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Abstract. Testing undeniably plays a central role in the daily prac-
tice of software engineering, and this explains why better and more effi-
cient libraries and services are continuously made available to developers
and designers. Could the MAS developers community similarly benefit
from utilizing state-of-the-art testing approaches? The paper investigates
the possibility of bringing modern software testing tools as those used
in mainstream software engineering into multi-agent systems engineer-
ing. Our contribution explores and illustrates, by means of a concrete
example, the possible interactions between the agent-based program-
ming framework ASC2 (AgentScript Cross-Compiler) and various testing
approaches (unit/agent testing, integration/system testing, continuous
integration) and elaborate on how the design choices of ASC2 enable
these interactions.

Keywords: Multi-agent systems - Multi-agent systems engineering -
Testing - Continues integration

1 Introduction

Software testing is attracting increased interest in industry [1] and it is one of
the most used methods of software verification. One of the reasons of this success
lies in the advancement and popularization in the software engineering commu-
nity of methodologies commonly known as DevOps, in particular of techniques
of automated testing in continuous integration (CI). Generally, CI refers to the
facilitation provided by third-party tools for automating the build/test process
of a software. In recent years, online DevOps services such as TravisCI' and
CircleCI? have been increasingly used by software engineers to improve the effi-
ciency of their testing process, a practice which plausibly resulted in increased
quality of the developed software.

Very recently, Fisher et al. [18] have suggested that testing approaches would
be an important complement to formal approaches to MAS verification, if they
could be automated and integrated in a seamless way into MAS development.

! https://travis-ci.com/.
2 https://circleci.com/.
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In our view, seamless integration does not mean only that agent programmers
are able to use the vast amount of software testing tools available to main-
stream languages like Java or Python, but, more importantly, that they are
also able to use (almost) language- and framework- agnostic online services as
those used for CI. This paper explores this idea, aiming to illustrate what the
MAS community could gain by using industry standard testing tools and dis-
cussing what would be the theoretical and practical trade-offs for this choice. We
investigate possible interactions of testing with agent-based programming, and
its relation with other verification techniques. More concretely, we demonstrate
various approaches to enhance the productivity of MAS development cycle in
the AgentScript Cross-Compiler (ASC2) framework [27] via mainstream soft-
ware testing and integration tools, and elaborate on the design choices of ASC2
that affect the testability of agent-programs with the mentioned tools. Then, we
explore on how this approach can be generalized for other MAS frameworks.

The motivation for this work arises from research conducted on data-sharing
infrastructures (e.g. data marketplaces). At functional level, a data-sharing appli-
cation corresponds to a coordination of several computational actors distributed
over multi-domain networks. Those actors generally include certifiers, auditors,
and other actors having monitoring and enforcement roles, ensuring some level
of security and trustworthiness on data processing [42]. Typically distributed
across several jurisdictions, networks may be subjected to distinct norms and
policies, to be added to various infrastructural policies provided at domain level
and ad-hoc policies set up by the users. Some of these norms, as for instance the
GDPR, bind processing to conditions and specific purposes, but, more in gen-
eral, all compliance checking on social systems requires to know and to infer (in
case of a failure on expectations) why an actor is performing certain operations.
Agent-based programming, and particularly the Belief-Desire-Intention (BDI)
model [35], by looking at computational agents as intentional agents, provides
the “purpose” level of abstraction available by design, and for this reason it is a
natural technological candidate for this application domain.

The BDI model been extensively investigated as basis to represent com-
putational agents that exhibit rational behaviour [19] and multiple program-
ming languages and frameworks have been introduced based on it, as AgentS-
peak(L)/Jason [6,34], 3APL/2APL [11], and GOAL [22]. Recent works as
e.g. [23,27] investigated various issues holding when mapping logic-oriented
agent-based programs into an operational setting. In contrast, this paper focuses
instead on the development practice aspect: as soon as we attempted to program
data-sharing applications as agents, we experienced the lack of mature soft-
ware engineering toolboxes, thus hindering a continuous integration with the
infrastructural-level components developed in parallel by our colleagues.

The document proceeds as follows: Sect. 2 provides a background and related
works on verification of MAS, in Sect.3 we introduce our approach on MAS
testing in ASC2 framework with mainstream tools. An illustrative example of
this approach is presented in Sect. 4. Finally, Sect. 5 provides the discussion and
comments on possible extensions and future developments.
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2 Verification of (Multi-)Agent Systems

Verification is a crucial phase in any software (and system) development process,
and as such it has been addressed also by the Multi-Agent Systems (MAS)
community. The survey presented in [2] provides an empirical review of over 230
works related to verification of MAS.

At higher level, approaches for the verification of autonomous systems fall
into five categories [18]: (a) model checking, (b) theorem proving, (c) static anal-
ysis, (d) run-time verification, and (e) (systematic) testing. While the first four
approaches (a-d) are considered formal or at least semi-formal, testing (e) is
deemed to be an informal approach to verification. Further, MAS verification can
be targeted at different levels, varying from fine-grained verification of agents at a
logical level [3] to verification of emergent properties in a system [12]. Ferber [16]
identifies three levels: (i) Agent level considers internal mechanisms and reason-
ing of an agent (ii) Group level consists in testing coordination mechanisms and
interaction protocols of agents, and (iii) Society level checks for emergent prop-
erties or if certain rules and/or norms are complied within the society. In general,
the choice of a verification method depends on the required level of verification,
as e.g. formal methods may not be applicable for the verification of a large MAS
with non-deterministic characteristics at the society level.

Most of the works on MAS verification point out that testing agent pro-
grams is far harder than testing normal software, on the grounds that agents
tend to have more complex behaviors, and deal with highly dynamic and often
non-deterministic environments (including other agents), on which they have
only partial control [30]. A series of recent empirical results [37,38] was used to
conclude that, with respect to certain distinct test criteria, testing BDI agents
can be practically infeasible. The all-paths criterion requires the test suite to
cover all the paths of the agent’s goal-plan graph; its application shows that
the number of tests needed to run is intractable [38]. In subsequent work, the
same authors study the minimal criterion of all-edges, requiring all edges of the
goal-plan graph to be covered. While not per se infeasible, results show that
even this criterion requires a (too) high number of tests [37].

These observations can explain why much of the work in verification of
autonomous systems and specifically of BDI agents have been towards the for-
mal verification of agent programs, a mathematical process for proving that the
system under verification matches the specification given in formal logic [4]. One
of the most successful formal methods for verification of software agents has been
model checking [9]. Model checking of BDI agents can be done as e.g. in [5] by
translating a simplified version of AgentSpeak(L) to Java programs and using the
Java Path Finder (JPF) verification tool. Probably the most notable works that
adopt a (semi-)formal model checking approach are those of the AJPF/MCAPL
framework [13,17]; AJPF/MCAPL also relies on JPF to perform program model
checking on agent programs developed in multiple JVM-based BDI frameworks
by utilizing an implementation of the target language’s interpreter. Nevertheless,
although formal verification techniques as model-checking provide a high level
of guarantee, they are typically both complex and slow to deploy [39].
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A number of approaches to testing (that is, informal verification) have also
been considered in the MAS literature. Some of those utilize model-based test-
ing [33,41] and rely on design artifacts such as Prometheus design diagrams [32]
to generate tests and automate the testing process. Others consider a more
fine-grained approach to verify intentional agents [15,31], focusing on white box
tests involving in the testing process the inner mechanisms of BDI agents (like
plans and goals). This method of testing has however been criticized in [25]
as being “too fine-grained”, proposing instead to perform testing at a module
level, that is, considering a set of goals, plans, and/or rules as a single unit. Still
other works refer to software testing techniques applied on MAS development,
focusing on testing agents and their interaction patterns as the main level of
abstraction [10,24]. At implementation level, such unit testing is performed in a
Jade multi-agent system via the JUnit library. The distinct agent-roles that are
present in the MAS are tested by means of mock agents that communicate with
the implemented Jade agents to verify their behavior.

Levels of Testing. Software testing is generally categorized in four levels or
activities: (a) Unit testing is done to verify different individual components of
the software system in focus, (b) Integration testing verifies the combination of
different components together, (¢) System testing is done to test the system as a
whole, and (d) Acceptance testing is done to check the compliance of the software
with given end-users’ and/or relevant stakeholders’ requirements.

A categorization for MAS testing from a development-phase activity perspec-
tive has been proposed in [28], consisting of five levels: (i) Unit testing targets
individual components of an agent, (ii) Agent testing aims at the combination of
the components in an agent including capabilities like sensing its environment,
(iii) Integration or Group testing includes the communications protocols and the
interactions of the agent with its environment or other agents, (iv) System or
Society testing considers the expected emergent properties of the system as a
whole (v) Acceptance testing for a MAS stays the same as their counterpart in
software testing.

All these categorizations can be seen as guidelines to draw a conceptual line
between what should be tested for what purpose and when, in the different
phases of software development. This means that for each project it is up to the
designer to decide e.g. what counts as units, what interactions are considered
group and what are the properties of the system/society. Indeed, testing libraries
like JUnit or online continuous integration services like TravisCI or CircleCI stay
relatively agnostic on what type of tests are being done. We will follow here the
same principle by allowing the designer to create each test suite with different
scenarios containing one or multiple agents with varying types and allowing for
flexible success/failure criteria.
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Coverage. An important measure giving insights on the quality of a certain
test suite in a given system is coverage. Software engineering proposes differ-
ent criteria for coverage [29], varying from simple line coverage (denoting the
percentage of the code that is covered by the test cases), to more sophisticated
metrics like cyclomatic complexity [26], more commonly known as branch cover-
age. Intuitively, the more a program is covered by a test suite the more confident
the designer can be about the behavior of the software. In fact it is a common
approach to set a minimum coverage boundary for software projects and if cov-
erage is below this limit the build chain is considered a failure even if the code
compiles correctly.

Several works have studied criteria for testing in Agent-Oriented Software
Engineering, and particularly in BDI-based agent programming [31]. However,
the abstract mechanisms underlying any BDI-based reasoning cycle concerning
e.g. treatment of plan context conditions, plan selection and failure handling,
alongside the procedural specifications given in one agent’s script (e.g. the agent’s
plans), result in complicated branching in the agent’s effective code, a fact that
makes defining what is actually covered by a test suite difficult [37,38].

3 Approach

Instead of investigating dedicated tools for testing BDI agents, our motivation
is to study under what conditions and how we can take advantage of existing
software testing coverage tools, so as to enable an integration of BDI agent-
based development with other types of development, occurring concurrently on
a production-level system. This practical (and unavoidable) necessity motivated
us to overlook or put aside the warnings and issues indicated in the literature.

Our study focuses in particular on the BDI framework AgentScriptCC
(Cross-Compiler) [27], here denoted ASC2. A short overview of ASC2 is pre-
sented in Sect. 3.1, whereas Sect. 3.2 presents our approach to testing.

3.1 AgentScript Cross-Compiler (ASC2)

The ASC2 framework is a BDI agent programming framework centred around a
cross-compiler performing a source-to-source translation of a high-level Domain
Specific Language (DSL) inspired by AgentSpeak(L)/Jason [6,34] into exe-
cutable JVM-based programs. Cross-compilation is not unique to ASC2 and
has been used by other recent agent-oriented frameworks such as Astra [14] and
Sarl [36]. ASC2 consists of: (1) a logic-based Agent-Oriented Programming DSL;
(2) an abstract execution architecture; (3) a translator that generates executable
models from models specified by the DSL; (4) tools that support the execution
of models.

AgentScript DSL. The AgentScript DSL has a very close syntax to AgentS-
peak(L)/Jason [6,34]. The main components of the DSL are (1) initial beliefs,
(2) inferential rules, (3) initial goals, and (4) plan rules. The initial beliefs and
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goals express the mental state of the agent at the start of the execution. Initial
beliefs are a set of Prolog-like facts, and the initial goals designate the first inten-
tions to which the agent commits. Inferential rules are potentially non-grounded
declarative rules (Prolog-like), used to infer beliefs from beliefs. Plan rules are
potentially non-grounded reactive rules in the form of e : ¢ = f in which f is a
sequence of executable steps called the plan body that the agent has to perform
in response an internal (e.g. goal adoption, belief-update) or external (e.g. mes-
sage reception, perception) event e, if a context condition ¢ is believed to be true
by the agent.

While the AgentScript DSL is very close to Jason, the translation-based
nature of ASC2 produces some disparities with respect to execution. An impor-
tant characteristic of this approach is how ASC2 agents access and perform
primitive actions [27]. Typically, in interpreter-based BDI frameworks primitive
actions need to be properly defined before they can be used by the agent. In ASC2
such redefinitions are not needed and the agent program can directly access any
entity on the JVM’s class path. An example of this would be the .print function
in Jason, defined in the standard agent library and that underneath calls Java
print. In contrast, in an ASC2 program there is no need to define the primitive
action; the agent program can call Java/Scala’s print function by simply using
#print (where # is the prefix for calling any primitive action).

AgentScript Translator. The ASC2 translator generates concurrent programs in
a lower-level executable language from agent scripts written in AgentScript DSL.
The reasoning cycle of ASC2 follows the same principles of what is proposed for
AgentSpeak(L) and further extended by Jason. This reasoning cycle generally
includes steps to iterate over internal and external events, find relevant and
applicable plans to react to these events, creating intentions to perform the plans
and executing the intentions. But, while Jason and many other BDI frameworks
implement an interpreter and a reasoning engine to drive the execution the of the
agent programs as run-time, in ASC2, all the mechanisms needed for execution
with the exception of the externalized plan selection function are generated as
part of the agent’s executable code in form of control flow statements.

AgentScript Execution Architecture. The ASC2 implements an abstract exe-
cution architecture that is used as a template for the Translator to generate
the concurrent agent programs. The architecture introduced in [27] defines each
agent as a modular and extendable actor-based micro-system. The Actor model,
introduced in [21], is a mathematical theory that treats actors as the primitives
of computation [20]. Actors are essentially reactive concurrent entities, when
an actor receives a message it can send messages to other actors; spawn new
actors; modify its reactive behavior for the next message it receives. In the cur-
rent implementation of ASC2, the underlying language is Scala and the agents
utilize the actor model implementation of Akka®. The ASC2 architecture also

3 https://akka.io.
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ASC2 Translator Scala Compiler Scala Test
Agent Models |Agent CI l Test Result
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[Other Sources |Other Sources| Report

Fig. 1. Compile/Test process of an ASC2 program with sbt

defines multiple components of the agents like their belief base and commu-
nication layer as external dependencies, enabling modularity with respect e.g.
automated reasoning or transportation functions.

3.2 Testing Approach

In a typical unit or integration test of a computational entity under test (e.g. a
class, a web service), the designer sets up an initial setting (e.g. one or multiple
object instances, web services, a client), and then, based on certain invocations
(e.g. function calls, access/service requests), a set of assertions are checked to
verify the internal state, or some observable behavior of the tested entity, or its
effect on the environment (e.g. function results, service responses, modifications
of other entities).

Internal attributes (of objects or services) are generally harder to access and
therefore to verify. Best practices of Test-Driven Development (TDD) address
this issue by means of Dependency Injection (DI): the dependencies of each
entity should be instantiated from outside the entity and then passed to it e.g. as
parameters (typically to the class constructor in object-oriented programming).
This allows the tester to isolate and observe the internal mechanisms of the entity
under test by using “mocked” dependencies. To enhance testability, multiple
components of ASC2 agents, including their belief base and communications
layer, are injected as external dependencies.

In any certain situation, we can look at a single agent or multiple agents
(a MAS) as a computational entity under test, and this entity has also a set
of internal attributes, observable behavior, and possible interactions with its
environment. The single agent or multiple agents under test can be instantiated
from one or more scripts. The setting could include any other types of entities
e.g. other possibly mocked agents, external objects, etc. The initial state of the
agent(s) and of the other related entities defines the initial setting of the test,
the invocation/probing action of a test suite is typically a series of messages
sent to the agents. The expected effect(s), behavior(s) or state(s) of an entity
rely heavily on the entity under test. For a small system including one or only
a few agents, each message or the beliefs of the agent(s) may be needed to be
verified, whereas in a complex system, the designer may only need to verify
emergent pattern in the interactions of the agents or major shifts in the state of
the system.
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+linit(W) : W > 1 =>
Nbr = "worker" + ((#name.replaceAll("worker","").toInt % W) + 1);
+neighbor (Nbr) .

+!token(0) =>
#coms.achieve("master", done).

+!token(N) : neighbor(Nbr) =>
#coms.achieve (Nbr, token(N - 1)).

© W N o oA W N =

Listing 1: Token ring worker script in AgentScript DSL

In our approach, we aim to allow the designer to utilize any off-the-shelf
testing tool (library, service, etc.) directly into their development chain, even
more so to enable the designer to test their program via any standard build
chain. In the case of the ASC2 framework, its current implementation is based
on Scala, and we considered as target build tool sbt*, which enables us to also
use JVM/Scala testing libraries like JUnit or ScalaTest. We have then developed
a sbt plugin® that —as part of the compile task—iterates over the scripts written
in AgentScript DSL in the project sources and uses the AgentScript Translator to
generate Scala implementations of the agents. Code generation is a standard part
of build tools like sbt or maven, therefore, the generated sources are also managed
by the build tool and are immediately available to rest of the project. The general
overview of the Compile/Test cycle of an agent-based system developed via ASC2
and built by sbt is presented in Fig. 1. Note that this process is fully automated
by sbt.

A MAS of this type can be started in two ways. After bootstrapping it as an
empty instance of the MAS infrastructure, the designer can either use configu-
ration files (e.g. JSON) to specify the agents of the system or alternatively, use
lower-level code (e.g. Scala/Java) to manually spawn agents via their respective
class in the generated code. In this work, we preferred the latter approach, as it
provides better control over the test scenarios.

To complete our Compile/Test process, in addition to the ScalaTest library,
we also used the Akka Testing library: at run-time, ASC2 agents are essentially
Akka actor micro-systems and this library provides many convenient tools for
testing actors. Both libraries are used out of the box and no modifications have
been done to adapt them to the framework. With this configuration, each sce-
nario to be verified can the written as a test suite in ScalaTest to test whether
one or multiple agents behave as expected.

4 Illustrative Example
To illustrate an application of our testing approach we consider a MAS con-
structed around a Token Ring system, commonly used in both distributed sys-

4 https://scala-sbt.org/.
5 https://github.com/mostafamohajeri/sbt-scriptcc.
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tems and MAS [8,27]. This system consists of one master agent and W worker
agents; at the start of the program the master sends an init(W) message to all
worker agents to inform them of the total number of the workers in the ring,
each worker upon receiving this message finds its neighbor, forming a closed ring.
Then, T tokens are distributed among the workers, each token has to be passed
N times in the ring formed by workers. When all T" tokens have been passed N
times and this was reported to the master, the program ends.

4.1 Unit/Agent Testing

We will focus in particular on the script of the worker agents shown in listing 1.
We perform the tests taking the standpoint of a whitebox test engineer, meaning
that we test the script of the agent knowing its internal workings; nevertheless,
the tests are still performed externally, we do not modify the script in order to
test itS.

Testing Successful Scenarios. By viewing the script in listing 1, we can see
that the agent has a total of 3 plans for 2 separate goals. Theoretically, we need
at least 3 tests to cover the successful execution of all the plans. However, while
the success criteria for plans is simple (completion of execution), achievements
of goals can be more complicated and the testing framework needs to provide
the flexibility to define them. The success criteria for the init (W) and token (N)
goals are quite different. In the latter the expected behaviour in both plans is
an observable event, i.e. a certain achieve message sent by the agent to another
specific agent. In the former case there is no observable behavior and the success
criterion is a specific update of the agent’s belief base.

The test specification we used for the worker agent can be seen in listing 2.
In line 3 an empty MAS object is created. The criterion of success for init (W)
plan depends on the agent’s beliefs, therefore we need to be able to verify the
internal state of agent’s belief base. First we create an instance of BeliefBase
class (line 4) and when the agent under test (worker1) is being instantiated (line
10), this object is injected in the agent as its belief base; with this approach at
any point in the tests we can simply access the agent’s beliefs to query them for
verification purposes or even modify the agent’s belief base for setting up test
scenario states.

Only one agent (workerl) is under test and the other agents present in the
suite can be mocked. As ASC2 agents are actor micro-systems, an agent can be
mocked by a single actor. In lines 5 and 6, two probe actors are created to be the
stand-ins for the master agent and (worker1)’s neighbor in the tests and they
are then registered to the system (lines 11 and 12). This type of mocking gives
us the ability to verify all the interactions that the agent under test may have
had with these probe actors.

The rest of the test suite contains 3 tests, in the first test in line 18 a goal
event init(50) is sent to the workerl agent and it is expected that after this

5 https://github.com/mostafamohajeri/agentscript-test.
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1 class TokenRingWorkerSpec extends ... {

2

3 val mas = new MASQ)

4 val verifiableBB = new BeliefBase()

5 val mockedMaster = testKit.createTestProbe[IMessage] ()

6 val mockedNeighbor = testKit.createTestProbe[IMessage] ()

7 val worker

8

9 override def beforeAll(): Unit = {

10 mas.registerAgent (new worker(bb = verifiableBB), name = "workerl")
11 mas.registerAgent (mockedMaster, name = "master")

12 mas.registerAgent (mockedNeighbor, name = "worker2")

13 worker = mas.getAgent ("workerl")

14 }

15

16 "A worker agent" should {

17 "have its neighbor in its belief base after ‘!init(N) ‘" in {
18 worker.event (achieve,"init (50)") .send()

19 mockedMaster.expect (GoalAchievedMessage())

20 assert(verifiableBB.query("neighbor (worker2)") == true)
21 }

22

23 "send a ‘!done‘ to master on ‘!token(0)‘" in {

24 worker.event (achieve, "token(0)") .send()

25 mockedMaster.expect (event (achieve, "done") . source (worker))
26 }

27

28 "send a ‘!token(N-1)‘ to its neighbor on ‘!token(N) ‘" in {
29 worker.event (achieve, "token(10)") .send ()

30 mockedNeighbor.expect (event (achieve, "token(9)") .source(worker))
31 }

32 }

33 }

Listing 2: Test suite for the worker agent

goal is achieved (line 19), the belief base of the agent contains the belief defined
by the term neighbor (worker2) which is verified in line 20. In the next test, a
goal message token(0) is sent to the agent (line 24) and then it is verified that
the agent sends a done message to the master (line 25). The final test follows the
same pattern by sending a goal message token(10) (line 30) and the verification
includes a token(10--1) message to its neighbor (line 30). Note that in all the
tests, the messages sent to the workerl agent do not specify any source, this
is because in the script in listing 1, the source of the messages is not checked
meaning it is not necessary to specify the source. As these tests are written
in a standard testing library, build tools such as sbt can execute them in their
build chain. By running the tests in the sbt shell we are able to see the output
presented in listing 3 that indicates our program has passed this test.
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[info] A worker agent should

[info] - have its neighbor in its belief base after ‘!init(N)°¢
[info] - send a ‘!done‘ to master on ‘!token(0)*¢

[info] - send a ‘!token(N-1)‘ to its neighbor on ‘!token(N) ¢

[info] All tests passed.

Listing 3: Output of the worker agent test suite

1 "A worker agent" should {

2 "send a ‘NoApplicablePlan()‘ on ‘!init(-1) ‘" in {

3 worker.event (achieve,"init(-1)") .source(mockedMaster) .send()
4 mockedMaster . expect (NoApplicablePlan())

5 }

6

7 "send a ‘NoRelevantPlan()‘ on ‘'unknown‘" in {

8 worker.event (achieve, "unknown") . source (mockedMaster) .send ()
9 mockedMaster.expect (NoRelevantPlan())

10 }

11 }

Listing 4: Failure tests for worker agent

Testing Failure Scenarios. Successful executions are only a part of the full
story. Indeed, in software testing it is acknowledged that covering failures is both
more important and challenging, and thus requires more critical thinking by the
test engineer [29]. Interestingly, failure tests are especially important in agent-
based programming because failing under certain conditions may sometimes be
the correct behavior for an agent.

Two failure tests are presented in listing4. The first test sends a init (W)
goal message to the agent with W=-1 (line 3) but the first plan is applicable only
for W > 1 and the expected behavior of the agent in this situation is a failure
which is verified by expecting a NoApplicablePlan message. In the second test,
a goal message unknown is sent to the agent (line 8) for which the agent does
not have any plans and it should reply with a NoRelevantPlan (line 9). Note
that failure of a goal is not only reflected by the absence of an applicable plan
or more generally failure in execution of a plan; similar to the success scenarios,
the designer can define any other arbitrary criteria for a failure scenario.

Although we acknowledge that testing an agent program for every possible
failure can easily become an infeasible task [37,38], certain failures may be par-
ticular important for the designer to test, therefore there is value in enabling
this possibility.
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4.2 Coverage

We explore at this point whether and how off-the-shelf coverage tools such as
scoverage” can be used for code coverage analysis of agent programs written
in ASC2, considering both statement and branch coverage aspect. To perform
this we simply add the scoverage plugin to our project and generate a coverage
report.

The coverage report produced for the worker agent by means of the previ-
ous tests is presented in Table1l. The worker.Agent row shows the coverage
for the internal mechanisms of the agent, like e.g. event handling, while the
other rows show the coverage report for each separate event, as an example, the
worker.token_1 refers to an event token in worker agent with 1 parameter. The
branch coverage report mainly concerns conditional statements in the generated
Scala code of the agent and should be regarded only as informal information
about the coverage of the main script.

These results show that our tests indeed covered most of the behaviors that
the agent might have. In fact, by exploring the coverage analysis we can see the
reason for which the worker.token_1 has less coverage: the missed branch can
be explained by the fact that the tests did not include any scenario in which the
token(N) plan fails. Also note that while the example script did not contain any
sub-goals or conditional statements in the plans, ASC2 Translator generates sub-
goal adoptions as function calls and translates conditional statements to their
counterpart in the underlying language, therefore, coverage tools like scoverage
are able to calculate the correct number of covered and total possible branches
for deeper goal-plan trees.

Table 1. Coverage analysis of the worker agent

Component Statement coverage % | Branch coverage (covered/total)
worker.Agent | 93.5 6/6
worker.init_1 | 93.5 2/2
worker.token_1|80.2 3/4

4.3 Integration/System Testing

Even following the guidelines on categorizing different levels of testing in
MAS [28], there is no definite technical distinction in place. Typically test
libraries provide mechanisms such as annotations for the designer to label test
suites with its (their) related level(s) to orchestrate their execution. As illustra-
tion, we consider an integration test to verify a token ring MAS system consisting
of the previously mentioned worker agents and a master agent. The test suite
is reported in listing 5.

" http://scoverage.org/.
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1 class TokenRingIntegrationSpec extends ... {

2

3 //a communication layer that records a trace of the interactions
4 object recordedComs extends AgentCommunicationsLayer { ... }

6 val token_pattern = "token\\([0-9]+\\)".r

7 val done_pattern = "done".r

8

9 "A token ring MAS with W = 100, T = 50 and N = 4" should {

10 "have 250 ‘token(X)‘ and 50 ‘done‘ message" in {

11 // create the agents

12 mas.registerAgent (new worker(coms = recordedComs), num = 100)
13 mas.registerAgent (new master(coms = recordedComs), name = "master")
14 // tnvoke the system

15 mas.getAgent ("master") .event (achieve, "start(50,4)").send()
16 // wverify the interactions

17 watchdog.expectTerminated( mas, 10.seconds )

18 assert (recordedComs.trace.count (token_pattern.matches) == 250)
19 assert(recordedComs.trace.count (done_pattern.matches) == 50)
20 }

21 }

22 }

Listing 5: Integration test suite for the token ring system

The test will be centered around the interactions between agents and the
state of the system in a specific setting of our token ring. The token ring is
defined with 100 worker agents and 1 master agent (lines 12-13), and, to be
able to verify the exhibited interactions, we use dependency injection to initialize
all the agents by means of an overridden instance of the communication layer
(line 4), created to record every message passed in the system into a list.

To invoke the system, a start(T,N) is sent to the master agent (line 15).
We are interacting with the master from a black box perspective: although the
event start (T,N) is exposed, the internal mechanisms of this agent are assumed
to be unknown.

Three criteria are verified for this system. Firstly, we consider a system level
performance based criteria as we expect the system to be terminated under 10s
(line 17). Next, we use two known expectations from a token ring system to verify
the correct execution of the system: at the end of execution, there should be (a)
T number of done messages and (b) T x (N + 1) number of token(X) messages
in the trace. The interaction verification statements are presented respectively
in lines 18-19. Recalling the flexible definitions of testing levels, note that these
integration/system test could be considered from the perspective of master agent
as a unit/agent level test possibly with mocking the worker agents. Similar to
previous tests, running this suite via sbt yields the output in listing 6.
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[info] A token ring MAS with W = 100, T = 50 and N = 4 should
[info] - have 250 ‘token(X)‘ and 50 ‘done‘ message

[info] All tests passed.

Listing 6: Output of the token ring integration test suite

Agent Cl Service
Push source

to repository P~
Developer - H-Report—> Aslz:ziles
Depen-d;"
Agent

Fig. 2. Continuous integration applied on a Token ring program whose master and
worker agent scripts are located on other repositories.

4.4 Continuous Integration

The proposed approach for testing can be easily combined with online CI ser-
vices. This process generally includes utilizing source repositories like Github®,
CI services like TravisCI and code analysis services like Coveralls?. The only
step needed to set the CI cycle for an ASC2 project is to configure the source
repository of the project in a way that the automated CI cycle is triggered on
every push to the repository. This can be done by adding a configuration file
that provides information for the CI service how to compile and test the project
via sbt.

Following this method, a MAS project does not need to be only located in a
single source repository. For instance, different types of agents can be developed
in different projects by separate teams and only be used as dependencies in the
development of the system. We believe this is an interesting practical innovation,
improving the scalability of MAS projects with respect to their development.

An overview of an example CI process for the token ring is presented in
Fig. 2 in which the sources of worker and master agents are located in separate
repositories, and a third token ring repository uses them as dependencies. When
the system designer pushes the project to the repository, the CI service fetches
the source and compiles and tests it via sbt and records the results'®. Then, the

code coverage report is committed to the code analysis service'!.

8 https://github.com/.

9 https://coveralls.io/.
10" https://travis-ci.com/github/mostafamohajeri/agentscript-test.
" https://coveralls.io/github/mostafamohajeri/agentscript-test.
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5 Discussion and Future Developments

Despite the critical points/observations concerning MAS testing raised in the lit-
erature, in this paper we provide several support arguments for using mainstream
testing tools for MAS and agent-based programming, by means of a concrete use
case. We implemented a multi-agent system reproducing a token ring benchmark
with the framework ASC2, and then we run tests (success, failure, coverage) at
unit/agent level as well as at integration/system level.

At the unit and agent level (unit testing) we performed tests concerning
events, plans and goals. The somehow unexpected result of the experiment is
that such an approach does not neglect the theoretical complexity of BDI agents
but it truly offers a complementary tool for their development. We were able to
test successful (plan) completions, internal states and the belief base, failures,
and fine-grained interactions. These possibilities can be seen as offering con-
structs mapping e.g. to declarative and procedural goals in BDI agents [40]: the
designer can define the achievement /failure of a goal not only in terms of com-
pletion/exception of a plan, but also as determined by any arbitrary indicator
internal or external to the agent. This showed that testability of agent programs
defined in a framework is closely related to the design choices of that framework.

At the integration/group and system/society level (integration testing) we
performed tests with simple verification criteria, but these criteria can easily be
extended to more sophisticated and realistic interaction analysis and verification
methods developed by the MAS community [7]. Additionally, we illustrated how
the proposed approach enables the MAS designer to take advantage of continuous
integration (CI) services without extra effort. This is particularly important for
MAS designers that require to integrate and test their work continuously with
other projects.

There is an additional benefit of using mainstream test tools for BDI agents,
and especially for frameworks that are based on higher-level logic-based DSLs.
Those frameworks generally map primitive actions to constructs specified in a
lower-level programming language like Java. By using a testing process compat-
ible with both higher level models and lower level implementations, the testing
process can be more efficient and seamless for the designer specially if the agent
models are only a part of a project that includes other computational entities
that are being developed alongside the agents.

An issue in using mainstream test libraries for a BDI framework with a logic-
based DSL is the disparity between the high-level agent DSL and the lower-
level language used for the tests. This can be addressed by either developing
approaches to write tests in the high-level DSL or creating interfaces for the low-
level language to enable the test engineer to implement tests at a proper level of
abstraction. In this work we have taken the latter approach. The intuition behind
this choice was that frameworks based on cross-compila-tion [14,36] produce
source codes that can be directly integrated within standard build tools.
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Can our results be generalized to other agent programming frameworks?
Motivated by the success of works like AJPF/MCAPL [13] that provides model
checking for multiple BDI frameworks, as a future study we intend to explore
how to apply this approach to a wider range of MAS frameworks. Yet, we can
already trace some higher-level considerations. The answer, at the unit/agent
level, depends on compilation and the execution model of those frameworks.
For frameworks like Jade and JS-son [23], that use mainstream programming
languages to define agents, these tools should be compatible out of the box with
minor effort [24]. For cross-compilation-based frameworks like Astra [14] and
ASC2 [27] it is only the matter of tooling (e.g. build tool plugins) to allow them
to use mainstream testing tools. For interpreter-based frameworks like Jason [6]
and GOAL [22], because they require their own dedicated reasoning engines and
execution environment, testing via such tools may prove to need more work and
possibly modifications to the framework. This issue may be not so problematic,
as there are already many works that propose dedicated testing and debugging
approaches for interpreter-based frameworks [25].

At the integration and system level, and also with respect to compatibility
with CI services, generally externalized to the execution of the tested entity, we
believe it is possible to consolidate other frameworks regardless of their com-
pile/interpret model. This could lead to seamless integration testing of systems
defined in each framework with mainstream software testing tools or dedicated
ones.

In perspective, our overarching research concerns socio-technical and complex
multi-domain infrastructures; we believe that Agent-Oriented Software Engi-
neering can be a powerful technical tool with robust theoretical foundations for
designing, modelling, implementing and testing such systems. Enhancing their
development cycle goes with a seamless integration of multi-agent systems into
modern infrastructures. This is a critical requirement to utilize the full potential
of MAS in a real production-level setting.
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