provide a marginalization operation for SCMs (Section 2.5), suitable for obtaining
a marginal SCM on a subset of the variables. We show that for cyclic SCMs,
marginalization does not always exist without further assumptions. We prove that
this marginalization operation preserves the probabilistic and causal semantics
under certain local unique solvability conditions. Similarly, one can marginalize the
graph of an SCM, which is called the “latent projection” of the graph. We show that,
in general, the marginalization of an SCM does not respect the latent projection of

9 Mooij, Janzing, and Schölkopf (2013) only consider interventions for the mass-spring system of
the form do(Qi = ξi, Pi = 0) with ξi ∈ R, because such interventions with nonzero values for the
momenta Pi are physically impossible.
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its associated graph, but we prove that it does so under an additional local ancestral
unique solvability condition.

We provide an overview of Markov properties for SCMs (Section 2.6) suitable for
reading off conditional independencies in a distribution directly from the graph of
the SCM. Markov properties have been of key importance to derive various central
results regarding causal reasoning and causal learning. Although the usual Markov
properties do not hold in general for cyclic SCMs, we provide an overview under
which conditions they hold.

We propose simple SCMs (Section 2.8). The class of simple SCMs extends the sub-
class of acyclic SCMs to the cyclic setting while preserving many of their convenient
properties, such as the existence and uniqueness of observational and interventional
distributions, being closed under marginalization, satisfying a Markov property. We
illustrate that the class of simple SCMs forms a convenient and practical extension
of the class of acyclic SCMs that can be used for causal modeling, learning, and
reasoning.

As explained in Section 2.3, cyclic SCMs may contain no solutions or (multiple)
solutions with either unique or different distributions. This leads us to the following
question:

Research question 2: Can the (multiple) equilibrium states of a dynamical system be
described by an SCM?

In chapter 3 and (Bongers, Blom, and Mooij, 2022) we propose structural dynamical
causal models (SDCMs), a class of models that can describe a large class of continuous
dynamical systems by random differential equations of arbitrary order (including
zeroth-order). We provide an equilibration operation (Section 3.4.3) suitable for equili-
brating an SDCM to an SCM such that the static solutions of the SCM contain all
the equilibrium solutions of the SDCM, without requiring any assumption on the
number of equilibrium solutions of the SDCM. For example, we demonstrate that
in the mass-spring system depicted in Figure 1.3 we can relax the nonzero friction
condition in the model, i.e., the system does not have to be globally asymptotically
stable.

The proposed framework of SDCMs enables modeling of arbitrary order differential
equations, including zeroth-order equations. We demonstrate that SDCMs are capable
of modeling systems like the well-known price, supply and demand model from
economics (see, e.g., Richardson and Robins, 2014) given by the equations

dXP

dt
= λ(XD − XS)

XS = βSXP + ES

XD = βDXP + ED ,

where XP, XS, and XD denote the price, supply and demand of a quantity of a
product respectively, ES and ED are some random exogenous influences on the
supply and demand respectively, and βS, βD, and λ are some constant parameters.
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We show that the “market equilibrium” of this system can be modeled by a cyclic
SCM. However, allowing for zeroth-order dynamic structural equations leads to
additional technical challenges that are absent when solving first-order RDEs. For
example, the initial conditions of the solutions may be constrained by the zeroth-
order dynamic structural equations, and possibly even by additional “hidden”
constraints. In Section 3.3.6, we provide sufficient conditions under which the existence
and uniqueness of a solution of an SDCM with a given initial condition can be
guaranteed.

An additional advantage of the proposed framework of SDCMs is that it enables the
modeling of stochasticity of the dynamical system by combining random differential
equations with additional zeroth-order equations. Random differential equations
(RDEs) are similar to ordinary differential equations (ODEs) but can deal with
randomness in the initial conditions and the parameters. This enables one to model
randomness in the equilibrium solutions and apply statistical tools available for
SCMs when studying the equilibrium solutions of stochastic dynamical systems. For
example, one can apply the d-separation criterion to the graph of the equilibrated
SCM of the intervened mass-spring system depicted in Figure 1.3 (right) to show
that Q1⊥⊥Q3 | Q2 at equilibrium.

Research question 3: Does there exist a general causal modeling class for dynamical
systems?

In chapter 3 and (Bongers, Blom, and Mooij, 2022) we demonstrate how the frame-
work of SDCMs can model stochasticity, time-dependence, and causality in a
natural way. An SDCM can be thought of as the stochastic-process version of an SCM
(Section 3.3.2), where the static random variables of the SCM are replaced by
dynamic stochastic processes and their derivatives. We consider stochastic inter-
ventions to express their causal semantics (Section 3.3.3) and provide a graphical
representation representing their model structure (Section 3.3.4). We demonstrate
that by no longer restricting to first-order dynamical systems, we arrive at a more
natural causal interpretation of systems of higher-order RDEs where we refrain
from modeling higher-order derivatives as separate processes, like in the mass-
spring system. Thereby, we circumvent questions like “does position cause velocity,
or does velocity cause position, or both?”. We demonstrate that SDCMs provide the
basis for modeling the causal mechanisms that underlie the dynamics of systems
encountered in science and engineering.

We show that the equilibration operation commutes with intervention and naturally
maps the graph of the SDCM to the graph of the SCM (Section 3.4.4 and 3.4.5)
without requiring the assumption that all the solutions equilibrate to the same static
equilibrium state. In other words, the proposed equilibration operation maps an
SDCM to an SCM while preserving the causal semantics. We demonstrate that the
inverse mapping holds trivially. In the non-trivial case, we show that for a certain
class of SCMs, one can construct a first-order SDCM with non-trivial dynamics
for which all the solutions equilibrate to solutions of the SCM independently
of the initial conditions, even after intervention. This shows that under certain
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conditions, one can construct a stable SDCM that realizes the causal semantics of the
SCM at equilibrium (Section 3.4.6).

One important advantage of this bridge between the framework of SDCMs and
SCMs at equilibrium is that it enables one to leverage the wealth of statistical tools
and discovery methods available for SCMs when studying the causal semantics of
a large class of stochastic dynamical systems, including those that have multiple
equilibria.

Research question 4: Does the proposed SDCM framework have a Markov property?

In Section 3.3.7 and (Bongers, Blom, and Mooij, 2022) we propose a Markov property
for SDCMs, in analogy with that of SCMs that is suitable for both the solutions of
the SDCM and the evaluation of the solutions at any point in time under certain
conditions. Key to proving this Markov property are the conditions under which the
existence and uniqueness of a solution of SDCM can be guaranteed (Section 3.3.6).

Research question 5: How can we causally interpret the graph in the presence of cycles?

In Section 2.7 and (Bongers et al., 2021) we provide conditions for identifying directed
paths and bidirected edges in the graph of an SCM. We show that, in general, the
presence or absence of a (bi-)directed path or edge cannot always be identified from
a difference in observational and/or interventional distributions. Moreover, if cycles
are present, counterintuitive “nonancestral” effects may exist, that is, an intervention
on a variable may change the distribution of some of its nondescendants in the
graph. We prove this counterintuitive behavior of “nonancestral” effects will not
happen under suitable solvability conditions.

In Section 3.4.7, we demonstrate that the counterintuitive behavior of “nonances-
tral” effects in the equilibrated SCM can be explained by the dependence of the
equilibrium states on different initial conditions. We show that one can view this
as selection bias due to equilibration. This sheds some new light on the causal
interpretation of SCMs and provides a new perspective on feedback systems at
equilibrium.



2
S T R U C T U R A L C AU S A L M O D E L S W I T H C Y C L E S
A N D L AT E N T VA R I A B L E S

Structural causal models (SCMs), also known as (nonparametric) structural equation
models (SEMs), are widely used for causal modeling purposes. In particular, acyclic
SCMs, also known as recursive SEMs, form a well-studied subclass of SCMs that
generalize causal Bayesian networks to allow for latent confounders. In this chapter,
we investigate SCMs in a more general setting, allowing for the presence of both
latent confounders and cycles. We show that in the presence of cycles, many of the
convenient properties of acyclic SCMs do not hold in general: they do not always
have a solution; they do not always induce unique observational, interventional and
counterfactual distributions; a marginalization does not always exist, and if it exists
the marginal model does not always respect the latent projection; they do not always
satisfy a Markov property; and their graphs are not always consistent with their
causal semantics. We prove that for SCMs in general each of these properties does
hold under certain solvability conditions. Our work generalizes results for SCMs
with cycles that were only known for certain special cases so far. We introduce the
class of simple SCMs that extends the class of acyclic SCMs to the cyclic setting,
while preserving many of the convenient properties of acyclic SCMs. In this chapter
we aim to provide the foundations for a general theory of statistical causal modeling
with SCMs.1

2.1 introduction

Structural causal models (SCMs), also known as (nonparametric) structural equation
models (SEMs), are widely used for causal modeling purposes (Bollen, 1989; Spirtes,
Glymour, and Scheines, 2000; Pearl, 2009; Peters, Janzing, and Schölkopf, 2017).
They form the basis for many statistical methods that aim at inferring knowledge
of the underlying causal structure from data (see, e.g., Maathuis et al., 2009; Mooij
and Heskes, 2013; Bühlmann, Peters, and Ernest, 2014; Peters et al., 2014; Mooij
et al., 2016). In these models, the causal relationships between the variables are
expressed in the form of deterministic, functional relationships, and probabilities
are introduced through the assumption that certain variables are exogenous latent
random variables. SCMs arose out of certain causal models that were first introduced
in genetics (Wright, 1921), econometrics (Haavelmo, 1943), electrical engineering
(Mason, 1953, 1956) and the social sciences (Goldberger and Duncan, 1973; Duncan,
1975).

1 This chapter is adapted from our publication (Bongers et al., 2021). Permission was given by the
co-authors for reproduction in this thesis.
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Acyclic SCMs, also known as recursive SEMs, form a special well-studied subclass
of SCMs that generalize causal Bayesian networks (Pearl, 2009). They have many
convenient properties (see, e.g., Pearl, 1985; Lauritzen et al., 1990; Verma, 1993;
Lauritzen, 1996; Richardson, 2003; Evans, 2016; Evans, 2018): (i) they induce a unique
distribution over the variables; (ii) they are closed under perfect interventions; (iii)
they are closed under marginalizations; (iv) their marginalization respects the latent
projection; (v) they obey (various equivalent versions of) the Markov property and
(vi) their graphs express the causal relationships encoded by the SCM in an intuitive
manner.

One important limitation of acyclic SCMs is that they cannot model systems
that involve causal cycles. In many systems occurring in the real world, there
are feedback loops between observed variables. For example, in economics the
price of a product may be a function of the demanded or supplied quantities, and
vice versa, the demanded and supplied quantities may be functions of the price.
The underlying dynamic processes describing such systems have an acyclic causal
structure over time. However, causal cycles may arise when one approximates
such systems over time (Fisher, 1970; Mogensen, Malinsky, and Hansen, 2018;
Mogensen and Hansen, 2020) or when one describes the equilibrium states of these
systems (Iwasaki and Simon, 1994; Lacerda et al., 2008; Hyttinen, Eberhardt, and
Hoyer, 2012; Mooij, Janzing, and Schölkopf, 2013; Blom, Bongers, and Mooij, 2019;
Pfister, Bauer, and Peters, 2019; Bongers, Blom, and Mooij, 2022). In particular, we
show in Chapter 3 that the equilibrium states of a system governed by (random)
differential equations can be described by an SCM that represents their causal
semantics, which gives rise to a plethora of SCMs that include cycles (we provide
already some examples of such feedback systems in Appendix 2.D.1). In contrast
to their acyclic counterparts, SCMs with cycles have enjoyed less attention in the
literature and are not as well understood. In general, none of the above properties
(i)–(vi) hold in the class of SCMs. However, some progress has been made in the
case of discrete (Pearl and Dechter, 1996; Neal, 2000) and linear models (Spirtes,
1993, 1994, 1995; Koster, 1996; Richardson, 1996c; Hyttinen, Eberhardt, and Hoyer,
2012), and more recently, for more general cyclic models the Markov properties
have been elucidated (Forré and Mooij, 2017).

contributions The purpose of this work is to provide the foundations for a
general theory of statistical causal modeling with SCMs. We study properties of
SCMs and allow for cycles, latent variables and nonlinear functional relationships
between the variables. We investigate to which extent and under which sufficient
conditions each of the properties (i)–(vi) holds, in particular, in the presence of
cycles. In the next paragraphs, we describe our contributions in more detail.

When there are cyclic functional relationships between variables, one encounters
various technical complications, which even arise in the linear setting. The structural
equations of an acyclic SCM trivially have a unique solution. This unique solvability
property ensures that the SCM gives rise to a unique, well-defined probability
distribution on the variables. In the case of cycles, however, this property may be
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violated, and consequently, the SCM may not have a solution at all, or may allow for
multiple different probability distributions (Halpern, 1998). Even if one starts with
a cyclic SCM that is uniquely solvable, performing an intervention on the SCM may
lead to an intervened SCM that is not uniquely solvable. Hence, a cyclic SCM may
not give rise to a unique, well-defined probability distribution corresponding to that
intervention, and whether or not this happens may depend on the intervention. We
provide sufficient conditions for the existence and uniqueness of these probability
distributions after intervention. In general, it is not clear whether the solutions of
the structural equations of an SCM are measurable if cycles are present. In addition,
we provide sufficient and necessary conditions for the measurability of solution
functions of cyclic SCMs.

SCMs provide a detailed modeling description of a system. Not all information
may be necessary for a certain modeling task, which motivates to consider certain
classes of SCMs to be equivalent. In this chapter, we formally introduce several of
such equivalence relations. For example, we consider two SCMs observationally
equivalent if they cannot be distinguished based on observations alone. Obser-
vationally equivalent SCMs can often still be distinguished by interventions. We
consider two SCMs interventionally equivalent if they cannot be distinguished
based on observations and interventions. While these concepts have been around
in implicit form for acyclic SCMs, we formulate them in such a way that they also
apply to cyclic SCMs that have either no solution at all or have multiple different
induced probability distributions on the variables. Finally, we consider two SCMs
counterfactually equivalent if they cannot be distinguished based on observations
and interventions and in addition encode the same counterfactual distributions,
which are the distributions induced by the so-called twin SCM via the twin network
method (Balke and Pearl, 1994). These different equivalence relations formalize
the different levels of abstraction in the so-called causal hierarchy (Shpitser and
Pearl, 2008; Pearl and Mackenzie, 2018). In addition, we add another, strong ver-
sion of equivalence, such that equivalent SCMs have the same solutions. This
notion clarifies ambiguities when a function is constant in one of its arguments, for
example.

Marginalization becomes useful if not all variables are observed: given a joint
probability distribution on some variables, we obtain a marginal distribution on
a subset of the variables by integrating out the remaining variables. Analogously,
we can marginalize an acyclic SCM by substituting the solutions of the structural
equations of a subset of the endogenous variables into the structural equations of the
remaining endogenous variables. For acyclic SCMs, the induced observational and
interventional distributions of the marginalized SCM coincide with the marginals
of the distributions induced by the original SCM (see Verma, 1993; Spirtes et al.,
1998; Evans, 2016; Evans, 2018; a.o.). In other words, for acyclic SCMs the operation
of marginalization preserves the probabilistic and causal semantics (restricted to
the remaining variables). We show that for cyclic SCMs a marginalization does not
always exist without further assumptions. In (Forré and Mooij, 2017) it is shown
that for modular SCMs, which can be seen as an SCM together with an additional
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structure of a compatible system of solution functions, a marginalization can be
defined that preserves the probabilistic and causal semantics. We prove that this
additional structure is not necessary and use a local unique solvability condition
instead. Under this condition, we show that an SCM and its marginalization are
observationally, interventionally and counterfactually equivalent on the remaining
endogenous variables. Analogously, we define a marginalization operation on the
associated graph of an SCM, which generalizes the latent projection (Verma, 1993;
Tian, 2002; Evans, 2016). In general, the marginalization of an SCM does not respect
the latent projection of its associated graph, but we show that it does so under an
additional local ancestral unique solvability condition.

In graphical models, Markov properties allow one to read off conditional inde-
pendencies in a distribution directly from a graph. Various equivalent formulations
of Markov properties exist for acyclic SCMs (Lauritzen, 1996), one prominent ex-
ample being the d-separation criterion, also known as the directed global Markov
property, which was originally derived for Bayesian networks (Pearl, 1985). Markov
properties have been of key importance to derive various central results regarding
causal reasoning and causal discovery. For cyclic SCMs, however, the usual Markov
properties do not hold in general, as was already pointed out by Spirtes (1994). His
solution in terms of collapsed graphs was recently generalized and reformulated
for a general class of causal graphical models (Forré and Mooij, 2017) by adapting
the notion of d-separation into what has been termed σ-separation. This resulted
in a general directed global Markov property expressed in terms of σ-separation
instead of d-separation. Here, we formulate these general Markov properties specif-
ically within the framework of SCMs. Again, they only hold under certain unique
solvability conditions.

In addition to its interpretation in terms of conditional independencies, the graph
of an acyclic SCM also has a direct causal interpretation (Pearl, 2009). As was
already observed in Neal (2000), the causal interpretation of SCMs with cycles can
be counterintuitive, as the causal semantics under interventions no longer needs
to be compatible with the structure imposed by the functional relations between
the variables. We resolve this issue by showing that under certain ancestral unique
solvability conditions the causal interpretation of SCMs is consistent with its graph.

Cycles lead to several technical complications related to solvability issues. We
introduce a special subclass of (possibly cyclic) SCMs, the class of simple SCMs, for
which most of these technical complications are absent and which preserves much
of the simplicity of the theory for acyclic SCMs. A simple SCM is an SCM that is
uniquely solvable with respect to every subset of the variables. Because of this strong
solvability assumption, simple SCMs have all the convenient properties (i)–(vi):
they always have uniquely defined observational, interventional and counterfactual
distributions; we can perform every perfect intervention and marginalization on
them and the result is again a simple SCM; marginalization does respect the latent
projection; they obey the general directed global Markov property, and for special
cases (including the acyclic, linear and discrete case) they obey the (stronger)
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directed global Markov property; their graphs have a direct and intuitive causal
interpretation.

The scope of this chapter is limited to establishing the foundations for statistical
causal modeling with cyclic SCMs (Figure 2.7 in Appendix 2.A.4 shows an overview
of how SCMs relate to other causal graphical models). For a detailed discussion
of causal reasoning, causal discovery and causal prediction with cyclic SCMs we
refer the reader to other literature (e.g., Richardson, 1996a,b; Richardson and
Spirtes, 1999; Eberhardt, Hoyer, and Scheines, 2010; Foygel, Draisma, and Drton,
2012; Hyttinen, Eberhardt, and Hoyer, 2012; Hyttinen et al., 2013). Several recent
results (generalizations of the do-calculus, adjustment criteria and an identification
algorithm) for modular SCMs (Forré and Mooij, 2018, 2019) directly apply to the
subclass of simple SCMs, as well. Finally, many causal discovery algorithms that
have been designed for the acyclic case also apply to simple SCMs with no or only
minor changes (Mooij and Claassen, 2020; Mooij, Magliacane, and Claassen, 2020).

overview Figure 2.1 gives an overview of the different objects that can be
constructed from an SCM and the different mappings between them. For pairs of
mappings between the objects with the names in bold, we prove commutativity
results which are summarized in Table 2.1.

outline This chapter is structured as follows: In Section 2.2, we provide a
formal definition of SCMs and a natural notion of equivalence between SCMs,
define the (augmented) graph corresponding to an SCM, and describe perfect
interventions and counterfactuals. In Section 2.3, we discuss the concept of (unique)
solvability, its properties and how it relates to self-cycles. In Section 2.4, we define
and relate various equivalence relations between SCMs. In Section 2.5, we define a
marginalization operation that is applicable to cyclic SCMs under certain conditions.
We discuss several properties of this marginalization operation and discuss the
relation with a marginalization operation defined on directed mixed graphs. In
Section 2.6, we discuss Markov properties of SCMs. In Section 2.7, we discuss the
causal interpretation of the graphs of SCMs. Section 2.8 introduces and discusses
the class of simple SCMs.

The appendices to this chapter introduces causal graphical models in Appendix 2.A.
This section also contains details on Markov properties and modular SCMs. Ap-
pendix 2.B provides additional (unique) solvability properties, some results for
linear SCMs are discussed in Appendix 2.C, other examples in Appendix 2.D and
the proofs of all the theoretical results are in Appendix 2.E. Appendix 2.F contains
some lemmas and measurable selection theorems that are used in several proofs.

2.2 structural causal models

In this section, we provide the definition and properties of structural causal models
(SCMs). Our definition of SCMs slightly deviates from existing definitions (Bollen,
1989; Spirtes, Glymour, and Scheines, 2000; Pearl, 2009), because we make the
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SCMs do twin marg

G,Ga
2.2.14 2.2.19 (2.5.11)

do 2.2.15.(1) 2.2.21.(1) 2.5.5.(1)

twin · · · - 2.5.5.(2)

marg · · · · · · 2.5.4

Graphs do twin marg

do 2.2.15.(1) 2.2.21.(2) 2.5.9.(1)

twin · · · - 2.5.9.(2)

marg · · · · · · 2.5.8

Table 2.1: Overview of the commutativity results of different pairs of mappings, defined
on SCMs (left table) and on graphs (right table). All results apply under the
assumptions stated in the corresponding proposition. The entries denoted by
dots are omitted due to symmetry. We do not consider the commutativity of the
twin operation with itself in this chapter. Proposition 2.5.11 (in parentheses) is
not a commutativity result but a weaker relation. The graphical twin operator is
only defined for directed graphs.

definition of the SCM independent of the random variables that solve it. This
enables us to deal with the various technical complications that arise in the presence
of cycles.

2.2.1 Structural causal models and their solutions

Definition 2.2.1 (Structural causal model). A structural causal model (SCM) is a
tuple2

M := 〈I ,J ,X ,E , f , PE 〉 ,

where

1. I is a finite index set of endogenous variables,

2. J is a disjoint finite index set of exogenous variables,

3. X = ∏i∈I Xi is the product of the domains of the endogenous variables, where each
domain Xi is a standard measurable space (see Definition 2.F.1),

4. E = ∏j∈J Ej is the product of the domains of the exogenous variables, where each
domain Ej is a standard measurable space,

5. f : X × E → X is a measurable function that specifies the causal mechanism,

6. PE = ∏j∈J PEj is a product measure, the exogenous distribution, where PEj is a
probability measure on Ej for each j ∈ J .3

In SCMs, the functional relationships between variables are expressed in terms of
deterministic equations, where each equation expresses an endogenous variable (on
the left-hand side) in terms of a causal mechanism depending on endogenous and

2 We often use boldface for variables that have multiple components, for example, vectors in a Cartesian
product.

3 For the case J = ∅, we have that E is the singleton 1 and PE is the degenerate probability measure
P1.
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exogenous variables (on the right-hand side). This allows us to model interventions
in an unambiguous way by changing the causal mechanisms that target specific
endogenous variables (see Section 2.2.4).

Definition 2.2.2 (Structural equations). LetM = 〈I ,J ,X ,E , f , PE 〉 be an SCM. We
call the set of equations

xi = fi(x, e) x ∈ X , e ∈ E

for i ∈ I the structural equations of the structural causal modelM.

Although it is common to assume the absence of cyclic functional relations (see
Definition 2.2.9), we make no such assumption here. In particular, we allow for
self-cycles, which we will discuss in more detail in Sections 2.2.2 and 2.3.3.

The solutions of an SCM in terms of random variables are defined up to al-
most sure equality. Random variables that are almost surely equal are generally
considered to be equivalent to each other for all practical purposes.

Definition 2.2.3 (Solution). A pair (X, E) of random variables X : Ω→ X , E : Ω→ E ,
where Ω is a probability space, is a solution of the SCMM = 〈I ,J ,X ,E , f , PE 〉 if

1. PE = PE , that is, the distribution of E is equal to PE ,4 and

2. the structural equations are satisfied, that is,

X = f (X, E) a.s..

For convenience, we call a random variable X a solution ofM if there exists a random
variable E such that (X, E) forms a solution ofM.

Often, the endogenous random variables X can be observed, while the exogenous
random variables E are treated as latent. Latent exogenous variables are often
referred to as “disturbance terms” or “noise variables.” For a solution X, we call the
distribution PX the observational distribution ofM associated to X. In general, there
may be multiple different observational distributions associated to an SCM due to
the existence of different solutions of the structural equations. This is a consequence
of the allowance of cycles in SCMs, as the following simple example illustrates.

Example 2.2.4 (Cyclic SCMs). For brevity, we use throughout this chapter the notation
n := {1, 2, . . . , n} for n ∈N. LetM = 〈2, 1, R2, R, f , PR〉 be an SCM5 with

f1(x, e) = x2 ,

f2(x, e) = x1 ,

and PR an arbitrary probability measure on R. Then (X, X) is a solution ofM for any
arbitrary random variable X with values in R. Hence, any probability distribution on

4 This implies that the components Ej of E are mutually independent, since PE = ∏j∈J Ej.
5 We will abuse notation by using nondisjoint subsets of the natural numbers to index both endogenous

and exogenous variables; these should be understood to be disjoint copies of the natural numbers: if
we write I = n and J = m, we mean instead I = {1, 2, . . . , n} and J = {1′, 2′, . . . , m′} where k′ is a
copy of k.
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{(x, x) : x ∈ R} is an observational distribution associated toM. Now consider instead
the same SCM but with f1(x, e) = x2 + 1. This SCM has no solutions at all, and hence
induces no observational distribution.

Due to the fact that the structural equations only need to be satisfied almost surely,
there may exist many different SCMs representing the same set of solutions (see
Example 2.D.4). It therefore seems natural not to differentiate between structural
equations that have different solutions on at most a PE -null set of exogenous
variables. This leads to an equivalence relation between SCMs. To be able to state
the equivalence relation concisely, we introduce the following notation: For subsets
U ⊆ I and V ⊆ J , we write X U := ∏i∈U Xi and EV := ∏j∈V Ej. In particular,
X ∅ and E∅ are defined by the singleton 1. Moreover, for a subset W ⊆ I ∪ J ,
we use the convention that we write XW and EW instead of XW∩I and EW∩J ,
respectively and we adopt a similar notation for the (random) variables in those
spaces, that is, we write xW and eW instead of xW∩I and eW∩J , respectively. This
allows us to define the following natural equivalence relation for SCMs.6,7

Definition 2.2.5 (Equivalence). The two SCMsM = 〈I ,J ,X ,E , f , PE 〉 and M̃ =

〈I ,J ,X ,E , f̃ , PE 〉 are equivalent, denoted byM≡ M̃, if for all i ∈ I , for PE -almost
every e ∈ E and for all x ∈ X ,

xi = fi(x, e) ⇐⇒ xi = f̃i(x, e).

Thus, two equivalent SCMs can only differ in terms of their causal mechanism.
Importantly, equivalent SCMs have the same solutions and, as we will see in
Sections 2.2.4 and 2.2.5, they have the same causal and counterfactual semantics
(see Definitions 2.2.12 and 2.2.17, respectively). This equivalence relation on the set
of all SCMs gives rise to the quotient set of equivalence classes of SCMs.

2.2.2 The (augmented) graph

We will now define two types of graphs that can be used for representing structural
properties of the SCM. These graphical representations are related to Wright’s
path diagrams (Wright, 1921). The structural properties of the functional relations

6 An attempt at coarsening this notion of equivalence by replacing the quantifier “for all x ∈ X ” by
“for almost every x ∈ X under the observational distribution PX” will not lead to a well-defined
equivalence relation, since in general the observational distribution PX may be nonunique or even
nonexistent. Refining it by replacing the quantifier “for PE -almost every e ∈ E” by “for all e ∈ E”
would make it too fine for our purposes, since we assume the exogenous distribution to be fixed and
we assume as usual that random variables that are almost surely identical are indistinguishable in
practice. Note that the “for PE -almost every e ∈ E” and “for all x ∈ X ” quantifiers do not commute
in general (see Example 2.D.5)

7 We may extend this definition to allow J̃ 6= J and for a larger class of SCMs such that the exogenous
distribution does not factorize. Then, for anyM that satisfies Definition 2.2.1, except for that it may
have a non-factorizing exogenous distribution, there exists an equivalent SCM with a factorizing
exogenous distribution (and a different J ); the latter can be obtained by partitioning the exogenous
components into independent tuples. This motivates why we can restrict ourselves in Definition 2.2.1
to factorizing exogenous distributions only. For some more discussion on the representation of latent
confounders, see also Example 2.D.6.
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between variables modeled by an SCM are specified by the causal mechanism of
the SCM and can be encoded in an (augmented) graph. For the graphical notation
and standard terminology on directed (mixed) graphs that is used throughout this
chapter, we refer the reader to Appendix 2.A.1.

We first define the parents of an endogenous variable.

Definition 2.2.6 (Parent). Let M = 〈I ,J ,X ,E , f , PE 〉 be an SCM. We call k ∈
I ∪ J a parent of i ∈ I if and only if there does not exist a measurable function8

f̃i : X \k × E\k → Xi such that for PE -almost every e ∈ E and for all x ∈ X ,

xi = fi(x, e) ⇐⇒ xi = f̃i(x\k, e\k).

Exogenous variables have no parents by definition. These parental relations are
preserved under the equivalence relation ≡ on SCMs. They can be represented by a
directed graph or a directed mixed graph.9

Definition 2.2.7 (Graph and augmented graph). LetM = 〈I ,J ,X ,E , f , PE 〉 be an
SCM. We define:

1. the augmented graph Ga(M) as the directed graph with nodes I ∪ J and directed
edges u→ v if and only if u ∈ I ∪ J is a parent of v ∈ I ;

2. the graph G(M) as the directed mixed graph with nodes I , directed edges u→ v if
and only if u ∈ I is a parent of v ∈ I and bidirected edges u↔ v if and only if there
exists a j ∈ J that is a parent of both u ∈ I and v ∈ I .

We call the mappings Ga and G, that map M to Ga(M) and G(M), the augmented
graph mapping and the graph mapping, respectively.

In particular, the augmented graph contains no directed edges pointing toward
an exogenous variable, that is, u ∈ I ∪ J cannot be a parent of v ∈ J , because they
are not functionally related through the causal mechanism. We call a directed edge
i→ i in Ga(M) and G(M) (here, i is a parent of itself) a self-cycle at i. By definition,
the mappings Ga and G are invariant under the equivalence relation ≡ on SCMs,
and hence the equivalence class of an SCMM is mapped to a unique augmented
graph Ga(M) and a unique graph G(M).

Example 2.2.8 (Graphs of an SCM). LetM = 〈5, 3, R5, R3, f , PR3〉 be an SCM with
causal mechanism given by

f1(x, e) = x1 − x2
1 + αe2

1 , f3(x, e) = −x4 + e2 , f5(x, e) = x4 · e3 ,

f2(x, e) = x1 + x3 + x4 + e1 , f4(x, e) = x2 + e2 ,

8 For X = ∏i∈I Xi, I some index set, I ⊆ I and k ∈ I , we denote X \I = ∏i∈I\I Xi and X \k =
∏i∈I\{k} Xi, and similarly for their elements.

9 A directed mixed graph G = (V , E ,B) consists of a set of nodes V , a set of directed edges E and a set of
bidirected edges B (see Definition 2.A.1 for a more precise definition).
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Figure 2.2: The augmented graph (left) and the graph (center) of the SCM M of Exam-
ple 2.2.8 and the graph of the intervened SCM Mdo({3},1) of Example 2.2.16

(right).

where α 6= 0 and PR3 is a product of three probability measures PR over R that are
non-degenerate. The augmented graph Ga(M) and the graph G(M) ofM are depicted10

in Figure 2.2 (left and center). Observe that if α had been equal to zero, then the endogenous
variable 1 would not have any parents in Ga(M), that is, it would not have a self-cycle and
directed edge from any exogenous variables in Ga(M), and it would not have a self-cycle
and bidirected edge from any other variable in G(M). Moreover, if one of the probability
measures PR over R were degenerate, then some of the directed edges from the exogenous
variables to the endogenous variables in the augmented graph Ga(M) and bidirected edges
in the graph G(M) would be missing.

As is illustrated in this example, the augmented graph provides a more detailed
representation than the graph. Therefore, we use the augmented graph as the
standard graphical representation for SCMs, unless stated otherwise. For an SCM
M, we denote the sets paGa(M)(U ), chGa(M)(U ), anGa(M)(U ), etc., for some subset
U ⊆ I ∪ J , by respectively pa(U ), ch(U ), an(U ), etc., when the notation is clear
from the context.

Definition 2.2.9. We call an SCMM acyclic if Ga(M) is a directed acyclic graph (DAG).
Otherwise, we callM cyclic.

Equivalently, an SCMM is acyclic if G(M) is an acyclic directed mixed graph
(ADMG) (Richardson, 2003). Acyclic SCMs are also known as semi-Markovian
SCMs (Tian, 2002; Pearl, 2009). A commonly considered class of acyclic SCMs
are the Markovian SCMs, which are acyclic SCMs for which each exogenous
variable has at most one child. Several Markov properties were first shown for these
models (Lauritzen et al., 1990; Tian, 2002; Pearl, 2009).

2.2.3 Structurally minimal representations

We have discussed an equivalence relation between SCMs in Section 2.2.1. In
this subsection, we show that for each SCM there exists a representative of the
equivalence class of that SCM for which each component of the causal mechanism
does not depend on its nonparents (see also Peters, Janzing, and Schölkopf, 2017).

10 For visualizing an (augmented) graph, we adapt the common convention of using random variables,
with the index set as a subscript, instead of using the index set itself. With a slight abuse of notation,
we still use the random variables notation in the (augmented) graph in the case that the SCM has no
solution at all.
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Definition 2.2.10 (Structurally minimal SCM). Let M = 〈I ,J ,X ,E , f , PE 〉 be
an SCM. We call M structurally minimal if for all i ∈ I there exists a mapping
f̃i : X pa(i) × Epa(i) → Xi such that fi(x, e) = f̃i(xpa(i), epa(i)) for all e ∈ E and all
x ∈ X .

We already encountered a structurally minimal SCMM in Example 2.2.8. Taking
instead α = 0 in that example gives an SCM M that is not structurally minimal,
since the endogenous variable 1 is then not a parent of itself, while f1(x, e) depends
on x1. However, the equivalent SCM where we have replaced the causal mechanism
of 1 by f1(x, e) = 0 yields a structurally minimal SCM. In general, there always
exists an equivalent structurally minimal SCM.

Proposition 2.2.11 (Existence of a structurally minimal SCM). For an SCMM =

〈I ,J ,X ,E , f , PE 〉, there exists an equivalent SCM M̃ = 〈I ,J ,X ,E , f̃ , PE 〉 that is
structurally minimal.

For a causal mechanism f : X × E → X and a subset U ⊆ I , we write fU :
X × E → X U for the U components11 of f . A structurally minimal representation
is compatible with the (augmented) graph, in the sense that for every U ⊆ I
there exists a unique measurable mapping f̃U : X pa(U ) × Epa(U ) → X U such that
fU (x, e) = f̃U (xpa(U ), epa(U )) for all e ∈ E and all x ∈ X . Moreover, for any U ⊆ I
there exists a unique measurable mapping f̃an(U ) : X an(U ) × Ean(U ) → X an(U ) with
fan(U )(x, e) = f̃U (xan(U ), ean(U )) for all e ∈ E and all x ∈ X .

2.2.4 Interventions

To define the causal semantics of SCMs, we consider here an idealized class of
interventions introduced by Pearl (2009) that we refer to as perfect interventions.
Other types of interventions, like mechanism changes (Tian and Pearl, 2001), fat-
hand interventions (Eaton and Murphy, 2007), activity interventions (Mooij and
Heskes, 2013) and stochastic versions of all these are at least as relevant, but we do
not consider them here.

Definition 2.2.12 (Perfect intervention on an SCM). Let M = 〈I ,J ,X ,E , f , PE 〉
be an SCM, I ⊆ I a subset of endogenous variables and ξ I ∈ X I a value. The perfect
intervention do(I, ξ I) mapsM to the SCMMdo(I,ξ I) := 〈I ,J ,X ,E , f̃ , PE 〉, where the
intervened causal mechanism f̃ is given by

f̃i(x, e) =

ξi i ∈ I

fi(x, e) i ∈ I \ I .

This operation do(I, ξ I) preserves the equivalence relation (see Definition 2.2.5)
on the set of all SCMs, and hence this mapping induces a well-defined mapping on
the set of equivalence classes of SCMs. Previous work has considered interventions

11 For U = ∅, we always consider the trivial mapping f∅ : X × E → X∅ where X∅ is the singleton 1.
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only on a specific subset of endogenous variables (Rubenstein et al., 2017; Beckers
and Halpern, 2019; Blom, Bongers, and Mooij, 2019). Instead, we assume that we
can intervene on any subset of endogenous variables in the model.

We define an analogous operation do(I) on directed mixed graphs.

Definition 2.2.13 (Perfect intervention on a directed mixed graph). Let G = (V , E ,B)
be a directed mixed graph and I ⊆ V a subset. The perfect intervention do(I) maps G to
the directed mixed graph do(I)(G) := (V , Ẽ , B̃), where Ẽ = E \ {v → i : v ∈ V , i ∈ I}
and B̃ = B \ {v↔ i : v ∈ V , i ∈ I}.

This operation simply removes all incoming edges on the nodes in I. The two
notions of intervention are compatible with the (augmented) graph mapping.

Proposition 2.2.14. Let M = 〈I ,J ,X ,E , f , PE 〉 be an SCM, I ⊆ I a subset of
endogenous variables and ξ I ∈ X I a value. Then

(
Ga ◦ do(I, ξ I)

)
(M) =

(
do(I) ◦

Ga)(M) and
(
G ◦ do(I, ξ I)

)
(M) =

(
do(I) ◦ G

)
(M).

The two notions of perfect intervention satisfy the following elementary proper-
ties.

Proposition 2.2.15. For an SCM and a directed mixed graph, we have the following
properties:

1. perfect interventions on disjoint subsets of variables commute;

2. acyclicity is preserved under perfect intervention.

The following example shows that an SCM with a solution may not have a
solution anymore after performing a perfect intervention on the SCM, and vice
versa that an SCM without a solution may yield an SCM with a solution after
intervention.

Example 2.2.16 (Intervened SCM and its graphs). Consider the SCM M of Exam-
ple 2.2.8 which has a solution if and only if α ≥ 0. Applying the perfect intervention
do({3}, 1) toM gives the intervened modelMdo({3},1) with the intervened causal mecha-
nism

f̃1(x, e) = x1 − x2
1 + αe2

1 , f̃3(x, e) = 1 , f̃5(x, e) = x4 · e3 ,

f̃2(x, e) = x1 + x3 + x4 + e1 , f̃4(x, e) = x2 + e2 ,

for which the graph G(Mdo({3},1)) is depicted in Figure 2.2 (right). This is an example
where a perfect intervention leads to an intervened SCMMdo({3},1) that does not have a
solution anymore. In addition, performing a perfect intervention do({4}, 1) onMdo({3},1)
yields again an SCM with a solution for α ≥ 0.

Recall that for each solution X of an SCM M we call the distribution PX the
observational distribution ofM associated to X. For cyclic SCMs, the observational
distribution is in general not unique.12 For example, the SCMM of Example 2.2.8

12 In order to assure the existence of a unique observational distribution it is common to consider only
SCMs for which the structural equations have a unique solution (see, e.g., Definition 7.1.1 in (Pearl,
2009)). Although these SCMs induce a unique observational distribution, they generally do not induce
a unique distribution after a perfect intervention.
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has two different observational distributions if α > 0. Similarly, an intervened
SCM may induce a distribution that is not unique. Whenever the intervened SCM
Mdo(I,ξ I) has a solution X we therefore call the distribution PX the interventional
distribution ofM under the perfect intervention do(I, ξ I) associated to X.13

2.2.5 Counterfactuals

The causal semantics of an SCM are described by the interventions on the SCM.
Adding another layer of complexity, one can describe the counterfactual semantics
of an SCM by the interventions on the so-called twin SCM, an idea introduced
in Balke and Pearl (1994).

Definition 2.2.17 (Twin SCM). Let M = 〈I ,J ,X ,E , f , PE 〉 be an SCM. The twin
operation mapsM to the twin structural causal model (twin SCM)

Mtwin := 〈I ∪ I ′,J ,X ×X ,E , f̃ , PE 〉 ,

where I ′ = {i′ : i ∈ I} is a copy of I and the causal mechanism f̃ : X ×X × E →
X ×X is the measurable function given by f̃ (x, x′, e) =

(
f (x, e), f (x′, e)

)
.

The twin operation on SCMs preserves the equivalence relation ≡ on the set of
all SCMs. We define an analogous twin operation twin(I) on directed graphs.

Definition 2.2.18 (Twin graph). Let G = (V , E) be a directed graph and I ⊆ V a subset
such that J := V \ I is exogenous, that is, paG(J ) = ∅. The twin(I) operation maps
G to the twin graph w.r.t. I defined by twin(I)(G) := (Ṽ , Ẽ), where:

1. Ṽ = V ∪ I ′, where I ′ is a copy of I ,

2. Ẽ = E ∪ E ′, where E ′ is given by

E ′ = {j→ i′ : j ∈ J , i ∈ I , j→ i ∈ E} ∪ {ĩ′ → i′ : ĩ, i ∈ I , ĩ→ i ∈ E}

with i′, ĩ′ ∈ I ′ the respective copies of i, ĩ ∈ I .

Twin operations are compatible with the augmented graph mapping and preserve
acyclicity.

Proposition 2.2.19. LetM = 〈I ,J ,X ,E , f , PE 〉 be an SCM. Then (Ga ◦ twin)(M) =

(twin(I) ◦ Ga)(M).

Proposition 2.2.20. For SCMs and directed graphs, we have that acyclicity is preserved
under the twin operation.

The perfect intervention and the twin operation for SCMs and directed graphs
commute with each other in the following way.

13 In the literature, one often finds the notation p(x) and p(x |do(XI = xI)) for the densities of the
observational and interventional distribution, respectively, in case these are uniquely defined by the
SCM (e.g., Pearl, 2009).
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Proposition 2.2.21. LetM = 〈I ,J ,X ,E , f , PE 〉 be an SCM and G = (V , E) a directed
graph. Then we have that perfect intervention commutes with the twin operation on both:

1. the SCMM: for a subset I ⊆ I and value ξ I ∈ X I , (do(I∪ I′, ξ I∪I′)) ◦ twin)(M) =

(twin ◦ do(I, ξ I))(M), and

2. the directed graph G: for subsets I ⊆ I ⊆ V such that J := V \ I is exogenous,
(do(I ∪ I′) ◦ twin(I))(G) = (twin(I) ◦ do(I))(G),

where I ′ is the copy of I in I ′ and ξ I′ = ξ I .

Whenever the intervened twin SCM (Mtwin)do( Ĩ,ξ Ĩ)
, where Ĩ ⊆ I ∪ I ′ and

ξ Ĩ ∈ X Ĩ , has a solution (X, X ′), we call the distribution P(X,X ′) the counterfac-
tual distribution ofM under the perfect intervention do( Ĩ, ξ Ĩ) associated to (X, X ′). In
Example 2.D.3, we provide an example of how counterfactuals can be sensibly
formulated for a well-known market equilibrium model described in terms of a
cyclic SCM.

The interpretation of counterfactual statements has received a lot of attention in
the literature (Lewis, 1979; Balke and Pearl, 1994; Roese, 1997; Byrne, 2007; Pearl,
2009). For acyclic graphs, an alternative graphical approach to counterfactuals
is the framework of Single World Intervention Graphs (SWIGs) (Richardson and
Robins, 2013). One topic of discussion is that there exist SCMs that induce the same
observational and interventional distributions, but differ in their counterfactual
statements (Dawid, 2002) (see also Example 2.D.7). This raises the question how
one can estimate such SCMs from data.

2.3 solvability

In this section, we introduce the notions of solvability and unique solvability
with respect to a subset of the endogenous variables of an SCM. They describe
the existence and uniqueness of measurable solution functions for the subsystem
of structural equations that correspond with a certain subset of the endogenous
variables. These notions play a central role in formulating sufficient conditions under
which several properties of acyclic SCMs may be extended to the cyclic setting. For
example, we show that solvability of an SCM is a sufficient and necessary condition
for the existence of a solution of an SCM. Further, unique solvability of an SCM
implies the uniqueness of the induced observational distribution.

2.3.1 Definition of solvability

Intuitively, one can think of the structural equations corresponding to a subset of
endogenous variables O ⊆ I as a description of how the subsystem formed by
the variables O interacts with the rest of the system I \ O through the variables
pa(O) \ O. A solution function w.r.t. O assigns each input value (xpa(O)\O, epa(O))
of this subsystem to a specific output value xO of the subsystem. This is formalized
as follows.
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Definition 2.3.1 (Solvability). LetM = 〈I ,J ,X ,E , f , PE 〉 be an SCM. We callM
solvable w.r.t. O ⊆ I if there exists a measurable mapping gO : X pa(O)\O × Epa(O) →
XO such that for PE -almost every e ∈ E and for all x ∈ X ,

xO = gO(xpa(O)\O, epa(O)) =⇒ xO = fO(x, e) .

We then call gO a measurable solution function w.r.t. O forM. We callM solvable if
it is solvable w.r.t. I .

By definition, solvability w.r.t. a subset respects the equivalence relation ≡ on
SCMs. The measurable solution functions w.r.t. a certain subset do not always
exist, and if they exist, they are not always uniquely defined. For example, for the
SCMM in Example 2.2.8, the measurable solution functions w.r.t. {1} are given by

g±1 (e1) = ±
√

αe2
1 if and only if α ≥ 0.

The following theorem states that various possible notions of “solvability” are
equivalent.

Theorem 2.3.2 (Sufficient and necessary conditions for solvability). For an SCM
M = 〈I ,J ,X ,E , f , PE 〉, the following are equivalent:

1. M has a solution (see Definition 2.2.3);

2. for PE -almost every e ∈ E the structural equations x = f (x, e) have a solution
x ∈ X ;

3. M is solvable (see Definition 2.3.1).

While in the acyclic case, the above theorem is almost trivial, in the cyclic case the
measure-theoretic aspects are not that obvious. In particular, to prove the existence
of a measurable solution function g : Epa(I) → X in case the structural equations
have a solution for almost every e ∈ E , we make use of a strong measurable
selection theorem (see Theorem 2.F.8 or (Kechris, 1995)). This theorem implies
that if there exists a solution X : Ω → X , then there necessarily exists a random
variable E : Ω → E and a mapping g : Epa(I) → X such that g(Epa(I)) is a
solution. However, it does not imply that there necessarily exists a random variable
E : Ω → E and a mapping g : Epa(I) → X such that X = g(Epa(I)) holds a.s., for
example, if X is a nontrivial mixture of such solutions (see Example 2.D.8).

Solvability w.r.t. a strict subset of I is in general neither sufficient nor necessary
for the existence of a (global) solution of the SCM. Consider, for example, the
SCM M in Example 2.2.8 with α < 0. Even though this SCM is solvable w.r.t.
{2, 3, 4}, it is not (globally) solvable, and hence does not have any solution. In
Proposition 2.B.1, we provide a sufficient condition for solvability w.r.t. a strict
subset of I that is similar to condition (2) in Theorem 2.3.2 in the sense that it
is formulated in terms of the solutions of (a subset of) the structural equations
without requiring measurability of the solutions. For the class of linear SCMs, we
provide in Proposition 2.C.2 a sufficient and necessary condition for solvability w.r.t.
a subset of I .
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X1 X2

X3 X4G(M)

X1 X2

X3 X4G(M̃)
X1 X2G(M̄)

X1 X2G(M̂)

Figure 2.3: Left: The graphs of the observationally equivalent SCMs M and M̃ of Ex-
amples 2.3.5 and 2.4.2, respectively. Right: The graphs of the interventionally
equivalent SCMs M̄ and M̂ of Example 2.4.4.

2.3.2 Unique solvability

The notion of unique solvability w.r.t. a subset O ⊆ I is similar to the notion
of solvability, but with the additional requirement that the measurable solution
function gO : X pa(O)\O × Epa(O) → XO is unique up to a PE -null set.

Definition 2.3.3 (Unique solvability). LetM = 〈I ,J ,X ,E , f , PE 〉 be an SCM. We
call M uniquely solvable w.r.t. O ⊆ I if there exists a measurable mapping gO :
X pa(O)\O × Epa(O) → XO such that for PE -almost every e ∈ E and for all x ∈ X ,

xO = gO(xpa(O)\O, epa(O)) ⇐⇒ xO = fO(x, e) .

We callM uniquely solvable if it is uniquely solvable w.r.t. I .

If M ≡ M̃ and M is uniquely solvable w.r.t. O, then M̃ is uniquely solvable
w.r.t. O, too, and the same mapping gO is a measurable solution function w.r.t. O
for bothM and M̃.

The following result explains why the notions of (unique) solvability do not play
an important role in the theory of acyclic SCMs.

Proposition 2.3.4. An acyclic SCMM = 〈I ,J ,X ,E , f , PE 〉 is uniquely solvable w.r.t.
every subset O ⊆ I .

We now illustrate that also cyclic SCMs can be uniquely solvable w.r.t. every
subset.

Example 2.3.5 (Cyclic SCM, uniquely solvable w.r.t. each subset). Consider the SCM
M = 〈I ,J ,X ,E , f , PE 〉 with I = J = 4, Xi = Ei = (−1, 1) for i = 1, 2, and
Xi = Ei = R for i = 3, 4, the causal mechanism given by

f1(x, e) = e1 , f3(x, e) = x1x4 + e3 ,

f2(x, e) = e2 , f4(x, e) = x2x3 + e4 ,

and PE the standard-normal distribution on R4 restricted14 to E . This SCMM is uniquely
solvable w.r.t. every subset and its (augmented) graph includes a cycle (see Figure 2.3).

14 The restriction of a probability measure P, of a probability space (Ω,F , P), on a measurable subset

O ∈ F is the restricted probability measure PO :=
P|FO
P(O) , of the probability space (O,FO , PO), where

FO := {V ∩O : V ∈ F}.
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Theorem 2.3.2 provides sufficient and necessary conditions for (global) solvability.
The next theorem states that under the additional uniqueness requirement there
exists a sufficient and necessary condition for unique solvability w.r.t. any subset
(for solvability w.r.t. a subset we only have the sufficient condition provided in
Proposition 2.B.1), and moreover, that all solutions of a uniquely solvable SCM
induce the same observational distribution.

Theorem 2.3.6 (Sufficient and necessary conditions for unique solvability). Let
M = 〈I ,J ,X ,E , f , PE 〉 be an SCM and O ⊆ I a subset. The following are equivalent:

1. for PE -almost every e ∈ E and for all x\O ∈ X \O the structural equations

xO = fO(x, e)

have a unique solution xO ∈ XO;

2. M is uniquely solvable w.r.t. O.

Furthermore, ifM is uniquely solvable, then there exists a solution, and all solutions have
the same observational distribution.

It is well known that under acyclicity the observational distribution is unique.
Theorem 2.3.6 generalizes this result to settings with cycles. For linear SCMs, the
unique solvability condition w.r.t. a subset is equivalent to a matrix invertibility
condition (see Proposition 2.C.3).

In general, (unique) solvability w.r.t. O ⊆ I does not imply (unique) solvability
w.r.t. a strict superset O ( V ⊆ I nor w.r.t. a strict subset W ( O (see Exam-
ple 2.B.2). Moreover, (unique) solvability is in general not preserved under unions
and intersections (see Appendix 2.B.3).

2.3.3 Self-cycles

One can think of a structural equation of a single endogenous variable i ∈ I as
describing a small subsystem that interacts with the rest of the system. If the output
xi of this subsystem is uniquely determined by the input (x\i, e) from the rest of
the system (up to a PE -null set), then i is not a parent of itself (see Definition 2.2.6).

Proposition 2.3.7 (Self-cycles). The SCMM = 〈I ,J ,X ,E , f , PE 〉 is uniquely solvable
w.r.t. {i} for i ∈ I if and only if Ga(M) (or G(M)) has no self-cycle i→ i at i ∈ I .

A self-cycle at an endogenous variable denotes that that variable is not uniquely
determined by its parents, up to a PE -null set. This implies that an SCM with
a self-cycle at an endogenous variable in its graph can be either solvable, or not
solvable, w.r.t. that variable. For the SCMM of Example 2.2.8, we have indeed that
it is solvable w.r.t. {1} for α > 0, while for α < 0 it is not. For linear SCMs with
structural equations Xi = ∑j∈I BijXj + ∑k∈J ΓikEk, the endogenous variable i ∈ I
has a self-cycle if and only if Bii = 1 (see also Appendix 2.C).
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2.3.4 Interventions

The property of (unique) solvability is in general not preserved under perfect
intervention. For example, a (uniquely) solvable SCM can lead to a nonuniquely
solvable SCM after intervention, which either has no solution or has solutions with
multiple induced distributions (see, e.g., Examples 2.2.16 and 2.D.9). A sufficient
condition for the intervened SCM to be (uniquely) solvable is that the original
SCM has to be (uniquely) solvable w.r.t. the subset of nonintervened endogenous
variables.

Proposition 2.3.8. LetM = 〈I ,J ,X ,E , f , PE 〉 be an SCM that is (uniquely) solvable
w.r.t. O ⊆ I . Then, for any set I such that pa(O) \ O ⊆ I ⊆ I \ O and value ξ I ∈ X I

the intervened SCMMdo(I,ξ I) is (uniquely) solvable w.r.t. O ∪ I.

Proposition 2.3.4 shows that acyclic SCMs are uniquely solvable w.r.t. every
subset and hence are uniquely solvable after every perfect intervention. This also
directly follows from the fact that acyclicity is preserved under perfect intervention
(see Proposition 2.2.15). Moreover, since acyclicity is preserved under the twin
operation (see Proposition 2.2.20), an acyclic SCM induces unique observational,
interventional and counterfactual distributions.

2.3.5 Ancestral (unique) solvability

We saw that, in general, solvability w.r.t. O ⊆ I does not imply solvability w.r.t. a
strict subset of O. Here we show that it does imply solvability w.r.t. the ancestral
subsets in G(M)O, that is, in the induced subgraph of the graph G(M) on O. A
subset A ⊆ O is called an ancestral subset in G(M)O if A = anG(M)O (A), where
anG(M)O (A) are the ancestors of A according to the induced subgraph15 G(M)O.

Definition 2.3.9 (Ancestral (unique) solvability). Let M = 〈I ,J ,X ,E , f , PE 〉 be
an SCM. We callM ancestrally (uniquely) solvable w.r.t. O ⊆ I ifM is (uniquely)
solvable w.r.t. every ancestral subset in G(M)O. We call M ancestrally (uniquely)
solvable if it is ancestrally (uniquely) solvable w.r.t. I .

Proposition 2.3.10 (Solvability is equivalent to ancestral solvability). The SCM
M = 〈I ,J ,X ,E , f , PE 〉 is solvable w.r.t. the subset O ⊆ I if and only if M is
ancestrally solvable w.r.t. O.

A similar result does not hold for unique solvability. Although ancestral unique
solvability w.r.t. O ⊆ I implies unique solvability w.r.t. O, the converse does not
hold in general, as the following example illustrates.

15 Here, one can also use the augmented graph Ga(M) on O since anG(M)O (A) = anGa(M)O (A) for
every subset A ⊆ O ⊆ I .
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X1 X2 X3 X4

L
X1 X4

marg(L)

Figure 2.4: The graphs of the SCM M (left) of Example 2.3.11 and the marginal SCM
Mmarg({2,3}) (right) of Example 2.5.10.

Example 2.3.11 (Unique solvability w.r.t. O does not imply ancestral unique solv-
ability w.r.t. O). Consider the SCM M = 〈4, 1, R4, R, f , PR〉 with causal mechanism
given by

f1(x, e) = e , f3(x, e) = x3 ,

f2(x, e) = x2 · (1− 1{0}(x1 − x3)) + 1 , f4(x, e) = x3 ,

and PR the standard-normal measure on R. This SCM is uniquely solvable w.r.t. the set
{2, 3}, and thus solvable w.r.t. this set. Although it is solvable w.r.t., the ancestral subset
{3} in G(M){2,3}, depicted in Figure 2.4 (left), it is not uniquely solvable w.r.t. this subset,
because the structural equation x3 = x3 holds for any x3 ∈ R. Hence, it is not ancestrally
uniquely solvable w.r.t. {2, 3}.

However, for the class of linear SCMs we have that unique solvability w.r.t. O
always implies ancestral unique solvability w.r.t. O (see Proposition 2.C.4).

Although in general unique solvability is not preserved under unions, in Proposi-
tion 2.B.4 we show that if an SCM is uniquely solvable w.r.t. two ancestral subsets
and w.r.t. their intersection, then it is uniquely solvable w.r.t. their union. In general,
the property of ancestral unique solvability is not preserved under perfect interven-
tion, as can be seen in Example 2.D.9. The notion of ancestral unique solvability
will appear in various results in Sections 2.5 and 2.6.

2.4 equivalences

In Section 2.2, we already encountered an equivalence relation on the class of
SCMs (see Definition 2.2.5). The (augmented) graph of an SCM, its solutions and its
induced observational, interventional and counterfactual distributions are preserved
under this equivalence relation. In this section, we give several coarser equivalence
relations on the class of SCMs: observational, interventional and counterfactual
equivalence.

2.4.1 Observational equivalence

Observational equivalence is the property that two SCMs are indistinguishable on
the basis of their observational distributions.

Definition 2.4.1 (Observational equivalence). Two SCMsM = 〈I ,J ,X ,E , f , PE 〉
and M̃ = 〈Ĩ , J̃ , X̃ , Ẽ , f̃ , PẼ 〉 are observationally equivalent w.r.t. O ⊆ I ∩ Ĩ , denoted
byM ≡obs(O) M̃, if XO = X̃O and for all solutions X ofM there exists a solution X̃
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of M̃ such that PXO = PX̃O and for all solutions X̃ of M̃ there exists a solution X of
M such that PXO = PX̃O .M and M̃ are called observationally equivalent if they are
observationally equivalent w.r.t. I = Ĩ .

Equivalent SCMs have the same solutions, and hence they are observationally
equivalent w.r.t. every subset O ⊆ I . However, observational equivalence does not
imply equivalence.

Example 2.4.2 (Observational equivalence does not imply equivalence). Consider the
SCM M̃ that is the same asM of Example 2.3.5 but with the causal mechanism f̃ given by

f̃1(x, e) := e1 , f̃3(x, e) :=
x1e4 + e3

1− x1x2
,

f̃2(x, e) := e2 , f̃4(x, e) :=
x2e3 + e4

1− x1x2
.

This SCM M̃ is observationally equivalent to the SCMM. Because both SCMs have a
different (augmented) graph they are not equivalent to each other (see Figure 2.3).

This example shows that if two SCMsM and M̃ are observationally equivalent,
then their associated augmented graphs Ga(M) and Ga(M̃) are not necessarily
equal to each other.

2.4.2 Interventional equivalence

We consider two SCMs to be interventionally equivalent if they induce the same
interventional distributions under all perfect interventions.

Definition 2.4.3 (Interventional equivalence). Two SCMsM = 〈I ,J ,X ,E , f , PE 〉
and M̃ = 〈Ĩ , J̃ , X̃ , Ẽ , f̃ , PẼ 〉 are interventionally equivalent w.r.t.O ⊆ I ∩ Ĩ , denoted
by M ≡int(O) M̃, if XO = X̃O and for every I ⊆ O and every value ξ I ∈ X I their
intervened modelsMdo(I,ξ I) and M̃do(I,ξ I) are observationally equivalent with respect to O.
M and M̃ are called interventionally equivalent if they are interventionally equivalent
w.r.t. I = Ĩ .

Equivalent SCMs have the same solutions under every perfect intervention, and
hence they are interventionally equivalent w.r.t. every subset O ⊆ I . SCMs that are
interventionally equivalent w.r.t. a subset O ⊆ I are interventionally equivalent
w.r.t. every strict subset W ( O. But in general, they are not interventionally
equivalent w.r.t. a strict superset O ( V ⊆ I , as can be seen in Example 2.4.2,
where the SCMs M and M̃ are interventionally equivalent w.r.t. {1, 2} but are
not interventionally equivalent. Interventional equivalence w.r.t. O ⊆ I implies
observational equivalence w.r.t. O, since the empty perfect intervention (I = ∅) is
a special case of a perfect intervention. However, observational equivalence w.r.t.
O ⊆ I does not imply interventional equivalence w.r.t. O in general, as can be seen
in Example 2.4.2, where the SCMsM and M̃ are observationally equivalent but
not interventionally equivalent.
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Although interventional equivalence is a finer notion than observational equiva-
lence, we have that if two SCMsM and M̃ are interventionally equivalent, then
their associated augmented graphs Ga(M) and Ga(M̃) are not necessarily equal to
each other.

Example 2.4.4 (Interventionally equivalent SCMs with different graphs). Consider
the SCM M̄ = 〈2, 2, {−1, 1}2, {−1, 1}2, f̄ , PE 〉 and the SCM M̂ that is the same as M̄
except for its causal mechanism f̂ , where the causal mechanisms are given by

f̄1(x, e) = e1 , f̂1(x, e) = e1 ,

f̄2(x, e) = x1e2 , f̂2(x, e) = e2 ,

and PE = PE with E1, E2 ∼ U ({−1, 1}) uniformly distributed and E1⊥⊥ E2. Then M̄ and
M̂ are interventionally equivalent although G(M̄) is not equal to G(M̂) (see Figure 2.3).

Example 2.D.6 showcases an SCM with two endogenous and three exogenous
variables, for which there is no interventionally equivalent SCM (satisfying smooth-
ness constraints) with one exogenous variable taking values in R2 whose first and
second components enter in the first and second structural equation, respectively.
In this sense, representing confounders with dependent exogenous variables can be
nontrivial in nonlinear models.

2.4.3 Counterfactual equivalence

We consider two SCMs to be counterfactually equivalent if their twin SCMs induce
the same counterfactual distributions under every perfect intervention.

Definition 2.4.5 (Counterfactual equivalence). Two SCMsM = 〈I ,J ,X ,E , f , PE 〉
and M̃ = 〈Ĩ , J̃ , X̃ , Ẽ , f̃ , PẼ 〉 are counterfactually equivalent with respect to O ⊆
I ∩ Ĩ , denoted byM≡cf(O) M̃, ifMtwin and M̃twin are interventionally equivalent with
respect to O ∪O′, where O′ corresponds to the copy of O in I ′ ∩ Ĩ ′.M and M̃ are called
counterfactually equivalent if they are counterfactually equivalent with respect to I = Ĩ .

The notion of counterfactual equivalence is coarser than equivalence and finer
than interventional equivalence.

Proposition 2.4.6. For SCMs, we have that equivalence implies counterfactual equivalence
w.r.t. O, which in turn implies interventional equivalence w.r.t. O, for any O ⊆ I .

Interventionally equivalent SCMs that have the same causal mechanism (that
differ only in their exogenous distribution) may not be counterfactually equivalent
(see, e.g., Example 2.D.7). Although the notion of counterfactual equivalence is finer
than the notion of observational and interventional equivalence, the (augmented)
graphs for counterfactually equivalent SCMs are in general not equal to each other
(see Example 2.D.10).
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2.4.4 Relations between equivalences

The definitions of observational, interventional and counterfactual equivalence
provide equivalence relations on the set of all SCMs. For two SCMs to be obser-
vationally, interventionally or counterfactually equivalent w.r.t. O ⊆ I ∩ Ĩ , the
domains of their endogenous variables O have to be equal, that is, XO = X̃O.
Apart from that, the index sets of the endogenous and the exogenous variables, the
spaces of the other endogenous and exogenous variables, the causal mechanism and
the exogenous probability measure may all differ. The observational, interventional
and counterfactual equivalence classes w.r.t. O ⊆ I ∩ Ĩ are related in the following
way (see Proposition 2.4.6):

M and M̃ are equivalent =⇒ M and M̃ are counterfactually equivalent w.r.t. O
=⇒ M and M̃ are interventionally equivalent w.r.t. O
=⇒ M and M̃ are observationally equivalent w.r.t. O .

This hierarchy allows us to compare SCMs at different levels of abstraction and
formally establishes the “ladder” of causation (last two implications) (Shpitser and
Pearl, 2008; Pearl, 2009; Pearl and Mackenzie, 2018).

2.5 marginalizations

In this section, we show how, and under which condition, one can marginalize an
SCM over a subset L ⊆ I of endogenous variables (thereby “hiding” the variables
L), to another SCM on the margin I \ L that is observationally, interventionally and
even counterfactually equivalent with respect to I \ L. In other words, we provide
a formal notion of marginalization and show that this preserves the probabilistic,
causal and counterfactual semantics on the margin.

The problem of marginalization of directed graphical models has been addressed
for acyclic graph structures, for example, ADMGs and mDAGs (see Verma, 1993;
Richardson and Spirtes, 2002; Richardson, 2003; Evans, 2016; Evans, 2018; a.o.), and
more recently in (Forré and Mooij, 2017) for certain graph structures (“HEDGes”)
that may include cycles. Although in the acyclic setting it has been shown that
the marginalization for some of these graph structures preserves the probabilistic
and causal semantics, in the cyclic setting this has only been shown for modular
SCMs (Forré and Mooij, 2017). We show that without the additional structure
of a compatible system of solution functions (see Appendix 2.A.3) one can still
define a marginalization for SCMs under certain local unique solvability conditions.
Intuitively, the idea is that if the state of a subsystem of endogenous variables is
uniquely determined by the parents outside of this subsystem, then one can ignore
the internals of this subsystem by treating it as a “black box” that can be described
by certain measurable solution functions (see Figure 2.4). One can marginalize
over this subsystem by substituting these measurable solution functions into the
rest of the model, thereby removing the functional dependencies on the variables
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of the subsystem from the rest of the system, while preserving the probabilistic,
causal and the counterfactual semantics of the rest of the system. We show that
in general this marginalization operation defined on SCMs does not respect the
latent projection on its associated (augmented) graph, where the latent projection
is a similar marginalization operation defined on directed mixed graphs (Verma,
1993; Tian, 2002; Evans, 2016). We show that under certain stronger local ancestral
unique solvability conditions the marginalization does respect the latent projection.

2.5.1 Marginalization of a structural causal model

Before we show how one can marginalize an SCM w.r.t. a subset of endogenous
variables, we first point out that in general it is not always possible to find an
SCM on the margin that preserves the causal semantics, as the following example
illustrates.

Example 2.5.1 (No SCM on the margin preserves the causal semantics). Consider the
SCMM = 〈3, ∅, R3, 1, f , P1〉 with causal mechanism

f1(x) = x1 + x2 + x3 , f2(x) = x2 , f3(x) = 0 .

Then there exists no SCM M̃ on the endogenous variables {2, 3} that is interventionally
equivalent toM w.r.t. {2, 3}. To see this, suppose there exists such an SCM M̃, then for
every (ξ2, ξ3) ∈ X {2,3} such that ξ2 + ξ3 6= 0 the intervened model M̃do({2,3},(ξ2,ξ3)) has
a solution butMdo({2,3},(ξ2,ξ3)) does not.

More generally, for an SCMM that is not solvable w.r.t. a subset L ⊆ I there is
no SCM M̃ on the endogenous variables I \ L that is interventionally equivalent
w.r.t. I \ L.

The following example illustrates that for an SCM that is uniquely solvable w.r.t.
a subset there exists an SCM on the margin that preserves the causal semantics.

Example 2.5.2 (SCM on the margin that preserves the causal semantics). Consider
the SCM M of Example 2.3.11 that is uniquely solvable w.r.t. the subset L = {2, 3}
(depicted by the gray box in Figure 2.4). Substituting the measurable solution functions gL
into the causal mechanism components f1 and f4 for the remaining endogenous variables
{1, 4} gives a “marginal” causal mechanism f̃1(x, e) := e and f̃4(x, e) := x1. This defines
an SCM M̃ on the margin I \ L = {1, 4} that is interventionally equivalent w.r.t. I \ L
toM.

In general, for an SCM M and a given subset L ⊆ I of endogenous vari-
ables and its complement O = I \ L, we can consider the “subsystem” of struc-
tural equations xL = fL(xL, xO, e). If M is uniquely solvable w.r.t. L with mea-
surable solution function gL : X pa(L)\L × Epa(L) → X L, then for each input
(xpa(L)\L, epa(L)) ∈ X pa(L)\L × Epa(L) of the subsystem, there exists an output
xL ∈ X L, which is unique for PEpa(L)-almost every epa(L) ∈ Epa(L) and for all
xpa(L)\L ∈ X pa(L)\L. We can remove this subsystem of endogenous variables from
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the model by substitution. This leads to a marginal SCM that is observationally, in-
terventionally and counterfactually equivalent to the original SCM w.r.t. the margin,
as we prove in Theorem 2.5.6.

Definition 2.5.3 (Marginalization of an SCM). Let M = 〈I ,J ,X ,E , f , PE 〉 be an
SCM that is uniquely solvable w.r.t. a subset L ⊆ I and let O = I \ L. For gL :
X pa(L)\L × Epa(L) → L, any measurable solution function of M w.r.t. L, we call the
SCM Mmarg(L) := 〈O,J ,XO,E , f̃ , PE 〉 with the marginal causal mechanism f̃ :
XO × E → XO given by

f̃ (xO, e) = fO(gL(xpa(L)\L, epa(L)), xO, e) ,

a marginalization ofM w.r.t. L. We denote by marg(L)(M) the equivalence class of
the marginalizations ofM w.r.t. L.

The marginalization ofM w.r.t. L is defined up to the equivalence ≡ on SCMs,
since the measurable solution functions gL are uniquely defined up to PE -null
sets. With this definition at hand, we can always construct a marginal SCM over a
subset of the endogenous variables of an acyclic SCM by mere substitution (see also
Proposition 2.3.4). Moreover, this definition extends that notion to SCMs that are
uniquely solvable w.r.t. a certain subset. For linear SCMs this condition translates
into a matrix invertibility condition, and since substitution preserves linearity,
marginalization yields a linear marginal SCM (see Proposition 2.C.5).

In general, marginalization is not always defined for all subsets. For instance,
the SCM of Example 2.3.11 cannot be marginalized over the variable 3 (due to
the self-cycle at 3), but can be marginalized over the variables 2 and 3 together. It
follows from Proposition 2.3.7 that we can only marginalize over a single variable if
that variable has no self-cycle. Note that we may introduce new self-cycles if we
marginalize over a subset of variables, as can be seen, for example, from the SCM
M in Example 2.2.8. This SCM has only one self-cycle; however, marginalizing w.r.t.
{2} gives a marginal SCM with another self-cycle at variable 4.

The definition of marginalization satisfies an intuitive property: if we can marginal-
ize over two disjoint subsets after each other, then we can also marginalize over the
union of those subsets at once, and the respective results agree.

Proposition 2.5.4. LetM = 〈I ,J ,X ,E , f , PE 〉 be an SCM that is uniquely solvable
w.r.t. a subset L1 ⊆ I and let L2 ⊆ I be a subset disjoint from L1. ThenMmarg(L1) is
uniquely solvable w.r.t. L2 if and only ifM is uniquely solvable w.r.t. L1 ∪ L2, Moreover,

marg(L2) ◦marg(L1)(M) = marg(L1 ∪ L2)(M) .

In this proposition, L1 and L2 have to be disjoint, since marginalizing first over
L1 gives a marginal SCMMmarg(L1) with endogenous variables I \ L1.

Next, we show that the distributions of a marginal SCM are identical to the
marginal distributions induced by the original SCM. A simple proof of this result
proceeds by showing that both the intervention and the twin operation commute
with marginalization.
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Proposition 2.5.5. Let M be an SCM that is uniquely solvable w.r.t. a subset L ⊆ I .
Then the marginalization marg(L) commutes with both:

1. the perfect intervention do(I, ξ I) for a subset I ⊆ I \ L and a value ξ I ∈ X I , that
is,

(marg(L) ◦ do(I, ξ I))(M) = (do(I, ξ) ◦marg(L))(M) ,

and

2. the twin operation twin, that is,

(marg(L ∪ L′) ◦ twin)(M) = (twin ◦marg(L))(M) ,

where L′ is the copy of L in I ′.

With Proposition 2.5.5 at hand, we can prove the main result of this subsection.

Theorem 2.5.6 (Marginalization of an SCM preserves the observational, causal
and counterfactual semantics). Let M be an SCM that is uniquely solvable w.r.t. a
subset L ⊆ I . Then M and marg(L)(M) are observationally, interventionally and
counterfactually equivalent w.r.t. I \ L.

This shows that our definition of marginalization (Definition 2.5.3) preserves the
probabilistic, causal and counterfactual semantics, under a certain local unique
solvability condition. Moreover, this allows us to marginalize SCMs w.r.t. a certain
subset that do not satisfy the additional assumptions imposed by modular SCMs,
for example, the SCMM of Example 2.3.11 does not have any additional structure
of a compatible system of solution functions, butM can be marginalized w.r.t. the
subset {2, 3} (see also Appendix 2.A.3).

In general, interventional equivalence does not imply counterfactual equiva-
lence (see, e.g., Example 2.D.7). However, for our definition of marginalization
we arrive at a marginal SCM that is not only interventionally equivalent, but also
counterfactually equivalent w.r.t. the margin.

For an SCM M, unique solvability w.r.t. a certain subset L ⊆ I is a sufficient,
but not a necessary condition for the existence of an SCM M̃ on the margin
I \ L such that M and M̃ are counterfactually equivalent w.r.t. I \ L (see, e.g.,
Example 2.D.11). Hence, in certain cases it may be possible to relax the uniqueness
condition.

2.5.2 Marginalization of a graph

We now turn to a marginalization operation for directed mixed graphs, which
we call the latent projection. This name is inspired from a similar construction
on directed mixed graphs in (Verma, 1993). In (Verma, 1993), the authors concen-
trate on a mapping between directed mixed graphs and show that it preserves
conditional independence properties (see also Tian, 2002). In this subsection, we
provide a sufficient condition for the marginalization of an SCM to respect the latent
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projection, that is, that the augmented graph of the marginal SCM is a subgraph of
the latent projection of the augmented graph of the original SCM.

Definition 2.5.7 (Marginalization/latent projection of a directed mixed graph). Let
G = (V , E ,B) be a directed mixed graph and L ⊆ V a subset. The marginalization of
G w.r.t. L or the latent projection of G onto V \ L maps G to the marginal graph
marg(L)(G) := (Ṽ , Ẽ , B̃), where:

1. Ṽ = V \ L,

2. for i, j ∈ Ṽ : i→ j ∈ Ẽ if and only if there exists a directed path

i→ `1 → · · · → `n → j

in G with n ≥ 0 and `1, . . . , `n ∈ L,

3. for i 6= j ∈ Ṽ : i↔ j ∈ B̃ if and only if

a) there exist n, m ≥ 0, `1, . . . , `n ∈ L, ˜̀1, . . . , ˜̀m ∈ L such that

i← l1 ← l2 ← · · · ← `n ↔ ˜̀m → ˜̀m−1 → · · · → ˜̀1 → j

in G, or

b) there exist n, m ≥ 1, `1, . . . , `n ∈ L, ˜̀1, . . . , ˜̀m ∈ L such that

i← l1 ← l2 ← · · · ← `n

and
˜̀m → ˜̀m−1 → · · · → ˜̀1 → j

in G and `n = ˜̀m.

Note that this gives G(M) = marg(J )(Ga(M)) for any SCMM. Further, for a
subgraph H ⊆ G we have marg(L)(H) ⊆ marg(L)(G) for any subset of nodes L.
It does not matter in which order we project out the nodes or if we perform several
projections at once.

Proposition 2.5.8. Let G = (V , E ,B) be a directed mixed graph and L1,L2 ⊆ V two
disjoint subsets. Then

(marg(L1) ◦marg(L2))(G) = (marg(L2) ◦marg(L1))(G) = marg(L1 ∪ L2)(G) .

Similar to the definition of marginalization for SCMs, this definition of the latent
projection commutes with both the (graphical) perfect intervention and the twin
operation.

Proposition 2.5.9. Let G = (V , E ,B) be a directed mixed graph and L, I , I ⊆ V subsets.
Then the marginalization marg(L) commutes with both:

1. perfect intervention do(I) if I is disjoint from L, that is,

(marg(L) ◦ do(I))(G) = (do(I) ◦marg(L))(G) ,
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and

2. the twin operation twin(I) if B = ∅, J := V \ I is exogenous (i.e., paG(J ) = ∅)
and L ⊆ I , that is,

(marg(L ∪ L′) ◦ twin(I))(G) = (twin(I \ L) ◦marg(L))(G) ,

where L′ is the copy of L in I ′.

An example of an SCM for which a marginalization respects the latent projection
is the SCMM of Example 2.2.8. MarginalizingM w.r.t. L = {2} gives a marginal
SCMMmarg(L) with a graph that is a subgraph of the latent projection of the graph
of the SCM M onto I \ L. In general, not all marginalizations respect the latent
projection, as is illustrated in the following example.

Example 2.5.10 (Marginalization does not respect the latent projection). Consider
the SCM M of Example 2.3.11. Although M and its marginalization Mmarg(L) with
L = {2, 3} are interventionally equivalent w.r.t. I \ L = {1, 4}, the graph G(Mmarg(L))
is not a subgraph of the latent projection of G(M) onto I \ L, as can be verified from the
graphs depicted in Figure 2.4.

Under the local ancestral unique solvability condition, which is a stronger con-
dition than the local unique solvability condition (i.e., ancestral unique solvability
w.r.t. a subset implies unique solvability w.r.t. that subset), one can prove that the
marginalization of an SCM respects the latent projection.

Proposition 2.5.11. LetM be an SCM that is ancestrally uniquely solvable w.r.t. a subset
L ⊆ I . Then (

Ga ◦marg(L)
)
(M) ⊆

(
marg(L) ◦ Ga)(M)

and (
G ◦marg(L)

)
(M) ⊆

(
marg(L) ◦ G

)
(M) .

The (augmented) graph of a marginalized SCM can be a strict subgraph of the
corresponding latent projection if, for example, certain paths cancel each other
out after the substitution of the measurable solution function(s) into the causal
mechanism(s) on the margin (see Example 2.D.12). For acyclic SCMs, we recover
with Proposition 2.5.11 the known result that this class is closed under marginal-
ization (see Proposition 2.3.4) (Evans, 2016). For linear SCMs, we have that unique
solvability w.r.t. a subset L holds if and only if ancestral unique solvability w.r.t. L
holds (see Proposition 2.C.4), and hence, a marginalization of a linear SCM always
respects the latent projection.

2.6 markov properties

In this section, we give a short overview of Markov properties for SCMs with cycles.
We make use of the Markov properties that were recently developed by Forré
and Mooij (2017) for HEDGes, a graphical representation that is similar to the
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augmented graph of SCMs. We briefly summarize some of their main results and
apply them to the class of SCMs. In Appendix 2.A.2, we provide a more thorough
introduction and give an intuitive derivation, which can act as an entry point for the
reader into the more extensive discussion of Markov properties provided in Forré
and Mooij (2017).

Markov properties associate a set of conditional independence relations to a
graph. The directed global Markov property for directed acyclic graphs (see Defi-
nitions 2.A.4 and 2.A.6), also known as the d-separation criterion (Pearl, 1985), is
one of the most widely used. It directly extends to a similar property for acyclic
directed mixed graphs (ADMGs) (Richardson, 2003). It does not hold in general for
cyclic SCMs, however, as was already observed earlier (Spirtes, 1994, 1995).

Example 2.6.1 (Directed global Markov property does not hold for cyclic SCM). One
can check that for every solution X of the SCMM of Example 2.3.5, X1 is not independent
of X2 given {X3, X4}. However, the variables X1 and X2 are d-separated given {X3, X4}
in G(M) (see Figure 2.3). Hence the global directed Markov property does not hold here.

Although some progress has been made in the case of discrete (Pearl and Dechter,
1996; Neal, 2000; Forré and Mooij, 2017) and linear models (Spirtes, 1993, 1994, 1995;
Koster, 1996; Richardson, 1996c; Hyttinen, Eberhardt, and Hoyer, 2012; Forré and
Mooij, 2017), only recently a general directed global Markov property has been
introduced for more general cyclic models (Forré and Mooij, 2017), that is based
on σ-separation (see Definition 2.A.16 and 2.A.20), an extension of d-separation.
This notion of σ-separation was derived from the notion of d-separation in the
acyclification of the graph (Forré and Mooij, 2017) (see Definition 2.A.13). The acycli-
fication of a graph generalizes the idea of the collapsed graph developed by Spirtes
(1994) and can, in particular, be applied to the graphs of SCMs. The main idea of
the acyclification is that under the condition that the SCM is uniquely solvable
w.r.t. each strongly connected component, we can replace the causal mechanisms
of these strongly connected components by their measurable solution functions,
which results in an acyclic SCM. This acyclified SCM (see Definition 2.A.11) is
observationally equivalent to the original SCM (see Proposition 2.A.12).

Example 2.6.2 (Construction of an observationally equivalent acyclic SCM). The
SCMM of Example 2.3.5 is uniquely solvable w.r.t. all its strongly connected components,
that is, the subsets {1}, {2} and {3, 4}. Replacing the causal mechanisms of these strongly
connected components by their measurable solution functions gives the observationally
equivalent SCM M̃ of Example 2.4.2. Because M̃ is acyclic (see Figure 2.3) we can apply
the directed global Markov property to M̃. The fact that X1 and X2 are not d-separated
given {X3, X4} in G(M̃) is in line with X1 being dependent of X2 given {X3, X4} for
every solution X of M̃ (and hence ofM).

This acyclification preserves solutions, and d-separation in the acyclification
can directly be translated into σ-separation on the original graph (see Proposi-
tion 2.A.19). This leads to the general directed global Markov property. The follow-
ing theorem summarizes the main results of (Forré and Mooij, 2017) applied to
SCMs.
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Theorem 2.6.3 (Global Markov properties for SCMs (Forré and Mooij, 2017)). Let
M be a uniquely solvable SCM. Then its observational distribution PX exists, is unique
and the following two statements hold:

1. PX satisfies the directed global Markov property (“d-separation criterion”) relative
to G(M) (see Definition 2.A.6) ifM satisfies at least one of the following conditions:

a) M is acyclic;

b) all endogenous spaces Xi are discrete andM is ancestrally uniquely solvable;

c) M is linear (see Definition 2.C.1), each of its causal mechanisms { fi}i∈I has a
non-trivial dependence on at least one exogenous variable, and PE has a density
w.r.t. the Lebesgue measure on RJ .

2. PX satisfies the general directed global Markov property (“σ-separation crite-
rion”) relative to G(M) (see Definition 2.A.20) ifM is uniquely solvable w.r.t. each
strongly connected component of G(M).16

The general directed global Markov property is generally weaker than the directed
global Markov property, since σ-separation implies d-separation. The acyclic case
is well known and was first shown in the context of linear-Gaussian structural
equation models (Spirtes et al., 1998; Koster, 1999). The discrete case fixes the
erroneous theorem by Pearl and Dechter (1996), for which a counterexample was
found by Neal (2000), by adding the ancestral unique solvability condition, and
extends it to allow for bidirected edges in the graph. The linear case is an extension
of existing results for the linear-Gaussian setting without bidirected edges (Spirtes,
1994, 1995; Koster, 1996) to a linear (possibly non-Gaussian) setting with bidirected
edges in the graph.

In constraint-based approaches to causal discovery, one usually assumes the
converse of the (general) directed global Markov property to hold (Spirtes, Gly-
mour, and Scheines, 2000; Pearl, 2009), which is called σ-faithfulness respectively
d-faithfulness (see Definition 2.A.9 and 2.A.23). Meek (1995) showed that for multi-
nomial and linear-Gaussian DAG (i.e., acyclic and causally sufficient SCMs) models,
d-faithfulness holds for all parameter values up to a measure zero set. Up to our
knowledge no such results have been shown in more general parametric or non-
parametric settings (neither for d-faitfhulness in acyclic or cyclic settings, nor for
σ-faithfulness).

16 Since (Forré and Mooij, 2017) also provides results under the weaker condition that an SCM is
solvable (not necessarily uniquely) w.r.t. each strongly connected component of G(M), one might
believe that Theorem 2.6.3.(2) could be generalized to stating that in that case, any of its observational
distributions satisfies the general directed global Markov property. However, that is not true: consider,
for example, the SCMM = 〈2, ∅, R2, 1, f , P1〉 with f1(x) = x1 and f2(x) = x2. ThenM is solvable
w.r.t. each of its strongly connected components {1} and {2}. The solution with X1 = X2, where
X2 has a nondegenerate distribution, shows a dependence between X1 and X2, and thus X1⊥⊥X2
does not hold. In general, all strongly connected components that admit multiple solutions may be
dependent on any other variable(s) in the model.
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2.7 causal interpretation of the graph of scms

In Example 2.4.4, we already saw that sometimes no information in the observa-
tional, interventional and even the counterfactual distributions suffices to decide
whether a directed path or bidirected edge is present in the graph, or not. Here,
we do not attempt to provide a complete characterization of the conditions under
which the presence or absence of a directed path or bidirected edge in the graph
can be identified from the observational and interventional distributions. Instead,
we give sufficient conditions to detect a directed path and bidirected edge in the
graph.

In general, cyclic SCMs may have none, one or multiple induced observational
distributions, and this may change after intervening in the system. Here, we restrict
ourselves to graphs of SCMs where the induced (marginal) observational and
interventional distributions are uniquely defined.

2.7.1 Directed paths and edges

For cyclic SCMs, the causal interpretation of the SCM is not always consistent
with its graph. This can be illustrated with the SCMM of Example 2.5.10. Here,
one sees a difference in the marginal distribution PMdo({1},ξ1)

on X4 for different
values of ξ1, although variable 1 is not an ancestor of variable 4 and each marginal
distribution PMdo({1},ξ1)

on X4 is uniquely defined. This counterintuitive behavior
that an intervention on a nonancestor of a variable can change the distribution
of that variable was already observed by Neal (2000). However, under a specific
unique solvability condition, we obtain a direct causal interpretation for the absence
of a directed edge or directed path in the graph of an SCM.

Proposition 2.7.1 (Sufficient condition for detecting a directed edge in the latent
projection of the graph of an SCM). Consider an SCM M = 〈I ,J ,X ,E , f , PE 〉,
a subset O ⊆ I and i, j ∈ O such that i 6= j. Let ξ I ∈ X I , where I := O \ {i, j},
such that Mdo(I,ξ I) is uniquely solvable w.r.t. anG(Mdo(I,ξ I )

)\i(j). If there exist values

ξi 6= ξ̃i ∈ Xi such that both (Mdo(I,ξ I))do({i},ξi) and (Mdo(I,ξ I))do({i},ξ̃i)
induce unique

marginal distributions on Xj, and these two induced distributions do not coincide, that is,
there exists a measurable set Bj ⊆ Xj such that

P(Mdo(I,ξ I )
)do({i},ξi)

(Xj ∈ Bj) 6= P(Mdo(I,ξ I )
)do({i},ξ̃i)

(Xj ∈ Bj) ,

the directed edge i→ j is present in the latent projection marg(I \ O)(G(M)) of G(M)

on O.

Two cases are of special interest: O = I , which corresponds with a directed edge
i→ j in G(M), and O = {i, j}, which corresponds with a directed path i→ · · · → j
in G(M).

The condition in Proposition 2.7.1 is a sufficient condition for determining
whether a directed edge or path is present in the graph. In general, not all di-
rected edges and paths can be identified from the interventional distributions with
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this sufficient condition. For example, no interventional distribution satisfies the
condition of Proposition 2.7.1 for the SCM M̄ in Example 2.4.4, although there is a
directed edge 1→ 2 in the graph G(M̄).

2.7.2 Bidirected edges

It is well known that there exists a similar sufficient condition for detecting bidi-
rected edges in the graph of an acyclic SCM also known as the common-cause
principle (see, e.g., Pearl, 2009). In the two variables case, this criterion informally
states that there exists a bidirected edge between the variables i and j in the graph
of the SCM, if the marginal interventional distribution of Xj under the intervention
do({i}, xi) differs from the conditional distribution of Xj given Xi = xi (see Exam-
ple 2.D.13). The following proposition provides a generalization of this sufficient
condition for detecting bidirected edges in graphs of SCMs that may include cycles.

Proposition 2.7.2 (Sufficient condition for detecting a bidirected edge in the latent
projection of the graph of an SCM). Consider an SCMM = 〈I ,J ,X ,E , f , PE 〉, a
subset O ⊆ I and i, j ∈ O such that i 6= j. Let ξ I ∈ X I , where I := O \ {i, j}, such that
Mdo(I,ξ I) is uniquely solvable w.r.t. both anG(Mdo(I,ξ I )

)(i) and anG(Mdo(I,ξ I )
)\i(j). Assume

that for every ξi ∈ Xi bothMdo(I,ξ I) and (Mdo(I,ξ I))do({i},ξi) induce a unique marginal
distribution on Xj × Xi and Xj, respectively. If j /∈ anG(Mdo(I,ξ I )

)(i) and there exists a
measurable set Bj ⊆ Xj such that for every version of the regular conditional probability
PMdo(I,ξ I )

(Xj ∈ Bj |Xi = ξi), there exists a value ξi ∈ Xi such that

P(Mdo(I,ξ I )
)do({i},ξi)

(Xj ∈ Bj) 6= PMdo(I,ξ I )
(Xj ∈ Bj |Xi = ξi) ,

then there exists a bidirected edge i↔ j in the latent projection marg(I \ O)(G(M)) of
G(M) on O.

This proposition gives a sufficient condition for determining that a bidirected
edge is present in the graph. In general, not all bidirected edges in the graph can
be identified from the observational, interventional and even the counterfactual
distributions, as we saw in Example 2.D.10. In this example, there exists a bidirected
edge 1 ↔ 2 ∈ G(M) while the density p(x2 |do(X1 = x1)) = p(x2 |X1 = x1) for
all x1 ∈ X1. For the acyclic setting, the above criterion is generally considered as
a universal way to detect a confounder (note that then one can also deal with the
case j ∈ anG(Mdo(I,ξ I )

)(i) by swapping the roles of i and j). If i and j are part of a
cycle, the above sufficient condition cannot be applied, and in that case, to the best
of our knowledge, no simple sufficient conditions for detecting the presence of a
bidirected edge are known.

2.8 simple scms

In this section, we introduce the well-behaved class of simple SCMs. Simple SCMs
satisfy all the local unique solvability conditions to ensure that this class is closed
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under both perfect intervention and marginalization. They extend the subclass
of acyclic SCMs to the cyclic setting, while preserving many of their convenient
properties.

Definition 2.8.1 (Simple SCM). LetM = 〈I ,J ,X ,E , f , PE 〉 be an SCM. We callM
simple if it is uniquely solvable w.r.t. every subset O ⊆ I .

Loosely speaking, an SCM is simple if any subset of its structural equations can
be solved uniquely for its associated variables in terms of the other variables that
appear in these equations. An example of a simple SCM is given in Example 2.D.1.

On simple SCMs one can perform any number of marginalizations (see Defini-
tion 2.5.3) in any order (see Proposition 2.5.4). All these marginalizations respect
the latent projection (see Proposition 2.5.11) and each resulting marginal SCM is
again simple. Moreover, we show that this class is closed under intervention and
the twin operation.

Proposition 2.8.2. The class of simple SCMs is closed under marginalization, perfect
intervention and the twin operation.

The class of simple SCMs contains the acyclic SCMs as a subclass (see Proposi-
tion 2.3.4). In particular, a simple SCM has no self-cycles (see Proposition 2.3.7),
since a self-cycle denotes that that variable cannot be uniquely (up to a PE -null set)
determined by its parents.

From Proposition 2.8.2, it follows that the results summarized in Theorem 2.6.3
also apply to all the observational, interventional and counterfactual distributions
of simple SCMs.

Corollary 2.8.3 (Global Markov properties for simple SCMs). Let M be a simple
SCM. Then the:

1. observational distribution,

2. interventional distribution after perfect intervention on I ⊂ I ,

3. counterfactual distribution after perfect intervention on Ĩ ⊆ I ∪ I ′,

all exist, are unique and satisfy the general directed global Markov property relative
to G(M), do(I)(G(M)) and do( Ĩ)(twin(G(M))), respectively. Moreover, if M sat-
isfies at least one of the three conditions (1a), (1b), (1c) of Theorem 2.6.3, then they
also obey the directed global Markov property relative to G(M), do(I)(G(M)) and
do( Ĩ)(twin(G(M))), respectively.

Many of these properties are also shown to hold for the class of modular SCMs (Forré
and Mooij, 2017), which contains, in particular, the class of simple SCMs (see Ap-
pendix 2.A.3 for more details).

Moreover, simple SCMs satisfy the unique solvability conditions of Proposi-
tion 2.7.1 and 2.7.2, which allows us to define the causal relationships for simple
SCMs in terms of its graph.

Definition 2.8.4 (Causal relationships for simple SCMs). LetM be a simple SCM.
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1. If there exists a directed edge i → j ∈ G(M), that is, i ∈ pa(j), then we call i a
direct cause of j according toM;

2. If there exists a directed path i→ · · · → j in G(M), that is, i ∈ an(j), then we call
i a cause of j according toM;

3. If there exists a bidirected edge i ↔ j ∈ G(M), then we call i and j (latently)
confounded according toM.

In summary, we have the following sufficient conditions for determining the
different causal and confoundedness relationships according to a specific simple
SCMM.

Corollary 2.8.5 (Sufficient conditions for the presence of causal and confoundedness
relationships for simple SCMs). LetM be a simple SCM and i, j ∈ I such that i 6= j
and I := I \ {i, j}. Then:

1. If there exist values ξ I ∈ X I and ξi 6= ξ̃i ∈ Xi and a measurable set Bj ⊆ Xj such
that

P(Mdo(I,ξ I )
)do({i},ξi)

(Xj ∈ Bj) 6= P(Mdo(I,ξ I )
)do({i},ξ̃i)

(Xj ∈ Bj) ,

then i is a direct cause of j according toM, that is, i→ j ∈ G(M);

2. If there exist values ξi 6= ξ̃i ∈ Xi and a measurable set Bj ⊆ Xj such that

PMdo({i},ξi)
(Xj ∈ Bj) 6= PMdo({i},ξ̃i)

(Xj ∈ Bj) ,

then i is a cause of j according toM, that is, i→ · · · → j in G(M);

3. If j /∈ anG(Mdo(I,ξ I )
)(i) and there exist a value ξ I ∈ X I and a measurable set Bj ⊆ Xj

such that for every version of the regular conditional probability PMdo(I,ξ I )
(Xj ∈

Bj |Xi = ξi) there exists a value ξi ∈ Xi such that

P(Mdo(I,ξ I )
)do({i},ξi)

(Xj ∈ Bj) 6= PMdo(I,ξ I )
(Xj ∈ Bj |Xi = ξi) ,

then i and j are confounded according toM, that is, i↔ j ∈ G(M).

For simple SCMs, it is in general not possible to identify all the causal and
confoundedness relationships in the graph from the observational, interventional
or even the counterfactual distributions. Examples 2.4.4 and 2.D.10 show that this
is already impossible for acyclic SCMs without further assumptions.

Finally, there is a connection between SCMs and potential outcomes (Rubin, 1974)
that generalizes to the cyclic setting. One of the consequences of Proposition 2.8.2
is that all counterfactuals are defined for a simple SCM (even if it is cyclic). This
allows us to define potential outcomes in terms of a simple SCM in the following
way.

Definition 2.8.6 (Potential outcome). LetM = 〈I ,J ,X ,E , f , PE 〉 be a simple SCM,
I ⊆ I a subset, ξ I ∈ X I a value and E a random variable such that PE = PE . The
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potential outcome under the perfect intervention do(I, ξ I) is defined as Xξ I :=
gMdo(I,ξ I )

(Epa(I)), where gMdo(I,ξ I )
: Epa(I) → X is a measurable solution function for

Mdo(I,ξ I).

2.9 discussion

In this chapter, we studied the basic properties of SCMs in the presence of cycles
and latent variables without restricting to linear functional relationships between
the variables. We saw that cyclic SCMs behave differently in many aspects than
acyclic SCMs. Indeed, in the presence of cycles, many of the convenient properties
of acyclic SCMs do not hold in general: SCMs do not always have a solution;
they do not always induce unique observational, interventional and counterfactual
distributions; a marginalization does not always exist, and if it exists the marginal
model does not always respect the latent projection; they do not always satisfy
a Markov property and their graphs are not always consistent with their causal
semantics.

We introduced various notions of (unique) solvability and showed that under
appropriate (unique) solvability conditions, many of the operations and results for
the acyclic setting can be extended to SCMs with cycles. For example, we introduced
several equivalence relations between SCMs to compare SCMs at different levels of
abstraction, we showed how to define marginal SCMs on a subset of the variables
that are (in various ways) equivalent to the original SCM, we discussed under which
conditions the distributions satisfy the (general) directed global Markov property
relative to their graphs and we showed under which conditions the graph of an
SCM can be interpreted causally. Most of these results are shown under sufficient
conditions that are not necessary (e.g., for the marginalization operation this was
shown in Example 2.D.11). It may therefore be possible to further relax some of the
conditions.

These insights led us to introduce the more well-behaved class of simple SCMs,
which forms an extension of the class of acyclic SCMs to the cyclic setting that pre-
serves many of its convenient properties: simple SCMs induce unique observational,
interventional and counterfactual distributions; the class of simple SCMs is closed
under both perfect intervention and marginalization; the marginalization respects
the latent projection; the induced distributions obey the general directed global
Markov property and obey the directed global Markov property in the acyclic,
discrete and linear case. This class does not contain SCMs that have self-cycles and
graphs of simple SCMs have a direct and intuitive causal interpretation.

One key property of simple SCMs is that the solutions always satisfy the condi-
tional independencies implied by σ-separation. By simply replacing d-separation
with σ-separation it turns out that one can directly extend results and algorithms
for acyclic SCMs to the more general class of simple SCMs. For example, adjust-
ment criteria (including the back-door criterion), Pearl’s do-calculus and Tian’s ID
algorithm for the identification of causal effects have been extended recently to
the class of modular SCMs, which contains the class of simple SCMs (Forré and
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Mooij, 2019). Several causal discovery algorithms have already been proposed that
work with simple SCMs, for example, the first constraint-based causal discovery
algorithm that can deal with cycles and nonlinear functional relationships (Forré
and Mooij, 2018). Also, Local Causal Discovery (LCD) (Cooper, 1997), Y-structures
(Mani, 2006) and the Joint Causal Inference framework (JCI) all apply to simple
SCMs (Mooij, Magliacane, and Claassen, 2020) even though they were originally
developed for acyclic SCMs only. Recently, it has been shown that even the well-
known Fast Causal Inference (FCI) algorithm (Spirtes, Meek, and Richardson, 1999;
Zhang, 2008) is directly applicable to simple SCMs (Mooij and Claassen, 2020) and
provides a consistent estimate of the Markov equivalence class (under the faith-
fulness assumption). Moreover, a method for constructing nonlinear simple SCMs
using neural networks and sampling from them has been proposed (Forré and
Mooij, 2018). This illustrates that the class of simple SCMs forms a convenient and
practical extension of the class of acyclic SCMs that can be used for the purposes of
causal modeling, reasoning, discovery and prediction.

We hope that this work will provide the foundations for a general theory of
statistical causal modeling with SCMs. Future work might consist of reparametrizing
and reducing the space of the exogenous variables of an SCM while preserving the
causal and counterfactual semantics; extending and generalizing the identifiability
results for (direct) causes and confounders; extending the graphs of SCMs to
represent selection bias; proving completeness results for some Markov properties
for a subclass of SCMs that contains cycles.



C H A P T E R A P P E N D I X

These appendices to Chapter 2 contain a summary of the basic terminology and
results for causal graphical models (Appendix 2.A), additional (unique) solvability
properties (Appendix 2.B), some results for linear SCMs (Appendix 2.C), other
examples (Appendix 2.D), the proofs of all the theoretical results (Appendix 2.E)
and the measurable selection theorems (Appendix 2.F) that are used in several
proofs.

2.a causal graphical models

In this appendix, we provide a summary of the basic terminology and results for
causal graphical models. In Appendix 2.A.1 we provide the terminology for directed
(mixed) graphs. In Appendix 2.A.2 we give an introduction and an intuitive deriva-
tion of Markov properties for SCMs with cycles. In Appendix 2.A.3 we provide a
definition of modular SCMs and show how they relate to SCMs. In Appendix 2.A.4
we provide an overview of the causal graphical models related to SCMs. The proofs
of the theoretical results in this appendix are given in Appendix 2.E.

2.a.1 Directed (mixed) graphs

In this subsection, we introduce the terminology for directed (mixed) graphs, where
we do allow for cycles (Lauritzen, 1996; Richardson, 2003; Pearl, 2009; Forré and
Mooij, 2017).

Definition 2.A.1 (Directed (mixed) graph).

1. A directed graph is a pair G = (V , E), where V is a set of nodes and E is a set of
directed edges, which is a subset E ⊆ V × V of ordered pairs of nodes. Each element
(i, j) ∈ E can be represented by the directed edge i → j or equivalently j ← i. In
particular, (i, i) ∈ E represents a self-cycle i→ i.

2. A directed mixed graph is a triple G = (V , E ,B), where the pair (V , E) forms
a directed graph and B is a set of bidirected edges, which is a subset B ⊆ {{i, j} :
i, j ∈ V , i 6= j} of unordered (distinct) pairs of nodes. Each element {i, j} ∈ B can be
represented by the bidirected edge i↔ j or equivalently j↔ i. Note that a directed
graph can be considered as a directed mixed graph without bidirected edges.

3. Let G = (V , E ,B) be a directed mixed graph. A directed mixed graph G̃ = (Ṽ , Ẽ , B̃)
is a subgraph of G if Ṽ ⊆ V , Ẽ ⊆ E and B̃ ⊆ B, in which case we write G̃ ⊆ G. For
a subsetW ⊆ V , we define the induced subgraph of G onW by GW := (W , Ẽ , B̃),
where Ẽ and B̃ are the set of directed and bidirected edges in E and B, respectively,
that lie inW ×W and {{i, j} : i, j ∈ W , i 6= j}, respectively.

51
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4. A walk between i, j ∈ V in a directed mixed graph G is a tuple
(i0, ε1, i1, ε2, i2, . . . , εn, in) of alternating nodes and edges in G for some n ≥ 0,
where all i0, . . . , in ∈ V , all ε1, . . . , εn ∈ E ∪ B such that εk ∈ {ik−1 → ik, ik−1 ←
ik, ik−1 ↔ ik} for all k = 1, . . . , n, and it starts with node i0 = i and ends with
node in = j. Note that n = 0 corresponds with a trivial walk consisting of a single
node. If all nodes i0, . . . , in are distinct, it is called a path. A walk (path) of the form
i→ · · · → j, that is, εk is ik−1 → ik for all k = 1, 2, . . . , n, is called a directed walk
(path) from i to j.

5. A cycle through i ∈ V in a directed mixed graph G is a directed path from i to some
node j extended with the edge j → i ∈ E . In particular, a self-cycle i → i ∈ E is a
cycle. Note that a path cannot contain any cycles. A directed graph and a directed
mixed graph are said to be acyclic if they contain no cycles, and are then referred to as
a directed acyclic graph (DAG) and an acyclic directed mixed graph (ADMG),
respectively.

6. For a directed mixed graph G and a node i ∈ V we define the set of parents of i by
paG(i) := {j ∈ V : j → i ∈ E}, the set of children of i by chG(i) := {j ∈ V : i →
j ∈ E}, the set of ancestors of i by

anG(i) := {j ∈ V : there is a directed path from j to i in G}

and the set of descendants of i by

deG(i) := {j ∈ V : there is a directed path from i to j in G} .

Note that we have {i} ∪ paG(i) ⊆ anG(i) and {i} ∪ chG(i) ⊆ deG(i). We can
apply all these definitions to subsets U ⊆ V by taking unions, for example paG(U ) :=
∪i∈UpaG(i). A subset A ⊆ V is called an ancestral subset in G if A = anG(A),
that is, A is closed under taking ancestors of A in G.

7. Let G = (V , E ,B) be a directed mixed graph. We call G strongly connected if for
every pair of distinct nodes i, j ∈ V , the graph contains a cycle that passes through
both i and j. The strongly connected component of i ∈ V , denoted by scG(i), is
the maximal subset S ⊆ V such that i ∈ S and the induced subgraph GS is strongly
connected. Equivalently, scG(i) = anG(i) ∩ deG(i).

8. A loop in a directed mixed graph G = (V , E ,B) is a subset O ⊆ V that is strongly
connected in the induced subgraph GO of G on O.

9. For a directed graph G = (V , E), we define the graph of strongly connected
components of G as the directed graph Gsc := (V sc, E sc), where V sc are the strongly
connected components of G, that is, V sc are the equivalence classes in V/∼ with the
equivalence relation i ∼ j if and only if i ∈ scG(j), and E sc = (E \ {i → i : i ∈
V})/∼ with the equivalence relation (i → j) ∼ (i′ → j′) if and only if i ∼ i′ and
j ∼ j′.
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We omit the subscript G whenever it is clear which directed (mixed) graph G we
are referring to.

Lemma 2.A.2 (DAG of strongly connected components). Let G = (V , E) be a directed
graph. Then Gsc, the graph of strongly connected components of G, is a DAG.

2.a.2 Markov properties

In this subsection, we give a short overview of Markov properties for SCMs with
cycles. We will make use of the Markov properties that were recently developed
by Forré and Mooij (2017) for HEDGes, a graphical representation that is similar to
the augmented graph of SCMs. We briefly summarize some of their main results
and apply them to the class of SCMs. We also provide a shorter and more intuitive
derivation so that this subsection can act as an entry point for the reader into the
more extensive discussion of Markov properties provided in Forré and Mooij (2017).

Markov properties associate a set of conditional independence relations to a
graph. The directed global Markov property for directed acyclic graphs, also known
as the d-separation criterion (Pearl, 1985), is one of the most widely used. It directly
extends to a similar property for acyclic directed mixed graphs (ADMGs) (Richard-
son, 2003). It does not hold in general for cyclic SCMs, however, as was already
observed earlier (Spirtes, 1994, 1995). Under some conditions (roughly speaking,
linearity or discrete variables) the directed global Markov property can be shown
to hold also in the presence of cycles (Forré and Mooij, 2017).

Inspired by work of Spirtes (1994), Forré and Mooij (2017) recognized that in the
general cyclic case a different extension of d-separation, termed σ-separation, is
needed, leading to the general directed global Markov property. One key result in
(Forré and Mooij, 2017) implies that under the assumption of unique solvability
w.r.t. each strongly connected component of its graph, the observational distribution
of an SCM satisfies the general directed global Markov property w.r.t. its graph. The
solvability assumptions are in general not preserved under interventions. Under the
stronger assumption of simplicity, however, they are, and one obtains the corollary
that also all interventional and counterfactual distributions of a simple SCM satisfy
the general directed global Markov property w.r.t. to their corresponding graphs.

For a more extensive study of different Markov properties that can be associated
to SCMs we refer the reader to (Forré and Mooij, 2017).

2.a.2.1 The directed global Markov property

Conditional independencies in the observational distribution of an acyclic SCM can
be read off from its graph by using the graphical criterion called d-separation (Pearl,
2009). The directed global Markov property associates a conditional independence
relation in the observational distribution of the SCM to each d-separation entailed by
the graph. Here, we use a formulation of d-separation that generalizes d-separation
for DAGs (Pearl, 1985) and m-separation for ADMGs (Richardson, 2003) and
mDAGs (Evans, 2016).
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Definition 2.A.3 (Collider). Let π = (i0, ε1, i1, ε2, i2, . . . , εn, in) be a walk (path) in
a directed mixed graph G = (V , E ,B). A node ik on π is called a collider on π if it
is a non-endpoint node (1 ≤ k < n) and the two edges εk, εk+1 meet head-to-head on
ik (i.e., if the subwalk (ik−1, εk, ik, εk+1, ik+1) is of the form ik−1 → ik ← ik+1, ik−1 ↔
ik ← ik+1, ik−1 → ik ↔ ik+1 or ik−1 ↔ ik ↔ ik+1). The node ik is called a non-
collider on π otherwise, that is, if it is an endpoint node (k = 0 or k = n) or if the
subwalk (ik−1, εk, ik, εk+1, ik+1) is of the form ik−1 → ik → ik+1, ik−1 ← ik ← ik+1,
ik−1 ← ik → ik+1, ik−1 ↔ ik → ik+1 or ik−1 ← ik ↔ ik+1.

Note in particular that the end points of a walk are non-colliders on the walk.

Definition 2.A.4 (d-separation). Let G = (V , E ,B) be a directed mixed graph and let
C ⊆ V be a subset of nodes. A walk (path) π = (i0, ε1, i1, . . . , in) in G is said to be
C-d-blocked or d-blocked by C if

1. it contains a collider ik /∈ anG(C), or

2. it contains a non-collider ik ∈ C.

The walk (path) π is said to be C-d-open if it is not d-blocked by C. For two subsets of
nodes A, B ⊆ V , we say that A is d-separated from B given C in G if all paths between
any node in A and any node in B are d-blocked by C, and write

A
d
⊥
G

B |C .

The next lemma is a straightforward generalization of Lemma 3.3 in (Geiger,
1990) to the cyclic setting. It implies that it suffices to formulate d-separation in
terms of paths rather than walks.

Lemma 2.A.5. Let G = (V , E ,B) be a directed mixed graph, C ⊆ V and i, j ∈ V . There
exists a C-d-open walk between i and j in G if and only if there exists a C-d-open path
between i and j in G.

Definition 2.A.6 (Directed global Markov property). Let G = (V , E ,B) be a directed
mixed graph and PV a probability distribution on X V = ∏i∈V Xi, where each Xi is a
standard probability space. The probability distribution PV satisfies the directed global
Markov property relative to G if for all subsets A, B, C ⊆ V we have

A
d
⊥
G

B |C =⇒ XA ⊥⊥
PV

XB |XC ,

that is, (Xi)i∈A and (Xi)i∈B are conditionally independent given (Xi)i∈C under PV , where
we take the canonical projections Xi : X V → Xi as random variables.

From the results in (Forré and Mooij, 2017) it directly follows that for the ob-
servational distribution of an SCM, the directed global Markov property w.r.t. the
graph of the SCM (also known as the d-separation criterion), holds under one of
the following assumptions.
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X1 X2

X3 X4

X1 X2

X3 X4

Figure 2.5: The graphs of the observationally equivalent SCMsM (left) and M̃ (right) of
Example 2.A.8 and 2.A.10.

Theorem 2.A.7 (Directed global Markov property for SCMs (Forré and Mooij,
2017)). LetM be a uniquely solvable SCM that satisfies at least one of the following three
conditions:

1. M is acyclic;

2. all endogenous spaces Xi are discrete andM is ancestrally uniquely solvable;

3. M is linear (see Definition 2.C.1), each of its causal mechanisms { fi}i∈I has a
nontrivial dependence on at least one exogenous variable, and PE has a density w.r.t.
the Lebesgue measure on RJ .

Then its observational distribution PX exists, is unique and satisfies the directed global
Markov property relative to G(M) (see Definition 2.A.6).

The acyclic case is well known and was first shown in the context of linear-
Gaussian structural equation models (Spirtes et al., 1998; Koster, 1999). The discrete
case fixes the erroneous theorem by Pearl and Dechter (1996), for which a coun-
terexample was found by Neal (2000), by adding the ancestral unique solvability
condition, and extends it to allow for bidirected edges in the graph. The linear case
is an extension of existing results for the linear-Gaussian setting without bidirected
edges (Spirtes, 1994, 1995; Koster, 1996) to a linear (possibly non-Gaussian) setting
with bidirected edges in the graph.

The following counterexample of an SCM for which the directed global Markov
property does not hold was already given in (Spirtes, 1994, 1995).

Example 2.A.8 (Directed global Markov property does not hold for cyclic SCM).
Consider the SCMM = 〈I ,J ,X ,E , f , PE 〉 with I = J = 4, Xi = Ei = (−1, 1) for
i = 1, 2, and Xi = Ei = R for i = 3, 4, the causal mechanism given by

f1(x, e) = e1 , f2(x, e) = e2 , f3(x, e) = x1x4 + e3 , f4(x, e) = x2x3 + e4 ,

and PE the standard-normal distribution on R4 restricted to E . The graph ofM is depicted
in Figure 2.5 on the left. The model is uniquely solvable (it is even simple). One can check
that for every solution X ofM, X1 is not independent of X2 given {X3, X4}. However, the
variables X1 and X2 are d-separated given {X3, X4} in G(M). Hence the global directed
Markov property does not hold here.

In constraint-based approaches to causal discovery, one usually assumes the
converse of the directed global Markov property to hold (Spirtes, Glymour, and
Scheines, 2000; Pearl, 2009).
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Definition 2.A.9 (d-Faithfulness). Let G = (V , E ,B) be a directed mixed graph and PV
a probability distribution on X V = ∏i∈V Xi, where each Xi is a standard probability space.
The probability distribution PV is d-faithful to G if for all subsets A, B, C ⊆ V we have

A
d
⊥
G

B |C ⇐= XA ⊥⊥
PV

XB |XC ,

where we take the canonical projections Xi : X V → Xi as random variables.

In other words, the d-faithfulness assumption states that the graph explains, via
d-separation, all the conditional independencies that are present in the observational
distribution. Meek (1995) showed that for multinomial and linear-Gaussian DAG
(i.e., acyclic and causally sufficient SCMs) models, d-faithfulness holds for all
parameter values up to a measure zero set (in a natural parameterization). Up to
our knowledge no such results have been shown in more general parametric or
nonparametric settings (neither in the acyclic case, nor in the cyclic one).

2.a.2.2 The general directed global Markov property

In (Forré and Mooij, 2017) the general directed global Markov property is intro-
duced, that is based on σ-separation, an extension of d-separation. This notion of
σ-separation was derived from the notion of d-separation in the acyclification of
the graph. The acyclification of a graph generalizes the idea of the collapsed graph
for directed graphs, developed by Spirtes (1994), to HEDGes. In particular, this
notion can be applied to directed mixed graphs, and thus to the graphs of SCMs.
The main idea of the acyclification is that under the condition that the SCM is
uniquely solvable w.r.t. each strongly connected component, we can replace the
causal mechanisms of these strongly connected components by their measurable
solution functions, which results in an acyclic SCM. This acyclification preserves
the solutions, and d-separation in the acyclification can directly be translated into
σ-separation in the original graph. This then leads to the general directed global
Markov property. We will discuss this now in more detail.

Example 2.A.10 (Construction of an observationally equivalent acyclic SCM). Con-
sider the SCM M of Example 2.A.8 which is uniquely solvable w.r.t. all its strongly
connected components, i.e., the subsets {1}, {2} and {3, 4}. Replacing the causal mecha-
nisms of these strongly connected components by their measurable solution functions gives
the SCM M̃ that is the same asM except that its causal mechanism f̃ is given by

f̃1(x, e) := e1 , f̃3(x, e) :=
x1e4 + e3

1− x1x2
,

f̃2(x, e) := e2 , f̃4(x, e) :=
x2e3 + e4

1− x1x2
.

By construction, M and M̃ are observationally equivalent. Because M̃ is acyclic (see
Figure 2.5 on the right) we can apply the directed global Markov property to M̃. The fact
that X1 and X2 are not d-separated given {X3, X4} in G(M̃) is in line with X1 being
dependent of X2 given {X3, X4} for every solution X of M̃ (and hence ofM).
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One of the key insights in (Forré and Mooij, 2017) is that this example can easily
be generalized as follows.

Definition 2.A.11 (Acyclification of an SCM). Let M = 〈I ,J ,X ,E , f , PE 〉 be an
SCM that is uniquely solvable w.r.t. each strongly connected component of G(M). For each
i ∈ I , let gi be the ith component of a measurable solution function gsc(i) : X pa(sc(i))\sc(i)×
Epa(sc(i)) → X sc(i) of M w.r.t. sc(i), where pa and sc denote the parents and strongly
connected components according to Ga(M), respectively. We call the SCM Macy :=
〈I ,J ,X ,E , f̂ , PE 〉 with the acyclified causal mechanism f̂ : X × E → X given by

f̂i(x, e) = gi(xpa(sc(i))\sc(i), epa(sc(i))) , i ∈ I ,

an acyclification ofM. We denote by acy(M) the equivalence class of the acyclifications
ofM.

Note that acy(M) is well-defined: all acyclifications of an SCMM belong to the
same equivalence class of SCMs.

Proposition 2.A.12. Let M be an SCM that is uniquely solvable w.r.t. each strongly
connected component of G(M). Then an acyclificationMacy ofM is acyclic and observa-
tionally equivalent toM.

We can also define a graphical acyclification for directed mixed graphs, which is
a special case of the operation defined in (Forré and Mooij, 2017) for HEDGes.

Definition 2.A.13 (Acyclification of a directed mixed graph). Let G = (V , E ,B)
be a directed mixed graph. The acyclification of G maps G to the acyclified graph
Gacy := (V , Ê , B̂) with directed edges j → i ∈ Ê if and only if j ∈ paG(scG(i)) \ scG(i)
and bidirected edges i ↔ j ∈ B̂ if and only if there exist i′ ∈ scG(i) and j′ ∈ scG(j) with
i′ = j′ or i′ ↔ j′ ∈ B.

The following compatibility result is immediate from the definitions.

Proposition 2.A.14. Let M be an SCM that is uniquely solvable w.r.t. each strongly
connected component of G(M). Then Ga(acy(M)) ⊆ acy(Ga(M)) and G(acy(M)) ⊆
acy(G(M)).

The following example illustrates that the graph of the acyclification of an SCM
can be a strict subgraph of the acyclification of the graph of the SCM.

Example 2.A.15 (Graph of the acyclification of the SCM is a strict subgraph of the
acyclification of its graph). Consider the SCMM = 〈2, 1, R2, R, f , PR〉 with the causal
mechanism defined by

f1(x, e) = x2 − e , f2(x, e) = 1
2 x1 + e

and PR the standard Gaussian measure on R. The SCMM is uniquely solvable w.r.t. the
(only) strongly connected component {1, 2}. An acyclification ofM is the acyclified SCM
Macy with the acyclified causal mechanism f̂ defined by

f̂1(x, e) = 0 , f̂2(x, e) = e .



58 structural causal models with cycles and latent variables

X1 X2

G(M)

X1 X2

G(acy(M))

X1 X2

acy(G(M))

Figure 2.6: The graphs of the original SCMM (left), of the acyclified SCM (center), and of
the acyclification of the graph ofM (right) corresponding to Example 2.A.15.

The graph G(acy(M)) is a strict subgraph of acy(G(M)) as can be seen in Figure 2.6.

Translating the notion of d-separation from the acyclified graph back to the
original graph led to the notion of σ-separation.

Definition 2.A.16 (σ-separation (Forré and Mooij, 2017)). Let G = (V , E ,B) be a di-
rected mixed graph and let C ⊆ V be a subset of nodes. A walk (path) π = (i0, ε1, i1, . . . , in)

in G is said to be C-σ-blocked or σ-blocked by C if

1. its first node i0 ∈ C or its last node in ∈ C, or

2. it contains a collider ik /∈ anG(C), or

3. it contains a non-endpoint non-collider ik ∈ C that points towards a neighboring
node on π that lies in a different strongly connected component of G, that is, such
that ik−1 ← ik in π and ik−1 /∈ scG(ik), or ik → ik+1 in π and ik+1 /∈ scG(ik).

The walk (path) π is said to be C-σ-open if it is not σ-blocked by C. For two subsets of
nodes A, B ⊆ V , we say that A is σ-separated from B given C in G if all paths between
any node in A and any node in B are σ-blocked by C, and write

A
σ

⊥
G

B |C .

The only difference between σ-separation and d-separation is that d-separation
does not have the extra condition on the non-collider that it has to point to a node in
a different strongly connected component. It is therefore obvious that σ-separation
reduces to d-separation for acyclic graphs, since scG(i) = {i} for each i ∈ V in that
case.

Although for proofs it is often easier to make use of walks, it suffices to formulate
σ-separation in term of paths rather than walks because of the following result,
which is analogous to a similar result for d-separation (see Lemma 2.A.5).

Lemma 2.A.17. Let G = (V , E ,B) be a directed mixed graph, C ⊆ V and i, j ∈ V . There
exists a C-σ-open walk between i and j in G if and only if there exists a C-σ-open path
between i and j in G.

It is clear from the definitions that σ-separation implies d-separation. The other
way around does not hold in general, as can be seen in the following example.

Example 2.A.18 (d-separation does not imply σ-separation). Consider the directed
graph G as depicted in Figure 2.5 (left). Here X1 is d-separated from X2 given {X3, X4},
but X1 is not σ-separated from X2 given {X3, X4}.
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The following result in (Forré and Mooij, 2017) relates σ-separation to d-separation.

Proposition 2.A.19. Let G = (V , E ,B) be a directed mixed graph. Then for A, B, C ⊆ V ,

A
σ

⊥
G

B |C ⇐⇒ A
d
⊥

acy(G)
B |C .

By replacing in Definition 2.A.6 “d-separation” by “σ-separation”, one obtains
the formulation of what Forré and Mooij (2017) termed the general directed global
Markov property.

Definition 2.A.20 (General directed global Markov property (Forré and Mooij,
2017)). Let G = (V , E ,B) be a directed mixed graph and PV a probability distribution on
X V = ∏i∈V Xi, where each Xi is a standard probability space. The probability distribution
PV satisfies the general directed global Markov property relative to G if for all subsets
A, B, C ⊆ V we have

A
σ

⊥
G

B |C =⇒ XA ⊥⊥
PV

XB |XC ,

that is, (Xi)i∈A and (Xi)i∈B are conditionally independent given (Xi)i∈C under PV , where
we take the canonical projections Xi : X V → Xi as random variables.

The fact that σ-separation implies d-separation means that the directed global
Markov property implies the general directed global Markov property. In other
words, the general directed global Markov property is weaker than the directed
global Markov property. It is actually strictly weaker, as we saw in Example 2.A.18.

The following fundamental result, also known as the σ-separation criterion,
follows directly from the theory in (Forré and Mooij, 2017).

Theorem 2.A.21 (General directed global Markov property for SCMs). LetM be an
SCM that is uniquely solvable w.r.t. each strongly connected component of G(M). Then its
observational distribution PX exists, is unique and it satisfies the general directed global
Markov property relative to G(M).17

The proof is based on the reasoning that, for A, B, C ⊆ I , if A is σ-separated
from B given C in G(M), then A is d-separated from B by C in acy(G(M)) and
hence in G(acy(M)), and since acy(M) is acyclic and observationally equivalent
to M, it follows from the directed global Markov property applied to acy(M)

that XA ⊥⊥ PX XB |XC for every solution X of M. Note that the ancestral unique
solvability condition for the discrete case is strictly weaker than the condition of
unique solvability w.r.t. each strongly connected component in Theorem 2.A.21. For

17 Since (Forré and Mooij, 2017) also provides results under the weaker condition that an SCM is solvable
(not necessarily uniquely) w.r.t. each strongly connected component of G(M), one might believe that
Theorem 2.A.21 could be generalized to stating that in that case, any of its observational distributions
satisfies the general directed global Markov property. However, that is not true: consider for example
the SCMM = 〈2, ∅, R2, 1, f , P1〉 with f1(x) = x1 and f2(x) = x2. ThenM is solvable w.r.t. each of
its strongly connected components {1} and {2}. The solution with X1 = X2 shows a dependence
between X1 and X2 and thus X1⊥⊥X2 does not hold. In general, all strongly connected components
that admit multiple solutions may be dependent on any other variable(s) in the model.
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the linear case, the condition of unique solvability is equivalent to the condition of
unique solvability w.r.t. each strongly connected component (see Proposition 2.C.4).

The results in Theorems 2.A.7 and 2.A.21 are not preserved under perfect in-
tervention, because intervening on a strongly connected component could split it
into several strongly connected components with different solvability properties.
As the class of simple SCMs is preserved under perfect intervention and the twin
operation (Proposition 2.8.2), we obtain the following corollary.

Corollary 2.A.22 (Global Markov properties for simple SCMs). LetM be a simple
SCM. Then the:

1. observational distribution,

2. interventional distribution after perfect intervention on I ⊂ I ,

3. counterfactual distribution after perfect intervention on Ĩ ⊆ I ∪ I ′,

all exist, are unique and satisfy the general directed global Markov property relative to
G(M), do(I)(G(M)) and do( Ĩ)(twin(G(M))), respectively. Moreover, ifM satisfies
at least one of the three conditions (1), (2), (3) of Theorem 2.A.7, then they also satisfies the di-
rected global Markov property relative to G(M), do(I)(G(M)) and do( Ĩ)(twin(G(M))),
respectively.

Similar to d-faithfulness, σ-faithfulness18 is defined as follows.

Definition 2.A.23 (σ-Faithfulness). Let G = (V , E ,B) be a directed mixed graph and PV
a probability distribution on X V = ∏i∈V Xi, where each Xi is a standard probability space.
The probability distribution PV is σ-faithful to G if for all subsets A, B, C ⊆ V we have

A
σ

⊥
G

B |C ⇐= XA ⊥⊥
PV

XB |XC ,

where we take the canonical projections Xi : X V → Xi as random variables.

In other words, the graph explains, via σ-separation, all the conditional inde-
pendencies that are present in the observational distribution. Although it has been
conjectured (Spirtes, 1995) that under certain conditions σ-faithfulness should hold,
formulating and proving such completeness results is an open problem to the best
of our knowledge.

2.a.3 Modular SCMs

In this subsection, we relate the class of (simple) SCMs to that of modular SCMs.
Modular SCMs introduced by Forré and Mooij (2017) are causal graphical models on
which marginalizations and interventions are defined and they satisfy the general
directed global Markov property. For a comprehensive account on modular SCMs
we refer the reader to (Forré and Mooij, 2017).

18 In (Richardson, 1996c) it is called “collapsed graph faithfulness”.
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2.a.3.1 Definition of a modular SCM

In contrast to an SCM from which a graph can be derived, a modular SCM is
defined in terms of a graphical object, which Forré and Mooij (2017) call a directed
graph with hyperedges (HEDG). The hyperedges of a HEDG are described in terms
of a simplicial complex.

Definition 2.A.24 (Simplicial complex). Let V be a finite set. A simplicial complex H
over V is a set of subsets of V such that

1. all single element sets {v} are in H for v ∈ V , and

2. if F ∈ H, then also all subsets F̃ ⊆ F are elements of H.

Definition 2.A.25 (Directed graph with hyperedges (HEDGes) (Forré and Mooij,
2017)). A directed graph with hyperedges (HEDG) is a triple G = (V , E ,H), where
(V , E) is a directed graph and H a simplicial complex over the set of nodes V . The elements
F of H are called hyperedges of G. The elements F of H that are inclusion-maximal
elements of H are called maximal hyperedges and are denoted by Ĥ.

A HEDG G = (V , E ,H) can be represented as a directed graph Ḡ := (V , E)
consisting of nodes V and directed edges E , with additional maximal hyperedges
F ∈ Ĥ with |F | ≥ 2 (i.e., not corresponding to single element sets {v} ∈ Ĥ), that
point to their target nodes v ∈ F . For a HEDG G, we define paG , chG , etc., in terms
of the underlying directed graph Ḡ, that is, paḠ , chḠ , etc., respectively.

A loop in a HEDG G = (V , E ,H) is a subset O ⊆ V that is a loop in the underlying
directed graph Ḡ = (V , E). In other words, a loop of G is a set of nodes O ⊆ V
such that for every two nodes v, w ∈ O there are directed paths v→ · · · → w and
w → · · · → v in G for which all the intermediate nodes lie in O (if any exist). In
particular, a loop may consist of a single element {v} for v ∈ V . The set of loops in
G is denoted by L(G).

In order to define a modular SCM one needs the notion of a compatible system
of solution functions, which assigns to each loop a separate solution function such
that all these solution functions are “compatible” with each other.

Definition 2.A.26 (Compatible system of solution functions19). Let G = (V , E ,H)

be a HEDG. For every v ∈ V and maximal hyperedge F in Ĥ, let Xv and EF be standard
measurable spaces. For a subset O ⊆ V we define20

XO := ∏
v∈O
Xv and ÊO := ∏

F∈Ĥ
F∩O6=∅

EF .

Consider a family of measurable mappings (gO)O∈L(G) indexed by L(G) which are of the
form

gO : X paG (O)\O × ÊO → XO .

19 We deviate from the terminology in (Forré and Mooij, 2017) where this is called a “compatible system
of structural equations”.

20 We use the “hat” notation ÊO to distinguish it from the ordinary subscript convention that EO =
∏F∈O EF for some subset O ⊆ Ĥ.
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We call the family of measurable mappings (gO)O∈L(G) a compatible system of solution
functions, if for all O, Õ ∈ L(G) with Õ ⊆ O and for all êO ∈ ÊO and xpaG (O)∪O ∈
X paG (O)∪O we have

xO = gO(xpaG (O)\O, êO) =⇒ xÕ = gÕ(xpaG (Õ)\Õ, êÕ) .

This structure of a compatible system of solution functions is at the heart of the
definition of a modular SCM.

Definition 2.A.27 (Modular structural causal model (mSCM) (Forré and Mooij,
2017)). A modular structural causal model (mSCM) is a tuple

M̂ := 〈G,X ,E , (gO)O∈L(G), PE 〉 ,

where

1. G = (V , E ,H) is a HEDG,

2. X = ∏v∈V Xv is the product of standard measurable spaces Xv,

3. E = ∏F∈Ĥ EF is the product of standard measurable spaces EF ,

4. (gO)O∈L(G) is a compatible system of solution functions,

5. PE = ∏F∈Ĥ PEF is a product measure, where PEF is a probability measure on EF
for each F ∈ Ĥ.

Let M̂ = 〈G,X ,E , (gO)O∈L(G), PE 〉 be a modular SCM and O1, . . . ,Or ∈ L(G)
the strongly connected components of G ordered according to a topological order of
the DAG of strongly connected components of G. Then for any random variable E :
Ω→ E such that PE = PE one can inductively define the random variables Xv :=
(gOi)v(XpaG (Oi)\Oi

, ÊOi) for all v ∈ Oi for all i ≥ 1, starting at Xv := (gO1)v(ÊO1) for
all v ∈ O1. Because (gO)O∈L(G) is a compatible system of solution functions, we
have for every O ∈ L(G)

XO = gO(XpaG (O)\O, ÊO) .

We call the random variable X a solution of the modular SCM M̂. Note that the
solution X depends on the choice of the random variable E : Ω→ E .

The causal semantics of modular SCMs can be defined in terms of perfect
interventions, which is defined as follows.

Definition 2.A.28 (Perfect intervention on an mSCM). Consider a modular SCM
M̂ = 〈G,X ,E , (gO)O∈L(G), PE 〉, a subset I ⊆ V of endogenous variables and a value
ξ I ∈ X I . The perfect intervention do(I, ξ I) maps M̂ to the modular SCM

M̂do(I,ξ I) := 〈Gdo,X ,Edo, (gdo
O )O∈L(Gdo), PEdo〉 ,

where
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1. Gdo = (V , Edo,Hdo), where

Edo = E \ {v→ w : v ∈ V , w ∈ I}

Hdo = {F \ I : F ∈ H} ∪ {{v} : v ∈ I} ,

2. φ : {F ∈ Ĥ : F \ I 6= ∅} → Ĥdo \ {{v} : v ∈ I} is a mapping such that
φ(F ) ⊇ F \ I for all F ∈ Ĥ for which F \ I 6= ∅,

3. Edo = ∏F̃∈Ĥdo Edo
F̃ , where

Edo
F̃ =

Xv if F̃ = {v} for v ∈ I

∏F=φ−1(F̃ ) EF if F̃ ∈ Ĥdo \ {{v} : v ∈ I} ,

4. for every O ∈ L(Gdo)

gdo
O =

I{v} if O = {v} for v ∈ I

gO otherwise,

(note that if O is a loop in Gdo, then it is a loop in G),

5. PEdo = ∏F̃∈Ĥdo PEdo
F̃

, where

PEdo
F̃

=

δξv if F̃ = {v} for v ∈ I

∏F=φ−1(F̃ ) PEF if F̃ ∈ Ĥdo \ {{v} : v ∈ I} .

In contrast to SCMs, these perfect interventions on modular SCMs are directly
defined on the underlying HEDG and depend on the choice of the mapping φ.

2.a.3.2 Relation between SCMs and modular SCMs

The solutions of a modular SCM can be described by an SCM that is loop-wisely
solvable.

Definition 2.A.29 (Underlying SCM). Let M̂ = 〈G,X ,E , (gO)O∈L(G), PE 〉 be a modu-
lar SCM. Then the mapping ι maps M̂ to the underlying SCM M̃ := 〈Ĩ , J̃ , X̃ , Ẽ , f̃ , PẼ 〉,
where

1. Ĩ = V ,

2. J̃ = Ĥ,

3. X̃ = X ,

4. Ẽ = E ,

5. f̃ is given by f̃v = (g{v})v for all v ∈ V ,
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6. PẼ = PE .

Every solution X of a modular SCM M̂ is also a solution of the underlying SCM
ι(M̂).

Observe that for the modular SCM M̂ we have that the induced subgraph
Ga(ι(M̂))Ĩ , of the augmented graph of the underlying SCM Ga(ι(M̂)) on Ĩ , is a
subgraph of the underlying HEDG G, that is, Ga(ι(M̂))Ĩ ⊆ G. This implies that,
in general, the underlying HEDG G of M̂ may have more loops than the loops in
G(ι(M̂)). For a subset O ⊆ Ĩ , we have for the exogenous parents of the underlying
SCM ι(M̂)

pa(O) ∩ J̃ ⊆ {F ∈ J̃ : F ∩O 6= ∅} ,

where pa(O) denotes the set of parents of O in Ga(ι(M̂)). Hence, in general, not
all the hyperedges F ∈ H such that |F | = 2 (i.e., bidirected edges) are in the set of
bidirected edges B of the graph of the underlying SCM G(ι(M̂)) = (V , E ,B). We
conclude that the graph of the underlying SCM is, in general, a sparser graph than
the HEDG of the modular SCM.

Next, we show that the compatible system of solution functions of a modular
SCM induces a compatible system of solution functions on the underlying SCM.
For this we need the notion of loop-wise solvability for SCMs.

Definition 2.A.30 (Loop-wise (unique) solvability for SCMs). We call an SCMM

1. loop-wisely solvable, ifM is solvable w.r.t. every loop O ∈ L(G(M)), and

2. loop-wisely uniquely solvable, ifM is uniquely solvable w.r.t. every loop O ∈
L(G(M)).

Definition 2.A.31 (Compatible system of solution functions for SCMs). For a loop-
wisely solvable SCMM, we call a family of measurable solution functions (gO)O∈L(G(M)),
where gO is a measurable solution function of M w.r.t. O, a compatible system of
solution functions, if for all O, Õ ∈ L(G(M)) with Õ ⊆ O and for PE -almost every
e ∈ E and for all x ∈ X we have

xO = gO(xpa(O)\O, epa(O)) =⇒ xÕ = gÕ(xpa(Õ)\Õ, epa(Õ)) .

The underlying SCM of a modular SCM always has a compatible system of
solution functions, by construction.

Proposition 2.A.32. Let M̂ = 〈G,X ,E , (gO)O∈L(G), PE 〉 be a modular SCM. Then the
underlying SCM M̃ := ι(M̂) is loop-wisely solvable. Moreover, it has a compatible system
of solution functions (gO)O∈L(G(M̃)), where gO is a measurable solution function of M̃
w.r.t. O.

This shows that a modular SCM can be seen as an SCM together with an addi-
tional structure of a compatible system of solution functions, and is, in particular,
loop-wisely solvable.

Moreover, the class of simple SCMs corresponds exactly with those SCMs that
are loop-wisely uniquely solvable.
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Figure 2.7: Overview of causal graphical models. The “gray” and “dark gray” areas contain
all the causal graphical models that can be modeled by an SCM and an acyclic
SCM, respectively.

Lemma 2.A.33. An SCMM is simple if and only if it is loop-wisely uniquely solvable.

In particular, for simple SCMs, or loop-wisely uniquely solvable SCMs, there
always exists a compatible system of solution functions.

Proposition 2.A.34. LetM = 〈I ,J ,X ,E , f , PE 〉 be a simple SCM. Then every family of
measurable solution functions (gO)O∈L(G(M)), where gO is a measurable solution function
ofM w.r.t. O, is a compatible system of solution functions.

2.a.4 Overview of causal graphical models

Figure 2.7 gives an overview of the causal graphical models related to SCMs.
The “gray” area contains all the causal graphical models that can be modeled by
an SCM, by which we mean, that there exists an SCM that can describe all its
observational and interventional distributions. The “dark gray” area contains all the
causal graphical models which can be modeled by an acyclic SCM. Acyclic SCMs
generalize causal Bayesian networks (causal BNs) (Pearl, 2009) to allow for latent
confounders and to derive counterfactuals. Simple SCMs form a subclass of SCMs
that extends acyclic SCMs to the cyclic setting, while preserving many of their
convenient properties. Modular SCMs (Forré and Mooij, 2017) can be seen as SCMs
that have an additional structure of compatible system of solution functions and
contain, in particular, the class of simple SCMs. Forré and Mooij (2017) showed that
modular SCMs satisfy various convenient properties, like marginalization and the
general directed global Markov property. We show that for SCMs in general various
of those properties still hold under certain solvability conditions. A generalization
of SCMs, known as causal constraints models (CCMs), has been proposed (Blom,
Bongers, and Mooij, 2019) in order to completely model the causal semantics of the
equilibrium solutions of a dynamical system given the initial conditions. This class
of CCMs is rich enough to model the causal semantics of SCMs, but does not come
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with a single graphical representation that provides both a Markov property and a
causal interpretation (Blom, Diepen, and Mooij, 2021).

2.b (unique) solvability properties

In this appendix, we provide additional (unique) solvability properties for SCMs.
In Appendix 2.B.1 we provide a sufficient condition of solvability w.r.t. (strict)
subsets. In Appendix 2.B.2 we discuss how (unique) solvability is preserved under
strict super- and subsets. In Appendix 2.B.3 we discuss how (unique) solvability is
preserved under unions and intersections. The proofs of the theoretical results in
this appendix are given in Appendix 2.E.

2.b.1 Sufficient condition for solvability w.r.t. subsets

For solvability w.r.t. a (strict) subset of I there exists a sufficient condition that
is similar to the sufficient (and necessary) condition (2) in Theorem 2.3.2 in the
sense that it is formulated in terms of the solutions of (a subset of) the structural
equations, but no measurability is required.

Proposition 2.B.1 (Sufficient condition for solvability w.r.t. a subset). Let M =

〈I ,J ,X ,E , f , PE 〉 be an SCM and O ⊆ I a subset. If for PE -almost every e ∈ E and
for all x\O ∈ X \O the topological space

S (e,x\O) := {xO ∈ XO : xO = fO(x, e)} ,

with the subspace topology induced by XO is nonempty and σ-compact,21 then M is
solvable w.r.t. O.

For many purposes, this condition of σ-compactness suffices since it contains for
example all countable discrete spaces, every interval of the real line, and moreover
all the Euclidean spaces. In particular, it suffices to prove a sufficient and necessary
condition for unique solvability w.r.t. a subset, in terms of the solutions of a subset
of the structural equations (see Theorem 2.3.6). For larger solution spaces, we refer
the reader to (Kechris, 1995). For the class of linear SCMs (see Definition 2.C.1),
we provide in Proposition 2.C.2 a sufficient and necessary condition for solvability
w.r.t. a (strict) subset of I .

2.b.2 (Unique) solvability w.r.t. strict super- and subsets

In general, (unique) solvability w.r.t. O ⊆ I does not imply (unique) solvability
w.r.t. a strict superset O ( V ⊆ I nor w.r.t. a strict subsetW ( O, as can be seen in
the following example.

21 A topological space X is called σ-compact if it is the union of a countable set of compact topological
spaces.
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Example 2.B.2 (Solvability is not preserved under strict sub- or supersets). Consider
the SCMM = 〈3, ∅, R3, 1, f , P1〉 where the causal mechanism is given by

f1(x) = x1 · (1− 1{1}(x2)) + 1 ,

f2(x) = x2 ,

f3(x) = x3 · (1− 1{−1}(x2)) + 1 .

This SCM is (uniquely) solvable w.r.t. the subsets {1, 2}, {2, 3}, however it is not (uniquely)
solvable w.r.t. the subsets {1}, {3} and {1, 2, 3}, and not uniquely solvable w.r.t. {2}.

However, in Proposition 2.3.10 we show that solvability w.r.t. O implies solvability
w.r.t. every ancestral subset in G(M)O.

2.b.3 (Unique) solvability w.r.t. unions and intersections

In general, (unique) solvability is not preserved under unions and intersections. The
following example illustrates that (unique) solvability is in general not preserved
under intersections.

Example 2.B.3 (Solvability is not preserved under intersections). Consider the SCM
M = 〈3, ∅, R3, 1, f , P1〉 where the causal mechanism is given by

f1(x) = 0 ,

f2(x) = x2 · (1− 1{0}(x1 · x3)) + 1 ,

f3(x) = 0 .

ThenM is (uniquely) solvable w.r.t. {1, 2} and {2, 3}, however it is not (uniquely) solvable
w.r.t. their intersection.

Example 2.B.2 gives an example where (unique) solvability is not preserved
under unions. Even, if we take the union of disjoint subsets, (unique) solvability is
not preserved (see Example 2.2.4). Although, in general, unique solvability is not
preserved under unions, we show next that unique solvability is preserved under
the union of ancestral subsets, under the following assumptions.

Proposition 2.B.4 (Combining measurable solution functions on different sets). Let
M = 〈I ,J ,X ,E , f , PE 〉 be an SCM, O ⊆ I a subset and A, Ã ⊆ O two ancestral
subsets in G(M)O . IfM is uniquely solvable w.r.t. A, Ã and A∩ Ã, thenM is uniquely
solvable w.r.t. A∪ Ã.

A consequence of this property is that in order to check whether an SCM is
ancestrally uniquely solvable w.r.t. O, it suffices to check that it is uniquely solvable
w.r.t. the ancestral subsets for each node in O.

Corollary 2.B.5. LetM = 〈I ,J ,X ,E , f , PE 〉 be an SCM and O ⊆ I a subset. Then
M is ancestrally uniquely solvable w.r.t. O if and only if M is uniquely solvable w.r.t.
anG(M)O (i) for every i ∈ O.
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2.c linear scms

In this appendix, we provide some results about (unique) solvability and marginal-
ization for linear SCMs. Linear SCMs form a special class of SCMs that has seen
much attention in the literature (see, e.g., Bollen, 1989; Hyttinen, Eberhardt, and
Hoyer, 2012). The proofs of the theoretical results in this appendix are given in
Appendix 2.E.

Definition 2.C.1 (Linear SCM). We call an SCMM = 〈I ,J , RI , RJ , f , PRJ 〉 linear
if each component of the causal mechanism is a linear combination of the endogenous and
exogenous variables, that is

fi(x, e) = ∑
j∈I

Bijxj + ∑
k∈J

Γikek ,

where i ∈ I , B ∈ RI×I and Γ ∈ RI×J are matrices, and PRJ is a product probability
measure22 on RJ .

For a subset O ⊆ I we also use the shorthand vector-notation

fO(x, e) = BOIx + ΓOJ e .

A nonzero coefficient Bij for i, j ∈ I such that i 6= j corresponds with a directed edge
j→ i in the (augmented) graph, and a coefficient Bii = 1 for i ∈ I corresponds with
a self-cycle i→ i in the (augmented) graph of the SCM. A nonzero coefficient Γij for
i ∈ I , j ∈ J with PEj a nondegenerate probability distribution over R corresponds
with a directed edge j → i in the augmented graph. A nonzero entry (ΓΓT)ij for
i, j ∈ I with i 6= j such that there exists a k ∈ J for which Γik, Γjk 6= 0 and PEk a
nondegenerate probability distribution over R corresponds with a bidirected edge
i↔ j in the graph of the SCM.

For linear SCMs, the solvability condition w.r.t. a subset, Definition 2.3.1, translates
into a matrix condition. In order to state this condition we need to define the
pseudoinverse (or the Moore-Penrose inverse) A+ of a real matrix A (Penrose,
1955; Golub and Kahan, 1965). The pseudoinverse of the matrix A is defined by
A+ := VΣ+U∗, where A = UΣV∗ is the singular value decomposition of A and Σ+

is obtained by replacing each nonzero entry on the diagonal of Σ by its reciprocal
(Golub and Kahan, 1965). One of its useful properties is that AA+A = A.

Proposition 2.C.2 (Sufficient and necessary condition for solvability w.r.t. a subset
for linear SCMs). Let M be a linear SCM and L ⊆ I and O = I \ L. Then M is
solvable w.r.t. L if and only if for the matrix ALL = IL − BLL, where IL denotes the
identity matrix, for PE -almost every e ∈ E and for all xO ∈ XO the identity

ALLA+
LL(BLOxO + ΓLJ e) = BLOxO + ΓLJ e

22 Note that we do not assume that the probability measure PRJ is Gaussian.



2.C linear scms 69

is satisfied, where A+
LL is the pseudoinverse of ALL. Moreover, ifM is solvable w.r.t. L,

then for every vector v ∈ RL the mapping gv
L : RO ×RJ → RL given by

gv
L(xO, e) = A+

LL(BLOxO + ΓLJ e) + [IL − A+
LLALL]v ,

is a measurable solution function forM w.r.t. L.

For linear SCMs, the unique solvability condition w.r.t. a subset translates into a
matrix invertibility condition, as was already shown in (Hyttinen, Eberhardt, and
Hoyer, 2012).

Proposition 2.C.3 (Sufficient and necessary condition for unique solvability w.r.t. a
subset for linear SCMs). LetM be a linear SCM, L ⊆ I and O = I \ L. ThenM is
uniquely solvable w.r.t. L if and only if the matrix ALL = IL− BLL is invertible. Moreover,
ifM is uniquely solvable w.r.t. L, then the mapping gL : RO ×RJ → RL given by

gL(xO, e) = A−1
LL(BLOxO + ΓLJ e) ,

is a measurable solution function forM w.r.t. L.

Note that if ALL is invertible, then A+
LL = A−1

LL (see Lemma 1.3 in (Penrose,
1955)), and the matrix condition of Proposition 2.C.2 is always satisfied and all
the measurable solution functions gv

L of Proposition 2.C.2 are (up to a PE -null set)
equal to the solution function gL of Proposition 2.C.3.

Remark. A sufficient condition for ALL to be invertible is that the spectral radius of
BLL is less than one. If that is the case, then A−1

LL = ∑∞
n=0(BLL)n. Note that the nonzero

nondiagonal entries of the matrix BLL represent the directed edges in the induced subgraph
G(M)L. In particular, if the diagonal entries of the matrix BLL are zero, then for n ∈N,
the coefficients of the matrix (BLL)n in the sum represent the sum of the product of the edge
weights Bij over directed paths of length n in the induced subgraph G(M)L.

From Proposition 2.3.10 we know that an SCM is solvable w.r.t. L if and only if it
is ancestrally solvable w.r.t. L. In particular, this result also holds for linear SCMs.
We saw in Example 2.3.11 that a similar result for unique solvability does not hold,
that is, in general, it does not hold that unique solvability w.r.t. L implies ancestral
unique solvability w.r.t. L. For the class of linear SCMs we do have the following
positive result.

Proposition 2.C.4 (Equivalent unique solvability conditions for linear SCMs). For a
linear SCMM and a subset L ⊆ I the following are equivalent:

1. M is uniquely solvable w.r.t. L;

2. M is ancestrally uniquely solvable w.r.t. L;

3. M is uniquely solvable w.r.t. each strongly connected component in G(M)L.

Under the condition of unique solvability w.r.t. a subset L we can define the
marginalization w.r.t. L of a linear SCM by mere substitution.
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Proposition 2.C.5 (Marginalization of a linear SCM). Let M be a linear SCM and
L ⊆ I a subset of endogenous variables such that IL − BLL is invertible. Then there
exists a marginalization Mmarg(L) that is linear and with marginal causal mechanism
f̃ : RO ×RJ → RO given by

f̃ (xO, e) = [BOO + BOLA−1
LLBLO ]xO + [BOLA−1

LLΓLJ + ΓOJ ]e ,

where ALL = IL − BLL. Moreover, this marginalization respects the latent projection, that
is, (

Ga ◦marg(L)
)
(M) ⊆

(
marg(L) ◦ Ga)(M) .

From Theorem 2.5.6 we know that M and its marginalization Mmarg(L) over
L are observationally, interventionally and counterfactually equivalent w.r.t. O.
A similar result can also be found in (Hyttinen, Eberhardt, and Hoyer, 2012). In
contrast to nonlinear SCMs, this class of linear SCMs has the convenient property
that every marginalization of a model of this class respects the latent projection.
Moreover, the subclass of simple linear SCMs is even closed under marginalization.

2.d examples

In this appendix, we provide additional examples. In Appendix 2.D.1 we provide
some examples of SCMs that describe the equilibrium states of certain feedback
systems governed by (random) differential equations that motivated our study
of cyclic SCMs (see Chapter 3 for further details). In Appendix 2.D.2 we provide
additional examples that support the main text in Chapter 2.

2.d.1 SCMs as equilibrium models

In many systems occurring in the real world feedback loops between observed
variables are present. For example, in economics, the price of a product may be
a function of the demanded or supplied quantities, and vice versa; or in physics,
two masses that are connected by a spring may exert forces on each other. Such
systems are often described by a system of (random) differential equations. In
Chapter 3 we show that SCMs are capable of modeling the causal semantics of
the equilibrium states of such systems. For illustration purposes we provide the
following toy example of interacting masses that are attached to springs.

Example 2.D.1 (Damped coupled harmonic oscillator). Consider a one-dimensional
system of d point masses mi ∈ R (i = 1, . . . , d) with positions Qi, which are coupled by
springs, with spring constants ki > 0 and equilibrium lengths `i > 0 (i = 0, . . . , d), under
influence of friction with friction coefficients bi ∈ R (i = 1, . . . , d) and with fixed endpoints
Q0 = 0 and Qd+1 = L > 0 (see Figure 2.8 (top)). The equations of motion of this system
are provided by the following differential equations

d2Qi

dt2 =
ki

mi
(Qi+1 −Qi − `i) +

ki−1

mi
(Qi−1 −Qi + `i−1)−

bi

mi

dQi

dt
(i = 1, . . . , d) .
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m1 m2 m3 m4 m5

`0 `1 `2 `3 `4 `5

Q0 = 0 Q6 = L

Q1 Q2 Q3 Q4 Q5

Figure 2.8: Damped coupled harmonic oscillator (top) and the graph of the SCMM that
describes the positions of the masses at equilibrium (bottom) of Example 2.D.1
for d = 5.

The dynamics of the masses, in terms of the position, velocity and acceleration, is described
by a single and separate equation of motion for each mass. Under friction, that is, bi > 0
(i = 1, . . . , d), there is a unique equilibrium position, where the sum of forces vanishes for
each mass. If one starts out of equilibrium, for example, by moving one or several masses
out of equilibrium, then the masses will start to oscillate and converge to their unique
equilibrium position. At equilibrium (i.e., for t → ∞) the velocity dQi

dt and acceleration
d2Qi
dt2 of the masses vanish (i.e., dQi

dt , d2Qi
dt2 → 0), and thus the following equation holds at

equilibrium

0 =
ki

mi
(Qi+1 −Qi − `i) +

ki−1

mi
(Qi−1 −Qi + `i−1) ,

for each mass (i = 1, . . . , d). Hence, for each mass i = 1, . . . , d its equilibrium position Qi

is given by

Qi =
ki(Qi+1 − `i) + ki−1(Qi−1 + `i−1)

ki + ki−1
.

By considering the `i and ki and L as fixed parameters, we arrive at a linear SCM (see
Chapter 3 for more details about constructing an SCM from a dynamical system)

M = 〈{1, . . . , d}, ∅, Rd, 1, f , P1〉 ,

where the causal mechanism f is given by

fi(q) =
ki(qi+1 − `i) + ki−1(qi−1 + `i−1)

ki + ki−1
.

Alternatively, (some of) the parameters could be treated as exogenous variables instead. Its
graph is depicted in Figure 2.8 (bottom). This SCM allows us to describe the equilibrium
behavior of the system under perfect intervention. For example, when forcing the mass j to a
fixed position Qj = ξ j with 0 ≤ ξ j ≤ L, the equilibrium positions of the masses correspond
to the solutions of the intervened modelMdo({j},ξ j). It is an easy exercise to show thatM
is a simple SCM by using Proposition 2.C.3.

Next, we show that the well known market equilibrium model from economics,
which has been thoroughly discussed in the literature (see, e.g., Richardson and
Robins, 2014), can be described by a (non-simple) SCM. This example illustrates
how self-cycles enrich the class of SCMs.

Example 2.D.2 (Price, supply and demand). Let XD denote the demand and XS the
supply of a quantity of a product. The price of the product is denoted by XP. The following
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X′P

Ga(Mtwin)do({S,S′})

Figure 2.9: The augmented graph of the SCMM (left), its twin SCMMtwin (center) and
the intervened twin SCM (Mtwin)do({S,S′},(s,s′)) (right) of Examples 2.D.2 and
2.D.3.

system of differential equations describes how the demanded and supplied quantities are
determined by the price, and how price adjustments occur in the market:

XD = βDXP + ED

XS = βSXP + ES

dXP

dt
= XD − XS ,

where ED and ES are exogenous random influences on the demand and supply, respectively,
βD < 0 is the reciprocal of the slope of the demand curve, and βS > 0 is the reciprocal of
the slope of the supply curve. At the situation known as a “market equilibrium”, the price
is determined implicitly by the condition that demanded and supplied quantities should
be equal, since dXP

dt = 0 at equilibrium. Applying the results from Chapter 3 gives rise
to a linear SCMM = 〈{P, S, D}, {S, D}, R3, R2, f , PE 〉 at equilibrium with the causal
mechanism defined by

fD(x, e) := βDxP + eD

fS(x, e) := βSxP + eS

fP(x, e) := xP + (xD − xS) .

Note how we use a self-cycle for P in order to implement the equilibrium equation XD = XS

as the causal mechanism for the price P.23 Moreover,M is uniquely solvable. Its augmented
graph is depicted in Figure 2.9 (left).

Next, we provide an example of how counterfactuals can be sensibly formulated
for cyclic SCMs, namely for the price, supply and demand model at equilibrium.

Example 2.D.3 (Price, supply and demand at equilibrium). Consider the price, supply
and demand model at equilibrium of Example 2.D.2 given by the SCMM. As an example
of a counterfactual query, consider

P(X′P |do(XS = s, XS′ = s′), XP = p) ,

23 Richardson and Robins (2014) argue that this market equilibrium model cannot be modeled as an
SCM. We observe that it can, as long as one allows for self-cycles.
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which denotes the conditional distribution of X′P given XP = p of a solution of the
intervened twin model Mtwin

do({S,S′},(s,s′)). In words: how would—ceteris paribus—price
have been distributed, had we intervened to set supplied quantities equal to s′, given that
actually we intervened to set supplied quantities equal to s and observed that this led to
price p? A straightforward calculation shows that this counterfactual distribution of price is
the Dirac measure on x′P = p + (s′ − s)/βD. The augmented graphs of the SCM, its twin
graph, and its intervened twin graph are depicted in Figure 2.9.

2.d.2 Additional examples

In this subsection, we provide additional examples that support the main text in
Chapter 2.

Section 2

Example 2.D.4 (Structural equations up to almost sure equality). Consider the SCM
M = 〈1, 1,X , E , f , PE 〉 with X = E = {−1, 0, 1}, PE ({−1}) = PE ({1}) = 1

2 and
f (x, e) = e2 + e − 1. Let M̃ be the SCM M but with a different causal mechanism
f̃ (x, e) = e. Then the sets of solutions of the structural equations agree for both SCMs for
e ∈ {−1,+1}, while they differ only for e = 0, which occurs with probability zero. Hence,
a pair of random variables (X, E) is a solution ofM if and only if it is a solution of M̃.

Example 2.D.5 (The for-all and for-almost-every quantifier do not commute in
general). Consider the SCMM = 〈2, 1,X , E , f , PE 〉 with X = (0, 1)2, E = (0, 1), the
causal mechanism f given by

f1(x, e) = x1 ,

f2(x, e) = 1{0}(x1 − e) · (x2 + 1) ,

and PE = PE with E ∼ U (0, 1). Define the property

P(x, e) :=

1 if x = f (x, e) holds,

0 otherwise.

Then, for all x ∈ X and for PE -almost every e ∈ E the property P(x, e) holds, however
for PE -almost every e ∈ E and for all x ∈ X the property P(x, e) does not hold, since
for PE -almost every e ∈ E the equation x = f (x, e) does not hold for x1 = e. Hence, in
general, for a property P(x, e) we have that for all x ∈ X and for PE -almost every e ∈ E
P(x, e) does not imply for PE -almost every e ∈ E for all x ∈ X P(x, e) (see Lemma 2.F.11
for additional properties of the for-almost-every quantifier).
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X1 X2

E1 E2E3

X1 X2

E

Figure 2.10: Augmented graphs of the SCMsM (left) andM∗ (right) in Example 2.D.6. For
SCMM∗, the exogenous variable E consists of two real-valued components;
the structural equation for X1 depends only on the first, while the structural
equation for X2 depends only on the second component.

Example 2.D.6 (Representation of latent confounders). Consider the SCM M =

〈2, 3, R2, R3, f , PR3〉 with causal mechanism given by

f1(e1, e3) = e1 + e3

f2(x1, e2, e3) = x1e3 + e2

and PR3 the standard-normal distribution on R3; Figure 2.10 (left) shows the corresponding
augmented graph. Then there exists no SCMM∗ = 〈2, 1, R2, R2, f ∗, P∗

R2〉 that satisfies
the following conditions:

1. M∗ is interventionally equivalent toM,

2. its structural equations have the form

x1 = f ∗1 (e
∗
1)

x2 = f ∗2 (x1, e∗2),

where e∗1 , e∗2 are the two components of e∗ = (e∗1 , e∗2) ∈ R2,

3. the function e∗2 7→ f ∗2 (x1, e∗2) is strictly monotonically increasing for all x1 ∈ R,

4. the cumulative distribution function F∗2 of the second component of P∗
R2 is continuous

and strictly monotonically increasing.

The augmented graph of such an SCM is shown in Figure 2.10 (right).
The proof of this statement proceeds by contradiction. Assume that such an SCMM∗

exists. For any uniquely solvable SCM M̄ and any endogenous variable i appearing in M̄,
we denote with FM̄Xi

the marginal cumulative distribution function of the ith component of
the observational distribution of M̄. For all ξ ∈ R, we have for all x2 ∈ R

F
Mdo({1},ξ)
X2

(x2) = P(ξE3 + E2 ≤ x2) = Φ
(

x2/
√

1 + ξ2

)
, (2.1)

where Φ denotes the (invertible) cdf of the standard-normal distribution. Now define
φ : R→ R with φ(e2) := Φ−1(F∗2 (e2)) and define the SCM M̃ := 〈2, 1, R2, R2, f̃ , P̃R2〉
such that the causal mechanism f̃ is given by

f̃1(e1) = f ∗1 (e1),

f̃2(x1, e2) = f ∗2 (x1, φ−1(e2)),
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and P̃R2 is the push-forward measure of P∗
R2 using (IR, φ). Then, M̃ is interventionally

equivalent toM∗ by construction, and the second component of P̃R2 has a standard-normal
distribution. Let (X̃1, X̃2, Ẽ) be a solution of M̃ and let us write Ẽ = (Ẽ1, Ẽ2). Then, for
all ξ ∈ R and ẽ2 ∈ R,

F
M̃do({1},ξ)
X2

( f̃2(ξ, ẽ2)) = P( f̃2(ξ, Ẽ2) ≤ f̃2(ξ, ẽ2)) = P(Ẽ2 ≤ ẽ2) = Φ(ẽ2),

using that ẽ2 7→ f̃2(ξ, ẽ2), too, is strictly monotonically increasing for all ξ. This implies
that, for all ξ ∈ R and ẽ2 ∈ R,

f̃2(ξ, ẽ2) = (F
Mdo({1},ξ)
X2

)−1(Φ(ẽ2)
)
=
√

1 + ξ2 ẽ2 ,

where we used interventional equivalence ofM and M̃, and (2.1) for the second equality.

Furthermore, X̃2 = f̃2(X̃1, Ẽ2) =
√

1 + X̃2
1 Ẽ2 a.s., so Ẽ2 = X̃2/

√
1 + X̃2

1 a.s.. Now let
(X1, X2, E1, E2, E3) be a solution of M. By observational equivalence, (X̃1, X̃2) has the
same distribution as (X1, X2), and thus Ẽ2 is distributed as

X2√
1 + X2

1

=
(E1 + E3)E3 + E2√

1 + (E1 + E3)2
a.s..

This contradicts the fact that Ẽ2 has a standard-normal distribution as, for example, the
mean of the right-hand side is nonzero.

Example 2.D.7 (Counterfactual density unidentifiable from observational and inter-
ventional densities (Dawid, 2002)). Let ρ ∈ R and

Mρ = 〈2, 2, {0, 1} ×R, {0, 1} ×R2, f , PE 〉

be the SCM with causal mechanism given by

f1(x, e) = e1 ,

f2(x, e) = e21(1− x1) + e22x1 ,

and PE = P(E1,E2) with E1 ∼ Bernoulli(1/2),

E2 :=

(
E21

E22

)
∼ N

(
0,

(
1 ρ

ρ 1

))

normally distributed and E1⊥⊥ E2. In an epidemiological setting, this SCM could be used
to model whether a patient was treated or not (X1) and the corresponding outcome for that
patient (X2).

Suppose in the actual world we did not assign treatment to a patient (X1 = 0) and the
outcome was X2 = c ∈ R. Consider the counterfactual query “What would the outcome
have been, if we had assigned treatment to this patient?”. We can answer this question by
introducing a parallel counterfactual world that is modeled by the twin SCMMtwin

ρ , as
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Figure 2.11: The augmented graph of the SCMMρ (left), its twin SCMMtwin
ρ (center) and

the intervened twin SCM (Mtwin
ρ )do({1′ ,1},(1,0)) (right) of Example 2.D.7.

depicted in Figure 2.11. The counterfactual query then asks for p(X2′ = x2′ | do(X1′ =

1, X1 = 0), X2 = c). One can calculate that(
X2′

X2

)
| do(X1′ = 1, X1 = 0) ∼ N

(
0,

(
1 ρ

ρ 1

))

and hence X2′ | do(X1′ = 1, X1 = 0), X2 = c ∼ N (ρc, 1− ρ2). Note that the answer
to the counterfactual query depends on a quantity ρ that we cannot identify from the
observational density p(X1, X2) or the interventional densities p(X2 |do(X1 = 0)) and
p(X2 |do(X1 = 1)), none of which depends on ρ. Therefore, even data from randomized
controlled trials combined with observational data would not suffice to determine the value
of this particular counterfactual query. Indeed, SCMs Mρ and Mρ′ with ρ 6= ρ′ are
interventionally equivalent, but not counterfactually equivalent.

Section 3

Example 2.D.8 (Mixtures of solutions are solutions). LetM = 〈1, ∅, R, 1, f , P1〉 be
an SCM with causal mechanism f : X × E → X defined by f (x, e) = x− x2 + 1. There
exist only two measurable solution functions g± : E → X forM, defined by g±(e) = ±1.
Let X : Ω → R be a random variable that is a nontrivial mixture of point masses on
{−1,+1}. Then X is a solution ofM, however neither g+(E) = X a.s., nor g−(E) = X
a.s., for any random variable E such that PE = PE .

Example 2.D.9 (Solvability is not preserved under perfect intervention). Consider
the SCMM = 〈2, ∅, R2, 1, f , P1〉 with the following causal mechanism

f1(x) = x1 + x2
1 − x2 + 1 ,

f2(x) = x2(1− 1{0}(x1)) + 1 .

This SCM has a unique solution (0, 1). Doing a perfect intervention do({1}, ξ1) for some
ξ1 6= 0, however, leads to an intervened modelMdo({1},ξ1) that is not solvable. Performing
instead the perfect intervention do({2}, ξ2) for some ξ2 > 1 leads also to a nonuniquely
solvable SCM Mdo({2},ξ2) which has solutions with multiple induced distributions, for
example, (X1, X2) = (φ(ξ2)

√
ξ2 − 1, ξ2) with some measurable φ : R→ {−1,+1}, but

also mixtures of those.
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Figure 2.12: The augmented graphs of SCMs M̄, M̂, M, and M̃ that appear in Exam-
ples 2.4.4, 2.D.10, and 2.D.13.

Section 4

Example 2.D.10 (Counterfactually equivalent SCMs with different graphs). Con-
sider the SCM M̂ = 〈2, 2, {−1, 1}2, {−1, 1}2, f̂ , PE 〉 with causal mechanism given by
f̂1(x, e) = e1 and f̂2(x, e) = e2, and PE = PE with E1, E2 ∼ U ({−1, 1}) uniformly
distributed and E1⊥⊥ E2. Consider also the SCMM that is the same as M̂ except for its
causal mechanism, which is given by f1(x, e) = e1 and f2(x, e) = e1e2. ThenM and M̂
are counterfactually equivalent although G(M) is not equal to G(M̂) (see Figure 2.12).

Section 5

Example 2.D.11 (Marginalization condition of an SCM is not a necessary condition).
Consider the SCMM = 〈4, 1, R4, R, f , PR〉 with causal mechanism given by

f1(x, e) = e , f3(x, e) = x2 ,

f2(x, e) = x1 , f4(x, e) = x4 ,

and PR is the standard-normal measure on R. This SCM is solvable w.r.t. L = {2, 4}, but
not uniquely solvable w.r.t. L, and hence we cannot apply Definition 2.5.3 to L. However,
the SCM M̃ on the endogenous variables {1, 3} with the causal mechanism f̃ given by
f̃1(x, e) = e and f̃3(x, e) = x1 is counterfactually equivalent toM w.r.t. {1, 3}, which can
be checked easily.

Example 2.D.12 (Graph of the marginal SCM is a strict subgraph of the latent
projection). Consider the SCMM = 〈3, 1, R3, R, f , PR〉 with causal mechanism given
by

f1(x, e) = e1 ,

f2(x, e) = x1 − x3 ,

f3(x, e) = x1 ,

and take for PR the standard-normal measure on R. In contrast, to the (augmented) graph
ofM, there is no directed path in the (augmented) graph of the marginal SCMMmarg({3}).

Section 7

Example 2.D.13 (Detecting a bidirected edge in the graph of an SCM). Consider the
SCM M̄ = 〈2, 2, {−1, 1}2, {−1, 1}2, f̄ , PE 〉 with causal mechanism given by

f̄1(x, e) = e1 ,

f̄2(x, e) = x1e2 ,
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and PE = PE with E1, E2 ∼ U ({−1, 1}) uniformly distributed and E1⊥⊥ E2. Consider
also the SCM M̃ that is the same as M̄ except for its causal mechanism, which is given by

f̃1(x, e) = e1 ,

f̃2(x, e) = x1e1 .

See Figure 2.12 for their augmented graphs. For the SCM M̃ we observe that the marginal
interventional distribution PM̃do({1},ξ1)

(X2 = −1) is not equal to the conditional distribu-
tion PM̃(X2 = −1 |X1 = ξ1) for both ξ1 = −1 and ξ1 = 1. This observation suffices
to identify the presence of the bidirected edge 1 ↔ 2 in the graph G(M̃). For the SCM
M̄, whose graph does not contain the bidirected edge 1↔ 2, the marginal interventional
distribution and conditional distribution coincide.

2.e proofs

This appendix contains the proofs of all the theoretical results in the appendices
2.A, 2.B and 2.C, and the main text in Chapter 2. Some of the proofs will rely on
the measure theoretic terminology and results of Appendix 2.F.

2.e.1 Proofs of the appendices

Appendix A

Proof of Lemma 2.A.5. It suffices to show that for every C-d-open walk between i
and j in G, there exists a C-d-open path between i and j in G. Take a C-d-open walk
π = (i = i0, . . . , in = j). If a node ` occurs more than once in π, let ij be the first
occurrence of ` in π and ik the last occurrence of ` in π. We now construct a new
walk π′ from π by removing the subwalk between ij and ik of π from π. It is easy to
check that the new walk π′ is still C-d-open. If ` is an endpoint on π′, then ij or ik

must be endpoint of π, and hence ` /∈ C. If ` is a non-endpoint non-collider on π′,
then also ij or ik must have been a non-endpoint non-collider on π, and hence ` /∈ C.
If ` is a collider on π′, then either (i) ij or ik are both colliders on π, and hence `

is ancestor of C in G, or (ii) on the subwalk between ij and ik that was removed,
there must be a directed path in G from ij or ik to a collider in anG(C), and hence,
` is in anG(C). The other nodes on π′ cannot be responsible for C-d-blocking the
walk, since they also occur (together with their adjacent edges) on π and they do
not C-d-block π.

In π′, the number of nodes that occur multiple times is at least one less than in π.
Repeat this procedure until no repeated nodes are left.

Proof of Theorem 2.A.7. The first case is a well known result. An elementary proof is
obtained by noting that an acyclic system of structural equations trivially satisfies the
local directed Markov property, and then apply (Lauritzen et al., 1990; Proposition
4), followed by applying the stability of d-separation with respect to (graphical)
marginalization (Forré and Mooij, 2017; Lemma 2.2.15). Alternatively, the result
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also follows from sequential application of Theorems 3.8.2, 3.8.11, 3.7.7, 3.7.2 and
3.3.3 (using Remark 3.3.4) in (Forré and Mooij, 2017).

The discrete case is proved by the series of results Theorem 3.8.12, Remark 3.7.2,
Theorem 3.6.6 and 3.5.2 in (Forré and Mooij, 2017).

The linear case is proved in Example 3.8.17 in (Forré and Mooij, 2017). To connect
the assumptions made there with the ones we state here, observe that under the
linear transformation rule for Lebesgue measures, the image measure of PE under
the linear mapping RJ → RI : e 7→ ΓIJ e gives a measure on X = RI with
a density w.r.t. the Lebesgue measure on RI , as long as the image of the linear
mapping is the entire RI . This is guaranteed if each causal mechanism has a
nontrivial dependence on some exogenous variable(s), that is, for each i ∈ I there
is some j ∈ J with Γij 6= 0.

Proof of Proposition 2.A.12. This follows directly from the fact that the strongly con-
nected components of Ga(M) form a DAG by Lemma 2.A.2 and that the directed
edges in Ga(acy(M)) by construction respect every topological ordering of that
DAG. Both SCMs are observationally equivalent by construction.

Proof of Proposition 2.A.14. This follows immediately from the Definitions 2.A.11

and 2.A.13.

Proof of Lemma 2.A.17. It suffices to show that for every C-σ-open walk between
i and j in G, there exists a C-σ-open path between i and j in G. Let π = (i =

i0, . . . , in = j) be a C-σ-open walk in G. If a node ` occurs more than once in π,
let ij be the first node in π and ik the last node in π that are in the same strongly
connected component as `. Since ij and ik are in the same strongly connected
component, there are directed paths ij → · · · → ik and ik → · · · → ij in G. We now
construct a new walk π′ from π by replacing the subwalk between ij and ik of π by
a particular directed path between ij and ik: (i) If k = n, or if k < n and ik → ik+1 on
π, we replace it by a shortest directed path ij → · · · → ik, otherwise (ii) we replace
it by a shortest directed path ij ← · · · ← ik. We now show that the new walk π′ is
still C-σ-open.

π′ cannot become C-σ-blocked through one of the initial nodes i0 . . . ij−1 or
one of the final nodes ik+1 . . . in on π′, since these nodes occur in the same local
configuration on π and do not C-σ-block π by assumption. Furthermore, π′ cannot
become C-σ-blocked through one of the nodes strictly between ij and ik on π′ (if
there are any), since these nodes are all non-endpoint non-colliders that only point
to nodes in the same strongly connected component on π′. Because π is C-σ-open,
ik /∈ C if k = n or if ik → ik+1 on π. This holds in particular in case (i). Similarly,
ij /∈ C if j = 0 or ij−1 ← ij on π.

In case (i), π′ is not C-σ-blocked by ik because ik is a non-collider on π′ but ik /∈ C.
Also ij does not C-σ-block π′. Assume ij 6= ik (otherwise there is nothing to prove).
If j = 0, or if j > 0 and ij−1 ← ij on π′, then the same holds for π and hence ij /∈ C;
ij is then a non-collider on π′, but ij /∈ C. If j > 0 and ij−1 ↔ ij or ij−1 → ij on π′

then ij is a non-endpoint non-collider on π′ that does not point to a node in another
strongly connected component.
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Now consider case (ii). If j = 0 or ij−1 ← ij on π′ then this case is analogous
to case (i). So assume j > 0 and ij−1 → ij or ij−1 ↔ ij on π′. If ij is an endpoint
of π′, then ij = ik and k = n and therefore ik /∈ C, and hence ij and ik do not
C-σ-block π′. Otherwise, ij must be a collider on π′ (whether ij = ik or not). Then
on the subwalk of π between ij and ik there must be a directed path from ij to a
collider that is ancestor of C, which implies that ij is itself ancestor of C, and hence
ij does not C-σ-block π′. Also ik cannot C-σ-block π′. Assume ij 6= ik (otherwise
there is nothing to prove). Since ik ← ik+1 or ik ↔ ik+1 on π′, ik is a non-endpoint
non-collider on π′ that does not point to a node in another strongly connected
component.

Now in π′, the number of nodes that occurs more than once is at least one less
than in π. Repeat this procedure until no nodes occur more than once.

Proof of Proposition 2.A.19. This follows directly as a special case of Corollary 2.8.4
in (Forré and Mooij, 2017).

Proof of Theorem 2.A.21. An SCM M that is uniquely solvable w.r.t. each strongly
connected component is uniquely solvable and hence, by Theorem 2.3.6, all its
solutions have the same observational distribution. The last statement follows
from the series of results Theorem 3.8.2, 3.8.11, Lemma 3.7.7 and Remark 3.7.2
in (Forré and Mooij, 2017). Alternatively, we give here a shorter proof: Under the
stated conditions one can always construct the acyclification acy(M) which is
observationally equivalent toM and is acyclic (see Proposition 2.A.12) and hence
we can apply Theorem 2.A.7 to acy(M). Together with Proposition 2.A.14 and
2.A.19 this gives

A
σ

⊥
G(M)

B |C ⇐⇒ A
d
⊥

acy(G(M))
B |C =⇒ A

d
⊥

G(acy(M))
B |C =⇒ XA ⊥⊥

PX
M

XB |XC ,

for A, B, C ⊆ I and X a solution ofM.

Proof of Corollary 2.A.22. First observe that simplicity is preserved under both per-
fect intervention and the twin operation (see Proposition 2.8.2). Now the first
statement follows from Theorem 2.A.21 if one takes into account the identities
of Proposition 2.2.14 and 2.2.19. Similarly, the last statement follows from Theo-
rem 2.A.7.

Proof of Proposition 2.A.32. Let M̃ =: 〈V , Ĥ,X ,E , f̃ , PE 〉 be the induced SCM. Ob-
serve that every loop O ∈ L(G(M̃)) is a loop in L(G). Fix x̌ ∈ X and ě ∈ E . For
every O ∈ L(G(M̃)), define

IO := (paG(O) \ O) \ (pa(O) \ O) ⊆ Ĩ

and
JO := {F ∈ J̃ : F ∩O 6= ∅} \ pa(O) ⊆ J̃ .
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Now, define the family of measurable mappings (g̃O)O∈L(G(M̃)), where the mapping
g̃O : X pa(O)\O × Epa(O) → XO is given by

g̃O(xpa(O)\O, epa(O)) := gO(xpa(O)\O, x̌IO , epa(O), ěJO )

where xpaG (O)\O = (xpa(O)\O, x̌IO ) and êO = (epa(O), ěJO ). Observe that from the
definition of the parents (see Definition 2.2.6) it follows that for PE -almost every
e ∈ E and for all x ∈ X we have

xO = f̃O(x\IO , x̌IO , e\JO , ěJO ) ⇐⇒ xO = f̃O(x, e) .

This, together with the fact that the family of mappings (gO)O∈L(G) is a compatible
system of solution functions, implies that for PE -almost every e ∈ E and for all
x ∈ X we have

xO = g̃O(xpa(O)\O, epa(O)) =⇒ xO = f̃O(x, e) .

Hence, ι(M̂) is loop-wisely solvable and thus (g̃O)O∈L(G(M̃)) is a family of measur-
able solution functions. In particular, for all O, Õ ∈ L(G(M̃)) with Õ ⊆ O and for
PE -almost every e ∈ E and for all x ∈ X we have

xO = g̃O(xpa(O)\O, epa(O)) =⇒ xÕ = g̃Õ(xpa(Õ)\Õ, epa(Õ)) .

From this we conclude that (g̃O)O∈L(G(M̃)) is a compatible system of solution
functions.

Proof of Lemma 2.A.33. SupposeM is loop-wisely uniquely solvable and consider a
subset O ⊆ I . Consider the induced subgraph Ga(M)O of Ga(M) on the nodes O.
Then every strongly connected component of Ga(M)O is an element of L(G(M)).
Let C be such a strongly connected component in Ga(M)O , and let gC : X pa(C)\C ×
Epa(C) → X C be a measurable solution function for M w.r.t. C. Since Ga(M)O
partitions into strongly connected components, we can recursively (by following a
topological ordering of the DAG Ga(M)sc

O from Lemma 2.A.2) insert these mappings
into each other to obtain a mapping gO : X pa(O)\O × Epa(O) → XO that makesM
uniquely solvable w.r.t. O.

Proof of Proposition 2.A.34. Let (gO)O∈L(G(M)) be any family of measurable solution
functions, where gO is measurable solution function of M w.r.t. O. Then, for
O, Õ ∈ L(G(M)) such that Õ ⊆ O, we have that for PE -almost every e ∈ E and
for all x ∈ X

xO = fO(x, e) =⇒ xÕ = fÕ(x, e) .

This implies that for PE -almost every e ∈ E and for all x ∈ X

xO = gO(xpa(O)\O, epa(O)) =⇒ xÕ = gÕ(xpa(Õ)\Õ, epa(Õ)) .
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Proof of Corollary 2.8.5. This follows directly from Proposition 2.7.1 and 2.7.2.

Appendix B

Proof of Proposition 2.B.1. Let f̃ : E ×X → X be the causal mechanism of a struc-
turally minimal SCM that is equivalent toM (see Proposition 2.2.11). In particular,
for any ε\pa(O) ∈ E\pa(O) and ξ\pa(O) ∈ X \pa(O), we have that for all x ∈ X and
all e ∈ E , f̃ (x, e) = f̃ (xpa(O), ξ\pa(O), epa(O), ε\pa(O)). This means that we may also
consider f̃ as a mapping f̃ : X pa(O) × Epa(O) → X .

Consider the set

S̃ := {(epa(O), xpa(O)\O, xO) ∈ Epa(O)×X pa(O)\O×XO : xO = f̃O(xpa(O), epa(O))} .

By similar reasoning as in the proof of Theorem 2.3.2, S̃ is measurable.
By assumption, for PE -almost every e ∈ E and for all x\O ∈ X \O the space
{xO ∈ XO : xO = fO(x, e)} is nonempty and σ-compact. By applying Lemma 2.F.10

to the canonical projection prEpa(O) : E → Epa(O) and using the equivalence
of f and f̃ , we obtain that for PEpa(O)-almost every epa(O) ∈ Epa(O) and for all
xpa(O)\O ∈ X pa(O)\O the space

S̃ (epa(O),xpa(O)\O) := {xO ∈ XO : xO = f̃O(xpa(O), epa(O))}

is nonempty and σ-compact.
The second measurable selection theorem, Theorem 2.F.9, now implies that there

exists a measurable gO : X pa(O)\O × Epa(O) → XO such that for PEpa(O)-almost
every epa(O) ∈ Epa(O) and for all xpa(O)\O ∈ X pa(O)\O

gO(xpa(O)\O, epa(O)) = f̃O
(
xpa(O)\O, gO(xpa(O)\O, epa(O)), epa(O)

)
.

Once more applying Lemma 2.F.10, we obtain that for PE -almost every e ∈ E and
for all x ∈ X

xO = gO(xpa(O)\O, epa(O)) =⇒ xO = fO(x, e).

HenceM is solvable w.r.t. O.

Proof of Proposition 2.B.4. Without loss of generality, we assume that M is struc-
turally minimal (see Proposition 2.2.11). Define C := A ∩ Ã and D := A ∪ Ã.
Let gA, gÃ be measurable solution functions for M w.r.t. A and Ã, respectively.
Note that pa(C) \ C ⊆ pa(A) \ A and similarly pa(C) \ C ⊆ pa(Ã) \ Ã. Indeed, for
c ∈ pa(C): if c ∈ O then c ∈ C because A and Ã are both ancestral in G(M)O,
while if c /∈ O then c /∈ A and c /∈ Ã. Hence by Lemma 2.E.1, for PE -almost all
e ∈ E and for all x ∈ X

(gA)C(xpa(A)\A, epa(A)) = (gÃ)C(xpa(Ã)\Ã, epa(Ã)) .
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Hence for PE -almost every e ∈ E and for all x ∈ X

xD = fD(x, e)

⇐⇒



xA\C = fA\C(x, e)

xC = fC(x, e)

xC = fC(x, e)

xÃ\C = fÃ\C(x, e)

⇐⇒



xA\C = (gA)A\C(xpa(A)\A, epa(A))

xC = (gA)C(xpa(A)\A, epa(A))

xC = (gÃ)C(xpa(Ã)\Ã, epa(Ã))

xÃ\C = (gÃ)Ã\C(xpa(Ã)\Ã, epa(Ã))

⇐⇒

xA = gA(xpa(A)\A, epa(A))

xÃ = gÃ(xpa(Ã)\Ã, epa(Ã)) .

Now pa(A) \ A ⊆ pa(D) \ D, and similarly, pa(Ã) \ Ã ⊆ pa(D) \ D. Hence, we
conclude that the mapping hD : X pa(D)\D × Epa(D) → XD defined by

hD(xpa(D)\D, epa(D)) :=(
(gA)A\C(xpa(A)\A, epa(A)), (gA)C(xpa(A)\A, epa(A)), (gÃ)Ã\C(xpa(Ã)\Ã, epa(Ã))

)
is a measurable solution function forM w.r.t. D, and thatM is uniquely solvable
w.r.t. D.

Proof of Corollary 2.B.5. It suffices to show the implication to the left. We have to
show thatM is uniquely solvable w.r.t. each ancestral subset of G(M)O . The proof
proceeds via induction with respect to the size of the ancestral subset. For ancestral
subsets of size 0, the claim is trivially true. Ancestral subsets of size 1 must be of the
form {i} = anG(M)O (i) for i ∈ O and hence the claim is true by assumption. Assume
that the claim holds for all ancestral subsets of size ≤ n. Let A be an ancestral subset
of G(M)O of size n + 1. If A = anG(M)O (i) for some i ∈ O then the claim holds for
A by assumption. Otherwise, A =

⋃
i∈A anG(M)O (i) is a union of ancestral subsets

of size ≤ n. Choose distinct elements {i1, . . . , ik} ⊆ A where k is the smallest integer
such that

⋃k
j=1 anG(M)O (ij) = A. By applying Proposition 2.B.4 to

⋃k−1
j=1 anG(M)O (ij)

and anG(M)O (ik), thereby noting that the intersection of these two sets is an ancestral
subset of size ≤ n and making use of the induction hypothesis, we arrive at the
conclusion thatM is uniquely solvable w.r.t. A.
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Appendix C

Proof of Proposition 2.C.2. Let e ∈ E and xO ∈ XO. For xL ∈ X ,

xL = fL(x, e)

⇐⇒ xL = BLLxL + BLOxO + ΓLJ e

⇐⇒ ALLxL = BLOxO + ΓLJ e

⇐⇒

ALLA+
LL(BLOxO + ΓLJ e) = BLOxO + ΓLJ e

∃v∈X L : xL = A+
LL(BLOxO + ΓLJ e) + [IL − A+

LLALL]v ,

where the last equivalence follows from (Theorem 2, Penrose, 1955).

Proof of Proposition 2.C.3. M is uniquely solvable w.r.t. L if and only if for PE -
almost every e ∈ E and for all xO ∈ XO the linear system of equations

xL = fL(x, e)

⇐⇒ xL = BLLxL + BLOxO + ΓLJ e

⇐⇒ ALLxL = BLOxO + ΓLJ e

has a unique solution xL ∈ XL. Hence,M is uniquely solvable w.r.t. L if and only
if ALL is invertible.

Proof of Proposition 2.C.4. It suffices to show (1) =⇒ (2) and (1) ⇐⇒ (3). We
start by showing that (1) =⇒ (2). Let V ⊆ L and denote U := anG(M)L(V), then
we need to show thatM is uniquely solvable w.r.t. U . From Proposition 2.C.3 we
know thatM is uniquely solvable w.r.t. L if and only if the matrix ALL = IL − BLL
is invertible. The matrix ALL is invertible if and only if the rows of ALL are all
linearly independent. In particular, the rows of AUL are all linearly independent.
Because AUL = [AUU ZUL], where ZUL is the zero matrix, we know that the rows
of AUU = IU − BUU are also all linearly independent, and hence AUU is invertible.

Next, we show that (1) ⇐⇒ (3). Observe that the strongly connected compo-
nents of G(M)L form a partition of the set L and that the directed mixed graph
G(M)L and the directed graph Ga(M)L have the same strongly connected compo-
nents. Because, by Lemma 2.A.2, the graph of strongly connected components Gsc

of the directed graph Ga(M)L is a DAG, the square matrix BLL can be permuted
to an upper triangular block matrix B̃LL, where for each diagonal block B̃VV of B̃LL
the set of nodes V is a strongly connected component in G(M)L.

Without loss of generality we assume now that BLL is an upper triangular block
matrix. From Proposition 2.C.3 it follows thatM is uniquely solvable w.r.t. L if and
only if the matrix ALL = IL − BLL is invertible. Because BLL is an upper triangular
block matrix, we know that ALL is an upper triangular block matrix, where for each
diagonal block AVV of ALL the set of nodes V is a strongly connected component
in G(M)L. Since an upper triangular block matrix ALL is invertible if and only if
every diagonal block in ALL is invertible, we have thatM is uniquely solvable w.r.t.
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L if and only ifM is uniquely solvable w.r.t. each strongly connected component
in G(M)L.

Proof of Proposition 2.C.5. By the definition of marginalization and Proposition 2.C.3
the marginal causal mechanism f̃ is given by

f̃ (xO, e) := fO(xO, gL(xO, e), e)

= BOOxO + BOLgL(xO, e) + ΓOJ e

= [BOO + BOLA−1
LLBLO ]xO + [BOLA−1

LLΓLJ + ΓOJ ]e .

From Propositions 2.C.4 and 2.5.11 it follows that the marginalization respects the
latent projection.

2.e.2 Proofs of the main text

Section 2

Proof of Proposition 2.2.11. Let i ∈ I . Note that Definition 2.2.6 can alternatively
be formulated as follows: for k ∈ I ∪ J , k 6∈ pa(i) if and only if there exists a
measurable mapping f̂i : X × E → Xi such that for PE -almost every e ∈ E and for
all x ∈ X ,

xi = fi(x, e) ⇐⇒ xi = f̂i(x, e)

and either k ∈ I and there exists x̂k ∈ Xk such that f̂i(x, e) = f̂i(x\k, x̂k, e) for all
x ∈ X , e ∈ E , or k ∈ J and there exists êk ∈ Ek such that f̂i(x, e) = f̂i(x, e\k, êk) for
all x ∈ X , e ∈ E . By repeatedly applying (this formulation of) Definition 2.2.6 to all
k /∈ pa(i), we obtain the existence of a measurable mapping f̃i : X × E → Xi and
x̂\pa(i) ∈ X \pa(i), ê\pa(i) ∈ E\pa(i) such that for PE -almost every e ∈ E and for all
x ∈ X ,

xi = fi(x, e) ⇐⇒ xi = f̃i(x, e),

and for all e ∈ E and all x ∈ X ,

f̃i(x, e) = f̃i(xpa(i), x̂\pa(i), epa(i), ê\pa(i)).

Define the SCM M̃ asM except that its causal mechanism is f̃ instead of f . Then
M̃ is structurally minimal and equivalent toM.

Proof of Proposition 2.2.14. The do(I, ξ I) operation on M completely removes the
functional dependence on x and e from the fi components for i ∈ I and hence
the corresponding incoming directed and bidirected edges on nodes in I from the
(augmented) graph.

Proof of Proposition 2.2.15. The first statement follows from Definitions 2.2.12 and
2.2.13. For the second statement, note that a perfect intervention can only remove
parental relations, and therefore will never introduce a cycle.
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Proof of Proposition 2.2.19. This follows directly from Definitions 2.2.17 and 2.2.18.

Proof of Proposition 2.2.20. The additional edges introduced by the twin operation
cannot lead to a directed cycle involving both copied and original nodes, because
there are no edges pointing from copied nodes to original nodes (i.e., of the form
i′ → v with i′ ∈ I′ and v ∈ V). Directed cycles involving only original nodes are
absent by assumption, and directed cycles involving only copied nodes as well since
they would correspond with a directed cycle in the original directed graph.

Proof of Proposition 2.2.21. It suffices to prove the property for directed graphs, since
the property for SCMs follows directly from Definitions 2.2.12 and 2.2.17.

Applying the intervention do(I) on the graph G removes all the incoming edges
from the nodes in I. Now, if we perform the twin operation w.r.t. I on this graph
do(I)(G), then we copy the same edges as if we had twinned the graph G w.r.t.
I , except those edges that do point to one of the nodes in I. Hence, if we apply
the intervention do(I ∪ I′) on the graph twin(I)(G), which removes all incoming
edges of both I and its copy I′, then we clearly obtain the same graph.

Section 3

Proof of Theorem 2.3.2. First we define the solution space S(M) ofM by

S(M) := {(e, x) ∈ E ×X : x = f (x, e)} .

This is a measurable set, since S(M) = h−1(∆), where h : E ×X → X ×X is the
measurable mapping defined by h(e, x) = (x, f (x, e)) and ∆ is the set defined by
{(x, x) : x ∈ X }, which is measurable since X is Hausdorff. Note that

A := prE (S(M)) = {e ∈ E : ∃x ∈ X s.t. x = f (x, e)} ,

is an analytic set because the projection prE : X × E → E is a measurable mapping
between standard measurable spaces (Lemma 2.F.3).

Suppose that (1) holds, that is, M has a solution. Then there exists a pair of
random variables (E, X) : Ω→ E ×X such that X = f (X, E) P-a.s.. Note that

{ω ∈ Ω : X(ω) = f
(
X(ω), E(ω)

)
} ⊆ {ω ∈ Ω : ∃x ∈ X s.t. x = f

(
x, E(ω)

)
}

⊆ E−1
(
{e ∈ E : ∃x ∈ X s.t. x = f (x, e)}

)
= E−1(A).

By Lemma 2.F.6, A is PE-measurable because it is analytic, and we can write
A = B ∪̇N with B ⊆ E measurable and N a PE-null set. Hence E−1(A) =

E−1(B) ∪ E−1(N ) where E−1(N ) is a P-null set. Therefore,

E−1(B) ⊇ {ω ∈ Ω : X(ω) = f
(
X(ω), E(ω)

)
} \ E−1(N )
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which implies that P(E−1(B)) = 1. Hence, E \A is a PE -null set. In other words,
for PE -almost every e ∈ E the structural equations x = f (x, e) have a solution
x ∈ X , that is, (2) holds.

Suppose that (2) holds. Then E \ prE (S(M)) is a PE -null set. By application of
the measurable selection theorem 2.F.8, there exists a measurable g : E → X such
that for PE -almost all e ∈ E , g(e) = f (g(e), e). Hence, there exists a measurable
mapping g : E → X such that for PE -almost every e ∈ E and for all x ∈ X

x = g(e) =⇒ x = f (x, e) ,

which we call property (A). Let f̃ : E × X → X be the causal mechanism of
a structurally minimal SCM that is equivalent to M (see Proposition 2.2.11). In
particular, for any ε\pa(I) ∈ E\pa(I), we have that f̃ (x, e) = f̃ (x, epa(I), ε\pa(I)) for
all x ∈ X and all e ∈ E . This means that we may also consider f̃ as a mapping
f̃ : X × Epa(I) → X . By applying Lemma 2.F.10 to the canonical projection
prEpa(I) : E → Epa(I) and using the equivalence of f and f̃ , we obtain that for
PEpa(I)-almost all epa(I) ∈ Epa(I) there exists x ∈ X with x = f̃ (x, epa(I)). By
applying the implication (2) =⇒ (A) to Epa(I) and f̃ , we conclude the existence
of a measurable g : Epa(I) → X such that for PEpa(I)-almost all epa(I) ∈ Epa(I),
g(epa(I)) = f̃ (g(epa(I)), epa(I)). Once more using Lemma 2.F.10, we obtain that for
PE -almost all e ∈ E , g(epa(I)) = f (g(epa(I)), e). In other words, (3) holds.

Lastly, suppose that (3) holds, that is there exists a measurable solution function
g : Epa(I) → X . Then the measurable mappings E : E → E and X : E → X ,
defined by E(e) := e and X(e) := g(epa(I)), respectively, define a pair of random
variables (X, E) such that X = f (X, E) holds a.s. and hence (X, E) is a solution.
Hence (1) holds.

Proof of Proposition 2.3.4. Let f̃ : E ×X → X be the causal mechanism of a struc-
turally minimal SCM M̃ that is equivalent to M (see Proposition 2.2.11). For a
subset O ⊆ I consider the induced subgraph Ga(M)O of the augmented graph
Ga(M) on O. Then the acyclicity of Ga(M) implies that the induced subgraph
Ga(M)O is acyclic, and hence there exists a topological ordering on the nodes O.
We can substitute the components f̃i of the causal mechanism f̃ for i ∈ O into each
other along this topological ordering. This gives a measurable solution function
gO : X pa(O)\O × Epa(O) → XO for M̃, and hence forM. It is clear from the acyclic
structure that this mapping gO is independent of the choice of the topological or-
dering and is the only solution function forM. Therefore, M̃ is uniquely solvable
w.r.t. O, and so isM.

Proof of Proposition 2.3.7. This follows immediately from Definitions 2.2.7 and 2.3.3.

Proof of Theorem 2.3.6. Suppose that (1) holds. By Proposition 2.B.1 there exists a
measurable solution function gO : X pa(O)\O × Epa(O) → XO forM w.r.t. O. Then
for PE -almost every e ∈ E and for all x\O ∈ X \O we have that gO(xpa(O)\O, epa(O))
is a solution of xO = fO(x, e). Hence, because of (1), for PE -almost every e ∈ E and
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for all x\O ∈ X \O we have that xO = fO(x, e) implies xO = gO(xpa(O)\O, epa(O)).
Thus,M is uniquely solvable w.r.t. O, that is, (2) holds.

Suppose that (2) holds. Let gO : X pa(O)\O × Epa(O) → XO be a measurable
solution function forM w.r.t. O. Then, for PE -almost every e ∈ E and for all x ∈ X

xO = gO(xpa(O)\O, epa(O)) ⇐⇒ xO = fO(x, e) .

This implies (1).
For the last statement, assume thatM is uniquely solvable. Let g : Epa(I) → X

be a measurable solution function. Then there exists a measurable set B ⊆ E with
PE (B) = 1 and for all e ∈ B,

∀x ∈ X : x = f (x, e) =⇒ x = g(epa(I)).

The existence of a solution forM follows directly from Theorem 2.3.2. Each solution
(X, E) : Ω→ X ×E ofM satisfies X(ω) = f (X(ω), E(ω)) P-a.s.. In addition, it sat-
isfies E(ω) ∈ B P-a.s., since P ◦ E−1 = PE . Hence, it satisfies X(ω) = g(E(ω)pa(I))
P-a.s.. Thus for every solution (X, E) the associated observational distribution is
the push-forward of PE under g ◦ prpa(I).

Proof of Proposition 2.3.8. Let gO : X pa(O)\O × Epa(O) → XO be a measurable solu-
tion function forM w.r.t. O. Then the mapping g̃O∪I : Epa(O) → XO∪I defined by
g̃O∪I(epa(O)) := (gO(ξpa(O)\O, epa(O)), ξ I) is a measurable solution function for the
SCMMdo(I,ξ I) w.r.t. O ∪ I. IfM is (uniquely) solvable w.r.t. O, then it follows that
Mdo(I,ξ I) is (uniquely) solvable w.r.t. O ∪ I.

Proof of Proposition 2.3.10. It suffices to show that solvability ofM w.r.t. O implies
ancestral solvability w.r.t. O. Solvability ofM w.r.t. O implies that there exists a
measurable mapping gO : X pa(O)\O × Epa(O) → XO such that for PE -almost every
e ∈ E and for all x ∈ X

xO = gO(xpa(O)\O, epa(O)) =⇒ xO = fO(x, e) .

Let f̃ : E ×X → X be the causal mechanism of a structurally minimal SCM M̃
that is equivalent to M (see Proposition 2.2.11). Let P := anG(M)O (A) for some
A ⊆ O. Then for PE -almost every e ∈ E and for all x ∈ XxP = (gO)P (xpa(O)\O, epa(O))

xO\P = (gO)O\P (xpa(O)\O, epa(O))
=⇒

xP = f̃P (xpa(P), epa(P))

xO\P = f̃O\P (xpa(O\P), epa(O\P)) .

Since pa(P) \ P ⊆ pa(O) \ O, we have that in particular for PE -almost every e ∈ E
and for all x ∈ X

xP = (gO)P (xpa(O)\O, epa(O)) =⇒ xP = f̃P (xpa(P), epa(P)) .
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This implies that the mapping (gO)P cannot depend on elements different from
pa(P). Moreover, it follows from the definition of P that (pa(O) \ O) ∩ pa(P) =
pa(P) \ P and thus we have pa(O) \ O = (pa(P) \ P) ∪ (pa(O) \ (O ∪ pa(P))).
Now, pick an element x̂pa(O)\(O∪pa(P)) ∈ X pa(O)\(O∪pa(P)) and define the mapping
g̃P : X pa(P)\P × Epa(P) → X P by

g̃P (xpa(P)\P , epa(P)) := (gO)P (xpa(P)\P , x̂pa(O)\(O∪pa(P)), epa(O)) .

Then, for PE -almost every e ∈ E and for all x ∈ X

xP = g̃P (xpa(P)\P , epa(P)) ⇐⇒ xP = (gO)P (xpa(O)\O, epa(O)) .

Together this gives that for PE -almost every e ∈ E and for all x ∈ X

xP = g̃P (xpa(P)\P , epa(P)) =⇒ xP = f̃P (xpa(P), epa(P)) .

which is equivalent to the statement thatM is solvable w.r.t. anG(M)O (A).

Section 4

Lemma 2.E.1. LetM be an SCM that is uniquely solvable w.r.t. two subsets A, B ⊆ I
that satisfy A ⊆ B and pa(A) \ A ⊆ pa(B) \ B. Let gA : X pa(A)\A × Epa(A) → X A

and gB : X pa(B)\B × Epa(B) → X B be measurable solution functions forM w.r.t. A and
B, respectively. Then for PE -almost every e ∈ E and for all x ∈ X

gA(xpa(A)\A, epa(A)) = (gB)A(xpa(B)\B, epa(B)) .

Proof. Without loss of generality, we assume thatM is structurally minimal (see
Proposition 2.2.11). Let Ē ⊆ E be a measurable set with PE (Ē) = 1 such that for all
e ∈ Ē for all x ∈ X :

xA = gA(xpa(A)\A, epa(A)) ⇐⇒ xA = fA(xpa(A), epa(A))

and
xB = gB(xpa(B)\B, epa(B)) ⇐⇒ xB = fB(xpa(B), epa(B)) .
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Now let e ∈ Ē and let xA∪pa(B)\B ∈ X A∪pa(B)\B. Then

xA = (gB)A(xpa(B)\B, epa(B))

=⇒

 xA = (gB)A(xpa(B)\B, epa(B))

∃xB\A ∈ X B\A : xB\A = (gB)B\A(xpa(B)\B, epa(B))

=⇒ ∃xB\A ∈ X B\A : xB = gB(xpa(B)\B, epa(B))

=⇒ ∃xB\A ∈ X B\A : xB = fB(xpa(B), epa(B))

=⇒ ∃xB\A ∈ X B\A : xA = fA(xpa(A), epa(A))

=⇒ xA = fA(xpa(A), epa(A))

=⇒ xA = gA(xpa(A)\A, epa(A)) ,

where the exists-quantifier could be omitted because the expression it binds to does
not depend on xB\A (from the assumptions it follows that (A ∪ pa(A)) ∩ (B \ A) =

∅). Hence, for all e ∈ Ē and all xA∪pa(B)\B ∈ X A∪pa(B)\B

xA = (gB)A(xpa(B)\B, epa(B)) =⇒ xA = gA(xpa(A)\A, epa(A)) .

Hence, for all e ∈ Ē and all xA∪pa(B)\B ∈ X A∪pa(B)\B

(gB)A(xpa(B)\B, epa(B)) = gA(xpa(A)\A, epa(A)) .

Since this expression does not depend on x(B\A)∪I\(B∪pa(B)), from Lemma 2.F.11.(2)
we conclude that for all e ∈ Ē and all x ∈ X

(gB)A(xpa(B)\B, epa(B)) = gA(xpa(A)\A, epa(A)) .

Lemma 2.E.2. An SCMM is observationally equivalent toMtwin w.r.t. O ⊆ I .

Proof. Let (X, E) be a solution ofM, then ((X, X), E) is a solution ofMtwin. Con-
versely, let ((X, X ′), E) be a solution ofMtwin, then (X, E) is a solution ofM.

Proof of Proposition 2.4.6. First we show that equivalence implies counterfactual
equivalence w.r.t. O. The twin operation preserves the equivalence relation on
SCMs and since equivalent SCMs are interventionally equivalent w.r.t. every subset,
the two equivalent twin SCMs have to be interventionally equivalent w.r.t. O ∪O′
for every O ⊆ I with O′ the copy of O in I ′.

Now, let M and M̃ be counterfactually equivalent w.r.t. O. Then Mtwin and
M̃twin are interventionally equivalent w.r.t. O ∪O′. Thus for I ⊆ O, I′ ⊆ O′ the
copy of I and ξ I′ = ξ I ∈ X I , Mtwin

do(I∪I′,ξ I∪I′ )
and M̃twin

do(I∪I′,ξ I∪I′ )
are observation-

ally equivalent w.r.t. O ∪ O′. In particular, they are observationally equivalent
w.r.t. O. From Proposition 2.2.21 we have thatMtwin

do(I∪I′,ξ I∪I′ )
= (Mdo(I,ξ I))

twin and

M̃twin
do(I∪I′,ξ I∪I′ )

= (M̃do(I,ξ I))
twin, and together with Lemma 2.E.2 this gives that

Mdo(I,ξ I) and M̃do(I,ξ I) are observationally equivalent w.r.t. O.
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Section 5

Lemma 2.E.3. LetM be an SCM. Let B ⊆ I and A ⊆ I ∪J such that (pa(B) \ B) ⊆ A
and B ∩ A = ∅. Assume that gB : X A × EA → X B is a measurable function such that
for PE -almost every e ∈ E and for all x ∈ X

xB = fB(xpa(B), epa(B)) ⇐⇒ xB = gB(xA, eA) .

ThenM is uniquely solvable w.r.t. B.

Proof. Assume that for PE -almost every e ∈ E and for all x ∈ X

xB = fB(xpa(B), epa(B)) ⇐⇒ xB = gB(xA, eA) .

Let C := A \ (pa(B) \ B), then by Lemma 2.F.11.(7) we have that there exists
êC ∈ EC and x̂C ∈ X C such that for PEJ \C -almost every eJ \C ∈ EJ \C and for all
xI\C ∈ X I\C

xB = fB(xpa(B), epa(B)) ⇐⇒ xB = gB(xpa(B)\B, x̂C, epa(B), êC) .

Defining the mapping hB : X pa(B)\B × Epa(B) → X B by

hB(xpa(B)\B, epa(B)) := gB(xpa(B)\B, x̂C, epa(B), êC) ,

where we picked êC ∈ EC and x̂C ∈ X C such that the above equivalence holds, and
applying Lemma 2.F.11.(6) we get that for PE -almost every e ∈ E and for all x ∈ X

xB = fB(xpa(B), epa(B)) ⇐⇒ xB = hB(xpa(B)\B, epa(B))

holds. Thus,M is uniquely solvable w.r.t. B.

Proof of Proposition 2.5.4. From unique solvability ofM w.r.t. L1 it follows that there
exists a mapping gL1 : X pa(L1)\(L1) × Epa(L1) → X L1 such that for PE -almost every
e ∈ E and for all x ∈ X

xL1 = gL1(xpa(L1)\L1
, epa(L1)) ⇐⇒ xL1 = fL1(x, e) .

Let p̂a denotes the parents in Ga(Mmarg(L1)). Note that p̂a(L2) \ L2 ⊆ pa(L1 ∪
L2) \ (L1 ∪ L2). Let f̃ denote the marginal causal mechanism of a structurally
minimal SCM that is equivalent to the marginalizationMmarg(L1) constructed from
gL1 (see Proposition 2.2.11).

=⇒ : If Mmarg(L1) is uniquely solvable w.r.t. L2, then there exists a mapping
g̃L2 : X p̂a(L2)\L2

× E p̂a(L2) → X L2 such that for PE -almost every e ∈ E and for all
xI\L1

∈ X I\L1

xL2 = g̃L2(xp̂a(L2)\L2
, ep̂a(L2)) ⇐⇒ xL2 = fL2(gL1(xpa(L1)\L1

, epa(L1)), xI\L1
, e) .
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Define the mapping h : X pa(L1∪L2)\(L1∪L2) × Epa(L1∪L2) → X L1∪L2 by

(hL1 , hL2)(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2)) :=(
gL1

(
(g̃L2)pa(L1)(xp̂a(L2)\L2

, ep̂a(L2)), xpa(L1)\(L1∪L2), epa(L1)

)
, g̃L2(xp̂a(L2)\L2

, ep̂a(L2))
)

.

Then for PE -almost every e ∈ E and for all x ∈ XxL1 = fL1(x, e)

xL2 = fL2(x, e)

⇐⇒

xL1 = gL1(xpa(L1)\L1
, epa(L1))

xL2 = fL2(x, e)

⇐⇒

xL1 = gL1(xpa(L1)\L1
, epa(L1))

xL2 = fL2(gL1(xpa(L1)\L1
, epa(L1)), xI\L1

, e)

⇐⇒

xL1 = gL1(xpa(L1)\L1
, epa(L1))

xL2 = g̃L2(xp̂a(L2)\L2
, ep̂a(L2))

⇐⇒

xL1 = gL1

(
(g̃L2)pa(L1)(xp̂a(L2)\L2

, ep̂a(L2)), xpa(L1)\(L1∪L2), epa(L1)

)
xL2 = g̃L2(xp̂a(L2)\L2

, ep̂a(L2))

⇐⇒

xL1 = hL1(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2))

xL2 = hL2(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2)) ,

where in the first equivalence we used unique solvability w.r.t. L1 of M, in the
second we used substitution, in the third we used unique solvability w.r.t. L2 of
Mmarg(L1), in the fourth we used again substitution and in the last equivalence
we used the definition of h. From this we conclude that M is uniquely solvable
w.r.t. L1 ∪ L2. Hence, by definition it follows that marg(L2) ◦marg(L1)(M) =

marg(L1 ∪ L2)(M).
⇐= : If M is uniquely solvable w.r.t. L1 ∪ L2, then there exists a mapping

h : X pa(L1∪L2)\(L1∪L2) × EL1∪L2 → X L1∪L2 such that for PE -almost every e ∈ E for
all x ∈ X

xL1∪L2 = h(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2)) ⇐⇒ xL1∪L2 = fL1∪L2(x, e) .
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Then, for PE -almost every e ∈ E for all x ∈ XxL1 = hL1(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2))

xL2 = hL2(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2))

⇐⇒

xL1 = fL1(x, e)

xL2 = fL2(x, e)

⇐⇒

xL1 = gL1(xpa(L1)\L1
, epa(L1))

xL2 = fL2(x, e)

⇐⇒

xL1 = gL1(xpa(L1)\L1
, epa(L1))

xL2 = fL2(gL1(xpa(L1)\L1
, epa(L1)), xI\L1

, e)

⇐⇒

xL1 = gL1(xpa(L1)\L1
, epa(L1))

xL2 = f̃L2(xp̂a(L2), ep̂a(L2)) .

This gives for PE -almost every e ∈ E for all xI\L1
∈ X I\L1

xL2 = hL2(xpa(L1∪L2)\(L1∪L2), epa(L1∪L2))

⇐⇒ xL2 = f̃L2(xp̂a(L2), ep̂a(L2)) .

Now apply Lemma 2.E.3 to conclude that Mmarg(L1) is uniquely solvable w.r.t.
L2.

Proof of Proposition 2.5.5. The commutation relation with the perfect intervention
follows straightforwardly from the definitions of perfect intervention and marginal-
ization and the fact that if M is uniquely solvable w.r.t. L, then Mdo(I,ξ I) is also
uniquely solvable w.r.t. L, since the structural equations for the variables L are the
same forM andMdo(I,ξ I).

The commutation relation with the twin operation follows straightforwardly from
the definition of the twin operation and marginalization and the fact that ifM is
uniquely solvable w.r.t. L, then twin(M) is uniquely solvable w.r.t. L ∪ L′, where
L′ is the copy of L in I ′.

Lemma 2.E.4. Given an SCMM and a subset L ⊆ I such thatM is uniquely solvable
w.r.t. L. ThenM and marg(L)(M) are observationally equivalent w.r.t. I \ L.
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Proof. Let O := I \ L. From unique solvability w.r.t. L it follows that for PE -almost
every e ∈ E and for all x ∈ XxL = fL(x, e)

xO = fO(x, e)

⇐⇒

xL = gL(xpa(L)\L, epa(L))

xO = fO(gL(xpa(L)\L, epa(L)), xO, e)

⇐⇒

xL = gL(xpa(L)\L, epa(L))

xO = f̃ (xO, e) ,

where f̃ is the marginal causal mechanism of Mmarg(L) constructed from a mea-
surable solution function gL : X pa(L)\L × Epa(L) → X L for M w.r.t. L. Hence,
a solution (X, E) of M satisfies XO = f̃ (XO, E) a.s.. Conversely, if (X̃O, E) is a
solution of the marginal SCMMmarg(L) then with X̃L := gL(X̃pa(L)\L, Epa(L)), the
random variables (X, E) := (X̃O, X̃L, E) are a solution ofM.

Proof of Theorem 2.5.6. The observational equivalence follows from Lemma 2.E.4.
Using both Lemma 2.E.4 and Proposition 2.5.5 we can prove the interventional
equivalence. Observe that from Proposition 2.5.5 we know that for a subset I ⊆
I \ L and a value ξ I ∈ X I , (marg(L) ◦ do(I, ξ I))(M) exists. By Lemma 2.E.4
we know that do(I, ξ I)(M) and (marg(L) ◦ do(I, ξ I))(M) are observationally
equivalent w.r.t. O and hence by applying again Proposition 2.5.5, do(I, ξ I)(M)

and (do(I, ξ) ◦marg(L))(M) are observationally equivalent w.r.t. O. This implies
thatM and marg(L)(M) are interventionally equivalent w.r.t.O. Lastly, we need to
show that twin(M) and (twin ◦marg(L))(M) are interventionally equivalent w.r.t.
(I ∪ I ′) \ (L ∪ L′), where L′ is the copy of L in I ′. From Proposition 2.5.5 (twin ◦
marg(L))(M) is equivalent to (marg(L ∪ L′) ◦ twin)(M) and since we proved
that (marg(L ∪ L′) ◦ twin)(M) and twin(M) are interventionally equivalent w.r.t.
(I ∪ I ′) \ (L ∪ L′) the result follows.

Proof of Proposition 2.5.8. A similar proof as for Theorem 1 in (Evans, 2016) works.

Proof of Proposition 2.5.9. First we prove the commutation relation of the perfect
intervention. Observe that applying the do(I) operation to the latent projection
marg(L)(G) removes all the incoming edges on the nodes I. Such an incoming edge
at a node in I in marg(L)(G) corresponds to a path in G that points to that node.
But since do(I)(G) is just G with all the incoming edges on I removed, the graph
(marg(L) ◦ do(I))(G) also has all the incoming edges on the nodes I removed.
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Next, we will prove the commutation relation of the twin operation. We will
denote the copy in I ′ of any node i ∈ I by i′, that is, I ′ = {i′ : i ∈ I}. The edges in
(twin(I \ L) ◦marg(L))(G) can be partitioned into three cases:

v→ w v ∈ J ∪ I \ L, w ∈ J ∪ I \ L, v→ w ∈ marg(L)(G) ,

v→ w′ v ∈ J , w ∈ I \ L, v→ w ∈ marg(L)(G) ,

v′ → w′ v ∈ I \ L, w ∈ I \ L, v→ w ∈ marg(L)(G) ,

where J := V \ I .
Note that in twin(I)(G), there are no directed edges of the form v′ → w by

definition. Therefore, the edges in (marg(L ∪ L′) ◦ twin(I))(G) can be partitioned
into three cases:

v→ w v ∈ J ∪ I \ L, w ∈ J ∪ I \ L, v→ `1 → · · · → `n → w ∈ twin(I)(G) ,

v→ w′ v ∈ J , w ∈ I \ L, v→ `′1 → · · · → `′n → w′ ∈ twin(I)(G) ,

v′ → w′ v ∈ I \ L, w ∈ I \ L, v′ → `′1 → · · · → `′n → w′ ∈ twin(I)(G) ,

where all `1, . . . , `n ∈ L and `′1, . . . , `′n ∈ L′. Thus, the non-endpoint nodes on the
directed paths in twin(I)(G) must either all lie in L or in L′. With the definition of
twin(I)(G) we can rewrite this as follows:

v→ w v ∈ J ∪ I \ L, w ∈ J ∪ I \ L, v→ `1 → · · · → `n → w ∈ G ,

v→ w′ v ∈ J , w ∈ I \ L, v→ `1 → · · · → `n → w ∈ G ,

v′ → w′ v ∈ I \ L, w ∈ I \ L, v→ `1 → · · · → `n → w ∈ G ,

where all intermediate `1, . . . , `n must lie in L. This corresponds exactly with the
edges in (twin(I \ L) ◦marg(L))(G).

Proof of Proposition 2.5.11. Without loss of generality, we assume that M is struc-
turally minimal (see Proposition 2.2.11). Let gL be a measurable solution function
for M w.r.t. L and denote by Mmarg(L) the marginal SCM constructed from gL.
For j ∈ I \ L, define Aj := anG(M)L(pa(j) ∩ L) ⊆ L and let g̃Aj be a measurable
solution function forM w.r.t. Aj. Because Aj ⊆ L and pa(Aj) \ Aj ⊆ pa(L) \ L, by
Lemma 2.E.1, for PE -almost every e ∈ E and for all x ∈ X

(gL)Aj(xpa(L)\L, epa(L)) = g̃Aj(xpa(Aj)\Aj
, epa(Aj)) .
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Therefore, the component f̃ j of the marginal causal mechanism f̃ of Mmarg(L)
satisfies for PE -almost every e ∈ E and for all x ∈ X

f̃ j(xI\L, e) := f j
(
(gL)pa(j)(xpa(L)\L, epa(L)), xpa(j)\L, epa(j)

)
= f j

(
(g̃Aj)pa(j)∩L(xpa(Aj)\Aj

, epa(Aj)), xpa(j)\L, epa(j)
)

.

Hence, the endogenous parents of j in Mmarg(L) are a subset of
(
(pa(Aj) \ Aj) ∪

(pa(j) \ L)
)
∩ I and the exogenous parents of j in Mmarg(L) are a subset of

(pa(Aj) ∪ pa(j)) ∩ J . Hence, all parents of j in Mmarg(L) are a subset of those
k ∈ (I \ L) ∪ J such that there exists a path k→ `1 → · · · → `n → j ∈ Ga(M) for
n ≥ 0 and `1, . . . , `n ∈ L. Therefore, the augmented graph Ga(marg(L)(M)

)
is a

subgraph of the latent projection marg(L)
(
Ga(M)

)
. Hence,

G
(
marg(L)(M)

)
= marg(J )

(
Ga(marg(L)(M)

))
⊆ marg(J )

(
marg(L)

(
Ga(M)

))
= marg(L)

(
marg(J )

(
Ga(M)

))
= marg(L)

(
G(M)

)
and we conclude that also the graph G

(
marg(L)(M)

)
is a subgraph of the latent

projection marg(L)
(
G(M)

)
.

Section 6

Proof of Theorem 2.6.3. This follows directly from Theorems 2.A.7 and 2.A.21.

Section 7

Proof of Proposition 2.7.1. We define M̃ := Mdo(I,ξ I), p̃a := paGa(M̃) and A :=
anG(M̃)\i

(j). Suppose that i → j /∈ marg(I \ O)(G(M)) and assume that the two
induced distributions do not coincide. Because i → j /∈ marg(I \ O)(G(M)) it
follows that (p̃a(A) \ A) ∩ I = ∅. Let now g̃A : E p̃a(A) → XA be a measurable
solution function for M̃ w.r.t. A, that is, we have for PE -almost every e ∈ E and
for all x ∈ X

xA = f̃A(x, e) ⇐⇒ xA = g̃A(ep̃a(A)) ,

where f̃ is the causal mechanism of M̃. Because i /∈ A and j ∈ A, it follows that for
the intervened model (Mdo(I,ξ I))do({i},ξi) the marginal solution Xj is also a marginal
solution of (Mdo(I,ξ I))do({i},ξ̃i)

and vice versa, which is in contradiction with the
assumption.

Proof of Proposition 2.7.2. Let’s define M̃ :=Mdo(I,ξ I), p̃a := paGa(M̃),Ai := anG(M̃)(i)

and A\ij := anG(M̃)\i
(j). Suppose that there does not exist a bidirected edge i↔ j in

the latent projection marg(I \ O)(G(M)). Because i ↔ j /∈ marg(I \ O)(G(M̃)),
where here M̃ is the intervened model Mdo(I,ξ I), we have that anGa(M̃)\j

(i) ∩
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anGa(M̃)\i
(j) ∩ J = ∅. From j /∈ anG(M̃)(i) it follows that anG(M̃)\j

(i) = anG(M̃)(i),
and hence anGa(M̃)(i) ∩ anGa(M̃)\i

(j) ∩ J = ∅. Observe that p̃a(Ai) ⊆ anGa(M̃)(i)

and p̃a(A\ij ) ⊆ anGa(M̃)\i
(j) ∪ {i}, and thus p̃a(Ai) ∩ p̃a(A\ij ) ∩ J = ∅. Let gAi :

E p̃a(Ai) → XAi be a measurable solution function for M̃ w.r.t. Ai, that is, we have
for PE -almost every e ∈ E and for all x ∈ X

xAi = f̃Ai(x, e) ⇐⇒ xAi = gAi(ep̃a(Ai)) ,

where f̃ is the intervened causal mechanism of M̃. Because p̃a(Ai)∩ p̃a(A\ij )∩J =

∅ and i ∈ Ai, we have that Xi⊥⊥ E
p̃a(A\ij )

for every solution (X, E) of M̃.

Assume for the moment that i ∈ p̃a(A\ij ) \ A
\i
j , then (p̃a(A\ij ) \ A

\i
j ) ∩ I = {i}.

Let gA\ij
: Xi × E

p̃a(A\ij )
→ XA\ij

be a measurable solution function for M̃ w.r.t. A\ij ,

that is, we have for PE -almost every e ∈ E and for all x ∈ X

xA\ij
= f̃A\ij

(x, e) ⇐⇒ xA\ij
= gA\ij

(xi, e
p̃a(A\ij )

) .

For every measurable set Bj ⊆ Xj there exists a version of the regular conditional
probability PMdo(I,ξ I )

(Xj ∈ B |Xi = ξi) such that for every value ξi ∈ Xi it satisfies

PMdo(I,ξ I )

(
Xj ∈ Bj |Xi = ξi

)
= PM̃

(
Xj ∈ Bj |Xi = ξi

)
= PM̃

(
(gA\ij

)j(Xi, E
p̃a(A\ij )

) ∈ Bj |Xi = ξi
)

= PM̃
(
(gA\ij

)j(ξi, E
p̃a(A\ij )

) ∈ Bj |Xi = ξi
)

= PM̃
(
(gA\ij

)j(ξi, E
p̃a(A\ij )

) ∈ Bj
)

= PM̃do({i},ξi)

(
(gA\ij

)j(Xi, E
p̃a(A\ij )

) ∈ Bj
)

= PM̃do({i},ξi)

(
Xj ∈ Bj

)
= P(Mdo(I,ξ I )

)
do({i},ξi)

(
Xj ∈ Bj

)
,

where we used Xi⊥⊥ E
p̃a(A\ij )

in the fourth equality.

If we assume i /∈ p̃a(A\ij ) \ A
\i
j instead of i ∈ pa(A\ij ) \ A

\i
j , then we similarly

arrive at the same conclusion.

Section 8

Proof of Proposition 2.8.2. We first show that the class of simple SCMs is closed
under marginalization. Take two disjoint subsets L1 and L2 in I . Then, it suffices
to show that Mmarg(L1) is uniquely solvable w.r.t. L2. This follows directly from
Proposition 2.5.4.

To show that the class of simple SCMs is closed under perfect intervention. LetM
be a simple SCM, O ⊆ I , I ⊆ I and ξ I ∈ X I . Define O1 := O ∩ I and O2 := O \ I,
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then O = O1 ∪ O2. Note that pa(O2) \ O2 = (pa(O2) \ (O2 ∪ I)) ∪ (pa(O2) ∩ I)
and pa(O2) \ (O2 ∪ I) ⊆ pa(O) \ O. Let gO2 : X pa(O2)\O2

× Epa(O2) → XO2 be
a measurable solution function for M w.r.t. O2. The mapping g̃O : X pa(O)\O ×
Epa(O) → XO defined by{

(g̃O)O1(xpa(O)\O, epa(O)) := ξO1

(g̃O)O2(xpa(O)\O, epa(O)) := gO2(xpa(O2)\(O2∪I), ξpa(O2)∩I , epa(O2))

is a measurable solution function forMdo(I,ξ I) w.r.t. O, and it is clear thatMdo(I,ξ I)

is uniquely solvable w.r.t. O.
Next, we show that the class of simple SCMs is closed under the twin operation.

Let Õ ⊆ I ∪ I ′. Take O1 = Õ ∩ I , O′2 = Õ ∩ I ′ and O2 the original copy of O′2 in
I . Let gO1 : X pa(O1)\O1

× Epa(O1) → XO1 and gO2 : X pa(O2)\O2
× Epa(O2) → XO2

be measurable solution functions forM w.r.t. O1 and O2, respectively. Define now
the mapping hÕ : X p̃a(Õ)\Õ × E p̃a(Õ) → X Õ by

(hÕ)Õ∩I (xp̃a(Õ)\Õ, ep̃a(Õ)) := gO1(xp̃a(O1)\O1
, ep̃a(O1))

(hÕ)Õ∩I ′(xp̃a(Õ)\Õ, ep̃a(Õ)) := gO2(xp̃a(O′2)\O′2 , ep̃a(O′2)) ,

where we define p̃a := paGa(Mtwin) as the parents w.r.t. the twin graph Ga(Mtwin).
Then by construction this mapping hÕ is a measurable solution function forMtwin

w.r.t. Õ, and it is clear thatMtwin is uniquely solvable w.r.t. Õ.
Lastly, it follows that the observational and all the intervened models ofM and
Mtwin are uniquely solvable. From Theorem 2.3.6 we conclude that M induces
unique observational, interventional and counterfactual distributions.

Proof of Corollary 2.8.3. This follows from Corollary 2.A.22.

2.f measurable selection theorems

In this appendix, we derive some lemmas and state two measurable selection
theorems that are used in several proofs in Appendix 2.E. First, we introduce the
measure theoretic notation and terminology needed to understand the results (see
(Kechris, 1995) for more details).

Definition 2.F.1 (Standard measurable space). A measurable space (X , Σ) is a standard
measurable space if it is isomorphic to (Y ,B(Y)), where Y is a Polish space, that is,
a separable completely metrizable space,24 and B(Y) are the Borel subsets of Y , that is,

24 A metrizable space is a topological space X for which there exists a metric d such that (X , d) is a metric
space and induces the topology on X . For a metric space (X , d), a Cauchy sequence is a sequence
(xn)n∈N of elements of X such that for every ε > 0 there exists an N ∈ N such that for all natural
numbers p, q > N we have d(xn, xm) < ε. We call (X , d) complete if every Cauchy sequence has a limit
in X . A completely metrizable space is a topological space X for which there exists a metric d such that
(X , d) is a complete metric space that induces the topology on X . A topological space X is called
separable if it contains a countable dense subset, that is, there exists a sequence (xn)n∈N of elements
in X such that every nonempty open subset of X contains at least one element of the sequence. A
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the σ-algebra generated by the open sets in Y . A measure space (X , Σ, µ) is a standard
probability space if (X , Σ) is a standard measurable space and µ is a probability measure.

Examples of standard measurable spaces are the open and closed subsets of Rd,
and the finite sets with the usual complete metric. If we say that X is a standard
measurable space, then we implicitly assume that there exists a σ-algebra Σ such
that (X , Σ) is a standard measurable space. Similarly, if we say that X is a standard
probability space with probability measure PX , then we implicitly assume that
there exists a σ-algebra Σ such that (X , Σ, PX ) is a standard probability space.

Definition 2.F.2 (Analytic set). Let X be a Polish space. A set A ⊆ X is called analytic
if there exist a Polish space Y and a continuous mapping f : Y → X with f (Y) = A.

Lemma 2.F.3. Let X and Y be standard measurable spaces and f : X → Y a measurable
mapping. Then

1. every measurable set A ⊆ X is analytic;

2. if the subsets A ⊆ X and Ã ⊆ Y are analytic, then the sets f (A) and f−1(Ã) are
analytic.

Proof. From Proposition 13.7 in (Kechris, 1995) it follows that every measurable set
A ⊆ X is analytic. From Proposition 14.4.(ii) in (Kechris, 1995) it follows that the
image and the preimage of an analytic set is an analytic set.

Definition 2.F.4 (µ-measurability). Let (X , Σ, µ) be a measure space. A set E ⊆ X
is called a µ-null set if there exists a A ∈ Σ with E ⊆ A and µ(A) = 0. We denote
the class of µ-null sets by N , and we denote the σ-algebra generated by Σ ∪N by Σ̄,
and its members are called the µ-measurable sets. Note that each member of Σ̄ is of the
form A ∪ E with A ∈ Σ and E ∈ N . The measure µ is extended to a measure µ̄ on Σ̄,
by µ̄(A ∪ E) = µ(A) for every A ∈ Σ and E ∈ N , and is called its completion. A
mapping f : X → Y between measurable spaces is called µ-measurable if the inverse
image f−1(C) of every measurable set C ⊆ Y is µ-measurable.

Definition 2.F.5 (Universal measurability). Let (X , Σ) be a standard measurable space.
A set A ⊆ X is called universally measurable if it is µ-measurable for every σ-finite
measure25 µ on X (i.e., in particular every probability measure). A mapping f : X → Y
between standard measurable spaces is universally measurable if it is µ-measurable for
every σ-finite measure µ.

Lemma 2.F.6. Let E be a standard probability space with probability measure PE and A ⊆
E an analytic set. Then A is PE -measurable and there exist measurable sets S ,T ⊆ E
such that S ⊆ A ⊆ T and PE (S) = P̄E (A) = PE (T ), where P̄E is the completion of
PE .

separable completely metrizable space is called a Polish space (see (Cohn, 2013) and (Kechris, 1995) for
more details).

25 A measure µ on a measurable space (X , Σ) is called σ-finite if X = ∪n∈NAn, with An ∈ Σ,
µ(An) < ∞.
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Proof. Let A ⊆ E be an analytic set. Since every analytic set in a standard measur-
able space is a universally measurable set (see Theorem 21.10 in (Kechris, 1995)),
we know that A is a universally measurable set, and hence it is in particular a
PE -measurable set. Thus, there exist a measurable set S ⊆ E and a PE -null set
C ⊆ E such that A = S ∪ C and P̄E (A) = PE (S), where P̄E is the completion of
PE . Moreover, there exists a measurable set C̃ ⊆ E such that C ⊆ C̃ and PE (C̃) = 0.
Let T := S ∪ C̃, then A ⊆ T and PE (T ) = PE (S).

Lemma 2.F.7. Let f : X → Y be a µ-measurable mapping. If Y is countably generated,
then there exists a measurable mapping g : X → Y such that f (x) = g(x) holds µ-a.e..

Proof. Let the σ-algebra of Y be generated by the countable generating set {Cn}n∈N.
The µ-measurable set f−1(Cn) = An ∪ En for some An ∈ Σ and some En ∈ N
and hence there is some En ⊆ Bn ∈ Σ such that µ(Bn) = 0. Let B̂ = ∪n∈NBn,
Ân = An \ B̂ and Â = ∪n∈NÂn, then µ(B̂) = 0, Â and B̂ are disjoint and
X = Â ∪ B̂. Now define the mapping g : X → Y by

g(x) :=

 f (x) if x ∈ Â,

y0 otherwise,

where for y0 we can take an arbitrary point in Y . This mapping g is measurable
since for each generator Cn we have

g−1(Cn) =

Ân if y0 /∈ Cn,

Ân ∪ B̂ otherwise.

is in Σ. Moreover, f (x) = g(x) µ-almost everywhere.

With this result at hand we can now prove the first measurable selection theorem.

Theorem 2.F.8 (Measurable selection theorem). Let E be a standard probability space
with probability measure PE , X a standard measurable space and S ⊆ E ×X a measurable
set such that E \ prE (S) is a PE -null set, where prE : E ×X → E is the projection
mapping on E . Then there exists a measurable mapping g : E → X such that (e, g(e)) ∈ S
for PE -almost every e ∈ E .

Proof. Take the subset Ê := E \B, for some measurable set B ⊇ E \ prE (S) and
PE (B) = 0, and note that Ê is a standard measurable space (see Corollary 13.4
in (Kechris, 1995)) and Ê ⊆ prE (S). Let Ŝ = S ∩ (Ê ×X ). Because the set Ŝ is
measurable, it is in particular analytic (see Lemma 2.F.3). It follows by the Jankov-
von Neumann Theorem (see Theorem 18.8 or 29.9 in (Kechris, 1995)) that Ŝ has
a universally measurable uniformizing function, that is, there exists a universally
measurable mapping ĝ : Ê → X such that for all e ∈ Ê , (e, ĝ(e)) ∈ Ŝ . Hence, in
particular, it is PE

∣∣
Ê -measurable, where PE

∣∣
Ê is the restriction of PE to Ê .
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Now define the mapping g∗ : E → X by

g∗(e) :=

ĝ(e) if e ∈ Ê

x0 otherwise,

where for x0 we can take an arbitrary point in X . Then this mapping g∗ is PE -
measurable. To see this, take any measurable set C ⊆ X , then

g∗−1(C) =

ĝ−1(C) if x0 /∈ C

ĝ−1(C) ∪B otherwise.

Because ĝ−1(C) is PE
∣∣
Ê -measurable it is also PE -measurable and thus g∗−1(C) is

PE -measurable.
By Lemma 2.F.7 and the fact that standard measurable spaces are countably

generated (see Proposition 12.1 in (Kechris, 1995)), we prove the existence of a
measurable mapping g : E → X such that g∗ = g PE -a.e. and thus it satisfies
(e, g(e)) ∈ S for PE -almost every e ∈ E .

This theorem rests on the assumption that the standard measurable space E has
a probability measure PE . If this space becomes the product space Y × E , for some
standard measurable space Y where only the space E has a probability measure,
then in general this theorem does not hold anymore. However, if we assume in
addition that the fibers of S in Y are σ-compact for PE -almost every e ∈ E and for
all x ∈ X , then we can prove a second measurable selection theorem. A topological
space is σ-compact if it is the union of countably many compact subspaces. For
example, all countable discrete spaces, every interval of the real line, and moreover
all the Euclidean spaces are σ-compact spaces.

Theorem 2.F.9 (Second measurable selection theorem). Let E be a standard probability
space with probability measure PE , X and Y standard measurable spaces and S ⊆
X × E ×Y a measurable set such that E \Kσ is a PE -null set, where

Kσ := {e ∈ E : ∀x ∈ X (S (x,e) is nonempty and σ-compact)} ,

with S (x,e) denoting the fiber over (x, e), that is

S (x,e) := {y ∈ Y : (x, e, y) ∈ S} .

Then there exists a measurable mapping g : X × E → Y such that for PE -almost every
e ∈ E and for all x ∈ X we have (x, e, g(x, e)) ∈ S .

Proof. Take the subset Ê := E \ B, for some measurable set B ⊇ E \Kσ and
PE (B) = 0. Note that Ê is a standard measurable space, Ê ⊆ Kσ and Ŝ =

S ∩ (X × Ê × Y) is measurable. By assumption, for each (x, e) ∈ X × Ê the
fiber Ŝ (x,e) is nonempty and σ-compact and hence by applying the Theorem of
Arsenin-Kunugui (see Theorem 35.46 in (Kechris, 1995)) it follows that the set Ŝ
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has a measurable uniformizing function, that is, there exists a measurable mapping
ĝ : X × Ê → Y such that for all (x, e) ∈ X × Ê , (x, e, ĝ(x, e)) ∈ Ŝ . Now define the
mapping g : X × E → Y by

g(x, e) :=

ĝ(x, e) if e ∈ Ê

y0 otherwise,

where for y0 we can take an arbitrary point in Y . This mapping g inherits the
measurability from ĝ and it satisfies for PE -almost every e ∈ E and for all x ∈ X
that (x, e, g(x, e)) ∈ S .

The next two lemmas provide some useful properties for the “for PE -almost
every e ∈ E” quantifier.

Lemma 2.F.10. Let φ : E → Ẽ be a measurable map between two standard measurable
spaces. Let PE be a probability measure on E and let PẼ = PE ◦φ−1 be its push-forward
under φ. Let P̃ : Ẽ → {0, 1} be a property, that is, a (measurable) boolean-valued function
on Ẽ . Then the property P = P̃ ◦φ on E holds PE -a.e. if and only if the property P̃ holds
PẼ -a.e..

Proof. Assume the property P = P̃ ◦φ holds PE -a.e., then C = {e ∈ E : P(e) = 1}
contains a measurable set C∗ with PE -measure 1, that is, C∗ ⊆ C and PE (C∗) = 1.
By Lemma 2.F.3, φ(C∗) is analytic. By Lemma 2.F.6, there exist measurable sets
A,B such that A ⊆ φ(C∗) ⊆ B and PẼ (A) = PẼ (B). Because φ is measurable,
φ−1(A) and φ−1(B) are both measurable. Also, φ−1(A) ⊆ φ−1(φ(C∗)) ⊆ φ−1(B).
As C∗ ⊆ φ−1(φ(C∗)), we must have that PE (φ

−1(B)) ≥ PE (C∗) = 1. Hence
PẼ (A) = PẼ (B) = 1. Note that as C∗ ⊆ C, A ⊆ φ(C∗) ⊆ φ(C) ⊆ {ẽ ∈ Ẽ : P̃(ẽ) =
1}. Hence the set C̃ := {ẽ ∈ Ẽ : P̃(ẽ) = 1} contains a measurable set of PẼ -measure
1, in other words, P̃ holds PẼ -a.s..

The converse is easier to prove. Suppose C̃ = {ẽ ∈ Ẽ : P̃(ẽ) = 1} contains a
measurable set C̃∗ with PẼ -measure 1, that is, C̃∗ ⊆ C̃ and PẼ (C̃

∗
) = 1. Because φ is

measurable, the set φ−1(C̃∗) is measurable and PE (φ
−1(C̃∗)) = 1, and furthermore,

φ−1(C̃∗) ⊆ φ−1(C̃) = C.

Lemma 2.F.11 (Some properties for the for-almost-every quantifier). Let X = X × X̃
and E = E × Ẽ be products of nonempty standard measurable spaces and PE = PE ×PẼ
be the product measure of probability measures PE and PẼ on E and Ẽ , respectively. Denote
by “∨∼e” the quantifier “for PE -almost every e ∈ E” and by “∀x” the quantifier “for all
x ∈ X ”, and similarly for their components, for example, “∨∼e” for “for PE -almost every
e ∈ E” and “∀x” for “for all x ∈ X ”. Then we have the following properties:

1. ∨∼e : P(e) =⇒ ∃e : P(e)
(similarly to ∀x : P(x) =⇒ ∃x : P(x));

2. ∨∼e : P(e) ⇐⇒ ∨∼e : P(e)
(similarly to ∀x : P(x) ⇐⇒ ∀x : P(x));
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3. ∃x∨∼e : P(x, e) =⇒ ∨∼e∃x : P(x, e)
(similarly to ∃x∀e : P(x, e) =⇒ ∀e∃x : P(x, e));

4. ∨∼e∀x : P(x, e) =⇒ ∀x∨∼e : P(x, e)
(similarly to ∀e∀x : P(x, e) =⇒ ∀x∀e : P(x, e));

5. ∨∼e : P(e) =⇒ ∃ẽ∨∼e : P(e)
(similarly to ∀x : P(x) =⇒ ∃x̃∀x : P(x));

6. ∨∼e∀x : P(x, e) ⇐⇒ ∨∼e∀x : P(x, e);

7. ∨∼e∀x : P(x, e) =⇒ ∃ẽ∃x̃∨∼e∀x : P(x, e),

where P denotes a property, that is, a measurable boolean-valued function, on the corre-
sponding measurable spaces and we write e and x for (e, ẽ) and (x, x̃), respectively.

Proof. We only prove the statements that may not be immediately obvious.
Property 2. Let prE : E → E be the projection mapping on E . Then by Lemma 2.F.10

we have
∨∼e : P(e) ⇐⇒ ∨∼e : P ◦ prE (e) ⇐⇒ ∨∼e : P(e) .

Property 4: We have

∨∼e∀x : P(x, e)

=⇒ ∃PE -null set N ∀e ∈ E \ N ∀x : P(x, e)

=⇒ ∃PE -null set N ∀x ∀e ∈ E \ N : P(x, e)

=⇒ ∀x ∃PE -null set N ∀e ∈ E \ N : P(x, e)

=⇒ ∀x∨∼e : P(x, e) .

Property 5: Let N be a measurable PE -null set such that P(e) holds for all
e ∈ E \ N. Define for ẽ ∈ Ẽ the set Nẽ := {e ∈ E : (e, ẽ) ∈ N}. Note that the sets Nẽ

are measurable. From Fubini’s theorem it follows that for PẼ -almost every ẽ ∈ Ẽ
we have PE (Nẽ) = 0. That is, there exists a measurable PẼ -null set Ñ such that
PE (Nẽ) = 0 for all ẽ ∈ Ẽ \ Ñ. Hence, there exists ẽ ∈ Ẽ \ Ñ such that PE (Nẽ) = 0;
for all e ∈ E \ Nẽ, P(e) then holds. This means ∃ẽ∨∼e : P(e).

Property 7: We have

∨∼e∀x : P(x, e) =⇒ ∃ẽ∨∼e∀x : P(x, e) =⇒ ∃ẽ∨∼e∀x̃∀x : P(x, e)

=⇒ ∃ẽ∀x̃∨∼e∀x : P(x, e) =⇒ ∃ẽ∃x̃∨∼e∀x : P(x, e) ,

where in the first equivalence we used Property 5, in the third equivalence we used
Property 4 and in the last equivalence we used Property 1.





3
C AU S A L M O D E L I N G O F D Y N A M I C A L S Y S T E M S

Dynamical systems are widely used in science and engineering to model systems
consisting of several interacting components. Often, they can be given a causal
interpretation in the sense that they not only model the evolution of the states
of the system’s components over time, but also describe how their evolution is
affected by external interventions on the system that perturb the dynamics. We
introduce the formal framework of structural dynamical causal models (SDCMs)
that explicates the causal semantics of the system’s components as part of the
model. SDCMs represent a dynamical system as a collection of stochastic processes
and specify the basic causal mechanisms that govern the dynamics of each com-
ponent as a structured system of random differential equations of arbitrary order.
SDCMs extend the versatile causal modeling framework of structural causal models
(SCMs), also known as structural equation models (SEMs), by explicitly allowing
for time-dependence. An SDCM can be thought of as the stochastic-process version
of an SCM, where the static random variables of the SCM are replaced by dynamic
stochastic processes and their derivatives. We provide the foundations for a theory
of SDCMs, by (i) formally defining SDCMs, their solutions, stochastic interventions,
and a graphical representation; (ii) studying existence and uniqueness of the so-
lutions for given initial conditions; (iii) providing Markov properties for SDCMs
with initial conditions; (iv) discussing under which conditions SDCMs equilibrate
to SCMs as time tends to infinity; (v) relating the properties of the SDCM to those
of the equilibrium SCM. This correspondence enables one to leverage the wealth
of statistical tools and discovery methods available for SCMs when studying the
causal semantics of a large class of stochastic dynamical systems. The theory is
illustrated with several well-known examples from different scientific domains.1

3.1 introduction

Continuous dynamical systems consisting of differential equations are widely
used in science and engineering to model the time-dependent behavior of certain
phenomena. A classical example is the modeling of the trajectory of a die that is
thrown, by means of Newton’s equations of motion. Initial conditions or parameters
of the dynamics may be stochastic, which can be modeled mathematically by
making use of random differential equations (RDEs). These provide a natural
extension of ordinary differential equations (ODEs) to the stochastic setting (Bunke,
1972; Soong, 1973; Sobczyk, 1991; Neckel and Rupp, 2013). For example, the initial
position of the die is often not known, and varies from throw to throw, which leads

1 The material in this chapter has been submitted to the Journal of Causal Inference. A preprint is
available as (Bongers, Blom, and Mooij, 2022).
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to a probability distribution over the possible trajectories of the die (and eventually,
to an uncertain outcome of the throw).

Many dynamical systems can be considered to consist of several interacting
subsystems or components, for example, mass-spring systems in physics, predator-
prey systems in biology, and mass-action law kinetics in chemistry. These dynamical
systems are often implicitly given a causal interpretation in the sense that they are
not only supposed to model the evolution of the state of the system over time, but
also describe how the evolution of the system’s components is affected by external
interventions on the system that perturb the dynamics. For example, when applying
an external force to a particle, the change in the force term in Newton’s second
law of motion results in a changed acceleration, and hence a changed position, of
the particle. Another example is that hunting wolves may lead to an increase in
the population of sheep. The ensuing causal semantics of the system is usually
only treated in an implicit and intuitive fashion, rather than that it is formally
specified by (or derivable from) the mathematical model. Indeed, a system of
(random) differential equations simply expresses symmetric relations between the
components, without any preferred order or asymmetry. On the other hand, causal
relations may be asymmetric, as they distinguish cause from effect. Thus, while
dynamical systems may describe how the state of a system consisting of several
components evolves over time, by themselves they do not express the inherent
“causal structure” of the system’s components.

An apparently rather different modeling framework that allows to represent the
causal semantics of a system composed of components is provided by structural
causal models (SCMs), also known as (non-parametric) structural equation models
(SEMs) (Bollen, 1989; Spirtes, Glymour, and Scheines, 2000; Peters, Janzing, and
Schölkopf, 2017; Bongers et al., 2021). First introduced in genetics by Wright (1921),
they became popular over the years in econometrics (Haavelmo, 1943), the social
sciences (Goldberger and Duncan, 1973; Duncan, 1975), and more recently in AI
(Pearl, 2009). SCMs express causal relationships between variables corresponding to
“autonomous” subsystems or components in the form of deterministic, functional
relationships, and stochasticity is introduced through the assumption that certain
variables are exogenous (latent) random variables. Their predictive power stems
from the assumption that the equations of these models are organized in a structural
way: each equation represents a distinct autonomous causal mechanism, where
distinctness of the mechanisms means that they can be changed independently of
one another by targeted interventions—at least in principle. While SCMs explicate
the causal semantics of a system composed of different components in this specific
way, they have no built-in notion of time. A commonly used workaround for
this limitation is to introduce multiple “copies” of the variables, corresponding
to observations at different points (or intervals) in time. This workaround only
applies to discrete time, and SCMs cannot be used to model causal semantics of
continuous-time systems without somehow discretizing time.

In this work, we propose the modeling framework of structural dynamical causal
models (SDCMs), which on the one hand explicates the causal relationships between
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components of continuous dynamical systems, and on the other hand extends
structural causal models to explicitly allow for time-dependence. SDCMs represent
a dynamical system as a collection of stochastic processes (each one referring to
a causally “autonomous” component) subject to a “structured” dynamics, which
specifies the causal mechanisms that govern the dynamics of the components by
means of random differential equations of arbitrary order. An SDCM can be thought
of as the stochastic-process version of an SCM, where the static (time-independent)
random variables of the SCM are replaced by dynamic (time-dependent) stochastic
processes and their derivatives. Our contributions can be considered as the first
steps towards a theory of SDCMs. More specifically, we:

(i) formally define SDCMs, their solutions, stochastic interventions, and a graph-
ical representation;

(ii) study existence and uniqueness of the solutions for given initial conditions;

(iii) provide Markov properties for SDCMs with initial conditions;

(iv) discuss under which conditions SDCMs equilibrate to SCMs as time tends to
infinity;

(v) relate the properties of the SDCM to those of the equilibrium SCM.

This correspondence between SCMs and equilibrated SDCMs enables one to lever-
age the wealth of statistical tools and discovery methods available for SCMs when
studying the causal semantics of a large class of stochastic dynamical systems. We
illustrate the theory with several well-known examples from different scientific
domains.

related work Over the years, several efforts have been made to develop a
notion of causality for stochastic processes, both in discrete and continuous time.

For discrete time, Granger causality (Granger, 1969; White, 2006; Eichler, 2007;
Eichler and Didelez, 2007), simultaneous equation models (Fisher, 1970; Lacerda
et al., 2008), vector autoregressive (VAR) models (Sims, 1980; Lütkepohl, 2005)
and dynamic Bayesian networks (Dagum, Galper, and Horvitz, 1992; Ghahramani,
1998) have been studied extensively. More recently, there has been some work on
learning difference-based causal models (Voortman, Dash, and Druzdzel, 2010)
and structural equation models (Peters, Janzing, and Schölkopf, 2013). In principle,
all these models fit directly into the framework of SCMs by labeling the random
variables with time.

For continuous time, there has been substantial work in the graphical modeling
community (Aalen, 1987; Didelez, 2000, 2007, 2008, 2015) based on the concept of
local independence, which was introduced by Schweder (1970). However, none
of these approaches explicitly takes into account that dynamical models are often
based on differential equations. In parallel, several attempts have been made to
arrive at causal interpretations of processes described by ordinary and stochastic
differential equations. Many of these approaches start from the assumption of a
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first-order system of ODEs written in canonical form, and implicitly (or explicitly)
attribute a causal interpretation to this (Iwasaki and Simon, 1994; Mooij, Janzing,
and Schölkopf, 2013; Pfister, Bauer, and Peters, 2019; Blom and Mooij, 2021). The
notion of causality in ODEs has also been studied using Simon’s causal ordering
algorithm (Iwasaki and Simon, 1994). Relations between a certain class of causally
interpreted ODEs and deterministic SCMs at equilibrium have been established
under the strong assumption that all the solutions of the ODE converge to a single
static equilibrium state (Mooij, Janzing, and Schölkopf, 2013), independent of the
initial condition. This assumption can be relaxed to allow for asymptotic dynamics
(Rubenstein et al., 2018) such as periodic oscillations, but this still requires the
assumption that the asymptotic dynamics does not depend on the initial condition.
Another way to relax the assumption of (Mooij, Janzing, and Schölkopf, 2013) is
taken in the framework of causal constraints models (Blom, Bongers, and Mooij,
2019), which can model static equilibrium states as long as the dynamical system
has a unique static equilibrium state corresponding to each initial condition, for
every intervention. These models can give a more complete causal description of
these static equilibrium states than SCMs can (Blom, Bongers, and Mooij, 2019), but
this comes at the cost that they appear to be too “flexible” in general. Finally, several
approaches in terms of stochastic differential equations, which are differential
equations with an additive white noise term, have been developed over the years
(Florens and Fougere, 1996; Commenges and Gégout-Petit, 2009; Hansen and Sokol,
2014; Mogensen, Malinsky, and Hansen, 2018; Peters, Bauer, and Pfister, 2020).
The stochastic differential equations have the advantage that they can deal with
“instantaneous” stochasticity in the dynamics, but solving them usually requires a
considerable mathematical effort using Itô calculus.

Compared with existing work, the framework of structural dynamical causal
models that we propose here has the novel combination of features that it extends
the semantics of continuous dynamical systems by formally encoding the causal
structure into the model, it allows for stochasticity due to uncertainty over initial
conditions or parameters of the dynamics without relying on strong stability
assumptions, and it does not force one to consider time derivatives of processes as
being “causally independent” of the processes themselves (that is, time derivatives
of processes are considered to describe the same subsystem or component as the
process itself). Our framework reconciles the traditional intuitive treatment of
causality in the context of deterministic dynamical systems as practiced in many
exact sciences with the treatment of causality of stochastic systems that is nowadays
very popular in AI, statistics and other scientific disciplines. An attractive feature is
that it naturally accommodates many causally interpreted continuous dynamical
systems that appear “in the wild”.

contributions In this chapter, we introduce the framework of structural dy-
namical causal models (SDCMs),2 which allows to model the causal semantics of

2 Not to be confused with the dynamic causal models of (Friston, Harrison, and Penny, 2003) or the
dynamic structural causal models of (Rubenstein et al., 2018). The dynamic causal models of (Friston,
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stochastic processes for a large class of continuous dynamical systems by means of
a “structured” system of random differential equations of arbitrary order (including
zeroth-order). One can consider SCMs as special cases of SDCMs that only contain
zeroth-order equations. The proposed modeling framework enables modeling of
stochasticity, time-dependence and causality in a natural way. We study the exis-
tence and uniqueness of solutions of SDCMs, and propose a convenient graphical
representation of the model structure for which we derive Markov properties. We
define an idealized notion of stochastic interventions, and show that this yields a
natural “interventionist” causal interpretation of the graph of an SDCM. We define
a notion of equilibration of an SDCM to an SCM, which corresponds with letting
a system converge towards equilibrium as time tends to infinity, and relate the
properties of the SDCM to those of the equilibrium SCM. In the next paragraphs,
we describe our contributions in more detail.

Intuitively, an SDCM can be thought of as an SCM where the notion of time
is added to the structural equations by replacing the random variables of the
SCM by stochastic processes and their (higher-order) derivatives. In the presence
of these derivative processes, these equations, which we coin dynamic structural
equations, can be read as random differential equations. The dynamic structural
equations have the property that they are organized in a structural way, similar
to how the structural equations of an SCM are organized by associating a distinct
causal mechanism to each observed variable. This distinguishes SDCMs from other
“non-causal” (random) dynamical systems, and allows to define idealized stochastic
interventions on these models, similarly to how this is usually done for SCMs. The
structure of the SCM can be expressed by its graph, which reflects the functional
relationships between the components as encoded by the structural equations.
Similarly, we define the graph of an SDCM to reflect the functional relationships
between the components as encoded by the dynamic structural equations.

The framework of SDCMs on the one hand allows one to specify the causal
semantics of a system of RDEs, and on the other hand it enables temporal extensions
for SCMs. In particular, we show when and how we can equilibrate an SDCM to
an SCM, such that the static solutions of the SCM contain the equilibrium states
of the SDCM. Our equilibration operation, inspired by the one of Mooij, Janzing,
and Schölkopf (2013), has the key property that it preserves the structure of the
endogenous processes. Intuitively, the idea is that in the limit as time tends to
infinity, the dynamic structural equations converge to those equations for which
the higher-order derivatives of the processes have been set to zero, yielding the
structural equations of an SCM. This allows us to use SCMs to model the equilibrium
states of dynamical systems, including cases that were previously considered to fall
outside their scope, such as the price, supply and demand model in econometrics. In

Harrison, and Penny, 2003) have been developed to infer the causal relations between the activities of
different brain regions, where each neuronal state is modeled by a first order differential equation.
These much more restricted models could in principle be represented by SDCMs. The dynamic
structural causal models of (Rubenstein et al., 2018) have been developed to model the asymptotic
behavior of an ordinary differential equation under non-constant interventions and assume that the
asymptotic behavior does not depend on the initial condition.
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steady SDCM
R

SCM
MR

intervened steady SDCM
Rdo(I,KI)

intervened SCM
(MR)do(I,K∗I )

=M(Rdo(I,KI )
)

(Def. 3.3.7)do(I, KI)

t→ ∞
(Def. 3.4.9)

(Def. 3.3.7)do(I, K∗I )

t→ ∞
(Def. 3.4.9)

Figure 3.1: This diagram shows that, under certain convergence assumptions, equilibration
(left-to-right in the diagram) commutes with intervention (top-to-bottom in the
diagram). The precise statement is made explicit in Theorem 3.4.18.

addition, we show that this equilibration operation commutes with intervention (as
in Figure 3.1), and naturally maps the graph of the SDCM to the graph of the SCM.
This provides a different perspective on what Dash (2005) calls the “violation of the
equilibration-manipulation commutability property”. Our formalism allows us to
generalize the main result of Mooij, Janzing, and Schölkopf (2013), which states that
certain causally interpreted systems of ODEs can be equilibrated to SCMs, in several
directions: (i) we replace the deterministic setting with a more general stochastic
setting, that is, we can deal with randomness in the initial conditions and in the
parameters, (ii) we allow the order of the equations of the dynamical model to be
arbitrary, including zeroth-order, rather than restricting to first-order differential
equations only, and (iii) we drop the strong assumption that the dynamical model
needs to have a single static equilibrium that is independent of the initial condition.

By no longer restricting to first-order dynamical systems, we arrive at a more
natural causal interpretation of systems of higher-order RDEs, like the coupled
harmonic oscillator. Thereby, we circumvent questions like “does position cause
velocity, or does velocity cause position, or both?”. However, allowing for zeroth-
order dynamic structural equations leads to additional technical challenges that are
absent when solving first-order RDEs. Indeed, the initial conditions of the solutions
may be constrained by the zeroth-order dynamic structural equations, and possibly
even by additional “hidden” constraints. We provide sufficient conditions under
which the existence and uniqueness of a solution of an SDCM with a given initial
condition can be guaranteed. We also provide stronger conditions under which this
still holds after certain interventions.

The existence and uniqueness of solutions of an SDCM are of key importance
for obtaining Markov properties for SDCMs. By building on a powerful Markov
property for SCMs (Forré and Mooij, 2017; Bongers et al., 2021), we derive a
Markov property for SDCMs with initial conditions, which enables one to read off
(conditional) independencies between the stochastic processes that are solutions of
the SDCM, provided the latter are uniquely defined. With a small extension, it can
also be applied to the evaluation of the solutions at some specific point in time.

Even if the existence and uniqueness of a solution of an SDCM can be guaranteed,
not all solutions of an SDCM equilibrate, in general. For example, a coupled
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harmonic oscillator may oscillate indefinitely in the absence of friction. Moreover,
the solutions that equilibrate may not always equilibrate to the same equilibrium
state. For example, a freely moving particle subject to friction may end up anywhere,
depending on its initial position and velocity. In other words, equilibrium states
may depend on the initial condition. This is compatible with the recently proposed
framework of cyclic SCMs discussed in Chapter 2, which allows for the absence
of (or, the presence of multiple) solutions of the structural equations. The intricate
connection between the dependence of the equilibrium states of an SDCM on the
initial conditions and the solvability properties of the equilibrated SCM sheds new
light on the counterintuitive “nonancestral” causal effects in certain “pathological”
cyclic SCMs with self-cycles that were first observed by Neal (2000).

The scope of this chapter is limited to establishing the framework of SDCMs
and its bridge to SCMs at equilibrium. The importance of this bridge is that,
although SDCMs can be used for modeling causal relationships between stochastic
processes, inferring such causal models from data may pose certain difficulties.
One significant practical drawback of using SDCMs for modeling systems with
an unknown dynamics is that obtaining time series data with sufficiently high
temporal resolution can be costly, impractical or even impossible.3 The results of
this work enable one to study the causal semantics of the equilibrium states of a
large class of random dynamical models in terms of SCMs. In particular, this allows
to infer properties of these dynamical models by employing the statistical tools and
discovery methods available for static SCMs on equilibrium data.

outline This chapter is organized as follows: In Section 3.2, we provide the
necessary concepts of stochastic processes and random differential equations. In
Section 3.3, we introduce the class of structural dynamical causal models, define
SCMs as special cases of SDCMs, define interventions, define the graph of an
SDCM, discuss initial conditions, study existence and uniqueness of solutions, and
derive a Markov property for SDCMs. In Section 3.4, we define the equilibration
operation on steady SDCMs, define the graph of the equilibrated SDCM, describe
the commutation of the intervention and the equilibration operation, study the
inverse problem of finding steady SDCMs with non-trivial dynamics for which
all the solutions equilibrate to solutions of the SCM, and discuss subtleties in
the causal interpretation of the graph of the equilibrated SDCM. We conclude
with a discussion and some open problems in Section 3.5. Proofs are provided in
Appendix 3.A.

3.2 preliminaries

We start off by defining some basic notation and terminology.

3 For example, modern measurement techniques in biology, like RNA sequencing and mass cytometry,
enable simultaneous measurements of multiple variables at once in single cells, but at the cost of
destroying the cells during the measurement process. This means that it is impossible to obtain
time-series measurements for individual cells, although one can take a “snapshot” of the internal
states of many single cells at the same point in time.
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3.2.1 Stochastic processes

In this subsection, we introduce the basic definitions and terminology for stochastic
processes (see also Bunke, 1972; Neckel and Rupp, 2013). A stochastic process is
an Rn-valued function X : T ×Ω → Rn, where T is some index set, such that Xt

(which denotes X(t, .), also sometimes denoted as X(t)) is for each t ∈ T a random
variable4 on a probability space (Ω,F , P). A random variable X : Ω → Rn can
itself be seen as a stochastic process that is constant in time, that is, as the process
X : T ×Ω → Rn defined by Xt(ω) := X(ω). We always assume that there exists
some background probability space (Ω,F , P) on which all random variables and
processes are defined. Furthermore, we only consider processes where T = [t0, t1]

or T = [t0, ∞) for t0 < t1 with t0, t1 ∈ R, and the points of T are thought of as
representing time. For each ω ∈ Ω we have an Rn-valued function T → Rn mapping
t to Xt(ω), which is called a sample path, or just a path, of X. We call two stochastic
processes X and Y a.s. equal to each other, denoted by X = Y a.s., if P-almost surely
all sample paths are equal, that is, if there exists a P-null set5 N ⊆ Ω such that for
all ω ∈ Ω \ N and for all t ∈ T we have Xt(ω) = Yt(ω). We consider stochastic
processes, and random variables in particular, only up to a.s. equality.

A family (Xi)i∈I of stochastic processes for some finite index set I is called
independent if for all k ∈N and all k-tuples (t1, . . . , tk) of distinct elements of T the
family

(X̃i)i∈I

of random variables X̃i := ((Xi)t1 , . . . , (Xi)tk) is independent.
We call a stochastic process X continuous, if its paths are continuous almost surely,

that is, for P-almost every ω ∈ Ω and for all t ∈ T we have

lim
s→t

Xs(ω) = Xs(ω) .

We call a stochastic process X differentiable, if its paths are differentiable almost
surely, that is, for P-almost every ω ∈ Ω and for all t ∈ T the derivative

X ′t(ω) :=
dXt

dt
(ω) := lim

h→0

Xt+h(ω)− Xt(ω)

h

exists. The mapping X ′ : T×Ω→ Rn defines a stochastic process and is called the
derivative of X. Similarly, one can define, if it exists, the nth-order derivative of X as
the derivative of the (n− 1)th-order derivative of X, which we also write as X(n),
where the zeroth-order derivative of X is X(0) := X. We call a stochastic process
X continuously differentiable or a C1-stochastic process, if its derivative X ′ exists and
is continuous. Similarly, we call X a Cm-stochastic process, if its derivatives X ′, X ′′,

4 Assuming the Borel σ-algebra B(Rn) on Rn, that is, the smallest σ-algebra on Rn that contains all
open n-balls.

5 Let (Ω,F , P) be a probability space. A set N ⊆ Ω is called a P-null set if there exists a measurable set
Ñ ∈ F with N ⊆ Ñ and P(Ñ) = 0.
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. . . , X(m) exist and are continuous. In particular, X is a C0-stochastic process if it is
continuous.

Consider a compact interval T = [t0, t1] ⊆ R. The space Cm(T, Rn) of m times
continuously differentiable functions T → Rn, equipped with the Cm-norm

‖X‖(m) :=
m

∑
k=0

sup
t∈T
‖X(k)(t)‖

(where ‖ · ‖ is the Euclidean norm in Rn) is a Polish space, and with its Borel
σ-algebra forms a standard measurable space (Kechris, 1995). A Cm-stochastic
process X : T ×Ω → Rn can also be seen as a random variable taking values in
Cm(T, Rn) (Borovkov, 2013). The following functionals (integration, differentiation
and evaluation) are continuous, and hence measurable:

ι : Rn × Cm(T, Rn)→ Cm+1(T, Rn) : (X[0], X) 7→
(

t 7→ X[0] +
∫ t

t0

X(s) ds
)

∂ : Cm+1(T, Rn)→ Cm(T, Rn) : X 7→
(
t 7→ X ′(t)

)
π : Cm(T, Rn)→ Rn : X 7→ X(t1) .

Furthermore, if we compose a process X ∈ Cn(T, Rn) with a continuous function
f : Rn → Rk, we obtain a process f (X) ∈ C0(T, Rk).

3.2.2 Clustered mixed graphs

In this subsection, we introduce some graphical notions.
A mixed graph is a pair G = (V , E), where V is a set of nodes and E is a set of

edges between the nodes of different types, in our case, , , , , . If i j or
i j in G, we call i a parent of j and denote with paG(j) the set of parents of j (which
may include j itself in case j j in G). A mixed graph G̃ = (Ṽ , Ẽ) is a subgraph of a
mixed graph G = (V , E) if Ṽ ⊆ V and Ẽ ⊆ E .

A clustered mixed graph is a triple G = (V , E ,P) where (V , E) is a mixed graph
and P is a partition of the nodes V , such that dashed edges , only appear
between nodes in the same element of P . Each element of P is called a cluster of
the clustered mixed graph. A clustered mixed graph G = (V , E ,P) induces a mixed
graph col(G) with nodes P , a directed edge K L for K 6= L iff there is a directed
edge k l in G for some k ∈ K, l ∈ L, and a bidirected edge K L for K 6= L iff
there is a bidirected edge k l in G for some k ∈ K, l ∈ L. This construction can be
thought of as “collapsing” the clusters in the clustered mixed graph into nodes and
subsequently removing self-cycles.

3.2.3 Random differential equations

In this subsection, we give a brief overview of some key aspects of random differen-
tial equations (for more details, see Bunke, 1972; Neckel and Rupp, 2013). Random
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differential equations (RDEs) are similar to ordinary differential equations (ODEs),
but can deal with randomness in the initial conditions and in the parameters. Due
to their close connection to ODEs they can be analyzed by use of methods that are
analogous to those in the theory of ODEs (Bunke, 1972). Their formalism is con-
ceptually easier than the formalism of the white-noise driven stochastic differential
equations (SDEs), while still being applicable to those systems via the generalized
Doss-Sussmann correspondence (see Jentzen and Kloeden, 2011; Neckel and Rupp,
2013). They have been used for many years in a wide range of applications (see, for
example, Bunke, 1972; Soong, 1973; Sobczyk, 1991; Neckel and Rupp, 2013; Han
and Kloeden, 2017; Liu et al., 2020).

A stochastic process X : T × Ω → Rd is a solution of a (first-order) random
differential equation

X ′ = f (X, E) , (3.1)

where f : Rd ×Re → Rd is a measurable function and E : T ×Ω→ Re a stochastic
process, if for P-almost every ω ∈ Ω the (first-order) ordinary differential equation6

X ′t(ω) = f (Xt(ω), Et(ω))

holds for all t ∈ T. An initial condition of the RDE (3.1) is a tuple (t0, X[0]) that
specifies those solutions X of the RDE (3.1) that satisfy for P-almost every ω ∈ Ω

Xt0(ω) = X[0](ω)

at the initial time t0. Since every nth-order ODE can be rewritten as a system of
first-order ODEs, the general form of the random differential equation (3.1) can be
used to express analogously all the nth-order random differential equations.7

The inclusion of randomness in the equations can be classified into two basic
types. The first type consists of randomness in the initial conditions, that is, the initial
conditions are not a.s. equal to a constant deterministic process. The second type
consists of randomness in the parameters, that is, the process E is not a.s. equal to a
deterministic stochastic process. Of course, a combination of both types can hold.
In particular, an RDE together with an initial condition reduces to an initial value
problem for ODEs if it has no randomness in both the initial conditions and the
parameters.

If the stochastic process E is continuous, sufficient conditions that guarantee
the existence and uniqueness of solutions for any initial condition can be found
in Bunke (1972) and Kloeden and Platen (1992). These results are similar to the
uniqueness and existence theorems for ODEs (Coddington and Levinson, 1955).

6 These ordinary differential equations are also called explicit ordinary differential equations (Ascher
and Petzold, 1998). Similarly, the random differential equations (3.1) are also called explicit random
differential equations.

7 Furthermore, explicit time-dependence of f can be incorporated by adding a dummy variable with t
with dynamics t′ = 1 and initial condition t[0] = 0.
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m1 m2

L1

m1 m2
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Figure 3.2: Two masses coupled by a spring, freely drifting in space (left, see Example 3.2.1)
and with one of the masses attached to a fixed point (right, see Example 3.2.2).

Example 3.2.1 (Two masses coupled by a spring). Consider a one-dimensional system
of two point masses m1 and m2 with positions X1 and X2 respectively that are coupled by an
ideal spring with spring constant κ1 > 0 and equilibrium length L1 > 0 under influence of
friction with friction coefficients b1, b2 ≥ 0 respectively (see Figure 3.2 (left)). The equations
of motion of this system, whose derivation can be found in physics textbooks, are given by
the second-order random differential equations

X′′1 =
κ1

m1
(X2 − X1 − L1)−

b1

m1
X′1

X′′2 =
κ1

m2
(X1 − X2 + L1)−

b2

m2
X′2 .

Randomness may enter the system via the initial condition

(t0, (X1(t0), X′1(t0), X2(t0), X′2(t0)))

or via the parameters. For example, instead of assuming that the length L1 has a fixed
value, we can assume that it is an exogenous random variable distributed according to some
distribution. The system of equations then forms an RDE.

In this chapter, we propose a modeling class that allows to model the causal
semantics of stochastic processes with RDEs in an unambiguous way. The following
example illustrates that modeling interventions on RDEs, and thereby grounding
their causal semantics, is not a completely trivial matter.

Example 3.2.2 (Two masses coupled by a spring, continued). Consider again the
RDE that describes the two masses coupled by an ideal spring from Example 3.2.1. These
equations denote a symmetric relation, that is, for both equations X1 can be expressed in
terms of X2, and vice versa. The causal relations between the processes X1 and X2 are not
inherently implied by the form of the equations. For example, what happens to X2 if we fix
the mass m1 to a fixed wall, say, at X1 = 0 (see Figure 3.2 (right))? The corresponding
RDE for X1 and X2 is then given by

X1 = 0

X′′2 =
κ1

m2
(X1 − X2 + L1)−

b2

m2
X′2 .

In both cases we implicitly assumed that each mass has its own equation of motion, that
is, the first and second equation determine the motion of the mass m1 and m2, in terms of
the processes X1 and X2, respectively. Therefore, the intervention of fixing the mass m1 to
the wall is accomplished by changing only the equation for m1 to the equation X1 = 0. If
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instead we had changed the other equation to X1 = 0, then, as one can easily verify, X2

would always be fixed, which does not correspond to the expected physical behavior. This
additional “structure” of knowing which RDE determines the dynamics of which process is
not “intrinsically” defined by the RDE. Moreover, RDEs usually do not include zeroth-order
equations (also referred to as “algebraic equations”), such as X1 = 0. Allowing for RDEs of
arbitrary order, including zeroth-order, allows to model a wide range of interventions on
these models. For example, instead of fixing the mass m1 to the fixed wall at X1 = 0 we
could fix it to a wall that is driven by some external force, such as X1 = A sin(2π f t) for
some A, f > 0.

3.3 structural dynamical causal models

In this section, we introduce the class of structural dynamical causal models (SD-
CMs) that allows to formally specify causal semantics for any RDE of arbitrary
order (including zeroth-order). We organize the differential equations of the RDEs
in a structural way, similar to how this is done for structural causal models, such
that each differential equation expresses the causal mechanism that governs the
dynamics of a single stochastic process (corresponding to a single component of
the system). This allows us to model stochastic idealized interventions targeting
certain components in dynamical models, similarly to how this is done for SCMs.

We start in Section 3.3.1 with introducing the notation and terminology that
will be used throughout this chapter. In Section 3.3.2, we formally define SDCMs
and their solutions. In Section 3.3.3, we formalize the causal semantics of SDCMs
in terms of stochastic “perfect” interventions. In Section 3.3.4, we introduce and
discuss a graphical representation for SDCMs. In Section 3.3.5, we discuss the initial
conditions and how these relate to the existence of solutions. In Section 3.3.6, we
state results about the existence and uniqueness of solutions of certain classes of
SDCMs. We finish in Section 3.3.7 by deriving a Markov property for SDCMs with
initial conditions, suitable for both the solutions of the SDCM and the evaluation of
the solutions at any point in time.

3.3.1 Notation and terminology

Let I = {1, . . . , d} be a finite index set and X = ∏i∈I Xi the product of the
domains of the components of a system, where domain Xi = Rdi encodes the
range of possible values that the ith component can take. The stochastic process
X = (X1, . . . , Xd) : T ×Ω→ X has component processes Xi : T ×Ω→ Xi.

Let i ∈ I and ni ∈ N0. If for the ith component Xi the nth
i -order derivative

exists, then the complete nth
i -order derivative of Xi, defined as the stochastic process

Xi
(ni) := (Xi, X′i , X′′i , . . . , X(ni)

i ) : T ×Ω → X ni+1
i , is the tuple of all the derivatives

of Xi up to and including order ni. We adopt a similar notation for the values in

X ni+1
i , that is, x(ni)

i ∈ X ni+1
i . Each component X(ki)

i of Xi
(ni), or similarly x(ki)

i of x(ni)
i ,
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corresponds to an index i(ki), which gives the index set ī(ni) := {i(ki) : 0 ≤ ki ≤ ni}
for X(ni)

i , where the index i(0) is also written as i.
Let n = (n1, . . . , nd) ∈ NI0 be a tuple. If the nth

i -order derivative of Xi exists for
every i ∈ I , then the nth-order derivative of X is defined as the stochastic process
X(n) := (X(n1)

1 , . . . , X(nd)
d ) : T ×Ω → X and the complete nth-order derivative of X

is defined as the stochastic process X(n) := (X1
(n1), X2

(n2), . . . , Xd
(nd)) : T ×Ω →

X n+1, where X n+1 := ∏d
i=1 X ni+1

i . We adopt a similar notation for the values in

X n+1, that is, x(n) ∈ X n+1. Similarly, each component X(ki)
i of X(n) corresponds to

an index i(ki) which gives the index set I (n) :=
⋃

i∈I ī(ni) for X(n).
For a subset I := {i1, . . . , ik} ⊆ I we will use the notation nI := (ni1 , . . . , nik)

and write X I = ∏i∈I Xi and X nI+1
I = ∏i∈I X ni+1

i . For the Ith components of the

process X and the complete nth-order derivative X(n), we write XI := (Xi1 , . . . , Xik)

and X(nI)
I := (X

(ni1 )

i1
, . . . , X

(nik
)

ik
) respectively. Similarly, for the values in X I and

X nI+1
I , we write xI := (xi1 , . . . , xik) ∈ X I and x(nI)

I := (x
(ni1 )

i1
, . . . , x

(nik
)

ik
) ∈ X nI+1

I
respectively.

In this notation, a stochastic process X is a Cn-stochastic process, if its complete

nth-order derivative X(n) exists and is continuous. Similarly, we call a stochastic

process X a Cn-stochastic process, if its complete nth-order derivative X(n) exists and
is continuous. We denote by Cn(T,X ) the space of Cn-stochastic processes. For
T = [t0, t1] ⊆ R compact, the space Cn(T,X ) forms a standard measurable space
with Borel σ-algebra given by the Cn-norm

‖X‖(n) := ∑
i∈I

ni

∑
k=0

sup
t∈T
‖X(k)

i (t)‖ .

3.3.2 Structural dynamical causal models and their solutions

Informally, we think of an SDCM as an SCM where we replace the random variables
of the SCM by stochastic processes and their derivatives, and where each structural
equation of the SCM becomes a random differential equation of arbitrary order.
This generalizes the class of SCMs to the continuous time domain and enables a
causal semantics for a broad range of random dynamical models. In this chapter,
we closely follow the terminology for SCMs of Chapter 2 and extend it to SDCMs.

Definition 3.3.1 (Structural dynamical causal model). A structural dynamical causal
model (SDCM) is a tuple8

R := 〈I ,J ,X ,E , n, f , E〉

where

• I is a finite index set for endogenous processes,

8 We often use boldface for variables that have multiple components, that is, which take values in a
Cartesian product.
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• J is a disjoint finite index set for exogenous processes,

• X = ∏i∈I Xi is the product of the domains of the endogenous processes, where each
domain Xi = Rdi ,

• E = ∏j∈J Ej is the product of the domains of the exogenous processes, where each
domain Ej = Rej ,

• n = (ni)i∈I ∈NI0 is the order tuple,

• f : X n+1 × E → X is a measurable function that specifies the dynamic causal
mechanism,

• E : T ×Ω → E is an exogenous stochastic process with independent components,
that is, (Ej)j∈J is independent.

The solutions of a structural dynamical causal model in terms of stochastic
processes are defined by the associated dynamic structural equations.

Definition 3.3.2 (Solution of an SDCM). A stochastic process X : T ×Ω → X is a
solution of the dynamic structural equations (dynamic SEs) associated to SDCM R,

X = f (X(n), E) ,

if X is a Cn-stochastic process, and for P-almost every ω ∈ Ω the ordinary differential
equations9

Xt(ω) = f
(
X(n)

t (ω), Et(ω)
)

hold for all t ∈ T.

The value ni of the order tuple n denotes the highest-order derivative of Xi that
may occur in the dynamic structural equations. Note that taking higher ni’s will in
general reduce the set of possible solutions, due to additional imposed smoothness
constraints on the solutions. In contrast to the common way of writing RDEs (see
equation (3.1)), the (higher-order) derivatives of the endogenous processes of an
SDCM always appear on the right-hand side of the dynamic SEs.10 This notation
explicitly allows us to model zeroth-order dynamic structural equations, that is,
equations that contain no derivatives of order one or higher, in other words, random
algebraic equations.

In particular, if all dynamic structural equations are of zeroth order and the
exogenous stochastic processes in the model are constant in time (that is, random
variables), then the structural dynamical causal model reduces to a structural causal
model (see Chapter 2). In contrast to Definition 2.2.1, we define an SCM here in
terms of an exogenous random variable instead of an exogenous distribution.

9 These equations are called implicit ordinary differential equations if the Jacobian matrix ∂ f (x(n) ,e)
∂x(n) is

nonsingular for all its argument values in an appropriate domain, otherwise they are called differential-
algebraic equations (Ascher and Petzold, 1998).

10 For every RDE of the form X ′ = f (X, E) with f and E continuous, there exists an SDCM with
the same solutions: X is a solution of the RDE if and only if it is a solution of the SDCM R with
the dynamic SE X = X − X ′ + f (X, E), as long as n = 1 (since all solutions of the RDE must be
continuously differentiable).
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Definition 3.3.3 (Structural causal model). A structural causal model (SCM) is a
tuple

M := 〈I ,J ,X ,E , f , E〉 ,

such that 〈I ,J ,X ,E , 0, f , E〉 is an SDCM with E a random variable.

That is, we can identify SCMs with certain special cases of SDCMs. Similarly,
we can identify the solutions of an SCM (see Definition 2.2.3) with the (constant)
solutions of the corresponding SDCM. The following definition is equivalent to
Definition 3.3.2 when the latter is applied to an SCM.

Definition 3.3.4 (Solution of an SCM). A random variable X : Ω→ X is a solution of
the structural equations associated to SCMM,

X = f (X, E) ,

if for P-almost every ω ∈ Ω

X(ω) = f (X(ω), E(ω))

holds.

Similar to the structural equations of an SCM (Woodward, 2003; Pearl, 2009), the
dynamic structural equations of an SDCM model the underlying causal mechanisms
in a structural way, that is, each dynamic structural equation expresses a specific
endogenous process (on the left-hand side) in terms of a dynamic causal mechanism
depending on certain processes and their derivatives (on the right-hand side). It is
this additional structure, which allows us to explicitly model the causal semantics,
that distinguishes structural dynamical causal models from dynamical models such
as ODEs and RDEs.11 Allowing for zeroth and higher-order derivatives of Xi in
the dynamic structural equations gives rise to a broad range of random dynamical
models that can be described by an SDCM, ranging from ODEs (including first-
order ODEs as in (Mooij, Janzing, and Schölkopf, 2013)), RDEs (as in Section 3.2.3)
and more general random dynamical systems such as partially equilibrated systems
(as in (Iwasaki and Simon, 1994)).

Example 3.3.5 (Damped coupled harmonic oscillator). Consider a one-dimensional
system of d point masses mi > 0 (i = 1, . . . , d) with positions Xi ∈ R, which are
coupled by ideal springs, with spring constants κi > 0 and equilibrium lengths Li > 0
(i = 1, . . . , d− 1), under influence of friction with friction coefficients bi ≥ 0 (i = 1, . . . , d)
(see Figure 3.3 left). This system can be modeled by the SDCM12

R = 〈{1, . . . , d}, {1, . . . , d− 1}, Rd, Rd−1, n, f , E〉

11 The importance of assigning a differential equation to an endogenous variable was already observed
in (Mooij, Janzing, and Schölkopf, 2013).

12 We abuse notation here; more formally, we should use an index set for J that is disjoint from I , for
example, {1̃, . . . , d̃− 1}.
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m1 m2 m3 m4 m5

L1 L2 L3 L4

m1 m2 m3 m4 m5

L1 L2 L3 L4

X1 = 0 X5 = L

Figure 3.3: Damped coupled harmonic oscillator model R of Example 3.3.5 (left) and the
intervened model Rdo({1,5},(0,L)) of Example 3.3.8 (right), both for d = 5.

with order tuple n := (2, . . . , 2), where the exogenous process E = L := (L1, . . . , Ld−1) is
constant in time (that is, a random variable), and the causal mechanism is specified by the
dynamic structural equations

X1 = f1(X(n), L) := X2 − L1 −
b1

κ1
X′1 −

m1

κ1
X′′1

Xi = fi(X(n), L) :=
κi

κi + κi−1
(Xi+1 − Li) +

κi−1

κi + κi−1
(Xi−1 + Li−1)

− bi

κi + κi−1
X′i −

mi

κi + κi−1
X′′i (i = 2, . . . , d− 1)

Xd = fd(X(n), L) := Xd−1 + Ld−1 −
bd

κd−1
X′d −

md

κd−1
X′′d .

The motion of the masses, in terms of their positions Xi, velocities X′i and accelerations X′′i ,
is described by a separate equation of motion for each mass. For the case d = 2, this SDCM
R has the same solutions as those described by the RDE in Example 3.2.1.

The following example motivates why we only consider processes as solutions of
SDCMs in case they satisfy the smoothness conditions.

Example 3.3.6 (Sufficient smoothness of the solutions). LetR = 〈{1}, ∅,X , E , n, f , E〉
be the SDCM with X = R, E the singleton {∗}, n = 0, the dynamic causal mechanism
f : X × E → X given by f (x, e) = x− x2 + 1, and E the trivial exogenous process. The
zeroth-order dynamic structural equation associated to R reads

X = X− X2 + 1 .

This dynamic structural equation does not depend on any exogenous process. The set of
endogenous processes X : T×Ω→ R that satisfy the dynamic structural equation consists
of all stochastic processes in {−1, 1}T×Ω. Most of the stochastic processes in {−1, 1}T×Ω

are not continuous. The solutions of R are exactly those processes in {−1, 1}T×Ω that are
C0-stochastic processes. These are the processes that are constant in time, that is, the random
variables of {−1, 1}Ω. In particular, the solutions of the SDCM R correspond exactly to
the solutions of the SCM described by the above structural equation.
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3.3.3 Interventions

Interventions on a structural dynamical causal model can be modeled in different
ways. We consider here a stochastic version of perfect interventions13 on the en-
dogenous processes (Eberhardt and Scheines, 2007) that are analogous to stochastic
perfect interventions in structural causal models (Pearl, 2009; Eberhardt, 2014). A
stochastic perfect intervention on some endogenous process forces the intervened
process to be equal to a given independent exogenous process. More generally,
we model a stochastic perfect intervention on a subset I := {i1, . . . , ik} ⊆ I of
the endogenous processes by forcing those processes XI to be equal to the inter-
vened processes KI , by changing the model such that the corresponding dynamical
structural equations become XI = KI . The process KI is treated as an independent
exogenous process, such that all its components Ki are mutually independent and
independent from all the other exogenous processes that were already present in
the model in the absence of the intervention. The dynamic causal mechanisms of
the other endogenous processes I \ I are untouched and their dynamics are still
specified by the same dynamic structural equations associated to those processes in
the absence of the intervention, that is14

X\I = f\I(X(n), E) .

This yields the following formal definition of an intervened structural dynamical
causal model.

Definition 3.3.7 (Stochastic perfect intervention on an SDCM). Consider an SDCM
R = 〈I ,J ,X ,E , n, f , E〉, a subset I ⊆ I , and a stochastic process KI : T ×Ω → X I

such that ((Ki)i∈I , (Ej)j∈J ) is independent. The stochastic perfect intervention do(I, KI)

maps R to the SDCM15

Rdo(I, KI) := 〈I , I ∪ J ,X ,X I × E , n, f̃ , (KI , E)〉 ,

where the intervened causal mechanism f̃ : X n+1 × (X I × E)→ X is given by

f̃i(x(n), (eI , eJ )) =

 fi(x(n), eJ ) i ∈ I \ I

ei i ∈ I .
(3.2)

We call a stochastic perfect intervention do(I, KI) a perfect intervention if KI is a
deterministic stochastic process (that is, if it does not depend on ω).

This definition explicitly exposes a hitherto implicit but crucial modeling assump-
tion: exogenous processes are not caused by endogenous processes. Indeed, no

13 These are also referred to as ideal, hard, structural, surgical, atomic (Eberhardt and Scheines, 2007) or
independent (Korb et al., 2004) interventions.

14 For I ⊆ I we adopt the notation \I for I \ I.
15 We abuse notation here; more formally, we should make a disjoint copy Ĩ := {ĩ : i ∈ I} and use

Ĩ ∪ J as the new exogenous index set instead of I ∪ J , to keep the endogenous indices I and the
exogenous indices Ĩ ∪ J disjoint.
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stochastic perfect intervention on any subset of the endogenous processes will lead
to a change in any of the exogenous processes.

Example 3.3.8. Consider the damped coupled harmonic oscillator represented by the SDCM
R of Example 3.3.5. Performing the perfect interventions on the masses m1 and md by
fixing m1 and md to the walls at X1 = 0 and Xd = L > 0, respectively, (see Figure 3.3
(right)) yields the model Rdo({1,d},(0,L)) with the dynamic structural equations

X1 = 0

Xi =
κi

κi + κi−1
(Xi+1 − Li) +

κi−1

κi + κi−1
(Xi−1 + Li−1)

− bi

κi + κi−1
X′i −

mi

κi + κi−1
X′′i (i = 2, . . . , d− 1)

Xd = L .

It is clear from the definition that performing stochastic perfect interventions
on disjoint subsets of the endogenous processes commutes. In case of overlap, the
dynamic structural equations of the overlapping intervention targets are determined
by the most recent intervention applied to them.

As a special case, Definition 3.3.7 reduces to the usual notion of (stochastic)
perfect intervention on SCMs (see also Definition 2.2.12).

Definition 3.3.9 (Stochastic perfect intervention on an SCM). Consider an SCM
M = 〈I ,J ,X ,E , f , E〉, a subset I ⊆ I , and a random variable KI : Ω→ X I such that
((Ki)i∈I , (Ej)j∈J ) is independent. The stochastic perfect intervention do(I, KI) maps
M to the SCM

Mdo(I, KI) := 〈I , I ∪ J ,X ,X I × E , f̃ , (KI , E)〉 ,

where f̃ is defined by equation (3.2).

This provides SDCMs with a causal semantics that is analogous to that of SCMs.
The following example illustrates how this resolves the ambiguity of the causal
interpretation of the RDE of Example 3.2.2.

Example 3.3.10 (Ambiguous causal interpretation of RDEs). Consider the SDCM R
of Example 3.3.5 for d = 2, with dynamic structural equations given by

X1 = X2 − L1 −
b1

κ1
X′1 −

m1

κ1
X′′1

X2 = X1 + L1 −
b2

κ1
X′2 −

m2

κ1
X′′2 .

The solutions of R correspond exactly to the solutions of the RDE that describes the two
masses attached to a spring in Example 3.2.1. Fixing the mass m1 to the left wall at X1 = 0
(see Figure 3.2 (right)) by performing the stochastic perfect intervention16 do(1, K1) with

16 For convenience, we write do(i, Ki) for a stochastic perfect intervention do(I, KI) whenever I = {i}
for some i ∈ I .
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K1 = 0 on R gives the intervened model Rdo(1,0) with dynamic structural equations given
by 

X1 = 0

X2 = X1 + L1 −
b2

κ1
X′2 −

m2

κ1
X′′2 .

The intervened model Rdo(1,0) has exactly the same solutions as the RDE in Example 3.2.2.
Consider now the SDCM R̃ that is the same as R except for its dynamic causal mecha-

nism f̃ , for which the associated dynamic structural equations are given by
X1 = X2 − L1 +

b2

κ1
X′2 +

m2

κ1
X′′2

X2 = X1 + L1 +
b1

κ1
X′1 +

m1

κ1
X′′1 .

Both models R and R̃ have the same solutions as those described by the RDEs in Exam-
ple 3.2.1. However, the intervened models Rdo(1,0) and R̃do(1,0) have different solutions.
Only the model Rdo(1,0) describes the expected physical behavior (see also Example 3.2.2).

Stochastic perfect interventions are only defined for the endogenous processes,
but not for their higher-order derivatives. The higher-order derivative processes
in an SDCM are always obtained by differentiation of the underlying endogenous
processes and hence it suffices to define the stochastic perfect interventions only for
those underlying endogenous processes. Allowing for stochastic perfect intervention
on both the endogenous processes and some of their higher-order derivatives will
generally lead to nonsensible causal behavior, as is illustrated in the following
example.

Example 3.3.11 (Modeling higher-order derivatives as separate endogenous pro-
cesses). Suppose we model the velocities X′i of the positions Xi of the masses between the
walls in the damped coupled harmonic oscillator of Example 3.3.8 explicitly as separate
endogenous processes Vi′ . We could attempt to model this with an SDCM R̃ for which the
dynamic structural equations are given by X1 = 0, Xd = L andXi =

κi

κi + κi−1
(Xi+1 − Li) +

κi−1

κi + κi−1
(Xi−1 + Li−1)−

bi

κi + κi−1
Vi′ −

mi

κi + κi−1
V ′i′

Vi′ = X′i

for i = 2, . . . , d− 1. Performing a stochastic perfect intervention on both the position Xi

and the velocity Vi′ of one of the masses between the walls (i ∈ {2, . . . , d− 1}) can lead
to unphysical behavior. For example, the perfect intervention do({2, 2′}, (0, 1)) gives an
intervened SDCM with a solution that is physically impossible if we keep interpreting Xi as
the position and Vi′ the velocity of the ith mass.

This observation constitutes strong motivation for considering the higher-order
derivatives X(ki)

i (up to and including order ni) to be aspects of the endogenous
process Xi rather than as “causally independent” processes. Thereby, we circumvent
modeling velocity as the (instantaneous) cause of position (as in Iwasaki and Simon,
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1994), or the other way around. The resulting modeling framework appears more
natural than that of (Mooij, Janzing, and Schölkopf, 2013), which is explicitly
limited to first-order dynamics and cannot accommodate systems like the damped
harmonic oscillator as easily as SDCMs can, as it has to impose restrictions on the
possible interventions to deal with this problem.

The higher-order derivatives X(ki)
i do not always exist for a process Xi. For

example, if we force the mass m1 to follow a Brownian motion17 K1 in the spring
model R of Example 3.3.10, then the intervened model Rdo(1,K1) does not yield a
solution (because X′′1 needs to exist and be continuous, which is not the case for
X1 = K1). In practice, we therefore only consider stochastic perfect interventions
do(I, KI) for which KI is a CnI -stochastic process.

3.3.4 Graphs

We will now define a graphical representation of the structural properties of SDCMs
that is inspired by the graphical representation of SCMs (see Section 2.2.2). Where
the graph of an SCM describes the functional relationships between the random
variables encoded by the structural equations, the graph of an SDCM expresses the
functional dependencies between the stochastic processes encoded by the dynamic
structural equations.

Typically, for i ∈ I , the component fi of the dynamic causal mechanism f only
depends on a subset of the (derivatives of the) endogenous and exogenous processes
that we call the functional parents of i.

Definition 3.3.12 (Functional and integrated parents). Let R = 〈I ,J ,X ,E , n, f , E〉
be an SDCM. For k ∈ I (n) ∪ J and i ∈ I (n), we call

1. k a functional parent of i if and only if i ∈ I and there does not exist a measurable
function18 f̃i : (X n+1)\k × E\k → Xi such that for all e ∈ E and for all x(n) ∈
X n+1

xi = fi(x(n), e) ⇐⇒ xi = f̃i((x(n))\k, e\k) ;

2. k an integrated parent of i if and only if there exists an ` ∈ I such that k = `(m`−1)

and i = `(m`) for some 0 < m` ≤ n`.

Exogenous processes have no functional and integrated parents by definition.
The integrated parents denote the differential relationships that are satisfied by
the endogenous processes. That is, for every ` ∈ I and 0 < m` ≤ n` we have that
`(m`−1) is an integrated parent of `(m`), which represents the differential relationship

X(m`)
` =

d
dt

X(m`−1)
` .

17 A stochastic process B on T = [0, ∞) is called a Brownian motion if: (i) B0 = 0; (ii) B has independent,
stationary increments; (iii) Bt ∼ N (0, t) for all t > 0; (iv) B is continuous. In particular, B is not
differentiable (see, for example, Theorem 21.17 in Klenke, 2014).

18 For X n+1 = ∏
i(ki )∈I (n) Xi, some subset I ⊆ I (n) and k ∈ I (n), we denote (X n+1)\I = ∏

i(ki )∈I (n)\I
Xi

and (X n+1)\k = ∏
i(ki )∈I (n)\{k} Xi, and similarly for their elements.
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X(n1)
1 X(n2)
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X(n1)
1 X(n2)
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Figure 3.4: Augmented graph (left) and graph (right) of the damped coupled harmonic
oscillator model R of Example 3.3.5 for d = 5.

These differential relationships are absent for SCMs, because the endogenous vari-
ables are considered static. In contrast to (Iwasaki and Simon, 1994), we express
the differential relationships between the endogenous processes by the derivative
operator, instead of the integration operator. In general, the integration operator
of (Iwasaki and Simon, 1994) is not uniquely defined, since for a particular pro-
cess there may exist several integrated processes differing by a (possibly random)
integration constant. The derivative of a process, however, is always a.s. uniquely
defined, if it exists. Hence, for a solution X of an SDCM we can always derive the
higher-order derivatives of Xi up to order ni by repeatedly applying the derivative
operator. In this way, we can consider the complete nth

i -order derivative X(ni)
i to

encode aspects of the same endogenous process Xi.
The different parental relations can be expressed in a clustered mixed graph,

where each cluster represents a complete nth
i -order derivative.

Definition 3.3.13 (Graph and augmented graph). Let R = 〈I ,J ,X ,E , n, f , E〉 be an
SDCM with order tuple n. We define:

1. the augmented graph Ga(R) ofR as the clustered mixed graph with nodes I (n) ∪J
partitioned into clusters ī(ni) = {i(ki) : 0 ≤ ki ≤ ni} for i ∈ I and clusters {j} for
j ∈ J , directed edges k l if and only if k is functional parent of l in a different
cluster, dashed directed edges k l if and only if k is a functional or integrated parent
of l in the same cluster;

2. the graph G(R) of R as the clustered mixed graph with nodes I (n) partitioned into
clusters ī(ni) = {i(ki) : 0 ≤ ki ≤ ni} for i ∈ I , directed edges k l if and only if k
is functional parent of l in a different cluster, dashed directed edges k l if and only
if k is a functional or integrated parent of l in the same cluster, and bidirected edges
k l if and only if there exists a j ∈ J that is a functional parent of both k and l.

The augmented graph differs from the graph in that it gives an explicit repre-
sentation of the exogenous processes rather than an implicit one using bidirected
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edges. The augmented graph contains no directed edge pointing towards an ex-

ogenous process node. The clusters ī(ni) ∈ I (n) for i ∈ I and {j} for j ∈ J of the
(augmented) graph of an SDCM refer to the complete nth

i -order derivative X(ni)
i

and Ej respectively, and are represented by a box around the nodes of the cluster.
The graph and augmented graph are illustrated19 in Figure 3.4 for the damped
coupled harmonic oscillator model of Example 3.3.5, where the white and gray
nodes represent the endogenous and exogenous processes, respectively. Between
the nodes of different clusters there are only functional parental relations. Within
a cluster, the higher-order derivatives i(ki) for ki > 0 of the endogenous processes
i ∈ I have no functional parents, but have only integrated parents. However, any
node i(ki) with ki > 0 may be a functional parent of another node j ∈ I ; see, for
example, the graph of the SDCM R̃ in Example 3.3.10.20

In particular, this definition of the (augmented) graph of an SDCM reduces to the
usual notion of the (augmented) graph of an SCM if we ignore the clusters. Indeed,
the graph G(M) of an SCMM = 〈I ,J ,X ,E , f , E〉 is a mixed graph with nodes
I , directed edges i j if and only if i is a functional parent of j with i 6= j, dashed
directed edge i i if and only if i is a functional parent of itself, and bidirected
edges i j if and only if there exists a k ∈ J that is a functional parent of both i
and j, where we apply Definition 3.3.12 of a functional parent toM (note that by
definition, an SCM has no integrated parents). The augmented graph Ga(M) of an
SCMM is defined analogously, but the bidirected edges are replaced by exogenous
nodes in J with outgoing directed edges to their functional children.

On the graphs of an SDCM, the operation of a stochastic perfect intervention acts
in a simple way.

Proposition 3.3.14 (Graphs of the intervened SDCM). Let R be an SDCM and
do(I, KI) a stochastic perfect intervention for I ⊆ I a subset and KI an independent
stochastic process. The graph G(Rdo(I,KI)) of the intervened SDCM Rdo(I,KI) is the graph
G(R), but without the edges that have an arrowhead pointing towards a node in the
intervention target set I. A similar statement holds for the augmented graph Ga(Rdo(I,KI)).

The graph and augmented graph of the damped coupled harmonic oscillator
model of Example 3.3.8, where we performed the perfect intervention of fixing the
endpoint masses to the walls, are illustrated in Figure 3.5. Performing a stochastic
perfect intervention on an endogenous process removes all the (bi-)directed edges
that point towards the intervened process, including the dashed directed edges
within the cluster. The dashed directed edges within the cluster that correspond to
the integrated parents, that is, those pointing to a higher-order derivative, indicate
that the higher-order derivatives of the intervened endogenous process need to
exist for any solution of the model. Hence, we view a stochastic perfect intervention

19 For visualizing the graphs we stick to the common convention of using stochastic processes and
random variables with the index as a subscript, instead of using the indices themselves (even when
no solutions are defined).

20 A more realistic example could be Faraday’s law of induction. In terms of individual point charges: a
moving point charge generates a magnetic field, which exerts a force on some other point charge that
is proportional to the velocity of the moving point charge.
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Figure 3.5: Augmented graph (left) and graph (right) of the intervened damped coupled
harmonic oscillator model Rdo({1,5},(0,L)) of Example 3.3.8 for d = 5.

on an endogenous process as an intervention on the whole cluster of the intervened
process. We say that there is a directed edge from cluster I to cluster J if there exists a
directed edge from some i ∈ I to some j ∈ J. Since a stochastic perfect intervention
can be seen as an intervention on the entire associated cluster, the directed edges
between the clusters express the direct causal relationships between the clusters.
We call a dashed directed edge i i in the graph of an SDCM (that is, where i is a
functional parent of itself) a self-cycle at i. An example of a model where a self-cycle
arises is the well-known market equilibrium model from economics, which has been
thoroughly discussed in the literature (see, for example, Richardson and Robins,
2014).

Example 3.3.15 (Price, supply and demand). Let XP denote the price, XS denote the
supply and XD the demand of a quantity of a product. The following dynamic structural
equations specify an SDCM R that describes how the demanded and supplied quantities are
determined by the price, and how price adjustments occur in the market:

XP = XP + λ(XD − XS)− X′P
XS = βSXP + ES

XD = βDXP + ED ,

where n := (nP, nS, nD) = (1, 0, 0). Here, ES and ED are the exogenous influences on the
supply and demand respectively, βS > 0 is the reciprocal of the slope of the supply curve,
βD < 0 is the reciprocal of the slope of the demand curve, and λ > 0 models how fast the
price adjusts to market conditions. The graph of this model is depicted in Figure 3.6 (left)
and contains a self-cycle at P.

We already encountered several instances of linear SDCMs (for example, in
Examples 3.3.5 and 3.3.15).
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XDXS XP

X′P

X(nP)
P

X(nS)
S X(nD)

D

G(R): XDXS XPG(MR):

Figure 3.6: Graphs of the price, supply and demand model R (left) of Example 3.3.15 and
the corresponding equilibrated modelMR (right) of Example 3.4.17.

Definition 3.3.16 (Linear SDCM). We call an SDCM R linear, if the dynamic causal
mechanism f : X n+1 × E → X is of the form

f (x(n), e) := Bx(n) + Γe ,

where B ∈ RI×I
(n)

and Γ ∈ RI×J are matrices.

For a linear SDCM R, a nonzero coefficient Bik for i, k ∈ I (n) such that i 6= k
corresponds to a directed edge k i in the graph G(R) (and augmented graph
Ga(R)) if i lies in a different cluster than k, and a dashed directed edge k i if i lies
in the same cluster as k. A coefficient Bii = 1 for i ∈ I corresponds to a self-cycle
i i. There is a bidirected edge i k in the graph G(R) for i, k ∈ I with i 6= k if
and only if there exists a j ∈ J for which Γij 6= 0 and Γkj 6= 0. In the augmented
graph Ga(R), there is a directed edge j i for i ∈ I , j ∈ J if and only if Γij 6= 0.

3.3.5 Initial conditions

In contrast to RDEs, SDCMs allow for both zeroth and higher-order differential
equations. For this reason, the dynamic SEs of SDCMs admit problems that can be
quite different from those of RDEs. For example, the order of the initial conditions
for SDCMs does not directly relate to the order of the SDCM.

Definition 3.3.17 (Initial condition). Let R be an SDCM, I ⊆ I a subset of the
endogenous variables, mI = (mi)i∈I ∈ NI

0 an order tuple, t0 ∈ T and X(mI)
I,[0] a random

variable taking values in XmI+1
I . We say that a solution X of R has initial condition

(t0, X(mI)
I,[0] ) if X(mI)

I (t0) exists and satisfies

X(mI)
I (t0) = X(mI)

I,[0]

almost surely. Here, mI is called the order of the initial condition; for I = I we also refer to
the initial condition as a full initial condition, and for I ( I as a partial initial condition.
A solution X of R with initial condition (t0, X(mI)

I,[0] ) is called almost surely unique if for

every solution Y of R with initial condition (t0, X(mI)
I,[0] ) we have X = Y a.s..

For an SDCM for which the dynamic SEs can be rewritten into the form of a
system of nth

i -order RDEs (with all ni ≥ 1), the full initial conditions of order n− 1
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of the SDCM correspond exactly with the usually considered initial conditions of
this system of RDEs. For example, the solutions of the damped coupled harmonic
oscillator of Example 3.3.5 can be a.s. uniquely determined by the full initial
conditions of order n − 1 (see also Corollary 3.3.28). In general, however, the
solutions of an SDCM may not be a.s. uniquely determined by the full initial
conditions of order n− 1, as the following example illustrates.

Example 3.3.18 (The order of the SDCM and of the initial conditions). Let R =

〈{1}, ∅,X , E , n, f , E〉 be the SDCM with X = R, E = {∗}, n = 1, the dynamic causal
mechanism f : X 2 × E → X given by f (x(1), e) = x − x2 + (x′)2, and E the trivial
exogenous process. The dynamic structural equation associated to R reads

X = X− X2 + (X′)2 .

This dynamic SE cannot be written as a (first-order) RDE of the form (3.1), since it cannot
be a.s. uniquely solved for X′. “Solving for” X′ leads to two RDEs that are of the form (3.1),
namely

X′ = X or X′ = −X .

The solutions of these RDEs are given by Xt = X[0]et and Xt = X[0]e−t respectively, where
(0, X[0]) denotes the initial condition for both RDEs. These processes are also solutions of
the SDCM, and one can show that all (continuously differentiable) solutions of R are of
this form. Note that, in principle, we could well have taken the order n arbitrarily high
without restricting the set of solutions, because the solutions are C∞-stochastic processes.
If we consider the solutions of R with an initial condition (0, X(0)

[0] ) of order 0, then there
are always two solutions with this initial condition that are not a.s. equal to each other,
unless X(0)

[0] = 0. For the initial condition (0, X(1)
[0] ) of order 1, we can specify the solution

X a.s. uniquely, if it exists. Take for example X(1)
[0] = (X[0], X[0]), then the solution X with

this initial condition is a.s. uniquely given by Xt = X[0]et. However, an arbitrary initial

condition (0, X(m)
[0] ) of order m greater or equal to 1 may well be inconsistent with the

dynamic structural equations. For example, the initial condition X(1)
[0] = (X[0], 2X[0]) will

not have a solution for X[0] 6= 0, since the initial condition X(1)
[0] := (X(0)

[0] , X(1)
[0] ) does not

satisfy (X(0)
[0] )

2 = (X(1)
[0] )

2.

This example illustrates that an arbitrary imposed initial condition may well be
inconsistent with the dynamic structural equations.

Definition 3.3.19 (Consistent initial condition). Let R be an SDCM and mI =

(mi)i∈I ∈ NI
0 an order tuple for I ⊆ I . We call an initial condition (t0, X(mI)

I,[0] ) for
R consistent if there exists a solution of R with this initial condition.

In other words, for an initial condition there only exists a solution if and only
if the initial condition is consistent. In particular, zeroth-order dynamic structural
equations may constrain the initial conditions (of any order) for which a solution
exists.
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Example 3.3.20 (Zeroth-order dynamic structural equation constraint). Consider
the price, supply and demand model R of Example 3.3.15 that has order tuple n =

(nP, nS, nD) = (1, 0, 0). The zeroth-order dynamic structural equations of R are those
associated with the supply XS and the demand XD processes. Since the solutions of R
satisfy these zeroth-order dynamic structural equations almost surely at every point in
time, the consistent full initial conditions (t0, X(m)

[0] ) also need to satisfy the zeroth-order
dynamic structural equations almost surely, that is, X[0],S = βSX[0],P +(ES)t0 and X[0],D =

βDX[0],P + (ED)t0 almost surely.

By definition, the consistent full initial conditions always need to satisfy the
zeroth-order dynamic structural equations of the SDCM. Initial conditions of an
order greater than or equal to the order of the SDCM need to satisfy the cor-
responding dynamic structural equations of the SDCM, as we already saw in
Example 3.3.18. Additionally, in general, SDCMs that have higher-order dynamic
structural equations may contain hidden constraints21 as the following example
illustrates.

Example 3.3.21 (Hidden constraint). Let R = 〈{1, 2}, {3}, R2, R, n, f , E〉 be the
SDCM with n = (0, 1), the dynamic causal mechanism f : X n+1 × E → X given
by f1(x(n), e) := x′2 and f2(x(n), e) := e, and E := E3 some exogenous process. The
dynamic structural equations associated to R read{

X1 = X′2
X2 = E .

This model cannot be written as an RDE,22 since the Jacobian matrix

∂ f (x(n), e)
∂x(n)

:=

 ∂ f1
∂x1

∂ f1
∂x′2

∂ f2
∂x1

∂ f2
∂x′2

 =

[
0 1

0 0

]

is singular everywhere. In order to solve the dynamic SEs we can differentiate the second
equation with respect to time to get

X1 = X′2 = E′ .

This SDCM only has solutions if the derivative E′ exists. If it exists, then the solutions are
given by X1 = E′ and X2 = E. Thus, the solutions satisfy not only the obvious constraint
X2 = E, but also need to satisfy the “hidden” constraint X1 = E′. That a solution of the
model depends on a derivative of the exogenous variable E cannot happen in a system of
RDEs. These constraints imply that every consistent full initial condition (t0, X(m)

[0] ) of R
needs to satisfy X[0],1 = E′t0

and X[0],2 = Et0 almost surely.

21 We refer the reader to the literature on differential-algebraic equations for more details on this, for
example, (Ascher and Petzold, 1998).

22 Observe that a higher-order RDE is of the form X(n) = g(X(n−1), E) for some measurable function
g : X n × E → X and stochastic process E : T ×Ω→ E .
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After performing a stochastic perfect intervention do(I, KI) on an SDCM R, all
consistent full initial conditions (t0, X(m)

[0] ) must satisfy X(mI)
[0],I = K(mI)

I almost surely.

For example, the consistent initial conditions (t0, (X(1)
[0],0, . . . , X(1)

[0],d)) for the SDCM

R in Example 3.3.8 need to satisfy X(1)
[0],0 = (0, 0) and X(1)

[0],d = (L, 0) after the perfect
intervention do({1, d}, (0, L)) on the model.

In summary, Examples 3.3.18, 3.3.20 and 3.3.21 show that the initial (random)
value problems associated to dynamic SEs of an SDCM behave differently compared
to those of RDEs, as not every initial condition is consistent, and the solutions may
involve (higher-order) derivatives of the exogenous process E.

3.3.6 Existence and uniqueness of the solutions

For RDEs, there exist sufficient conditions for the existence and uniqueness of the
solutions with an initial condition, which are similar to the existence and uniqueness
theorems for initial value problems for ODEs (Coddington and Levinson, 1955;
Bunke, 1972; Kloeden and Platen, 1992). No similar theorem is known in such
generality for dynamic SEs, although there are some weaker results of this type for
differential-algebraic equations (Ascher and Petzold, 1998). In this subsection, we
provide sufficient conditions for the existence and uniqueness of solutions with a
specified initial condition, both locally (considering only a subset of the stochastic
processes) and globally.

We start with an assumption on the form of the dynamic SEs for a subset
of endogenous processses O ⊆ I . This assumption entails that for some subset
I ⊆ O, the dynamic SEs corresponding to I can be written as an RDE, while the
remaining dynamic SEs for the complement O \ I can be solved uniquely for their
corresponding endogenous processes in terms of the other processes appearing in
these dynamic SEs. Additionally, smoothness conditions are imposed on exogenous
processes and on dynamical causal mechanisms to ensure the required smoothness
of the solution.23

Assumption 1-(I ⊆ O). For the SDCM R and subsets I ⊆ O ⊆ I , writing J := O \ I
and P := pacol(Ga(R))(O) \ O with col(Ga(R)) the “collapsed” graph,24 the following
both hold:

1. the order tuple nI ≥ 1;

23 The required smoothness of the solutions implies that we need to make assumptions about the
smoothness of the exogenous processes and the dynamical causal mechanisms in the model. The
assumption we made here is still rather crude in the sense that it suffices, but it is not at all necessary;
if desired, one can arrive at weaker conditions by carefully tracing through the graph how the required
smoothness of the solution can be guaranteed by demanding certain smoothness of each exogenous
process and each dynamical causal mechanism individually.

24 We will abuse notation by using the notation col(Ga(R)) for the graph that is isomorphic to the

“collapsed” mixed graph of Ga(R) where the nodes are labeled by I ∪ J instead of {i(ni) : i ∈
I} ∪ {{j} : j ∈ J }.
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2. there exist continuous functions gI : X nI
I ×X J ×X nP+1

P × EP → X I and gJ :
X nI

I ×X nP+1
P × EP → X J such that25 for all e ∈ E and for all x(n) ∈ X n+1

x(nI)
I = gI(x(nI−1)

I , xJ , x(nP)
P , eP) ⇐⇒ xI = f I(x(n), e)

and
xJ = gJ(x(nI−1)

I , x(nP)
P , eP) ⇐⇒ xJ = f J(x(n), e) .

In particular, under Assumption 1-(I ⊆ I) the dynamic structural equations of
R are equivalent to an RDE. For an SDCM that satisfies Assumption 1-(I ⊆ I) with
I a strict subset of I , we can eliminate the processes XI\I by substitution, giving an
RDE for the endogenous processes I of the form

X(nI)
I = gI(X(nI−1)

I , gI\I(X(nI−1)
I , E), E) . (3.3)

Every solution of the original SDCM satisfies this RDE, and every solution of this
RDE induces a solution of the SDCM, if it is sufficiently smooth. For O ( I we can
think of Assumption 1-(I ⊆ O) as applying this assumption to the subsystem with
endogenous processes O, treating the remaining endogenous processes in I \ O as
external inputs of the subsystem. This will turn out to be useful in Section 3.3.7 for
proving a Markov property.

Example 3.3.22. Consider the price, supply and demand model of Example 3.3.15. This
model satisfies Assumption 1-(I ⊆ O) for I = {P} and O = {S, P, D}. Substituting the
zeroth-order dynamic structural equations into the first-order equation of XP yields the
RDE

X′P = λ(βD − βS)XP + λ(ED − ES) . (3.4)

If instead we take O = {S, P}, then this yields the RDE

X′P = λ(XD − βSXP − ES) ,

where now XD is treated as an external input of the subsystem O.

We formalize the notions of the existence and uniqueness of solutions of a
subsystem of the SDCM as follows.

Definition 3.3.23 (Unique solvability of an initial value problem). Consider an
SDCM R = 〈I ,J ,X ,E , n, f , E〉, subsets I ⊆ O ⊆ I such that nI ≥ 1, J := O \ I
and P := pacol(Ga(R))(O) \ O. We call the initial value problem 〈R, I,O〉 (uniquely)

solvable if for any partial initial condition (t0, X(nI−1)
I,[0] ) and any CnP -stochastic process

XP, there exists an (a.s. unique) CnO -stochastic process XO that is a solution of the dynamic
structural equations26

XO = fO(X(nO)
O , X(nP)

P , EP) ,

25 For a subset P ⊆ I ∪ J , we use the convention that we write X(nP)
P and EP instead of X(nP∩I )

P∩I and
EP∩J respectively, and adopt a similar notation for variables and their spaces.

26 These equations are equivalent to the dynamic structural equations (see Definition 3.3.12).
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with partial initial condition (t0, X(nI−1)
I,[0] ).

As a special case, we obtain the notion of unique solvability for SCMs (see also
Section 2.3.2), where initial values play no role.

Definition 3.3.24 (Unique solvability of SCMs). LetM := 〈I ,J ,X ,E , f , E〉 be an
SCM, O ⊆ I a subset and P := pacol(Ga(R))(O) \ O. We say thatM is uniquely solvable
w.r.t. O if for any value xP ∈ X P and any value eP ∈ EP, there exists an a.s. unique
solution xO ∈ XO of the structural equations

xO = fO(xO, xP, eP) .

Note that this corresponds to unique solvability of the initial value problem
〈M, ∅,O〉. Since SDCMs that satisfy Assumption 1-(I ⊆ O) have the property that
they determine an RDE on the subset I, we can apply the existence and uniqueness
results of RDEs on this subsystem, which leads to the following result.

Lemma 3.3.25. Let R be an SDCM that satisfies Assumption 1-(I ⊆ O) for subsets
I ⊆ O ⊆ I . Let J := O \ I and P := pacol(Ga(R))(O) \O. If the following three conditions
hold:

1. the exogenous process EP is continuous;

2. the composition of gI with gJ is uniformly Lipschitz in its I-input, that is, there exists
a constant27 κ > 0 such that for all x(nI−1)

I , y(nI−1)
I ∈ X nI

I , for all x(nP)
P ∈ X nP+1

P
and for all eP ∈ EP the condition∥∥gI

(
x(nI−1)

I , gJ(x(nI−1)
I , x(nP)

P , eP), x(nP)
P , eP

)
−gI

(
y(nI−1)

I , gJ(y
(nI−1)
I , x(nP)

P , eP), x(nP)
P , eP

)∥∥
≤ κ‖x(0)I − y(0)I ‖ .

is satisfied, where ‖ · ‖ denotes the Euclidean norm on X I ;

3. for each j ∈ J, either nj = 0, or gj only depends on eP (that is, gj(x(nI−1)
I , x(nP)

P , eP) =

g̃j(eP) for g̃j : EP → X j) and gj(EP) is a Cnj -stochastic process;

then 〈R, I,O〉 is uniquely solvable.

This lemma guarantees the existence and uniqueness of solutions for a large class
of (subsystems of) SDCMs. Indeed, it states that for any partial initial condition

(t0, X(nI−1)
I,[0] ) and any CnP -stochastic process XP there exists an a.s. unique solution

XO of the dynamic structural equations

XO = fO(X(nO)
O , X(nP)

P , EP) ,

27 This result can be weakened slightly by making κ dependent on t ∈ T, ω ∈ Ω and the parent

processes X(nP−1)
P and EP (see also Theorem 1.2 in Bunke (1972) or Theorem 3.2 in Neckel and Rupp

(2013)).
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with initial condition(
X(nI−1)

I (t0), XJ(t0)
)
=
(

X(nI−1)
I,[0] , gJ

(
X(nI−1)

I,[0] , X(nP)
P (t0), EP(t0)

))
at t0. In particular, this provides a sufficient condition for an initial condition to be
consistent (see Definition 3.3.19).

In general, Assumption 1-(I ⊆ O) for an SDCM is not preserved under a
stochastic perfect intervention. Consider for example the SDCM R̃ in Example 3.3.10

which satisfies Assumption 1-(I ⊆ I). Performing the intervention do(1, 0) on this
model yields a model that does not satisfy Assumption 1-(I ⊆ I) for any I ⊆ I .
Under the following stronger assumption the SDCM will satisfy Assumption 1-
(I ⊆ I) for some I ⊆ I after every stochastic perfect intervention.

Assumption 2-(I ⊆ O). For the SDCM R and subsets I ⊆ O ⊆ I , writing J := O \ I
and P := pacol(Ga(R))(O) \ O, the following all hold:

1. the order tuple nI ≥ 1;

2. there exist continuous functions gi : X ni
i ×XO\i ×X nP+1

P × EP → Xi for all i ∈ I
and gj : X I ×X nP+1

P × EP → Xj for all j ∈ J such that for all i ∈ I, all j ∈ J, all
e ∈ E and all x(n) ∈ X n+1,

x(ni)
i = gi(x(ni−1)

i , xO\i, x(nP)
P , eP) ⇐⇒ xi = fi(x(n), e)

and
xj = gj(xI , x(nP)

P , eP) ⇐⇒ xj = f j(x(n), e) .

In particular, Assumption 2-(I ⊆ O) implies Assumption 1-(I ⊆ O).

Proposition 3.3.26 (Assumption 2-(I ⊆ O) under stochastic perfect intervention).
Let R be an SDCM that satisfies Assumption 2-(I ⊆ O) for subsets I ⊆ O ⊆ I . Then, for
a stochastic perfect intervention do(L, KL) for L ⊆ O, the intervened SDCM Rdo(L,KL)

satisfies Assumption 2-(I \ L ⊆ O).

This proposition shows the usefulness of Assumption 2-(I ⊆ O), in that it
gives a guarantee that after any stochastic perfect intervention on a subset of O,
Assumption 1-( Ĩ ⊆ O) is satisfied for some Ĩ ⊆ O, and hence Lemma 3.3.25 can be
applied.

linear sdcms Observe that a linear SDCM that satisfies Assumption 1-(I ⊆ O)
is of the following form.

Proposition 3.3.27. Let R be a linear SDCM, I ⊆ O ⊆ I be subsets, and let J := O \ I
and P := pacol(Ga(R))(O) \ O. Then R satisfies Assumption 1-(I ⊆ O) iff the dynamic
causal mechanism fO of R restricted to O is of the form f I(x(n), e) := BI I(nI )x

(nI)
I + B

I I (nI−1)x
(nI−1)
I + BI J xJ + B

IP(nP)x
(nP)
P + ΓIPeP

f J(x(n), e) := B
J I (nI−1)x

(nI−1)
I + BJ J xJ + xJ + B

JP(nP)x
(nP)
P + ΓJPeP ,
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where BI I(nI ) and BJ J are invertible matrices.

In particular, for linear SDCMs, Lemma 3.3.25 gives the following useful corollary.

Corollary 3.3.28. Let R be a linear SDCM, I ⊆ O ⊆ I be subsets, and let J := O \ I
and P := pacol(Ga(R))(O) \ O. If

1. R satisfies Assumption 1-(I ⊆ O);

2. EP is continuous;

3. for each j ∈ J, either nj = 0, or (B−1
J J )jJ BJ I (nI−1) = 0, (B−1

J J )jJ BJP(nP) = 0 and

(B−1
J J )jJΓJPEP is a Cnj -stochastic process;

then 〈R, I,O〉 is uniquely solvable.

Examples of linear SDCMs that satisfy Assumption 1-(I ⊆ I) for some subset
I are the SDCMs R of Example 3.3.5 and Rdo({1,d},(0,L)) of Example 3.3.8, which
satisfy Assumption 1-(I ⊆ I) and 1-(I \ {1, d} ⊆ I), respectively. As the other
conditions in Corollary 3.3.28 are fulfilled, they both have an a.s. unique solution
for each respective partial initial condition.

In particular, for linear SDCMs that satisfy Assumption 2-(I ⊆ O) we have the
following corollary.

Corollary 3.3.29. Let R be a linear SDCM, I ⊆ O ⊆ I be subsets, and let J := O \ I
and P := pacol(Ga(R))(O) \ O. If

1. R satisfies Assumption 2-(I ⊆ O),

2. EP is continuous;

3. for each j ∈ J, either nj = 0, or (B−1
J J )jJ BJ I (nI−1) = 0, (B−1

J J )jJ BJP(nP) = 0 and

(B−1
J J )jJΓJPEP is a Cnj -stochastic process;

then 〈Rdo(L,KL), I \ L,O〉 is uniquely solvable for any stochastic perfect intervention
do(L, KL) with L ⊆ O and KL a CnL -stochastic process.

Examples of linear SDCMs that satisfy Assumption 2-(I ⊆ I) for some subset
I are the damped coupled harmonic oscillator of Example 3.3.5 and the price,
supply and demand model of Example 3.3.15. Hence, the existence of solutions
is guaranteed for both models after any (sufficiently smooth) stochastic perfect
intervention, and the solutions are a.s. uniquely determined by the respective partial
initial conditions.

nonlinear sdcms An example of an SDCM that is not linear but satisfies
Assumption 2-(I ⊆ O) is the bathtub model discussed in (Iwasaki and Simon, 1994).
The existence and uniqueness conditions apply to this particular model.
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Example 3.3.30 (Bathtub model). Water enters a bathtub from the faucet at a certain rate
XQi and exits the bathtub via the drain at a rate XQo . The drain has a diameter of XK, the
depth of the water is XD and the pressure at the base of the drain is XP. Iwasaki and Simon
(1994) propose to model this as a dynamical system with (random) differential equations
given by 

XK = k0

XQi = q0

X′P = α2(α4XD − XP)

X′Qo
= α3(α1XKXP − XQo)

X′D = α0(XQi − XQo) ,

(3.5)

where k0, q0 ∈ R>0 and α = (α0, α1, . . . , α4) ∈ R5
>0 are some constants. We consider the

dynamic causal mechanism

fK(x(n), e) := eK

fQi(x(n), e) := eQi

fP(x(n), e) := α4xD − α−1
2 xP′

fQo(x(n), e) := α1xKxP − α−1
3 xQ′o

fD(x(n), e) := xD + α0(xQi − xQo)− xD′ .

with order tuple n := (nK, nQi , nP, nQo , nD) = (0, 0, 1, 1, 1) and the exogenous processes
are given by EK(t, ω) := k0, EQi(t, ω) := q0. The dynamic structural equations of this
SDCM, denoted by R, read

XK = EK

XQi = EQi

XP = α4XD − α−1
2 X′P

XQo = α1XKXP − α−1
3 X′Qo

XD = XD + α0(XQi − XQo)− X′D ,

and have the same solutions as the system of equations (3.5) (see also Footnote 10). The
corresponding SDCM graph is depicted in Figure 3.7 (top left). This SDCM of the bathtub
model satisfies Assumption 2-({P, Qo, D} ⊆ I) with I = {K, Qi, P, Qo, D}, and hence,
after any sufficiently smooth stochastic perfect intervention do(L, KL) with L ⊆ I , the
intervened bathtub modelRdo(L,KL) satisfies Assumption 2-({P, Qo, D} \ L ⊆ I). Since the
induced RDE of the intervened modelRdo(L,KL) on the endogenous processes {P, Qo, D} \ L
is linear in these endogenous processes, it follows from Lemma 3.3.25 that (for sufficiently
smooth exogenous process KL) Rdo(L,KL) has an a.s. unique solution for any partial initial

condition (t0, X
(n{P,Qo ,D}\L)

{P,Qo ,D}\L,[0]).
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t→ ∞

t→ ∞

do(D, KD) do(D, K∗D)

XQi

XD

X′D XP

X′P

XQo

X′Qo XK

X
(nQi )

Qi
X(nD)

D

X(nP)
P

X(nQo )
Qo X(nK)

K

G(R):

XQi

XD

XP

XQo

XK

G(MR):

XQi

XD

X′D XP

X′P

XQo

X′Qo XK

X
(nQi )

Qi
X(nD)

D

X(nP)
P

X(nQo )
Qo X(nK)

K

G(Rdo(D, KD)):

XQi

XD

XP

XQo

XK

G(MRdo(D, KD )
) = G((MR)do(D,K∗D)) :

Figure 3.7: Graphs of the bathtub model: original model R of Example 3.3.30 (top left), the
equilibrated model MR (top right), the intervened model Rdo(D,KD) (bottom
left), and the intervened and equilibrated modelMRdo(D,KD)

(bottom right) of
Example 3.4.19.

3.3.7 Markov property for SDCMs with initial conditions

Theoretical results of key importance concerning SCMs are their so-called Markov
properties, which allow to read off conditional independencies in the solutions of
an SCM from the graph of the SCM (see Section 2.6 and Appendix 2.A.2). The two
most well-known Markov properties for SCMs are the d-separation criterion (which
applies to acyclic SCMs, amongst others), and the σ-separation criterion (which
applies for example to the more general class of simple SCMs that can contain
causal cycles). Here we derive a Markov property for SDCMs with initial conditions
that is analogous to the σ-separation criterion for SCMs.

Key to proving Markov properties is the existence and uniqueness of solutions for
each subsystem consisting of one strongly connected component of the collapsed
graph of the SDCM, augmented with initial conditions. By reinterpreting continuous
stochastic processes as random variables taking values in a space of continuous
functions, we can make use of the existing σ-separation Markov property for SCMs
to derive Markov properties for SDCMs.

To avoid complicating matters further with smoothness assumptions, we will
assume that the order tuple is as small as possible.
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Definition 3.3.31 (Tight order tuple). Let R = 〈I ,J ,X ,E , n, f , E〉 be an SDCM.
Its order tuple n is called tight if for each i ∈ I , either ni = 0, or ni > 0 and the edge
i(ni) i(0) appears in Ga(R).

Note that the order tuple is tight if and only if each cluster i
(ni) in the augmented

graph Ga(R) forms a cycle in the cluster, that is, if there is a directed path in the
cluster from each node in the cluster to any other node in the cluster.

Definition 3.3.32 (Augmented collapsed graph for SDCMs). Consider an SDCM
R = 〈I ,J ,X ,E , n, f , E〉 with tight order tuple. We define the augmented collapsed
graph G+

[0](R) of R as the directed graph with nodes I ∪ J ∪ I[0], where I[0] := {i[0] :

i ∈ I : ni ≥ 1}, directed edges k i (but dashed i i if k = i) if either k(mk) ∈ I (n)
is functional parent of i ∈ I for some mk or k ∈ J is functional parent of i ∈ I , and
additional directed edges i[0] i for those i ∈ I with i[0] ∈ I[0].

The nodes i[0] represent partial initial conditions (t0, X(ni−1)
[0],i ), while the nodes

in I ∪ J represent endogenous stochastic processes Xi for i ∈ I , and exogenous
stochastic processes Ej for j ∈ J . The augmented collapsed graph of an SDCM (with
tight order tuple) is similar to its augmented graph, except that clusters are collapsed
and nodes representing initial conditions have been added. Figure 3.8 (top right)
shows the augmented collapsed graph for the bathtub model of Example 3.3.30,
and for comparison, the augmented graph is also shown (top left).

We can now prove that under conditions that guarantee the existence and unique-
ness of a solution locally for each strongly connected component of the augmented
collapsed graph, there exists a global solution that is unique and satisfies the
σ-separation criterion with respect to the augmented collapsed graph.

Theorem 3.3.33 (Markov property for SDCMs with initial conditions). Consider an
SDCM R = 〈I ,J ,X ,E , n, f , E〉 with tight order tuple. Suppose that for each strongly
connected component S ⊆ I of G+

[0](R), R satisfies Assumption 1-(IS ⊆ S) for some
subset IS ⊆ S and 〈R, IS, S〉 is uniquely solvable. Then for any partial initial condition(
t0, (X(ni−1)

[0],i )i∈I[0]
)
, the SDCM R has an a.s. unique solution with that partial initial

condition. If (X(ni−1)
[0],i )i∈I[0] is independent, and independent of E, the solution X satisfies

the following Markov property:

A
σ

⊥
G+
[0](R)

B |C =⇒ ZA ⊥⊥ ZB | ZC

for all subsets of nodes A, B, C of G+
[0](R), where ZA := (XA∩I , X

(nA∩I[0] )

[0],A∩I[0] , EA∩J ) for
A ⊆ I ∪ I[0] ∪ J .

The conditional independence in this Markov property requires to interpret
the endogenous process X as a random element of Cn(T,X ) and the exogenous
process E as a random element of C0(T,E). In other words, we may conclude the
independence of entire processes (and initial conditions), conditional on entire
processes (and initial conditions).
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We can extend this result to obtain a Markov property for the solutions evaluated
at times t0 and t1. For this, we extend the graph with nodes that correspond to
evaluating the endogenous processes at time t1.

Definition 3.3.34 (Evaluated augmented collapsed graph for SDCMs). Consider
an SDCM R = 〈I ,J ,X ,E , n, f , E〉 with tight order tuple. We define the evaluated
augmented collapsed graph G+

[0]...[1](R) of R as the augmented collapsed graph G+
[0],

extended with additional nodes I[1] := {i[1] : i ∈ I} and directed edges i i[1] for i ∈ I .

The additional nodes in the evaluated augmented collapsed graph G+
[0]...[1](R)

correspond with the evaluation of a process at time t1, that is, i[1] corresponds with

X(ni)
i (t1). Figure 3.8 (bottom left) shows the evaluated augmented collapsed graph

for the bathtub model of Example 3.3.30. We get the following corollary almost for
free.

Corollary 3.3.35. Under the assumptions of Theorem 3.3.33, the following Markov property
also holds:

A
σ

⊥
G+
[0]...[1](R)

B |C =⇒ ZA ⊥⊥ ZB | ZC

for any subsets of nodes A, B, C of the evaluated augmented collapsed graph G+
[0]...[1](R),

where for A ⊆ I ∪I[0]∪I[1]∪J we write ZA := (XA∩I , X
(nA∩I[0] )

[0],A∩I[0] , X
(nA∩I[1] )

A∩I[1] (t1), EA∩J )

with X being an a.s. unique solution of R with initial condition
(
t0, (X(ni−1)

[0],i )i∈I[0]
)
.

We can also marginalize out the “process nodes” and retain only the “random
variable” nodes, in effect only considering observations of the processes at times t0

and t1.

Definition 3.3.36 (Transition graph for SDCMs). Let R = 〈I ,J ,X ,E , n, f , E〉 be
an SDCM with tight order tuple. We define the transition graph G[0]...[1](R) of R as
the directed graph with nodes I[0] ∪ I[1] ∪ J , where I[0] := {i[0] : i ∈ I : ni ≥ 1} and
I[1] := {i[1] : i ∈ I}, and directed edges i j if there exists a directed path i . . . j in
the evaluated augmented collapsed graph G+

[0]...[1](R).

The transition graph G[0]...[1](R) is obtained from the evaluated augmented col-
lapsed graph G+

[0]...[1](R) by graphically marginalizing28 out the nodes I repre-
senting the full endogenous processes, and keeping only the nodes I[0] ∪ I[1]
corresponding with the evaluations of the processes at time t0 and time t1, in
addition to the nodes J corresponding with the exogenous processes. Figure 3.8
(bottom right) shows the transition graph for the bathtub model of Example 3.3.30.

Corollary 3.3.37. Under the assumptions of Theorem 3.3.33, the following Markov property
also holds:

A
σ

⊥
G[0]...[1](R)

B |C =⇒ ZA ⊥⊥ ZB | ZC

28 The result of a graphical marginalization is also known as the “latent projection” (see Definition 2.5.7).
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augmented graph Ga(R):
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transition graph G[0]...[1](R):

Figure 3.8: Different graphs of the bathtub model of Examples 3.3.30 and 3.3.38.

for any subsets of nodes A, B, C of the transition graph G[0]...[1](R), where for A ⊆
I[0] ∪ I[1] ∪ J we write ZA := (X

(nA∩I[0] )

[0],A∩I[0] , X
(nA∩I[1] )

A∩I[1] (t1), EA∩J ) with X being an a.s.

unique solution of R with initial condition
(
t0, (X(ni−1)

[0],i )i∈I[0]
)
.

Example 3.3.38 (Markov properties for the bathtub model). The bathtub model of
Example 3.3.30 satisfies the assumptions of Theorem 3.3.33 and its Corollaries 3.3.35
and 3.3.37. The corresponding graphs are illustrated in Figure 3.8. We can, for example,
read off from the augmented collapsed graph G+

[0](R) that XQi ⊥⊥ XK. From the evaluated
augmented collapsed graph G+

[0]...[1](R) and the transition graph G[0]...[1](R) we can read
off that XK(t1) ⊥⊥ XQi(t1), that is, the inflow through the faucet is independent of the
drain diameter at time t1, provided they are at t0. The latter is hardly surprising, but serves
to illustrate how one can use the Markov properties to arrive at conditional independence
statements about the solution without actually solving the SDCM, by carefully tracing the
functional relations encoded in the dynamic structural equations of the model.

3.4 equilibration of sdcms

In this section, we will take T = [t0, ∞) and study the equilibrium states of SDCMs
and, in particular, of steady SDCMs, which are SDCMs for which the dynamic
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structural equations and exogenous processes become explicitly time-independent
asymptotically as t → ∞. We introduce an equilibration operation on a steady
SDCM, which equilibrates the model to an SCM such that all the equilibrium states
of the SDCM are described by the solutions of the SCM. Intuitively, this equili-
bration operation separately equilibrates each dynamic causal mechanism, which
corresponds mathematically to transforming each dynamic structural equation
into a structural equation of the SCM. We show that this equilibration operation
commutes with perfect stochastic interventions, without requiring the strong global
stability assumption of Mooij, Janzing, and Schölkopf (2013), which assumes that
all the solutions equilibrate to the same static equilibrium state. This allows to
study the causal semantics of the equilibrium states of steady SDCMs within the
framework of SCMs.

We start in Section 3.4.1 with the definition of equilibrating solutions and their
corresponding equilibrium states. In Section 3.4.2, we define the class of steady
SDCMs which have several convenient convergence properties. In Section 3.4.3, we
show how one can equilibrate a steady SDCM to an SCM. In Section 3.4.4, we show
how the equilibration acts on the graph of an SDCM. In Section 3.4.5, we show that
the equilibration operation commutes with intervention. We discuss in Section 3.4.6
the inverse problem of finding steady SDCMs for which all the solutions equilibrate
to solutions of the SCM independently of the initial condition. We provide sufficient
conditions under which one can construct a first-order steady SDCM such that its
equilibration coincides with a given linear SCM. This establishes a class of linear
SCMs that model the causal equilibrium semantics of certain linear dynamical
systems. In Section 3.4.7, we discuss some subtleties in the causal interpretation of
the graph of the equilibrated SDCM.

3.4.1 Equilibrating solutions and equilibrium states

In this subsection, we define the equilibrating solutions of an SDCM as those
solutions for which all the higher-order derivatives that are considered in the model
converge to zero a.s.. For a stochastic process X we say that it converges almost surely
to a random variable X∗, if the limit limt→∞ Xt exists almost surely29 and is a.s.
equal to X∗. In this case, we call X almost surely convergent.

Definition 3.4.1 (Equilibrating solution, equilibrium state). Let X be a solution of an
SDCM R. We call X an equilibrating solution, if X(n) is a.s. convergent. In particular,
an equilibrating solution X converges almost surely to a random variable X∗, and we say
that X equilibrates to X∗ and call X∗ an equilibrium state of R.

An example of an SDCM with equilibrium states is the price, supply and demand
model of Example 3.3.15, where the equilibrium states correspond to “market
equilibrium”, as illustrated in the following example.

29 In that case, it defines a random variable, because limt→∞ Xt = limt→∞
t∈N

Xt a.s., and the latter is a

random variable.
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Example 3.4.2 (Market equilibrium). Consider the price, supply and demand model of
Example 3.3.15 with ES and ED constant exogenous processes. Market equilibrium for this
model is reached if

X∗D − X∗S = 0 ,

that is, if the demanded and supplied quantities become equal asymptotically. The solutions
that satisfy this condition are equilibrating solutions for which

X′∗P = 0 , X∗P =
ED − ES

βS − βD
, X∗S = X∗D =

βSED − βDES

βS − βD
.

In fact, for every solution X that equilibrates, the higher-order derivatives of X
must converge to zero almost surely.

Proposition 3.4.3. Let X be a solution of an SDCMR. If X equilibrates, then limt→∞ X(ni)
i =

(X∗i , 0, . . . , 0) a.s. for all i ∈ I , where X∗i is the ith component of the corresponding equilib-
rium state X∗.

In particular, for linear SDCMs we can show that all the solutions of the SDCM
equilibrate under certain conditions.

Proposition 3.4.4. Let R be a linear SDCM that satisfies Assumption 1-(I ⊆ I) for a
subset I ⊆ I with an order tuple nI = 1 and an exogenous process E that is constant in
time.30 By Proposition 3.3.27, the dynamical causal mechanism f is of the form{

f I(x(n), e) := BI I′x′I + BI I xI + BI J xJ + ΓIJ e

f J(x(n), e) := BJ I xI + BJ J xJ + xJ + ΓJJ e ,

where J := I \ I and BI I′ and BJ J are invertible matrices. If the matrix B−1
I I′ (BI J B−1

J J BJ I −
BI I + II), where II denotes the identity matrix, is Hurwitz (that is, every eigenvalue has a
strictly negative real part), then every solution X of R equilibrates to the same equilibrium
state, irrespective of the initial condition.

This proposition allows us to derive a condition for which the price, supply and
demand model always reaches market equilibrium.

Example 3.4.5 (Market equilibrium, continued). Applying Proposition 3.4.4 to the price,
supply and demand model of Example 3.3.15 shows that B−1

I I′ (BI J B−1
J J BJ I − BI I + II) =

λ(βD − βS). This matrix is Hurwitz if and only if λ(βD − βS) < 0. Thus, since λ > 0,
the price XP, supply XS and demand XD equilibrate for constant exogenous processes ED

and ES if βS > βD.

30 In general, we can let E be a continuous exogenous process that depends on time as long as both Et

and exp(At)
∫ t

t0
exp(−As)CE(s)ds converge almost surely for t→ ∞, where A := B−1

I I ′ (BI J B−1
J J BJ I −

BI I + II) and C := B−1
I I ′ (BI J B−1

J J ΓJJ − ΓIJ ). In that case, the order tuple may matter, and it must be
checked whether the solutions are sufficiently smooth.
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3.4.2 Steady SDCMs

In this subsection, we define the class of steady SDCMs which have the convenient
property that their dynamics become explicitly time-independent asymptotically
for t→ ∞.

Definition 3.4.6 (Steady SDCM). We call an SDCMR steady, if it has a dynamic causal
mechanism f that is continuous and an exogenous process E that is a.s. convergent.

The continuity of the dynamic causal mechanism and the convergence assumption
on the exogenous process assure us that the equilibrium states satisfy asymptotic
dynamic structural equations.

Lemma 3.4.7. Let R be a steady SDCM and let E∗ be the random variable to which the
exogenous process E converges a.s.. If X is an equilibrating solution of a steady SDCM R,
then the random variable X(n)∗ to which the complete nth-order derivative X(n) converges
satisfies

X∗ = f (X(n)∗, E∗) a.s..

In general, not all solutions of a steady SDCM have to be equilibrating solutions,
as one sees for example in Example 3.3.18.

The class of steady SDCMs is not closed under stochastic perfect interventions,
since performing a stochastic perfect intervention that is not a.s. convergent yields
an SDCM that is not steady. However, the class of steady SDCMs is closed under
the following class of interventions.

Definition 3.4.8 (Steady stochastic perfect intervention). We call a stochastic perfect
intervention do(I, KI) a steady stochastic perfect intervention if the process KI con-
verges a.s. to a random variable K∗I . We call it a steady perfect intervention if in addition
K∗I ∈ X I (that is, it does not depend on ω).

3.4.3 Equilibration of a steady SDCM

In this subsection, we show how we can equilibrate a steady SDCM to an SCM, such
that the equilibrium states of the SDCM are described by the SCM. In the previous
subsections, we saw that for an equilibrating solution of a steady SDCM, all the
higher-order derivatives converge to zero, and the corresponding equilibrium state
satisfies the asymptotic dynamic structural equations. Hence, we can construct an
SCM from a steady SDCM such that every equilibrium state of the steady SDCM is
a solution of this SCM.

Definition 3.4.9 (Equilibration of an SDCM). Let R = 〈I ,J ,X ,E , n, f , E〉 be a
steady SDCM and let E∗ be a random variable such that E converges a.s. to it. We call the
SCMMR := 〈I ,J ,X ,E , f ∗, E∗〉 with the equilibrated dynamic causal mechanism
f ∗ : X × E → X given by

f ∗(x, e) := f (ι(x), e) ,
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an equilibration of R, where the mapping ι : X → X n+1 defined by

ι
(ki)
i (x) =

xi if ki = 0

0 otherwise,

is the embedding that sets all the higher-order derivatives of the endogenous processes to 0.

In other words, the equilibration of an SDCM sets all the higher-order deriva-
tive entries in its dynamic causal mechanism to zero and replaces its exogenous
process by its limiting random variable. In particular, linearity is preserved under
equilibration, that is, a steady linear SDCM equilibrates to a linear SCM.

The equilibration of an SDCM is well defined due to the following result, which
shows that the independence property for the family of exogenous processes (Ej)j∈J
is preserved in the limit when time tends to infinity.

Proposition 3.4.10. Let (Ej)j∈J be a family of stochastic processes, where J is some finite
index set, such that Ej converges almost surely to the random variable E∗j , for every j ∈ J .
Then, if (Ej)j∈J is independent, so is the family of random variables (E∗j )j∈J .

This equilibration of an SDCM to an SCM leads to the main insight that SCMs
are capable of modeling all the equilibrium states of steady SDCMs.

Theorem 3.4.11. If X is an equilibrating solution of a steady SDCM R, then its limit X∗

is a solution of the corresponding equilibrationMR.

Intuitively, the equilibration of a steady SDCM to an SCM can be seen as the
approximation of the dynamic structural equations by the structural equations of
the SCM, which becomes exact at equilibrium. This is illustrated in the following
example.

Example 3.4.12 (Equilibrated damped coupled harmonic oscillator). Consider the
intervened damped coupled harmonic oscillator of Example 3.3.8 for which the dynamic
structural equations are specified by

X1 = 0

Xi =
κi

κi + κi−1
(Xi+1 − Li) +

κi−1

κi + κi−1
(Xi−1 + Li−1)

− bi

κi + κi−1
X′i −

mi

κi + κi−1
X′′i (i = 2, . . . , d− 1)

Xd = L ,

and where the exogenous processes L are random variables. In the limit, as time tends to
infinity, the equilibrating solutions of the SDCM converge to the equilibrium states of the
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equilibrated SDCM, which can be obtained by setting the higher-order derivatives to zero.
This yields the equations

X∗1 = 0

X∗i =
κi(X∗i+1 − Li) + κi−1(X∗i−1 + Li−1)

κi + κi−1
(i = 2, . . . , d− 1)

X∗d = L ,

which describe the equilibrium states for the positions of the masses. Not all solutions
necessarily equilibrate to an equilibrium, which happens for example in the case when
there is no friction, that is, bi = 0 for all i ∈ {2, . . . , d − 1}. In this case, if any mass
mi starts at an off-equilibrium position (that is, if X′i(t0) 6= 0 or Xi(t0) 6= X∗i for some
i ∈ {2, . . . , d− 1}), the solution will not equilibrate, but will keep on oscillating forever.

In case there is friction and the exogenous processes L are fixed to constant values,
the equilibrated damped coupled harmonic oscillator exactly coincides with the
deterministic SCM derived in (Mooij, Janzing, and Schölkopf, 2013). In Section 3.4.5
we will show that the equilibration operation, as defined in Definition 3.4.9, also
preserves the causal semantics. The next example illustrates that our equilibration
operation can also be applied to models that cannot be treated with the theory of
(Mooij, Janzing, and Schölkopf, 2013).

Example 3.4.13 (Equilibrated price, supply and demand model). Setting the higher-
order derivatives of the price, supply and demand model R of Example 3.3.15 to zero yields
the structural equations: 

X∗P = X∗P + λ(X∗D − X∗S)

X∗S = βSX∗P + E∗S
X∗D = βDX∗P + E∗D .

The equations describe the market equilibrium states. In Figure 3.9, we simulate the solutions
of the SDCM R for random constant exogenous influences ES and ED and random
consistent initial conditions. The dispersion of XP, XS and XD at large t illustrates that the
equilibrium state is not unique and depends on the initial condition. Hence, this example
cannot be treated with the theory of (Mooij, Janzing, and Schölkopf, 2013).

Richardson and Robins (2014) argue that the price, supply and demand model
cannot be modeled at equilibrium as an SCM without self-cycles. We conclude that
it can be modeled by an SCM that contains self-cycles, with the corresponding
graph depicted in Figure 3.6 (right).

A consequence of Theorem 3.4.11 is that if the SCMMR has no solutions, then
the SDCM R has no equilibrating solutions. However, the converse does not hold
in general, as the following example illustrates.

Example 3.4.14. LetR = 〈{1, 2}, {3},X , E , n, f , E〉 be the steady SDCM with X = R2,
E = R, n = (0, 1), the dynamic causal mechanism f given by f1(x(n), e) = x2′ and
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Figure 3.9: Simulation of solutions of the SDCM of the price, supply and demand model of
Example 3.4.13 under different steady perfect interventions.
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f2(x(n), e) = e, and the exogenous process E given by Et = sin(t3)/t. The dynamic
structural equations associated to R are given by

X1 = X′2 , X2 = E .

This model can be equilibrated to the modelMR with structural equations

X∗1 = 0 , X∗2 = E∗ ,

and exogenous variable E∗ = 0. Although the SCMMR clearly has a solution, the SDCM
R has no equilibrium states, since X1 = X′2 = E′ is not a.s. convergent.

The following result shows that if the exogenous process is constant in time, this
cannot happen.

Proposition 3.4.15. Let R be a steady SDCM such that the exogenous process E is a
random variable (i.e., E is constant in time). If the SDCM R has no equilibrating solution,
then its equilibrationMR has no solutions.

3.4.4 Graphs of the equilibrated SDCM

In this subsection, we show how the equilibration operation acts on the (augmented)
graph of the SDCM.

Proposition 3.4.16 (Graph of the equilibrated SDCM is a subgraph of the original
mixed graph). Let R be a steady SDCM. The graph G(MR) of the equilibrated SDCM
MR is the mixed graph obtained from the graph G(R) of R by removing the partition into
clusters and removing the nodes i(ki) for i ∈ I and ki > 0 together with their adjacent edges.
An analogous statement holds for the augmented graph Ga(MR).

The following example illustrates this for the equilibrated price, supply and
demand model.

Example 3.4.17 (Price, supply and demand, continued). Consider the price, supply
and demand model R of Example 3.3.15 for a very large λ, that is, for which the price
adjusts very quickly to changes in supply and demand. This system can be approximated by
the equilibrated price, supply and demand modelMR. The graph of this equilibrated model
MR is a subgraph of the graph of the original model R, as can be seen in Figure 3.6.

3.4.5 Equilibration commutes with intervention

Theorem 3.4.11 states that the equilibrium states of a steady SDCM are solutions of
the SCM to which the SDCM equilibrates. In the previous subsection, we showed,
moreover, that the functional relationships between the endogenous processes that
are encoded in the dynamic structural equations are preserved under equilibration.
This leads to another important result: the equilibration operation preserves the
causal semantics of the equilibrium states, as is illustrated in Figure 3.1 in Section 3.1.
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Theorem 3.4.18. Let R be a steady SDCM and let do(I, KI) be a steady stochastic perfect
intervention for some subset I ⊆ I and stochastic process KI that converges a.s. to a random
variable K∗I . Then the steady stochastic perfect intervention commutes with equilibration,
that is

(MR)do(I,K∗I )
=M(Rdo(I,KI )

) .

This result allows us to perform causal reasoning on the equilibrium states of the
SDCM by considering only the equilibrated model, as is illustrated in the following
example.

Example 3.4.19 (Bathtub model, continued). In Example 3.3.30 we defined the SDCM
for the bathtub model. The equilibrium states of this model can be described by the structural
equations of the equilibrated model, as depicted in the top row of the following diagram.

steady SDCM

XK = EK

XQi = EQi

XP = α4XD − α−1
2 X′P

XQo = α1XKXP − α−1
3 X′Qo

XD = XD + α0(XQi − XQo)− X′D

equilibrated SDCM

X∗K = E∗K

X∗Qi
= E∗Qi

X∗P = α4X∗D

X∗Qo
= α1X∗KX∗P

X∗D = X∗D + α0(X∗Qi
− X∗Qo

)

intervened steady SDCM

XK = EK

XQi = EQi

XP = α4XD − α−1
2 X′P

XQo = α1XKXP − α−1
3 X′Qo

XD = KD

intervened and equilibrated SDCM

X∗K = E∗K

X∗Qi
= E∗Qi

X∗P = α4X∗D

X∗Qo
= α1X∗KX∗P

X∗D = K∗D

t→ ∞

t→ ∞

do(D, KD) do(D, K∗D)

After equilibration, one can perform causal reasoning on the level of the equilibrated
SDCM, without needing to resort to the original SDCM description. Indeed, we see in the
above diagram that it doesn’t matter whether we first perform the steady stochastic perfect
intervention do(D, KD), and then let the system equilibrate, or the other way around. The
graphs of the SDCM, the equilibrated SDCM and their corresponding intervened models are
depicted in Figure 3.7. Choosing different a.s. convergent processes for KD yields different
solution processes XP and XQo of the intervened SDCM, but the solution processes for XQi

and XK stay unchanged. Similarly, the perfect intervention do(D, K∗D) on the equilibrated
SDCM yields different solutions X∗P and X∗Qo

of the intervened SCM depending on the
value of K∗D, but does not change the solutions X∗Qi

and X∗K. This behavior is also reflected
in the graphs depicted in the bottom row of Figure 3.7.
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Intuitively, one would indeed expect the chosen intervention value for the depth to have an
effect on pressure and outflow (but not on inflow or drain size) at equilibrium. For example,
one could (approximately) implement such a perfect intervention by adding a water level
control device that constantly monitors the level and that can pump water in and out of
the bathtub via a hose, regulating the depth at KD at all times by using an optimal control
feedback loop, independently of the exogenous processes EK and EQi . Indeed, the depth
directly determines the pressure XP exerted by the water in the bathtub at the drain, and
the outflow rate XQo is a direct consequence of that. Once the other processes in the system
have equilibrated, the processes XP and XQo will also equilibrate to random variables that
depend on K∗D. The inflow X∗Qi

of water through the faucet no longer needs to be equal to
the outflow X∗Qo

through the drain at equilibrium because water is also constantly added or
removed via the hose by the water level control device in order to maintain the (eventually)
constant depth K∗D.31

This sheds some new light on the violation of the equilibration-manipulation
commutability property (the “EMC-property”) of Dash (2005), who shows the—
at first sight contradictory—result that equilibration does not always commute
with intervention. The paradox is resolved by noting that Dash (2005) defines a
different notion of “equilibration”, inspired by Iwasaki and Simon (1994), for which
commutativity with perfect intervention indeed does not always hold. One can
readily verify that the “equilibration” operation of Dash (2005) does not preserve
the functional relationships between the endogenous processes that are encoded
in the equations under the equilibration. Recently, Blom and Mooij (2021) showed
that the “equilibration” operation of Dash (2005) maps an SDCM R to a Markov
ordering graph that encodes the conditional independencies in solutions ofMR
instead of the functional relationships. In contrast, our equilibration operation,
defined in Definition 3.4.9, preserves the functional relationships between the
endogenous processes, since each dynamic structural equation equilibrates to a
structural equation associated to the same endogenous process/variable. This is also
reflected in Proposition 3.4.16 where we showed that the graph of the equilibrated
SDCM is a subgraph of the mixed graph of the SDCM.

Theorem 3.4.11 and 3.4.18 together imply that our equilibration operation pre-
serves the equilibrium states of a steady SDCM while also preserving the causal
semantics. In particular, we do not require that all solutions of the steady SDCM
have to equilibrate. As a consequence, the equilibrium states of the model may
depend on the (consistent) initial conditions. This is in contrast to the work of
Mooij, Janzing, and Schölkopf (2013), who assume that the equilibrium state of
the dynamical system is unique and independent of the initial condition. This is
a strong assumption that limits the applicability of the theory, since this does not
allow for any stochasticity at equilibrium. Indeed, many random dynamical systems
have multiple equilibrium states that depend on the chosen initial condition, as is
illustrated in the following example.

31 At equilibrium, the total inflow of water through the faucet and the hose has to be equal to the total
outflow through the drain and the hose.
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Example 3.4.20 (Bathtub model, continued). Consider again the bathtub model R of
Example 3.3.30. Figure 3.10 (top left) illustrates some numerical solutions of the dynamic
SEs, with α = (1, 1, 1, 1, 4/5), EK = 1/2, EQi = 1 and for randomly drawn consistent
initial conditions (0, X[0]) of order 0. We see that the solutions equilibrate to the a.s.
unique equilibrium state (X∗K, X∗Qi

, X∗P, X∗Qo
, X∗D) = (1/2, 1, 2, 5/2, 1) corresponding to

the solution of the equilibrated SDCMMR. If we now perform the perfect intervention
do(Qo, KQo) on the system R, where we force the water outflow XQo to be equal to the
water inflow XQi at all time, that is, KQo = EQi , then this does not give an a.s. unique
equilibrium state, but the equilibrium state that is obtained depends on the initial condition,
as can be seen in Figure 3.10 (center left). Indeed, the depth X∗D at equilibrium will equal
the initial depth X[0],D at t0 = 0, if the inflow XQi equals the outflow XQo . This example
cannot be treated with the theory of (Mooij, Janzing, and Schölkopf, 2013), which assumes
that the equilibrium state is unique and does not depend on the initial condition. However, if
instead we perform the perfect intervention do(Qo, KQo) on R where KQo < EQi , then the
depth XD will not reach equilibrium, but will increase indefinitely, since the rate of water
flowing into the bathtub is larger than the outflow rate. This is illustrated in Figure 3.10
(center right). This is also reflected in the equilibrated SDCMMR, which does not have
any solution after the corresponding perfect intervention do(Qo, KQo).

Similar behavior is observed for the equilibrium states of the price, supply and
demand model R of Example 3.4.13. For example, the model R will reach market
equilibrium if one holds the price fixed at all times by the perfect intervention
do(P, KP), but will not reach equilibrium if the supply and demand are fixed at
all times by the perfect intervention do({S, D}, (KS, KD)) for which KS < KD (see
Figure 3.9 top right and bottom respectively). In all the cases depicted in Figure 3.9
we see a dependence of the equilibrium states on the initial condition.

In summary, the equilibration of a steady SDCM to an SCM generalizes the work
of (Mooij, Janzing, and Schölkopf, 2013) in three directions: (i) the deterministic
setting is replaced with a more general stochastic setting, (ii) the dynamic structural
equations can be of arbitrary order (including zeroth-order), rather than only
first-order, which prevents complications with the causal interpretation (see, for
example, Example 3.3.11), and (iii) the equilibrium state is allowed to depend on
initial conditions. Together, this substantially extends the applicability of the theory.

3.4.6 Realizing a given SCM as a stable SDCM

Although each steady SDCM equilibrates to an SCM, not all solutions of the
SDCM need to equilibrate to solutions of the corresponding SCM (see, for example,
Example 3.4.12). In this subsection, we address the inverse problem of finding
steady SDCMs with non-trivial dynamics for which all solutions equilibrate to
solutions of a specified SCM. This can be thought of as realizing the given SCM as
a “stable” SDCM. In Proposition 3.4.4 we provided certain conditions under which
all the solutions of a linear SDCM equilibrate. Based on this result and some results
in the linear systems theory literature, we show that for a certain class of SCMs
one can construct a first-order SDCM such that all its solutions equilibrate to the
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Figure 3.10: Simulation of solutions of the SDCM of the bathtub model of Example 3.4.20

and 3.4.25 under different steady perfect interventions.
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solutions of the SCM. Moreover, we show that under certain stronger conditions,
the SDCM can be chosen such that its solutions still equilibrate to the solutions of
the intervened SCM after any constant stochastic perfect intervention. Hence, the
constructed SDCM realizes the causal semantics of the SCM at equilibrium.

First, we observe that one cannot uniquely recover an SDCM from its equilibration
in general.

Example 3.4.21. Consider the linear SDCM R with dynamic SE given by

X = BX − X ′ + ΓE ,

where the matrix A := I− B is invertible and the exogenous process E is a random variable.
Consider another SDCM R̃ which differs only in its dynamic causal mechanism, and has
the dynamic SE

X = BX −ΛX ′ + ΓE , (3.6)

where Λ is some invertible diagonal matrix. The equilibrated SDCMs MR and MR̃
coincide, and have structural equations of the form

X∗ = BX∗ + ΓE∗ . (3.7)

Hence, the equilibrium states X∗ of the SDCMs R and R̃ are indistinguishable, since both
have to satisfy X∗ = A−1ΓE∗ a.s.. Furthermore, if the matrix II − BI I is invertible for some
subset I ⊆ I , then also for J := I \ I the intervened equilibrium states of Rdo(J,KJ) and
R̃do(J,KJ) are indistinguishable for any sufficiently smooth steady stochastic intervention
do(J, KJ).

Although the equilibrated SDCM in Example 3.4.21 describes the possible equilib-
rium state of both SDCMs, it is not necessarily guaranteed that the solutions of both
SDCMs equilibrate. One might hope that for any given linear SCM of the form (3.7),
one can always find an invertible diagonal matrix Λ such that one can construct a
steady SDCM of the form (3.6) for which all solutions of the SDCM equilibrate to
the (a.s. unique) solution of the SCM (see Proposition 3.4.4). Such a “stabilization
matrix” Λ does not always exist. A sufficient condition for its existence was given
in (Fisher and Fuller, 1958; Fisher, 1972), leading to the following result.

Corollary 3.4.22. LetM be a linear SCM with structural equations

X = BX + ΓE ,

where I = {1, . . . , d}, J = {1, . . . , e}, B ∈ Rd×d, Γ ∈ Rd×e, and with E a random
variable. Write A := I− B. For a diagonal matrix Λ ∈ Rd×d, consider the linear SDCM
RM,Λ with dynamic SE of the form

X = BX −ΛX ′ + ΓE.
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If there exists a sequence of matrices Md, Md−1, . . . , M1 with Md = A such that for
k = 2, . . . , d each Mk−1 is a principal (k− 1)× (k− 1) submatrix of Mk, with det Mk 6= 0
for all k = 1, . . . , d, then there exists a diagonal stabilization matrix Λ ∈ Rd×d such that
the linear SDCM RM,Λ has the properties that (i) its equilibrated SDCM isMRM,Λ =M,
and (ii) all its solutions equilibrate to an a.s. unique equilibrium state that satisfies the
structural equations of the SCMM, independent of the initial condition.

While this sufficient condition guarantees the existence of a stabilization matrix
Λ such that the observational equilibrium distribution of the SCM is recovered as
the distribution of the equilibrium state of the SDCM, it does not guarantee that
after a stochastic perfect intervention on the SDCM, all solutions will equilibrate to
an (a.s. unique) equilibrium solution of the corresponding intervened SCM. Indeed,
a certain Λ that stabilizes the dynamics in the absence of the intervention may
no longer stabilize the dynamics after the intervention has been carried out. Can
we, under some conditions, find a single Λ that will stabilize the dynamics after
any stochastic perfect intervention? The answer is affirmative, as was shown by
Locatelli and Schiavoni (2012) who provide a necessary and sufficient condition for
the existence of an invertible diagonal stabilization matrix Λ that simultaneously
stabilizes all subsystems.32 This leads to the following result on how one can
“realize” a given linear SCM as a stable linear first-order SDCM.

Corollary 3.4.23. LetM be a linear SCM with structural equations

X = BX + ΓE ,

where I = {1, . . . , d}, J = {1, . . . , e}, B ∈ Rd×d, Γ ∈ Rd×e, and with E a random
variable. Write A := I− B. For a diagonal matrix Λ ∈ Rd×d, consider the linear SDCM
RM,Λ with dynamic SE of the form

X = BX −ΛX ′ + ΓE.

If

det(AI I)det(diag(AI I)) > 0 ∀I ⊆ I , (3.8)

then there exists an invertible diagonal stabilization matrix Λ ∈ Rd×d such that the linear
SDCM RM,Λ has the properties that (i) its equilibrated SDCM is MRM,Λ = M, and
(ii) under every stochastic perfect intervention do(J, KJ) with the exogenous process KJ

constant in time, all solutions of (RM,Λ)do(J,KJ) equilibrate to an a.s. unique equilibrium
state that is the unique solution of the SCMMdo(J,K∗J )

, independent of the initial condition.

Condition (3.8) implies that the matrices II − BI I are invertible for every subset
I ⊆ I . Such linear SCMs are special cases of the class of simple SCMs (see Section 2.8).

32 Locatelli and Schiavoni (2012) consider an extension of the stabilization problem studied by Fisher
and Fuller (1958). Whereas Fisher and Fuller (1958) consider the problem of finding a diagonal
matrix Λ ∈ Rd×d for a matrix A ∈ Rd×d such that the matrix ΛA is Hurwitz (for which they
provide a sufficient condition), Locatelli and Schiavoni (2012) consider the case where all the principal
submatrices of ΛA should be Hurwitz, and provide a condition that is both sufficient and necessary,
as well as a construction of such a stabilization matrix Λ.
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Simple SCMs have the convenient property that their solutions are a.s. unique after
any stochastic perfect intervention. We conclude that for the subclass of simple
linear SCMs that satisfy condition (3.8), we can construct a linear first-order SDCM
whose causal semantics at equilibrium “realizes” that described by the SCM. We
speculate that this result can be extended to higher-order and nonlinear systems,
but we will not pursue these questions here.

Example 3.4.24. We show that the equilibrated SDCM of Example 3.4.12 (see also Ex-
ample 3.3.5), modeling the equilibrium states of a damped coupled harmonic oscillator,
satisfies condition (3.8). Indeed, taking I = {1, . . . , d}, the matrix B of this linear SCM is
tridiagonal, given as

B =



0 κ1
κ0+κ1

κ1
κ1+κ2

0 κ2
κ1+κ2

κ2
κ2+κ3

0
. . .

. . . . . . κd−1
κd−2+κd−1

κd−1
κd−1+κd

0


,

where κ0 = κd = 0. Hence A = I− B = DC with diagonal

D =



1
κ0+κ1

1
κ1+κ2

1
κ2+κ3

. . .
1

κd−1+κd


and tridiagonal

C =



κ0 + κ1 −κ1

−κ1 κ1 + κ2 −κ2

−κ2 κ2 + κ3
. . .

. . . . . . −κd−1

−κd−1 κd−1 + κd


.

The determinants of D and C can be expressed in closed form as

det D =
d

∏
i=1

1
κi−1 + κi

, det C =
d

∑
i=0

d

∏
j=0
j 6=i

κj.

Hence, since κi > 0 for i = 1, . . . , d− 1, det A = (det C)(det D) > 0. Also, we clearly
have det diag(A) > 0. Hence, condition (3.8) holds for I = I . A similar calculation (and
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exploiting the block structure of the principal submatrices) shows that condition (3.8) holds
for all I ⊆ I .

Remarkably, we can thus apply Corollary 3.4.23 to the damped harmonic oscillator
SCM to obtain a realization of this causal equilibrium model as a first-order linear
SDCM (remember that the original SDCM is a second-order linear SDCM).

3.4.7 Causal interpretation of the graph of the equilibrated SDCM

While the graph of an acyclic SCM has a straightforward causal interpretation, this
need not be the case for general SCMs with cycles (see Chapter 2).33 While an acyclic
SCM induces a unique “observational” distribution, cyclic SCMs may induce none,
one or several different observational distributions. Similarly, after performing a
perfect intervention on some of the variables, a cyclic SCM may induce none, one
or several different corresponding interventional distributions. In general, one has
to be careful in how to causally interpret the graph of an SCM if cycles are present;
in particular, this caveat holds for SCMs that are obtained as the equilibration of an
SDCM. First, not all directed edges and directed paths in the graph can easily be
identified from differences in interventional distributions in case cycles are present
(see Section 2.7). Second, if cycles are present, “nonancestral” effects may exist (see
also Section 2.7), that is, an intervention on a variable may change the distribution
of some of its nondescendants in the graph. In this subsection, we show how these
subtleties and counterintuitive nonancestral effects in cyclic equilibrated SDCMs
can be explained in terms of properties of the underlying SDCM.

In general, the presence or absence of a directed edge or path in the graph of
an SCMM cannot always be identified from the observational and interventional
distributions. In the cyclic setting, the following sufficient condition can be used to
identify such directed edges or paths between nodes i and j (see Proposition 2.7.1
for the exact formulation).

• A direct causal effect of i on j can be identified, that is, there exists a i j ∈
G(M), if (i) the structural equation of j can be solved a.s. uniquely for Xj in
terms of the other variables that appear in the equation, and (ii) there exist
values KI ∈ X I and Ki 6= K̃i ∈ Xi, where I = I \ {i, j}, and a measurable set
Bj ⊆ Xj such that the following probabilities are uniquely defined and do not
coincide:

P(Mdo(I,KI )
)do(i,Ki)

(Xj ∈ Bj) 6= P(Mdo(I,KI )
)do(i,K̃i)

(Xj ∈ Bj) ;

• An indirect causal effect of i on j can be identified, that is, there exists a directed
path i · · · j in G(M), if (i) the structural equations of the ancestors of
j in G(M)\i (that is, the graph G(M) where we removed the node i and its
adjacent edges) can be solved a.s. uniquely for their associated variables in

33 The straightforward causal interpretation of acyclic SCMs actually extends to a much more general
class of possibly cyclic SCMs called simple SCMs (see Section 2.8).
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to G(MR)

(see Figure 3.7
top right)

K Qi P Qo D

fr
om

K - × × X ×
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D × × X × X
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K Qi P Qo D
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K - ? X ? X

Qi ? - X X X
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Qo ?? ?? ?? - ??
D ? ? X X -

direct effect
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Prop. 2.7.1
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K - ? ? X ??
Qi ? - ? ? ??
P ? ? - X ??

Qo ? ? ? - ??
D ? ? X ? -

Table 3.1: The directed paths/edges (top tables) of the equilibrated bathtub modelMR and
the (in)direct causal effects that can be identified by Proposition 2.7.1 (bottom
tables) are denoted by a “X”. Those that cannot be identified are denoted by the
question marks “?” and “??”. A single question mark “?” denotes that condition
(i) is satisfied, but not condition (ii), while a double question mark “??” denotes
that condition (i) is not satisfied.

terms of the other variables that appear in these equations, and (ii) there exist
values Ki 6= K̃i ∈ Xi and a measurable set Bj ⊆ Xj such that the following
probabilities are uniquely defined and do not coincide:

PMdo(i,Ki)
(Xj ∈ Bj) 6= PMdo(i,K̃i)

(Xj ∈ Bj) .

In the following example, we illustrate how we can interpret the directed edges and
paths of the equilibrated bathtub model that cannot be identified by this sufficient
condition from an SDCM perspective.

Example 3.4.25 (Bathtub model, continued). Consider again the bathtub model R
of Example 3.3.30. We simulated some numerical solutions, with parameters as given in
Example 3.4.20, shown in Figure 3.10 (top left). In Table 3.1 (bottom left) one can read off
all the indirect causal effects that can be identified by comparing different interventional
distributions from the equilibrated modelMR with the help of Proposition 2.7.1. The indirect
causal effects of P and Qo cannot be identified by comparing interventional distributions,
since the intervened equilibrated models (MR)do(P,KP) and (MR)do(Qo ,KQo )

do not have
a solution (except for one special choice of KP respectively KQo ), and hence condition (i)
is not satisfied. This was already illustrated for the perfect intervention do(Qo, KQo) in
Figure 3.10 (center left/right) of Example 3.4.20.

The direct causal effects that can be identified fromMR are given in Table 3.1 (bottom
right). The direct causes of D cannot be identified due to the self-cycle at D, which means
that condition (i) is not satisfied, that is, the structural equation of D cannot be a.s. uniquely
solved for D in terms of the other variables. Indeed, the depth D will not equilibrate, but
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will increase indefinitely, if the rate of water into the bathtub is larger than the outflow
rate, that is, KQo < KQi (see Figure 3.10 bottom right). On the other hand, it will reach
an equilibrium state only if the rate of water into and out of the bathtub are equal, that is,
KQo = KQi . In this case, the depth D will remain constant over all times, as illustrated in
Figure 3.10 (bottom left).

The directed path from K to Qo in the graph of the equilibrated model MR cannot
be straightforwardly identified as an indirect causal effect at equilibrium, because the
equilibrium distribution of Qo does not change due to perfect interventions on K (this
corresponds to the single question mark in the Table 3.1, bottom left), as explicit calculations
reveal. However, at some finite time point one does observe changes in the distribution of Qo

when performing perfect interventions on K (Figure 3.10 (top)). Together, this implies that
this system is capable of perfect adaptation (Blom and Mooij, 2021). Interestingly, the direct
edge K Qo in the graph of the equilibrated modelMR can be identified by changes in the
equilibrium distribution of Qo under perfect interventions on K, Qi, P, D (which then also
implies that there is a directed path from K to Qo in the graph of the equilibrated model).

In particular, this example illustrates that one can run into several problems when
one attempts to identify directed edges and paths of the graph of the SCM from the
differences in equilibrium distributions under interventions on the SDCM:

• if the intervened SCM has no solutions, then the descendants of the interven-
tion targets cannot be easily identified;

• if the graph of the SCM has a self-cycle at some variable, then the parents of
that variable cannot be easily identified;

• if the equilibrium distribution of some descendants of the intervention tar-
get variable remain insensitive to the intervention (for example, when the
dynamical system exhibits perfect adaptation (Blom and Mooij, 2021)), these
descendants cannot be easily identified.

In Example 3.4.25, the identified indirect causal relationships are a subset of the
ancestral relationships. This can be seen from observing that each “X” in Table 3.1
(bottom left) has a corresponding “X” in Table 3.1 (top left). In other words, per-
forming a perfect intervention on a variable can only change the distribution of its
descendants in the graph. In general, however, it can happen that an intervention
on a nonancestor of a variable can change the distribution of that variable (see Sec-
tion 2.7). This counterintuitive behavior of “nonancestral” effects in an equilibrated
SDCM can be explained by the dependence of the equilibrium states on the initial
conditions in combination with the fact that not each initial condition corresponds
to an equilibrating solution. The following example illustrates this.

Example 3.4.26 (Selection bias leading to nonancestral effects in an equilibrated
SDCM). Consider the SDCM R with dynamic structural equations given by

X1 = X1 − X′1 + 2X2 − X3

X2 = X2 − X′2
X3 = E ,
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G(R):
X1

X′1

X2

X′2X3

X(n1)
1 X(n3)

3 X(n2)
2

G(MR):

X1 X2

X3

Figure 3.11: Graphs of the SDCM R (left) and the corresponding equilibrated modelMR
(right) of Example 3.4.26.

with order tuple n = (1, 1, 0) and E some constant in R. Denote I = {1, 2} and note that
R satisfies Assumption 1-(I ⊆ I). The equilibrated modelMR is given by

X∗1 = X∗1 + 2X∗2 − X∗3
X∗2 = X∗2
X∗3 = E .

The graphs of R and MR are depicted in Figure 3.11. First observe that the induced
equilibrium distribution of X∗2 differs for two constant perfect interventions do(3, K3)

and do(3, K̃3) with K3 6= K̃3, since the equilibrium state has to satisfy X∗2 = X∗3 /2 a.s..
However, there is no directed path from the variable X3 to the variable X2 in the graph of the
SCMMR. This counterintuitive behavior can be explained by taking the initial conditions
of the solutions of the SDCM into account, as we shall now explain.

In Figure 3.12, we plot the solutions of the SDCMR for different partial initial conditions
(t0, X i

I,[0]) at t0 = 0 (for i = a, b, . . . , g) under two steady perfect interventions, namely
do(3, K3 = 1.0) and do(3, K̃3 = 0.6). For illustration purposes, we consider here only
non-random initial conditions, because we can then identify the initial conditions with

“individual” solutions, as depicted in Figure 3.12 (note that Corollary 3.3.28 applies). Observe
that the set of partial initial conditions that correspond to equilibrating solutions differs for
the two interventions. For the intervened modelRdo(3,K3), the only solution that equilibrates
is the one with initial condition (t0, Xa

I,[0]) (denoted by the dark solid lines Figure 3.12 (top
left)), whereas for the intervened model Rdo(3,K̃3)

the only solution that equilibrates is the
one with initial condition (t0, Xb

I,[0]) (denoted by the dark dotted lines in Figure 3.12 (top
right)). This explains the counterintuitive behavior of nonancestral effects in the equilibrium
SCM: The chosen value for X3 affects which solutions will equilibrate, and thereby affects
the equilibrium distribution of X2.

Note that at any finite point in time, these “nonancestral” effects do not occur; indeed,
Figure 3.12 shows that the distribution of X1 differs for the two interventions at finite time,
while that of X2 remains unaffected.

This example shows that the nonancestral effects in an equilibrated SDCM can
be explained by the dependence of the equilibrium states on the initial conditions,
in combination with the fact that not each initial condition corresponds to an
equilibrating solution. Another way to think about this is as selection bias due to
the assumption that the system has reached equilibrium. An intervention targeting
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do(3, K̃3 = 0.6)

Initial conditions

X1,X
a
I,[0]

X2,X
a
I,[0]

X1,X
b
I,[0]

X2,X
b
I,[0]

X1,X
c...g
I,[0]

X2,X
c...g
I,[0]

K3 and K̃3

(Xi
I,[0])1 (Xi

I,[0])2

i = a 1.5 0.5
i = b 2.2 0.3

i = c . . . g random random

Figure 3.12: Simulation of solutions of the SDCM of Example 3.4.26 under different steady
perfect interventions on X3 (top left and right). The simulations in the top
left and right plots are performed under the same set of initial conditions,
summarized in the bottom table, but under different interventions.

a certain variable may change the set of equilibrating initial conditions of the system,
and it can even change initial conditions for non-ancestors of the intervention target.
By only considering these equilibrating initial conditions, this may appear as a
causal effect of a variable on some of its non-ancestors at equilibrium. When seen
from this perspective, these “causal effects” can be considered to be spurious as
they do not appear on an “individual level”, that is, for individual trajectories (at
finite time t), but only appear on a “population level” when selecting on some later
event (namely, the system being at equilibrium). One can indeed think of this as
selection bias due to equilibration.

3.5 discussion

Dynamical models consisting of (ordinary or random) differential equations are
widely applied in science and engineering to model the dynamics of systems that
are composed of several components. These differential equations by themselves do
not have a clearcut causal interpretation. Although they may implicitly explain a
particular phenomenon in terms of its causes, the causal semantics of the constituent
components are generally not explicitly defined without additional assumptions.

In this work, we introduced structural dynamical causal models that formally
encode causal semantics of stochastic processes by means of a structured set of
random differential equations. SDCMs can be seen as stochastic-process versions of
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structural causal models, where the random variables are replaced by stochastic
processes and their derivatives. By viewing the (higher-order) derivatives X(ki)

i to
be aspects of the process Xi we arrive at a natural causal interpretation, where it is
not necessary to even consider questions like “does position cause velocity, or does
velocity cause position, or both?”.

For steady SDCMs (for which the explicit time-dependence of the dynamics
vanishes as t → ∞) we introduced an equilibration operation that equilibrates
the dynamic causal mechanism of each component separately. This led to the
important result that intervention and equilibration commute, thus connecting
the causal semantics at equilibrium with the causal semantics of the dynamics. It
generalizes the analogous result of Mooij, Janzing, and Schölkopf (2013) in three
directions: (i) we replaced the deterministic setting with a more general stochastic
setting, which allows us to address both cycles and confounders, (ii) we allowed the
order of the dynamic structural equations to be arbitrary, including zeroth-order,
rather than only allowing for first-order differential equations, and (iii) we have
dropped the strong assumption that the dynamical model needs to have a single
globally attractive equilibrium state. This allows us to study the causal semantics of
the equilibrium states of a plethora of dynamical systems subject to time-varying
random disturbances encountered in science and engineering within the framework
of structural causal models.

Our commutation result may appear to be at odds with the possible “violation
of the equilibration-manipulation commutability property” pointed out by Dash
(2005). Under our notion of equilibration—contrary to that of Dash—each dynamic
structural equation of the SDCM becomes a structural equation of the SCM. This
one-to-one correspondence between the equations leads to the preservation of the
causal semantics under equilibration. We can reinterpret the phenomenon that
Dash observed as the fact that the equilibrium distributions of certain dynamical
systems (for example ones that exhibit perfect adaptation) are not faithful to the
graph of the equilibrated SCM (Blom and Mooij, 2021), in the sense that they can
contain conditional independencies not explained by this graph. For dynamical
systems exhibiting perfect adaptation, these faithfulness violations are due to the
structure of the dynamics, rather than “accidental” parameter cancellations. This has
serious repercussions for attempts at inferring the causal structure from (conditional
independencies in) equilibrium data (Blom and Mooij, 2021). Thus, in a different
way we arrive at the same conclusion as Dash obtained.

In comparison with the causal constraints models of Blom, Bongers, and Mooij
(2019), our modeling framework is more “agnostic” as we decided not to incorporate
the initial conditions into the model.34 This allowed us to causally model all the
equilibrium states of a steady SDCM with a single SCM. However, that single SCM
may not provide a complete description of the causal semantics at equilibrium (Blom,
Bongers, and Mooij, 2019). This is indeed a modeling tradeoff: the simpler structure
of SCMs compared to that of causal constraints models can come at the cost of a
less complete description of the equilibrium behavior of certain dynamical systems.

34 This is analogous to the difference between an ODE and an initial-value problem.
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On the other hand, the connection between the structure of the SCM and that of the
underlying SDCM is straightforward, whereas it is not well understood at present
how one can easily derive a concise yet complete representation of an equilibrated
SDCM (and a corresponding initial condition) as a causal constraints model.

However, allowing for multiple (or no) solutions also comes at a cost: the causal
interpretation of the SCM is more subtle than that of acyclic (or more generally,
simple) SCMs, and in particular, does not straightforwardly relate to properties
of its graph. We illustrated for the bathtub model how one can causally interpret
the directed edges and paths of the graph of the SCM that models the equilibrium
states of the underlying SDCM. We saw that one may run into several problems
when attempting to identify aspects of the SCM graph from comparing differences
in equilibrium distributions after intervening on some of the variables:

• if the intervened SCM has no solution (which may happen if the intervened
SDCM does not converge to a finite equilibrium state, but instead diverges
to infinity, or reaches a periodic limit cycle, for example), descendants of the
intervention targets cannot be easily identified;

• if the SCM graph has a self-cycle at some variable (which may happen if the
causal mechanism for that variable does not equilibrate for certain values of
its parents), then the parents of that variable cannot be easily identified;

• if the equilibrium distributions of some descendants of the intervention
target variable remain insensitive to the intervention (which may happen in
dynamical systems exhibiting perfect adaptation), these descendants cannot
be easily identified.

Even worse, the equilibrium SCM may entail distribution changes under in-
terventions that appear to be of a causal nature, while no corresponding causal
relations are present in the dynamics (and therefore, no corresponding ancestral
relations are present in the SCM graph), as we pointed out in Example 3.4.26. These
counterintuitive “nonancestral causal effects” can be understood as arising from
the implicit selection bias due to conditioning on the system having reached an
equilibrium state. Indeed, the solutions of the equilibrium SCM correspond to those
solutions of the SDCM that have equilibrated, while the non-equilibrating solutions
of the SDCM are ignored. In other words, the SCM provides the “population-level”
causal semantics of the population of equilibrating SDCM solutions (at t = ∞),
which can deviate from the “individual-level” causal semantics of (possibly non-
equilibrating) SDCM solutions (at finite t). The phenomenon that population-level
causality may differ from individual-level causality due to post-intervention selec-
tion bias is well-known in other contexts. For example, a car mechanic who only
observes cars that don’t start may conclude that replacing the battery causes start
engines to fail. While this appears as a genuine causal effect on the population level,
it would be foolish to conclude that this causal effect also pertains to individual
cars. Intuitively, one might prefer to interpret such phenomena as not representing
“truely causal” relations. On the other hand, if one is only interested in the effects
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of interventions on a population level, there seems to be no harm in considering
these distribution changes as causal. Thus, as long as one is explicit whether one
refers to population-level or individual-level causality, both notions of causality
can meaningfully co-exist. The important take-away, from our point of view, is that
focussing on equilibrated systems may lead to selection bias.

As a side note, Example 3.4.26 also shows that SCMs may not fully capture such
population-level causal relations graphically. We note that the recently proposed
framework of Blom, Diepen, and Mooij (2021) is better suited in general to read off
such population-level causal effects graphically from the structure of the equilibrium
equations, under certain “local” solvability assumptions on these equations (rather
than having to study global solutions of intervened equilibrium equations, as we
did here).

Apart from these subtleties regarding their causal semantics, SCMs with cycles
bring about several other challenges in general. For example, they generally do
not have a Markov property, and the class of cyclic SCMs is not closed under
marginalization. The subclass consisting of simple SCMs (see Section 2.8) allows
for cycles, but simple SCMs share many of the convenient properties of acyclic
SCMs. Hence, these convenient properties are directly applicable to the equilibrium
states of those steady SDCMs that equilibrate to a simple SCM. This enables one
to study the equilibrium states of those SDCMs by statistical tools and discov-
ery methods available for simple SCMs. For example, one can apply adjustment
criteria and Pearl’s do-calculus (Forré and Mooij, 2019). Several causal discovery
algorithms, originally designed for acyclic SCMs, like Local Causal Discovery (LCD)
(Cooper, 1997), Y-structures (Mani, 2006), and the Fast Causal Inference (FCI) al-
gorithm (Spirtes, Meek, and Richardson, 1999; Zhang, 2008; Mooij and Claassen,
2020), are directly applicable to simple SCMs as well (Mooij, Magliacane, and
Claassen, 2020). Furthermore, the Joint Causal Inference (JCI) framework can be
applied to combine data from different contexts (for example, observational and
interventional) for causal discovery and inference purposes (Mooij, Magliacane,
and Claassen, 2020).

Given that steady SDCMs for which all solutions equilibrate give rise to SCMs at
equilibrium, the inverse problem becomes interesting as well: given an SCM, can
we find an SDCM (with non-trivial dynamics) that equilibrates to this SCM and
for which all solutions equilibrate? This question was answered affirmatively for a
certain class of linear simple SCMs with additional constraints on the parameters
by leveraging existing results from linear systems theory. We speculate that this
result can be further generalized to allow for non-linearity. Perhaps surprisingly,
this result allows to start from a second-order SDCM modeling a system of damped
coupled harmonic oscillators, equilibrate it to obtain an SCM, and from that then
construct a first-order SDCM with the same equilibrium SCM that describes all
equilibrium states under any constant stochastic perfect intervention. This shows
that the order of the dynamic structural equations is not necessarily constrained
by the equilibrium SCM. Thus, the properties of the system at equilibrium may
contain not enough information to identify the order of the dynamical equations.
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We hope that the framework of SDCMs provides a natural starting point for
modeling the causal mechanisms that underlie the dynamics of various systems,
which could, in principle, be inferred from observations and experiments (see,
for example, Bauer et al., 2017; Pfister, Bauer, and Peters, 2019; Liu et al., 2020).
We believe that most of this work can also easily be adapted to discrete time by
replacing the differential equations by difference equations. Future work might
consist of (i) investigating the notion of local independence in SDCMs, (ii) studying
how SDCM graphs can be interpreted causally, in particular if self-cycles or zeroth
order equations are present, (iii) developing structure and parameter learning
algorithms for SDCMs, and (iv) investigating possible extensions to stochastic
dynamics by means of stochastic differential equations.



C H A P T E R A P P E N D I X

This appendix to Chapter 3 contains the proofs of all the theoretical results.

3.a proofs

Proof of Lemma 3.3.25. Let XP : T ×Ω→ X P be a CnP -stochastic process. For every
i ∈ I we can write the random differential equations

X(ni)
i = gi(X(nI−1)

I , XJ , X(nP)
P , EP)

as a system of first-order random differential equations

d
dt

X(ni−1)
i = g̃i(X(ni−1)

i , X
(nI\i−1)
I\i , XJ , X(nP)

P , EP) ,

where g̃i : X ni
i ×X nI\i

I\i ×X J ×X nP+1
P × EP → X ni

i is the mapping defined by

g̃i(x(ni−1)
i , x

(nI\i−1)
I\i , xJ , x(nP)

P , eP) := (x(1)i , . . . , x(ni−1)
i , gi(x(nI−1)

I , xJ , x(nP)
P , eP)).

Note that X(ni−1)
i = (Xi, X(1)

i , . . . , X(ni−1)
i ) and d

dt X(ni−1)
i = (X(1)

i , . . . , X(ni−1)
i , X(ni)

i ).
Substituting the functions gJ yields the following first-order RDE:

d
dt

X(ni−1)
i = g̃i

(
X(ni−1)

i , X
(nI\i−1)
I\i , gJ(X(ni−1)

i , X
(nI\i−1)
I\i , X(nP)

P , EP), X(nP)
P , EP

)
.

Let h̃i(x(nI−1)
I , x(nP)

P , eP) := g̃i(x(nI−1)
I , gJ(x(nI−1)

I , x(nP)
P , eP), x(nP)

P , eP). We can then
write the dynamic SEs as:

d
dt

X(nI−1)
I = h̃I

(
X(nI−1)

I , X(nP)
P , EP

)
. (3.9)

The assumed continuity of gi and gJ , the continuity of the exogenous process EP and
the assumption that XP is a CnP -stochastic process together imply that for almost
all ω ∈ Ω the function (t, x(nI−1)

I ) 7→ h̃i(x(nI−1)
I , X(nP)

P (t, ω), EP(t, ω)) is contin-
uous on T × X nI

I . Moreover, for each x(nI−1)
I ∈ X nI

I the function (x(nP)
P , eP) 7→

h̃i(x(nI−1)
I , x(nP)

P , eP) is continuous and in particular measurable. Hence, for all
(t, x(nI−1)

I ) ∈ T × X nI
I the function ω 7→ h̃i(x(nI−1)

I , X(nP)
P (t, ω), EP(t, ω)) is F -

measurable.
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Under the assumed condition, the following inequality holds for all x(nI−1)
I , y(nI−1)

I ∈
X nI

I , for all x(nP)
P ∈ X nP+1

P and for all eP ∈ EP:

∑
i∈I

∥∥h̃i(x(nI−1)
I , x(nP)

P , eP)− h̃i(y
(nI−1)
I , x(nP)

P , eP)
∥∥2

= ∑
i∈I

∥∥g̃i
(
x(nI−1)

I , gJ(x(nI−1)
I , x(nP)

P , eP), x(nP)
P , eP

)
−g̃i

(
y(nI−1)

I , gJ(y
(nI−1)
I , x(nP)

P , eP), x(nP)
P , eP

)∥∥2

= ∑
i∈I

[
‖x(1)i − y(1)i ‖2 + · · ·+ ‖x(ni−1)

i − y(ni−1)
i ‖2

+
∥∥gi
(
x(nI−1)

I , gJ(x(nI−1)
I , x(nP)

P , eP), x(nP)
P , eP

)
−gi

(
y(nI−1)

I , gJ(y
(nI−1)
I , x(nP)

P , eP), x(nP)
P , eP

)∥∥2
]

≤∑
i∈I

[
‖x(1)i − y(1)i ‖2 + · · ·+ ‖x(ni−1)

i − y(ni−1)
i ‖2 + κ2‖xi − yi‖2]

≤ (1 + κ2)‖x(nI−1)
I − y(nI−1)

I ‖2 .

Hence the conditions of Theorem 1.2 in Bunke (1972) (or Theorem 3.2 in Neckel and
Rupp (2013)) are satisfied, which proves that there exists an a.s. unique solution XI

of the system (3.9) of first-order RDEs for any partial initial condition (t0, X(nI−1)
I,[0] ).

Note that the solution XI is a CnI -stochastic process. Extend this to a solution XO
on O by setting XJ = gJ(X(nI−1)

I , X(nP)
P , EP). The result satisfies the smoothness

requirement; indeed, from the assumptions it follows for each j ∈ J that Xj is a
Cnj -stochastic process.

Proof of Proposition 3.3.26. Let gi : X ni
i ×XO\i ×X nP+1

P × EP → Xi and gj : X I ×
X nP+1

P × EP → Xj for i ∈ I and j ∈ J be continuous mappings that make R satisfy
Assumption 2-(I ⊆ O). Consider the stochastic perfect intervention do(L, KL) with
L ⊆ O. Then, the mappings hi : X ni

i × XO\i × X nP+1
P × (X L × EP) → Xi for

i ∈ I \ L defined by

hi(x(ni−1)
i , xO\i, x(nP)

P , (ẽL, eP)) := gi(x(ni−1)
i , xO\i, x(nP)

P , eP)

and the mappings hj : X I\L ×X nP+1
P × (X L × EP)→ Xj for j ∈ O \ (I \ L) defined

by

hj(xI\L, x(nP)
P , (ẽL, eP)) :=

gj((xI\L, ẽL), x(nP)
P , eP) if j /∈ L

ẽj if j ∈ L

make Rdo(L,KL) satisfy Assumption 2-(I \ L ⊆ O).
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Proof of Proposition 3.3.27. If the causal mechanism fO is defined as in the propo-
sition, then the mappings gI : X nI

I ×X J ×X nP+1
P × EP → X I and gJ : X nI

I ×
X nP+1

P × EP → X J are given by

gI(x(nI−1)
I , xJ , x(nP)

P , eP) = −B−1
I I(nI )

(B
I I (nI−1)x

(nI−1)
I − xI + BI J xJ + B

IP(nP)x
(nP)
P

+ ΓIPeP)

gJ(x(nI−1)
I , x(nP)

P , eP) = −B−1
J J (B

J I (nI−1)x
(nI−1)
I + B

JP(nP)x
(nP)
P + ΓJPeP) .

The converse is shown by taking for BI I(nI ) and BJ J the identity matrices.

Proof of Corollary 3.3.28. For a linear SDCM R that satisfies Assumption 1-(I ⊆
O) there always exists a κ ∈ R such that the uniformly-Lipschitz condition of
Lemma 3.3.25 holds.

Proof of Corollary 3.3.29. This follows directly from Corollary 3.3.28 and Proposi-
tion 3.3.26.

Proof of Theorem 3.3.33. Let G+
[0] := G+

[0](R) denote the augmented collapsed graph
of R. We can construct the a.s. unique global solution X of R by recursively
substituting the solutions into each other along the topological ordering of the
directed acyclic graph formed by the strongly connected components S ⊆ I of G+

[0].
We construct an SCM that has G+

[0] as its graph. Consider the SCM with endoge-

nous variables Xi taking values in Cni(T,Xi) for i ∈ I , exogenous variables X(ni−1)
[0],i

taking values in X ni
i for i ∈ I[0], as well as exogenous variables Ej taking values

in C0(T, Ej) for j ∈ J . The structural equations of this SCM are taken to be of the
following form. Let S ⊆ I be a strongly connected component of G+

[0] and write
P := paG+

[0]
(S) \ S. Observe that from Assumption 1-(IS ⊆ S) and R having a tight

order tuple it follows that nJS = 0 for JS = S \ IS. The structural equations for j ∈ JS

are taken to be of the form:

Xj = gj(X
(nIS−1)
IS

, X(nP)
P , EP). (3.10)

For i ∈ IS, we integrate the equation

X(ni)
i = gi(X

(nIS−1)
IS

, XJS , X(nP)
P , EP),
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ni times to turn it into

Xi = ι(X(0)
[0],i, X(1)

i )

= ι(X(0)
[0],i, ι(X(1)

[0],i, X(2)
i ))

= ι(X(0)
[0],i, ι(X(1)

[0],i, ι(X(2)
[0],i, X(3)

i )))

= . . .

= ι(X(0)
[0],i, ι(X(1)

[0],i, ι(X(2)
[0],i, · · · ι(X(ni−1)

[0],i , X(ni)
i ))))

= ι(X(0)
[0],i, ι(X(1)

[0],i, ι(X(2)
[0],i, · · · ι(X(ni−1)

[0],i , gi(X
(nIS−1)
IS

, XJS , X(nP)
P , EP)))))

=: Fi(X(ni−1)
[0],i , X

(nIS−1)
IS

, XJS , X(nP)
P , EP)

where we explicitly incorporate the initial conditions. The mapping Fi : X ni
i ×

CnIS∪JS∪P(T,X IS∪JS∪P)× C0(T,EP) → Cni(T,Xi) defined in this way is continuous
(being a composition of continuous mappings), and hence, measurable. The struc-
tural equations for i ∈ IS are then taken to be of the form

Xi = Fi(X(ni−1)
[0],i , X

(nIS−1)
IS

, XJS , X(nP)
P , EP). (3.11)

The structural equations in (3.10) and (3.11) for all strongly connected components
S ⊆ I of G+

[0] together specify a well-defined SCM. Its exogenous variables (Ej)j∈J

and (X(ni−1)
[0],i )i∈I[0] are assumed independent. The graph of the SCM is G+

[0]. As
〈R, IS, S〉 is assumed to be uniquely solvable, it follows that this SCM is uniquely
solvable w.r.t. IS. As this holds for every strongly connected component S ⊆ I of
G+
[0], the σ-separation Markov property (see Theorem 2.6.3.(2)) applies, proving the

statement.

Proof of Corollary 3.3.35. Extend the SCM constructed in the proof of Theorem 3.3.33

with endogenous variables X(ni)
[1],i taking values in X ni+1

i for i ∈ I[1], and with the
corresponding structural equations

X(ni)
[1],i = π(Xi, ∂(Xi), . . . , ∂ni(Xi)) .

These functions are continuous, hence measurable, and therefore the extended SCM
is well-defined with the evaluated augmented collapsed graph G+

[0]...[1](R) as its
graph. The additional nodes are sink nodes that form their own strongly connected
components, and the SCM is obviously also uniquely solvable w.r.t. each of these
additional nodes. Hence, the σ-separation Markov property (see Theorem 2.6.3.(2))
holds for this extended SCM with graph G+

[0]...[1](R).

Proof of Corollary 3.3.37. Observe that the transition graph G[0]...[1](R) is obtained
from the evaluated augmented collapsed graph G+

[0]...[1](R) by graphically marginal-
izing out the nodes I . The statement then follows from Lemma 3.3.2 in (Forré
and Mooij, 2017), which states that σ-separations are preserved under graphical
marginalization.
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Proof of Proposition 3.4.3. We show that if X is an equilibrating solution and i ∈ I ,
then X(ni)∗

i = (X∗i , 0, . . . , 0) almost surely. For all 0 ≤ ki ≤ ni we have for almost all
ω ∈ Ω

lim
t→∞

X(ki)
i (t, ω) = X(ki)∗

i (ω) .

Let 0 ≤ mi < ni. Let ω ∈ Ω such that X(ni)∗
i (t, ω) converges. If X(mi+1)∗

i (ω) > 0,

then there exists a t̄ ∈ T such that X(mi+1)
i (t, ω) > 1

2 X(mi+1)∗
i (ω) for t > t̄. From the

mean value theorem, it follows that there exists a c ∈ (t̄, t) such that

X(mi)
i (t, ω)− X(mi)

i (t̄, ω) = X(mi+1)
i (c, ω)(t− t̄) > 1

2 X(mi+1)∗
i (ω)(t− t̄)

and hence X(mi)
i (t, ω) cannot converge to X(mi)∗

i (ω). We get a similar contradiction

under the assumption X(mi+1)∗
i (ω) < 0, and hence X(mi+1)∗

i (ω) = 0. We conclude

that X(ni)∗
i = (X∗i , 0, . . . , 0) almost surely.

Proof of Proposition 3.4.4. We can rewrite the dynamic structural equations of R as{
X ′I = −B−1

I I′ (BI I − II)XI − B−1
I I′ BI JXJ − B−1

I I′ ΓIJ E

XJ = −B−1
J J BJ I XI − B−1

J J ΓJJ E .

Eliminating XJ from the right-hand side by substitution yields the RDE

X ′I = AXI + CE ,

where A := B−1
I I′ (BI J B−1

J J BJ I − BI I + II) and C := B−1
I I′ (BI J B−1

J J ΓJJ − ΓIJ ). The matrix
A is a Hurwitz matrix by assumption and thus invertible (note det(A) 6= 0). The
solutions of the ODE x′ = Ax + Ce, where the vector e does not depend on time,
are of the form x = exp(At)x0 − A−1Ce, where x0 is some vector. For any matrix
A there exists a nonsingular matrix P (possibly complex) that transforms A into
its Jordan normal form, that is, P−1AP = Λ is a block diagonal matrix where each
block Λi is a Jordan block associated with the eigenvalue λi of A, and is a square
matrix of order mi of the form

Λi =



λi 1 0 · · · · · · 0

0 λi 1 0 · · · 0
...

. . . . . .
...

...
. . . . . . 0

...
. . . 1

0 · · · · · · · · · 0 λi


.
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Therefore,
(XI)t = exp(At)XI,[0] − A−1CEt

= exp(PΛP−1t)XI,[0] − A−1CEt

=
n

∑
i=1

mi

∑
j=1

tj−1 exp(λit)RijXI,[0] − A−1CEt

with XI,[0] some random variable, n the total number of block diagonal matrices,
and the Rij’s certain block matrices that depend on P and Λ (Khalil, 1996). Since A
is a Hurwitz matrix by assumption and E is constant in time, we conclude that for
all solutions X of R,

lim
t→∞

(XI)t = −A−1CE

and
lim
t→∞

(XJ)t = (B−1
J J BJ I A−1C− B−1

J J ΓJJ )E

almost surely.
At last, we consider replacing the condition that the exogenous process E is con-

stant in time by the assumption that E may depend on time but is continuous, and
that both Et and exp(At)

∫ t
t0

exp(−As)CEsds converge almost surely. Observe that
the general solutions of x′ = Ax +Ce, where we allow e to be a time-dependent vec-
tor, are of the form x = exp(At)x0 + exp(At)

∫ t
t0

exp(−As)CEsds. Then, replacing

the term −A−1CEt in the equation above for (XI)t by exp(At)
∫ t

t0
exp(−As)CEsds

implies also that (XI)t converges a.s., from which the result follows.

Proof of Lemma 3.4.7. Let X be an equilibrating solution and let E converge a.s. to
the random variable E∗. Then

X∗ = lim
t→∞

Xt = lim
t→∞

f
(
X(n)

t , Et
)
= f

(
lim
t→∞

X(n)
t , lim

t→∞
Et

)
= f (X(n)∗, E∗)

almost surely, where in the third equality we used the continuity of f .

Proof of Proposition 3.4.10. Consider the finite index set J = {1, . . . , e} for some
e ∈ N. The independence of (Ej)j∈J implies that, in particular, for every t ∈ T
the family of random variables Ẽ :=

(
(Ej)t

)
j∈J is independent, that is, we have

PẼt = ∏j∈J P(Ej)t , where Ẽt :=
(
(E1)t, . . . , (Ee)t

)
.

Because limt→∞ Ẽt = limn→∞
n∈N

Ẽn a.s., we have limn→∞
n∈N

Ẽn = Ẽ∗ a.s., where Ẽ∗ :=

(E∗1 , . . . E∗e ). This implies that Ẽn converges in distribution to Ẽ∗ (see Remark 6.4
and Corollary 13.19 in Klenke (2014)), that is, the distribution of Ẽn converges
weakly to the distribution of Ẽ∗, that is, w-limn→∞PẼn = PẼ∗ .35 Similarly, we have

35 Let P, P1, P2, . . . be probability distributions over Rd, then Pn converges weakly to P, denoted by
w-limn→∞Pn = P, if limn→∞ Pn(U) = P(U) for all measurable sets U in Rd with P(∂U) = 0, where
∂U is the boundary of U, that is, the closure of U minus the interior of U.
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w-limn→∞P(Ej)n = P
E∗j for every j ∈ J . Applying Theorem 2.8 in Billingsley (1999)

gives that

PẼ∗ = w-limn→∞PẼn = w-limn→∞ ∏
j∈J

P(Ej)n = ∏
j∈J

P
E∗j .

We conclude that the family of random variables (E∗j )j∈J is independent.

Proof of Theorem 3.4.11. Let X be an equilibrating solution and let E converge a.s. to
the random variable E∗. From Lemma 3.4.7 it follows that

X∗ = f (X(n)∗, E∗) = f (ι(X∗), E∗) = f ∗(X∗, E∗) a.s.,

where we used in the second equality that ι(X∗) = X(n)∗, since for all i ∈ I we
have that X(ni)∗

i is a.s. equal to (X∗i , 0, . . . , 0) by Proposition 3.4.3.

Proof of Proposition 3.4.15. Suppose that the equilibrated SDCMMR has a solution
X∗. Then the stochastic process X : T ×Ω → X defined by Xt(ω) := X∗(ω) is a
solution of R that equilibrates to X∗.

Proof of Proposition 3.4.16. By definition, the graph of the equilibrated modelMR
has nodes I ⊆ I (n) and the augmented graph ofMR has nodes I ∪ J ⊆ I (n) ∪ J .
For every i ∈ I , a functional parent of i inMR is a functional parent in R, since
for all e ∈ E and for all x ∈ X we have

xi = f ∗i (x, e) =⇒ xi = fi(ι(x), e) .

Note there are no integrated parents of i inMR and there are no functional parents
of j ∈ J .

Proof of Theorem 3.4.18. This follows directly from Definitions 3.3.1, 3.3.7 and 3.4.9.
One can easily check that

(MR)do(I,K∗I )
= 〈I , I ∪ J ,X ,X I × E , f̃ ∗, (K∗I , E∗)〉
= 〈I , I ∪ J ,X ,X I × E , f̃ ∗, (KI , E)∗〉
=MRdo(I,KI )

,

where the intervened and equilibrated dynamic causal mechanism

f̃ ∗ = f̃ ∗ : X × (X I × E)→ X

is given by

f̃ ∗i (x, (eI , eJ )) :=

 fi(ι(x), eJ ) i ∈ I \ I

ei i ∈ I .
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Proof of Corollary 3.4.22. The statement follows immediately from Theorem 1 of
Fisher and Fuller (1958) followed by application of Proposition 3.4.4.

Theorem 1 of Fisher and Fuller (1958) states that under the stated condition, there
exists an invertible diagonal stabilization matrix Λ ∈ Rd×d such that −Λ−1A is
Hurwitz.36

Note first that by construction, MRM,Λ = M. The SDCM RM,Λ satisfies As-
sumption 1-(I ⊆ I), that is, it can be written in the form of the equations
in Proposition 3.4.4 with I = I , where BI I′ = −Λ and BI I = B, and hence
B−1

I I′ (−BI I + II) = −Λ−1A is Hurwitz. The statements now follow from Propo-
sition 3.4.4.

Proof of Corollary 3.4.23. The statement follows from Theorem 2.1 of Locatelli and
Schiavoni (2012) followed by application of Proposition 3.4.4 and Theorems 3.4.11

and 3.4.18.
Theorem 2.1 of Locatelli and Schiavoni (2012) states that for every matrix A ∈

Rd×d that satisfies for all subsets I ⊆ I the condition det(AI I)det(diag(AI I)) > 0,
there exists a diagonal matrix D ∈ Rd×d such that the matrix DI I AI I is Hurwitz
for all I ⊆ I . In particular, observe that this matrix D is invertible, since DI I is
invertible for every I ⊆ I (note det(DI I) 6= 0 due to det(DI I AI I) 6= 0).

Let Λ ∈ Rd×d be an invertible diagonal matrix such that −Λ−1
I I AI I is Hurwitz

for every I ⊆ I . Note first that by construction, MRM,Λ =M. Now let do(J, KJ)

be a stochastic perfect intervention for some subset J ⊆ I and KJ some stochastic
process that is constant in time. The intervened SDCM (RM,Λ)do(J,KJ) satisfies
Assumption 1-(I ⊆ I) for I := I \ J, that is, it can be written in the form of the
equations in Proposition 3.4.4, where BI I′ = −ΛI I , BJ J = −IJ J , BJ I = 0J I the zero
matrix and ΓJJ e = KJ . Moreover,

B−1
I I′ (BI J B−1

J J BJ I − BI I + II) = −Λ−1
I I (II − BI I) = −Λ−1

I I AI I ,

which is Hurwitz, from which we conclude that every solution X of (RM,Λ)do(J,KJ)

is an equilibrating solution. Hence, from Theorem 3.4.11 it follows that for every
solution X of (RM,Λ)do(J,KJ), its limit X∗ is a solution of the equilibrated model

M((RM,Λ)do(J,KJ )
) = (MRM,Λ)do(J,KJ) =Mdo(J,KJ) ,

where we made use of Theorem 3.4.18. Note that E is assumed constant (in time),
and hence RM,Λ is steady; in addition, KJ is assumed to be constant. The solutions
ofMdo(J,KJ) are a.s. unique, because they satisfy the equations X∗I = A−1

I I (BI JX∗J +
ΓIJ E) and X∗J = KJ almost surely.

36 A simple counterexample of a system that cannot be stabilized in this way is given by taking the
matrix

B =

0 1 1

1 0 1

1 1 0

 ,

for which Λ−1(B− I) is not Hurwitz for any diagonal invertible matrix Λ.





4
C O N C L U S I O N

The inception of structural causal models forms an important step in the under-
standing of causality. Their predictive power stems from the basic assumption that
the causal mechanisms remain invariant when other mechanisms are subjected to
intervention. This allows us to perform causal reasoning and draw conclusions on
the effect of interventions, counterfactuals, and potential outcomes.

Learning such structural causal models often rests on the additional assumption
of acyclicity. Although this assumption may seem like a reasonable approximation
and can simplify the theoretical analysis, in practice, one is often interested in
learning complex systems where feedback loops are present that cannot simply
be ignored. Two common ways to deal with feedback are (1) assuming that the
causal model is linear or has discrete-valued variables, and (2) “unrolling” the
dynamics over time in terms of a dynamical system. By “unrolling” the dynamics
over time, feedback loops are effectively removed. Typically, discrete methods based
on learning dynamic Bayesian networks, structural equations models, or vector
autoregressive models and nonlinear generalization of those are used in this setting.

Our main contribution is a general theory of statistical causal modeling for
both structural causal models and dynamical systems suitable for modeling latent
confounding, cyclic and nonlinear causal relationships. Our proposed solution
establishes an important bridge between structural causal models and a large
class of stochastic dynamical systems at equilibrium, allowing us to infer causal
properties of stochastic dynamical systems by employing the statistical tools and
discovery methods available for SCMs on equilibrium data.

To go beyond cyclic SCMs in the linear and discrete-valued variable cases, we
proposed various notions of (unique) solvability that apply to SCMs without any
of the former restrictions. These notions play a key role in extending many of the
convenient properties of acyclic SCMs to the cyclic setting. We showed that these
notions of (unique) solvability provided sufficient (and sometimes even necessary)
conditions for the following convenient properties for SCMs: (i) it has a solution
and/or induces a unique distribution over the variables; (ii) it has a marginalization
on a subset of the variables; (iii) its marginalization respects the latent projection;
(iv) it satisfies a Markov property and (v) its graph is consistent with the causal
semantics.

We proposed simple SCMs, which are SCMs that are uniquely solvable w.r.t. every
subset of the variables. This class extends the class of acyclic SCMs to the cyclic
setting while having all the convenient properties (i)-(v). This answers research
question 1 in the affirmative. One key property of simple SCMs is that their solutions
always satisfy the conditional independencies implied by σ-separation. This allows
one to directly extend many results and algorithms for acyclic SCMs to the more
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general class of simple SCMs, by simply replacing d-separation with σ-separation.
The class of simple SCMs forms a convenient and practical extension of the class of
acyclic SCMs that is already used for causal modeling, reasoning, and learning.

To go beyond dynamical systems that are discretized over time, we proposed
the framework of structural dynamical causal models (SDCMs) that enables model-
ing of stochasticity, time-dependence, and causality in a natural way. The SDCM
framework can be seen as the stochastic-process version of the SCM framework that
contains the classes of SCMs and random differential equations as special cases. We
provided an equilibration operation for SDCMs that allows for the equilibration
of an SDCM to an SCM such that the resulting SCM contains all the equilibrium
solutions of the SDCM, without requiring any assumption on the number of equilib-
rium solutions. This answers research question 2 in the affirmative. The framework
of SDCMs enables the modeling of arbitrary order differential equations, including
zeroth-order equations. This allows us to model the equilibrium solutions of dy-
namical systems that were previously considered to fall outside their scope, such
as the price, supply, and demand model of economics. Furthermore, the frame-
work of SDCMs enables the modeling of stochasticity, which allows for modeling
randomness in both the initial conditions and the parameters of the model.

The framework of SDCMs enables modeling of the causal semantics by associ-
ating a distinct causal dynamics mechanism to each observed process that can be
changed independently of one another by stochastic interventions. We provided
a graphical representation for SDCMs that is compatible with intervention and
equilibration. This provides the basis for modeling the causal mechanisms that
underlie the dynamics of the systems encountered in science and engineering. This
answers research question 3 in the affirmative. We showed that the equilibration op-
eration commutes with intervention which results in the preservation of the causal
semantics under equilibration. Application of the equilibrium operation on SDCMs
makes it possible to study the causal semantics of the equilibrium solutions by
statistical tools and discovery methods available for SCMs. An interesting direction
for further exploration is the comparison to the Markov ordering graph (Blom and
Mooij, 2021), which encodes the conditional independencies of the equilibrated
model that are not always described by the graph of the SCM (for example, in the
case of perfect adaptation) which represents the functional relationships.

For the inverse problem of equilibration, we showed that one could construct
a stable first-order SDCM that realizes the causal semantics of a linear SCM at
equilibrium under certain conditions. This establishes a class of linear SCMs that
model the causal equilibrium semantics of certain linear SDCMs. We showed that
the properties of the system at equilibrium might not contain enough information
to identify the order of the dynamical equations. For example, we showed that the
equilibrium solutions of the damped harmonic oscillator, as a second-order SDCM,
can be realized by a stable first-order linear SDCM. This result could potentially be
further generalized to allow for non-linearities.

We proposed a Markov property for SDCMs with initial conditions, which is the
first of its kind to the best of our knowledge. This Markov property is suitable for



conclusion 175

both the solutions of the SDCM and the evaluation of the solutions at any point in
time under certain conditions. This answers research question 4 in the affirmative.
This Markov property holds under unique solvability conditions similar to those of
SCMs. We provided sufficient conditions under which the existence and uniqueness
of solutions for a given initial condition can be guaranteed.

Finally, we provided conditions for identifying directed paths and bidirected
edges in the graph of an SCM. We showed that, in general, the presence or absence
of a directed path and bidirected edge cannot always be identified. In the light of
SDCMs, we provided an overview of possible causal explanations for the case that
the directed paths and bidirected edges cannot be identified. This answers research
question 5 in the affirmative. Furthermore, we showed that the counterintuitive
behavior of “nonancestral” effects, that is, when an intervention on a variable
may change the distribution of some of its nondescendants in the graph, in the
equilibrated SCMs, can be explained by the dependence of the equilibrium states
on different initial conditions. We showed that this could be viewed as selection
bias due to equilibration.
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S A M E N VAT T I N G – S U M M A RY I N D U T C H

Mensen zijn opmerkelijk bekwaam om in een bepaalde situatie de relevante objecten
en concepten te identificeren die ze gebuiken in het redeneren over welke acties
er genomen dienen te worden. Men is hiertoe in staat zonder te beschikken over
kennis van en inzicht in alle causale verbanden en natuurwetten die een rol spelen
in de betreffende situatie. Een kind leert al op jonge leeftijd oorzaak en gevolg
van elkaar te onderscheiden. Bijvoorbeeld wanneer het leert dat een glas stuk
kan gaan wanneer je het een zetje geeft en het daardoor van de tafel valt. De
kennis die voortvloeit uit een dergelijk incident krijgt in ons brein een conceptuele
representatie waarmee men kan redeneren. Zo’n conceptuele representatie stelt ons
in staat om snel nieuwe dingen te leren, welke we door de tijd heen steeds weten
her te gebruiken en aan te passen aan nieuwe situaties. Het vermogen van de mens
om problemen op te lossen door het hergebruiken en aanpassen van kennis en
vaardigheden in nieuwe situaties vormt de basis van onze intelligentie.

In het veld machine learning, wat een tak is binnen artificial intelligence (AI), is een
van de voornaamste doelen het ontwikkelen van machines die op bovengenoemde
manier kennis en vaardigheden kunnen vergaren. Dit veld poogt met andere
woorden systemen te bouwen die zelf nieuwe kennis en vaardigheden kunnen leren
door ervaringen op te doen aan de hand van data. Vaak wordt dit gedaan door
een (computer) model te leren uit geobserveerde data, in de hoop dat het geleerde
model ook goede voorspellingen kan doen en beslissingen kan nemen bij het zien
van nieuwe data. Ondanks het grote succes, werkt deze aanpak in de praktijk alleen
als de kansverdeling van de nieuwe data niet te veel afwijkt van de kansverdeling
van de ‘getrainde’ data. In het veld causal learning wordt ernaar gestreefd een causaal
model (causal model) te leren dat goede voorspellingen kan doen en beslissingen
kan nemen na bepaalde acties of interventies, waarbij de kansverdeling van de data
naar aanleiding van de actie of interventie mogelijk af kan wijken van die van de
getrainde data. In causal learning wordt gepoogd een modulaire representatie van
de wereld te leren, waarin de modules de causale mechanismes representeren, die
kunnen worden hergebruikt en aangepast in verschillende omstandigheden. Deze
causale mechanismes beschrijven alle oorzaak-gevolg relaties in het causale model,
die men kan weergeven in een causale graaf.

Een centraal probleem binnen causal learning is dat de gebruikte causale mod-
ellen vaak berusten op de aanname dat de causale graaf acyclisch is. Dat wil zeggen,
dat er geen geen causale cycli (feedback loops) aanwezig zijn, oftewel, dat er geen
causale terugkoppeling kan plaatsvinden. Alhoewel deze aanname misschien redelijk
lijkt en vaak de theoretische analyse vereenvoudigt, kan causale terugkoppeling in
de praktijk lang niet altijd worden genegeerd. Causale terugkoppeling is namelijk
een veelvoorkomend fenomeen, bijvoorbeeld, in de natuur, in onze economie of
in leersituaties. Door continue terugkoppeling met de omgeving houdt je lichaam
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bijvoorbeeld een constante temperatuur; door terugkoppeling met de markt wordt
de prijs van een product bepaald; en een student leert wat goed en fout is door de
terugkoppeling die een docent geeft op een opdracht.

Het belangrijkste doel van dit proefschrift, getiteld Causaal Modelleren & Dynamis-
che Systemen: Een Nieuw Perspectief Op Terugkoppeling, is het verder ontwikkelen
van het veld causal modeling in de aanwezigheid van terugkoppeling. In hoofd-
stuk 1 geven we een introductie van de stof. In hoofdstuk 2 onderzoeken we hoe
we terugkoppeling kunnen karakteriseren in structural causal models (SCM’s), een
klasse van causale modellen waar de causale mechanismes beschreven kunnen wor-
den door middel van functionele relaties. In hoofdstuk 3 onderzoeken we hoe we
terugkoppeling in stochastische dynamische systemen causaal kunnen interpreteren
en hoe dit relateert aan SCM’s in evenwicht. Tot op heden bestond er: 1) nog geen
algemeen toepasbare theorie voor SCM’s met cycli waar niet-lineaire relaties zijn
toegestaan; en 2) nog geen brug tussen de wereld van stochastische dynamische
systemen en SCM’s in evenwicht, waarbij de stochastische dynamische systemen
meerdere evenwichtstoestanden kunnen hebben. Deze brug is belangrijk, omdat dit
het mogelijk maakt om eigenschappen van vele stochastische dynamische systemen
in de wetenchap en engineering in evenwicht te bestuderen met de statistische
technieken en leer methodes die beschikbaar zijn voor SCM’s. In de volgende
paragrafen lichten we onze bijdragen in meer detail toe.

In hoofdstuk 2 introduceren we een algemene theorie van statistisch causaal
modelleren voor SCM’s, waarin men latente confounding, cyclische en niet-lineaire
causale relaties kan modelleren. We laten zien dat SCM’s met cycli veel van de
handige eigenschappen van acyclische SCM’s niet hebben, zoals het bestaan van een
(unieke) oplossing of van een zogeheten Markov eigenschap, welke nuttig is voor
causal learning. We bewijzen dat onder bepaalde solvabiliteits condities veel van deze
handige eigenschappen toch gelden voor SCM’s in het algemeen. We introduceren
een marginalisatie operatie voor SCM’s, die gebruikt kan worden voor het verkrijgen
van een marginaal model op een deel van de variabelen. Zo’n marginalisatie bestaat
niet altijd voor SCM’s met cycli zonder verdere aannames. We bewijzen dat deze
marginalisatie operatie de waarschijnlijkheids en causale semantiek behoudt onder
bepaalde lokale unieke solvabiliteits condities. Op een vergelijkbare wijze kunnen
we de graaf van een SCM marginaliseren, wat we de latente projectie van de graaf
noemen. We laten zien dat, in het algemeen, de marginalisatie van een SCM niet
compatibel is met de latente projectie van zijn bijbehorende graaf, maar bewijzen dat
dit wel zo is onder aanvullende lokale ancestral (voorouderlijke) unieke solvabiliteits
condities.

Vervolgens introduceren we simpele SCM’s. De klasse van simpele SCM’s breidt
de subklasse van acyclische SCM’s uit naar het cyclische domein. Daarbij behouden
ze veel handige eigenschappen, zoals het bestaan van unieke observationele en
interventionele kansverdelingen, dat ze gesloten zijn onder interventie en marginal-
isatie, en dat ze een Markov eigenschap hebben. We illustreren dat de klasse van
simpele SCM’s een handige en praktische uitbreiding is van de klasse van acyclische
SCM’s die gebruikt kan worden voor causal modeling, learning en reasoning.
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In hoofdstuk 3 introduceren we structural dynamical causal models (SDCM’s). Deze
klasse van modellen maakt het mogelijk om stochasticiteit, tijdsafhankelijkheid en
causaliteit op een natuurlijke wijze samen te modelleren, en omvat de klassen van
structural causal models (SCM’s) en random differential equations (RDE’s) als speciale
gevallen. Een SDCM kan gezien worden als een stochastische proces versie van een
SCM, waar de statische stochastische variabelen van het SCM worden vervangen
door dynamische stochastische processen en hun afgeleiden. We geven een grafische
representatie van SDCM’s en geven condities voor het bestaan en de uniciteit van
de oplossingen gegeven bepaalde beginvoorwaarden. Dit maakt het mogelijk om,
onder bepaalde aannames, een Markov eigenschap voor SDCM’s af te leiden, die
gebruikt kan worden voor de oplossingen van het SDCM en voor de evaluatie van
de oplossingen op elk moment in de tijd. We demonstreren dat SDCM’s de basis
vormen voor het modelleren van causale mechanismes die ten grondslag liggen aan
de dynamica van systemen die men tegenkomt in de wetenschap en engineering.

Ten slotte introduceren we een equilibratie operatie voor SDCM’s. Deze kan gebruikt
worden voor het in evenwicht brengen van een SDCM naar een SCM, zodat de
SCM alle de evenwichtstoestanden van het SDCM kan beschrijven, zonder enige
aanname te doen over het aantal evenwichtstoestanden van het SDCM. Dit slaat
een brug tussen SDCM’s en SCM’s in evenwicht en verschaft nieuw inzicht in de
causale interpretaties van SCM’s. Deze brug maakt het mogelijk om de causale
semantiek te bestuderen van tal van stochastische dynamische systemen, inclusief
degene met meerdere evenwichtstoestanden. Iets wat voorheen nog niet mogelijk
was.
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