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Abstract: The association between two ordinal variables can be expressed with a polychoric cor-
relation coefficient. This coefficient is conventionally based on the assumption that responses to
ordinal variables are generated by two underlying continuous latent variables with a bivariate nor-
mal distribution. When the underlying bivariate normality assumption is violated, the estimated
polychoric correlation coefficient may be biased. In such a case, we may consider other distributions.
In this paper, we aimed to provide an illustration of fitting various bivariate distributions to empirical
ordinal data and examining how estimates of the polychoric correlation may vary under different
distributional assumptions. Results suggested that the bivariate normal and skew-normal distribu-
tions rarely hold in the empirical datasets. In contrast, mixtures of bivariate normal distributions
were often not rejected.

Keywords: polychoric correlation; ordinal data; underlying bivariate normality; mixture of bivariate
normal distributions

1. Introduction

Data in the social and behavioral sciences commonly include observations from
variables with ordinal response scales, such as Likert items. If ordinal variables do not
possess metric properties, alternative techniques than those employed with continuous
variables are required. The polychoric correlation coefficient proposed by Pearson [1] is
a recommended measure of association between two ordinal variables. The polychoric
correlation coefficient is based on the assumption that responses to ordinal variables are
generated by two latent underlying continuous variables. The underlying variables are
conventionally assumed to follow a bivariate normal distribution, also referred to as
underlying bivariate normality. In the present study, this assumption will be addressed.

In simulation studies, the polychoric correlation coefficient has been compared to
other measures of association, including the product-moment correlation, Spearman’s rank
correlation, and Kendall’s tau coefficient [2,3]. These studies showed that if the underlying
bivariate normality held, the polychoric correlation coefficient was generally closer to
the correlation between the two underlying continuous variables than other measures
of association. However, bivariate normality of the underlying continuous variables has
been considered unrealistic [4,5]. Indeed, experience with empirical data suggests that the
underlying bivariate normality assumption may be questionable [6–11]. These findings
give rise to the question whether alternative distributions may represent features of the
underlying continuous latent variables more accurately.

Some studies suggested that the polychoric correlation coefficient is fairly robust
against small to moderate departures from underlying bivariate normality [12–14]. How-
ever, Grønneberg and Foldnes [15] explained that these simulation studies used a genera-
tion method of the ordinal data that is equivalent to discretizing normal data. In recent
evaluations using simulated data that are not compatible with underlying normality, it
was found that the polychoric correlation coefficient is highly sensitive to underlying
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non-normality [16–18]. Similar results have been found by Jin and Yang-Wallentin [19],
who examined the robustness of the polychoric correlation against non-normality with
data generated from skew-normal [20], skew-t (υ) [21], and Pareto [22] distributions.

In accordance with Muthén and Hofacker [8], Jin and Yang-Wallentin [19] suggested
that the estimate of the polychoric correlation should only be used if the underlying bivari-
ate normality assumption holds. When the assumption of underlying bivariate normality
does not hold, the polychoric correlation coefficient can be based on other distributional
assumptions that represent features of the data more accurately than the bivariate normal
distribution [6]. Several alternative underlying bivariate distributions have been proposed
already, among which are Azzalini and Dalla Valle’s skew-normal distribution [19,20,23]
and the mixture of normal distributions [24]. Previous research indeed shows that the
polychoric correlation coefficient provides an accurate estimate of the correlation between
the two underlying continuous variables when the correct underlying distribution is as-
sumed [10,19,23]. In a study by Roscino and Pollice [23], a polychoric correlation coefficient
was introduced based on the hypothesis that the underlying latent variables follow Azzalini
and Dalla Valle’s bivariate skew-normal distribution. The polychoric correlation based
on this distribution yielded better estimates of the correlation between the underlying
continuous latent variables than the original polychoric correlation when the sample size
was large, or the number of categories of the ordinal variables was small, or the skewness
parameters were discordant [23]. More recently, Jin and Yang-Wallentin [19] examined the
performance of several generalizations in an extensive simulation study, including Azzalini
and Dalla Valle’s skew-normal distribution. In line with Roscino and Pollice [23], their
results suggest that assuming an underlying skew-normal distribution generally produces
lower bias in the polychoric correlation estimate than assuming an underlying bivariate
normal distribution.

In addition to the skew-normal distribution, the mixture of normal distributions has
been considered for the estimation of the polychoric correlation. Uebersax and Grove [25]
proposed a latent mixture model in which the distribution of a latent trait measured by an
ordinal variable is defined as a combination of two subgroups’ probability density functions.
Although their proposed model was presented as an approach to analyze rating agreement,
it could also be applied for modeling mixtures with observed ordinal variables [24]. That
is, a polychoric correlation coefficient can be based on the assumption that the underlying
continuous latent variables follow a mixture of two or more normal distributions contingent
on the idea that data have been gathered from two or more subpopulations. Because the
means and variances of each subgroup’s normal distribution are allowed to differ, the
mixture distribution can be a flexible tool to account for heterogeneous and asymmetric
data. This distribution may therefore be suited to accurately reflect the features of the
underlying continuous latent variables. The polychoric correlation based on an underlying
mixture of normal distributions has not been studied yet with empirical or simulated data.

Although it is clear that the polychoric correlation coefficient can be accurately esti-
mated as long as the underlying distribution giving rise to the observed ordinal responses
is known, it is impossible to identify the correct underlying distribution for empirical data.
The Ref. [26] showed that with two binary variables and underlying non-normality, there
can exist a very wide range of tetrachoric correlations that are consistent with the observed
data, depending on what distribution is assumed for the underlying latent variables. With
more than two response options per variable, and by using substantive knowledge to
add restrictions to the underlying distributions, the range of possible correlations will get
smaller and eventually converge to an identified case. In practice, it can still be informative
to test which distributions are consistent with the observed data and which are not, so that
some distributions may be ruled out.

The Present Study

The aim of the present study was to examine the fit of the bivariate normal distribution,
bivariate skew-normal distribution, and mixture of bivariate normal distributions to a
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large number of pairs of ordinal variables from empirical datasets. Knowledge of the
fit of the proposed underlying distributions to empirical data may contribute in several
ways. First, the results of this study may help to determine the degree of applicability of
the fitted distributions. Second, the results could explicate how to generate more realistic
data in future simulation studies, including ordinal variables, to increase generalizability.
Third, we examined how estimates of the polychoric correlation vary under different
distributional assumptions in empirical data. Fourth, we provide R-syntax that other
researchers can adapt to fit the distributions to ordinal data.

The remainder of the present paper is organized as follows. The polychoric correlation
assuming underlying bivariate normality is described first. The bivariate skew-normal
distribution [20] and mixture of bivariate normal distributions distribution [27] are then
introduced as alternatives to the bivariate normal distribution for the latent continuous
variables underlying the observed ordered variables. Subsequently, we illustrate estima-
tions of the polychoric correlation on the basis of the bivariate normal distribution, the
bivariate skew-normal distribution, and the mixture of bivariate normal distributions with
an empirical example. This illustration may serve as a guideline for researchers on how
to test the underlying distributions when estimating the polychoric correlation between
two observed ordinal variables. We then present the results of a more extensive study
on the fit of these distributions to a large number of contingency tables, showing which
distributions are rejected most often in real data. We explicitly focus on the bivariate case
in this article, and we discuss issues around the multivariate case in the discussion.

2. The Polychoric Correlation Assuming Different Underlying Distributions
2.1. The Bivariate Normal Distribution

Consider two observed ordinal variables X1 and X2 with response categories i =
1, 2, · · · , I and j = 1, 2, · · · , J. The polychoric correlation coefficient assumes that the
responses to X1 and X2 are generated by latent underlying continuous variables ξ1 and ξ2.
The relationship between observed ordinal X1 and X2 and underlying continuous ξ1 and
ξ2 may be written as

X1 = i⇔ τ
(1)
i−1 < ξ1 ≤ τ

(1)
i

X2 = j⇔ τ
(2)
j−1 < ξ2 ≤ τ

(2)
j ,

(1)

where τ(1) and τ(2) are the thresholds parameters for X1 and X2, respectively. The thresh-
olds represent the bounds of the response categories such that −∞ = τ0 < τ1 < · · · <
τI−1 < τI = ∞. An item with I categories has I − 1 threshold parameters.

The maximum likelihood estimate of the polychoric correlation between X1 and X2 is
the value of ρ that minimizes

G(γ) =
I

∑
i=1

J

∑
j=1

pij ln[pij/πij(γ)], (2)

where pij is the observed proportion and πij(γ) is the expected proportion for X1 = i and
X2 = j. The expected proportion may be written as

πij(γ) =
∫ τ

(1)
i

τ
(1)
i−1

∫ τ
(2)
j

τ
(2)
j−1

f (ξ1, ξ2|µ, Σ)dξ1dξ2, (3)

where f (·) is a bivariate normal distribution with means µ and covariance matrix Σ.
Because the underlying continuous latent variables are not directly observed, their means
and variances are usually fixed at zero and one, respectively. Alternatively, the location and
scale of the underlying variable could be identified by fixing two thresholds. There exist
two approaches to estimating the polychoric correlation coefficient [28]. In the two-step
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approach, the threshold parameters are estimated from univariate information first, and the
other parameters are estimated in a second step while fixing the thresholds to the values
obtained in the first step. Another approach is to estimate all parameters simultaneously.
Throughout this manuscript, we use the latter approach.

2.2. The Skew-Normal Distribution

The univariate skew-normal distribution was proposed by Azzalini [29] and extended
to the multivariate skew-normal distribution by Azzalini and Dalla Valle [20]. The skew-
normal distribution is a natural generalization of the normal distribution with extra shape
parameters α that regulate skewness and kurtosis. The bivariate skew-normal distribution
involves two shape parameters α1 and α2, and simplifies to the bivariate normal distribution
when α1 = α2 = 0. With larger absolute values of α, the skewness and kurtosis of the
distribution increase. The distribution is right-skewed and leptokurtic if α > 0, and
left-skewed and leptokurtic if α < 0. According to Azzalini and Dalla Valle [20], the
skew-normal distribution is reasonably flexible with regard to empirical data fitting, and
maintains some convenient formal properties of the normal distribution. An additional
advantage of the bivariate skew-normal distribution is that its marginal distributions are
skew-normal.

The density function of the bivariate skew-normal distribution for the underlying
continuous latent variables ξ1 and ξ2 is given by

g(ξ1, ξ2) = 2φ(ξ1, ξ2; ω)Φ(α1ξ1 + α2ξ2), (4)

where φ(·, ·; ω) is the density function of the standard normal distribution with correlation
ω, and Φ(·) is the standard normal distribution function. Under the underlying bivariate
skew-normal assumption, the expected probability πij(γ) = P(X = i, Y = j) may be
written as

πij(γ) =
∫ τ

(1)
i

τ
(1)
i−1

∫ τ
(2)
j

τ
(2)
j−1

g(ξ1, ξ2|µ, Σ, ω, α)dξ1dξ2, (5)

where g(·) denotes the bivariate skew-normal distribution. The polychoric correlation
coefficient under the bivariate skew-normal distribution can be obtained by

ρ =
ω− 2π−1δ1δ2

((1− 2π−1δ2
1)(1− 2π−1δ2

2))
1/2

, (6)

where π is the actual number π. The parameters δ1 and δ2 can be computed from α1 α2 and
ω by

α1 =
δ1 − δ2ω

((1−ω2)(1−ω2 − δ2
1 − δ2

2 + 2δ1δ2ω))1/2

α2 =
δ2 − δ1ω

((1−ω2)(1−ω2 − δ2
1 − δ2

2 + 2δ1δ2ω))1/2
,

(7)

and vary in (−1, 1).

2.3. Mixture of Normal Distributions

The mixture of normal distributions was first proposed by Pearson [27]. The mixture
of normal distributions decomposes the population into a set of subpopulations, often
called components. The mixture distribution is composed of a weighted sum of each
subpopulation’s normal distribution with means µ and covariance matrix Σ. An advan-
tage of the mixture of normal distributions is that great flexibility can be achieved with
only a few subpopulations [25]. In the present study, we only considered mixtures of
two subpopulations.
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The density function of the mixture of bivariate normal distributions for the underlying
continuous latent variables ξ1 and ξ2 with two subpopulations can be written as

h(ξ1, ξ2) = λφ(ξ1, ξ2; µ, Σ) + (1− λ)φ(ξ1, ξ2; µ∗, Σ∗), (8)

where 0 < λ < 1 is the component probability, that is, the prevalence of the subpopulation
in which the underlying continuous latent variables ξ1 and ξ2 follow a bivariate normal
distribution with means µ and covariance matrix Σ. In the subpopulation with a prevalence
of (1− λ), the underlying continuous latent variables follow a bivariate normal distribution
with means µ∗ and covariance matrix Σ∗.

The expected proportion πij under the mixture of bivariate normal distributions in
Equation (8) is

πij(γ) =
∫ τ

(1)
i

τ
(1)
i−1

∫ τ
(2)
j

τ
(2)
j−1

h(ξ1, ξ2|λ, µ, Σ, µ∗, Σ∗)dξ1dξ2, (9)

where h(·) denotes the mixture distribution. For identification of the underlying contin-
uous latent variables, the means and variances in the first subpopulation can be fixed at
zero and unity, respectively, while constraining the thresholds to be equal across subpop-
ulations. All other parameters can be freely estimated. The polychoric correlation in the
first subpopulation is equal to the covariance σ12. The polychoric correlation in the second
subpopulation ρ∗ is equal to the covariance σ∗12 divided by the product of the standard
deviations of ξ1 and ξ2,

√
diag(Σ∗).

The number of parameters to be estimated for the mixture of bivariate normal distri-
butions can be reduced by imposing restrictions on the polychoric correlations, means, or
variances. One possibility is to restrict ρ and ρ∗ to be equal. With this restriction, the associ-
ation between ξ1 and ξ2 is the same in each subpopulation. Another approach to reduce
the number of parameters is to fix ρ∗ at zero, resulting in a mixture of bivariate normal
distributions in which ξ1 and ξ2 are not associated in the second subpopulation. Addition-
ally, one can restrict the means to be equal across the two subpopulations, µ = µ∗ =

(
0
0
)
.

This restriction results in a mixture of bivariate normal distributions with a single mode.
Another option is to restrict the variances of the underlying variables to be equal across the
subpopulations, σ = σ∗ =

(
1
1

)
.

2.4. Testing Underlying Distributions

The fit of underlying distributions on empirical data can be tested for a given pair of
ordinal variables with the likelihood ratio test (LRT; [7]). The LRT statistic is given by

2N
I

∑
i=1

J

∑
j=1

pij ln[pij/π̂ij] = 2NG(γ̂), (10)

where π̂ij is the estimated expected proportion obtained from the tested distribution with
estimated parameter vector γ̂. When the model holds, the LRT statistic is asymptotically
chi-squared distributed with degrees of freedom equal to

d f = I × J − 1− n, (11)

where I × J is the number of response patterns and n is the number of estimated parame-
ters [30].

3. Illustrative Example

Below, we briefly demonstrate estimating the polychoric correlation assuming an
underlying bivariate normal distribution, underlying bivariate skew-normal distribution,
and underlying mixture of bivariate normal distributions with an empirical example. The
purpose of this illustration is to show how one can test whether an underlying distribution
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may be suitable or not when estimating the polychoric correlation. The R scripts of the
example are available in Appendixes A–C.

Example: Type D Personality Data

The Ref. [31] gathered observations from 541 respondents on the Type D personality,
which can be described as a tendency to experience negative affectivity and social inhibition.
The DS14 was used as an instrument to measure these two tendencies, and observations on
Item 2 from the negative affectivity subscale and Item 6 from the social inhibition subscale
are presented in a contingency table given in Table 1. Assuming underlying bivariate
normality, the estimated polychoric correlation between negative affectivity and social
inhibition was ρ̂ = 0.29. The bivariate normal distribution, however, did not fit the data at a
5% level of significance, χ2(15) = 52.69, p < 0.001. The bivariate skew-normal distribution
with estimated correlation ρ̂ = 0.29 and shape parameters α1 = 0.07 and α2 = 1.67 did not
fit the data either, χ2(13) = 52.23, p < 0.001. In addition, the increase in fit compared to the
bivariate normal distribution was not significant, ∆χ2(2) = 0.50, p = 0.780. Figure 1 shows
the estimated underlying bivariate skew-normal distribution and its marginal distributions.
The marginal distribution underlying the observed social inhibition was skewed to the
right (see Figure 1b) as indicated by the positive shape parameter.

Table 1. Contingency table for the Type D personality data.

Social Inhibition
Negative Affectivity

False Rather False Neutral Rather True True

False 67 15 16 8 3
Rather false 41 28 30 4 2

Neutral 34 48 39 11 1
Rather true 35 22 34 28 5

True 24 10 11 11 9

(a) Univariate distribution of negative affectivity (b) Univariate distribution of social inhibition

(c) Bivariate distribution (d) Contour plot

Figure 1. The univariate distributions (a,b), bivariate (c) and contour plot (d) of the estimated mixture of bivariate normal
distributions for the Type D personality data.
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The mixture of bivariate normal distributions with freely estimated means, variances,
and correlation in the second subsample was not rejected at a 5% level of significance,
χ2(9) = 9.36, p = 0.405. The estimated component probability was λ̂ = 0.50, reflecting
equally large subsamples. In the first subsample, the underlying continuous variables
followed a bivariate standard normal distribution with means of 0, variances of 1, and
a polychoric correlation of ρ̂ = 0.85. In the other subsample, the bivariate normal dis-
tribution of the underlying variables had means of µ̂∗ =

( 0.34
−0.10

)
, a covariance matrix of

Σ̂
∗
=
( 1.14 −0.30
−0.30 0.72

)
, and a polychoric correlation of ρ̂∗ = −0.33. This mixture of bivariate

normal distributions fitted significantly better than a mixture distribution with the correla-
tion in the second subsample fixed at zero, ∆χ2(1) = 4.88, p = 0.027, indicating that the
correlation in the second subsample significantly differs from zero.

The estimated mixture of bivariate normal distributions is illustrated in Figure 2.
Figure 2a,b shows that the distribution contained a single mode, and Figure 2c,d shows
that the correlation estimates in the subsamples had opposite signs. In half of the sample,
negative affectivity was positively associated with social inhibition.

(a) Univariate distribution of negative affectivity (b) Univariate distribution of social inhibition

(c) Bivariate distribution (d) Contour plot

Figure 2. The univariate distributions (a,b), bivariate (c) and contour plot (d) of the estimated mixture of bivariate normal
distributions for the Type D personality data.

4. Empirical Study on the Fit of Different Distributions

We now turn to our empirical study in which the fit of the bivariate normal distribution,
bivariate skew-normal distribution, and the mixture of bivariate normal distributions
was tested. These distributions were fitted to 700 contingency tables stemming from
two datasets described below.



Psych 2021, 3 569

4.1. Empirical Data
4.1.1. Type D Personality Data

The first empirical dataset that was used in the present study was gathered by [31] to
examine whether negative affectivity and social inhibition predict cardiovascular events
in 541 patients with coronary artery disease. The sample consisted of 541 patients, of
which 473 were male. Negative affectivity and social inhibition were measured using
the DS14 [32]. The DS14 is a widely used instrument for the assessment of the Type D
personality, which is described as a tendency towards negative affectivity (i.e., experiencing
negative emotions) and social inhibition (i.e., experiencing social discomfort, reticence, and
lack of social poise). The DS14 contains 14 items with five ordered response categories each
(1 = false, 2 = rather false, 3 = neutral, 4 = rather true, 5 = true). Negative affectivity and social
inhibition were both assessed with seven items. Two social inhibition items, items 1 and 3,
were negatively worded and were therefore recoded in this study such that a higher score
indicates a higher level of social inhibition. With 14 items, there are 91 pairs of items to
be analyzed.

4.1.2. Health Status Data

The second dataset concerned a nationwide health status survey conducted by the
Netherlands Organisation of Applied Scientific Research TNO [33]. The Dutch version [33]
of the SF-36 health survey [34] was used to assess the health status of 1742 adults. The
SF-36 health survey consists of 36 items with ordered response categories, organized into
eight different aspects of health: physical functioning (PF; ten items with three response
categories each), role limitations due to physical health (RP; four items with two response
categories each), bodily pain (BP; two items with five and six response categories each,
respectively), general health perceptions (GH; five items with five response categories
each), vitality (VT; four items with six response categories each), social functioning (SF;
two items with five response categories each), role limitations due to emotional health
(RE; three items with two response categories each), and general mental health (MH; five
items with six response categories each). In addition, there is one item with five response
categories to assess Health Comparison (HC). The observed response categories were
coded such that higher scores indicate higher levels of functioning or well-being. The
dataset consisted of 630 contingency tables in total. When both observed ordinal variables
were dichotomous (I = J = 2), the null hypothesis of underlying bivariate normality could
not be tested; therefore, the 21 contingency tables with two dichotomous variables were
excluded from the analysis.

4.2. Fitted Distributions

The possible bivariate distributions that could be tested varied as a function of the
number of response categories of each ordinal variable in the contingency table (see Table 2).
This is because a distribution can only be tested for a given pair of ordinal variables if
the degrees of freedom that partly depend on the number of response categories are
positive. Consider, for example, a pair of ordinal variables with I × J = 2× 3 = 6 possible
response patterns. The total number of thresholds to be estimated for this pair of variables
is I + J − 2 = 2 + 3− 2 = 3. If the bivariate normal distribution is fitted, ρ is additionally
free to be estimated. Hence, the degrees of freedom when fitting the bivariate normal
distribution to a 2× 3 contingency table are I × J − n− 1 = 6− 4− 1 = 1. However, we
would not be able to fit the bivariate skew-normal distribution to a 2× 3 contingency table,
because with the two additional parameters α1 and α2 the degrees of freedom become
negative, I × J − n− 1 = 6− 6− 1 = −1.

The bivariate normal distribution was fitted to each pair of ordinal variables, where
the means µ were fixed at zero and the variances σ were fixed at unity. The polychoric
correlation ρ and all thresholds τ(1) and τ(2) were free to be estimated. When the bivariate
skew-normal distribution was fitted to the data, the location and scale parameters were
fixed at zero and unity, respectively. The polychoric correlation ρ and all thresholds τ(1)
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and τ(2) were free to be estimated. Moreover, the shape parameters α1 and α2 were both
estimated. When the mixture of bivariate normal distributions was fitted to the data, the
means and variances in the first subpopulation were fixed at zero and unity, respectively,
and the polychoric correlation ρ, the thresholds τ(1) and τ(2), and the component probabil-
ity λ were free parameters. Thresholds were constrained to be equal across subpopulations.
The correlation in the second subpopulation was either fixed at zero (ρ∗ = 0), constrained
to be equal to the correlation in the first subpopulation (ρ∗ = ρ), or set free to be estimated.
Moreover, the second subpopulation’s mean and variance of both underlying continuous
variables were freely estimated.

Table 2. The degrees of freedom to test underlying bivariate distributions among different contingency tables.

I × J
Distributions

2 × 3 3 × 3 2 × 5 2 × 6 3 × 5 3 × 6 5 × 5 5 × 6 6 × 6 C

Normal 1 3 3 4 7 9 17 19 24 700
Skew-normal −1 1 1 2 5 7 15 17 22 630

Mixture (ρ∗ fixed) −4 −2 −2 −1 2 4 12 14 19 452
Mixture (ρ∗ free) −5 −3 −3 −2 1 3 11 13 18 452

Note. C reflects the total number of contingency tables that could be analyzed in this study. The degrees of freedom are equal to I× J− n− 1,
where I and J are numbers of response categories and n is the number of estimated parameters.

4.3. Analysis

The underlying bivariate distributions were fitted to the pairs of ordinal variables by
minimizing Equation (10). The minimization was solved using a one-step procedure [28].
That is, all parameters in γ were simultaneously estimated. With k items, k(k− 1)/2 tests
are conducted in each dataset. Therefore, the goodness of fit was not only tested at 0.05,
but also at a Bonferroni-adjusted level of significance 2 × 0.05

k(k−1) to avoid inflated family-wise
Type I error rates (note that this procedure is different from Raykov and Marcoulides [35]
who applied a Benjamini-Hochberg procedure). The null hypothesis was rejected when the
LRT statistic was significant. This indicated that the underlying continuous latent variables
did not follow the bivariate distribution being tested.

In order to minimize Equation (10), the R function nlminb() from the PORT library [36]
was used. This function uses a quasi-Newton algorithm that can be subjected to box con-
straints. Substantial non-convergence rates were observed when fitting the bivariate
skew-normal and mixture of bivariate normal distributions with the default nlminb()
method (see Appendix D). Inspection of the convergence messages suggested that the
stopping tolerances were too tight. We therefore used default stopping tolerances, but ad-
justed the relative tolerance when we encountered non-convergence. As we also observed
convergence to local minima, we used multiple starting values for the bivariate skew-
normal distribution. For the mixture of bivariate normal distributions, we imposed lower
and/or upper constraints on the polychoric correlations, the component probability, and
the variances of the underlying continuous latent variables in order to avoid inadmissible
values of these parameters.

We calculated the percentage of contingency tables for which each tested underlying
distribution was rejected in each of the datasets. In addition, we evaluated the absolute
difference in polychoric correlation estimates averaged across all contingency tables in both
datasets as outcome variables. The absolute difference was defined as | ρ̂A − ρ̂N |, where
ρ̂N is the polychoric correlation estimate assuming underlying bivariate normality, and ρ̂A
is the estimate of the polychoric correlation assuming an alternative underlying bivariate
distribution (i.e., skew-normal distribution or mixture of bivariate normal distributions).
For the two mixtures of bivariate normal distributions in which ρ∗ is allowed to differ from
ρ, the correlation of the largest subsample was used for the calculation of the absolute
difference. Note that the absolute differences do not reflect differences with regard to
population values and therefore cannot be interpreted as reflecting estimation bias. Instead,
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the absolute differences in polychoric correlation estimates provide information about the
range of estimates obtained using different distributions with empirical data. Results were
analyzed with R version 3.4.3 [37].

4.4. Results
4.4.1. Rejections of the Distributions

Table 3 shows the rejection percentages of the bivariate distributions among all pairs
of ordinal variables. In the Type D personality dataset, the bivariate normal distribution
was rejected for 83.52% of the variable pairs when the level of significance was 0.05. With a
Bonferroni-adjusted significance level, the bivariate normal distribution was rejected for
42.86% of the contingency tables. For most pairs of ordinal variables, the assumption of
underlying bivariate normality is thus violated. The bivariate skew-normal distribution
obtained comparably high percentages of rejection. With a significance level of 0.05, the
bivariate skew-normal distribution was rejected for 79.55% of the variable pairs. The
distributions that obtained the lowest rejection percentages were the mixtures of bivariate
normal distributions. With a Bonferroni-adjusted significance level, the mixture of bivariate
normal distributions with ρ∗ fixed at zero was not rejected for any pair of variables.

Table 3. Rejection percentages of each distribution across all pairs of variables.

Type D Personality Health Status
Distributions

Unadjusted Bonferroni Adjusted Unadjusted Bonferroni Adjusted

Normal 83.52 42.86 71.43 35.96
Skew-normal 79.55 44.09 63.09 20.88

Mixture (ρ∗ = 0) 14.94 0.00 20.78 4.99
Mixture (ρ∗ = ρ) 34.07 6.53 34.63 12.74
Mixture (ρ∗ free) 18.68 3.30 20.22 3.60

Note. The unadjusted level of significance was 0.05 for each of the distributions. The Bonferroni-adjusted significance level was 0.05/91 in
the Type D personality dataset. In the health status dataset, the Bonferroni-adjusted significance level was 0.05/609 for the bivariate normal
distribution, 0.05/539 for the bivariate skew-normal distribution, and 0.05/361 for the mixtures of normal distributions.

In the health status dataset, the bivariate normal distribution was rejected for 71.43%
of the pairs of variables using an unadjusted significance level. The null hypothesis
of underlying bivariate normality was rejected for 35.06% pairs of variables when a
Bonferroni-adjusted level of significance was used. The percentages of rejection of the
bivariate skew-normal distribution were slightly lower. Again, the mixtures of bivariate
normal distributions showed substantially lower rejection percentages. For instance, with
a Bonferroni-adjusted significance level, the mixture of bivariate normal distributions in
which ρ∗ is fixed at zero and the means and variances of both underlying variables are freely
estimated was rejected for only 4.99% of contingency tables. When ρ∗ was additionally
estimated, the rejection percentage was 3.60%.

4.4.2. Absolute Difference in ρ

The average absolute differences for the bivariate skew-normal distribution and mix-
tures of bivariate normal distributions are presented in Table 4. Compared to the other
distributions, the skew-normal distribution and mixture of bivariate normal distributions
with ρ∗ = ρ generally produced polychoric correlation estimates that were close to the
polychoric correlation estimate assuming underlying bivariate normality ρ̂N . These distri-
butions obtained comparable average absolute differences (i.e., 0.03 and 0.04). The largest
average absolute differences were found for the mixture of bivariate normal distributions
with ρ∗ as a free parameter and the mixture of bivariate normal distributions with ρ∗

fixed at zero. The average absolute differences of these distributions ranged from 0.26
to 0.31, and were substantially larger than those obtained by the bivariate skew-normal
distribution and the mixture of bivariate normal distributions with ρ∗ = ρ.
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Table 4. The average absolute differences in ρ.

Distributions Type D Personality Health Status

Skew-normal 0.03 0.04
Mixture (ρ∗ = 0) 0.26 0.30
Mixture (ρ∗ = ρ) 0.03 0.04
Mixture (ρ∗ free) 0.26 0.31

Note. The absolute differences were averaged across the contingency tables in the dataset. In the Type D
personality dataset, there was a total of 91 contingency tables. In the health status dataset, the total number of
contingency tables was 609 for the bivariate normal distribution, 539 for the bivariate skew-normal distribution,
and 361 for the mixtures of normal distributions.

5. Discussion

In line with existing literature [6–11], this study showed that the underlying bivariate
normal distribution seldom holds in empirical data. This may indicate that in this study,
the polychoric correlation based on underlying bivariate normality is an under- or over-
estimation of the correlation between the underlying continuous variables for most pairs of
ordinal variables [19]. The bivariate skew-normal distribution was also frequently rejected
in empirical data.

A possible explanation for the high rejection percentages of the bivariate skew-normal
distribution may involve the dependency between skewness and kurtosis. In Azzalini and
Dalla Valle’s skew-normal distribution [20], skewness and kurtosis were regulated with the
same parameter. Hence, a bivariate skew-normal distribution with high skewness cannot
have low kurtosis, or the other way around. This might not be realistic, as in practice,
data can be highly skewed with low kurtosis, or the other way around. Moreover, similar
to Jin and Yang-Wallentin [19], we encountered non-convergence and local optima when
estimating the parameters of the bivariate skew-normal distribution. Multiple starting
values and adjusted stopping tolerances for minimizing the LRT statistic were used in this
study to overcome these problems.

The mixture of bivariate normal distributions was not often rejected in the empirical
datasets. Specifically, the mixture of bivariate normal distributions with a free or fixed-at-
zero correlation in the second subpopulation was often found to be consistent with the
data. Although the mixture with a freely estimated correlation in the second subpopulation
is less restrictive, the mixture with a correlation in the second subpopulation fixed at zero
was rejected less often in one of the datasets. This was against our expectations, because in
theory, a less restrictive distribution (with more parameters to be estimated) will always
fit the data better than a nested, more restrictive distribution (with fewer parameters to
be estimated). The higher rejection percentages of the less restrictive mixture distribution
with a free correlation in the second subpopulation may be caused by an increase in fit
of the distribution that is too small relative to the decrease in degrees of freedom, or by
local optima. Overall, our results support Uebersax’s [24] suggestion that the mixture
distribution is a flexible tool to model non-normal distributions, but there is a need for
further studies in which its performance is investigated. One of the issues of the mixture
distribution is the risk of overfitting because of the large number of parameters. Mixture
distributions may therefore not generalize easily to other samples.

5.1. Future Research and Limitations

The current paper only considers testing bivariate distributions. A logical next step
would be to extend the procedures to a multivariate approach, and estimate a matrix of
polychoric correlation coefficients based on all variable pairs, with various underlying
distributions. The extension to the multivariate case brings about multiple issues to be
considered. For example, it would make sense to add constraints to the thresholds, since it
would be undesirable if a different set of thresholds would be estimated for each pair of
ordinal variables [28]. Additionally, with the mixture distributions, it may be needed to
constrain the component probabilities for the subpopulations to be equal across variable
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pairs, and to avoid estimating a free correlation coefficient in each subpopulation (but
instead constrain them to be equal across subpopulations, or to fix one of the correlations
to zero). In order to fit structural equation models to polychoric correlation matrices
using weighted least squares estimators, the asymptotic covariance matrix of the estimated
parameters will be needed. Currently, there are no straightforward methods to obtain the
asymptotic covariance matrix based on other underlying distributions than the bivariate
normal, although as a reviewer suggested, the approach by Monroe [38] might be extended.
Correspondingly, the estimated polychoric correlation matrix should be positive semi-
definite in order to fit structural equation models, which may not be the case without the
appropriate constraints, or with a misspecified underlying distribution. Moreover, although
the LRT has been evaluated to test for underlying multivariate normality [35,39], as well
as a parametric bootstrap procedure [17], to our knowledge, there exist no simulation
studies investigating the statistical performance of these tests when the tested distribution
is non-normal. Such a simulation study would be useful to get information about the
Type 1 and Type 2 errors, estimation bias in correlation coefficients, and the needed sample
sizes for adequate performance of the tests.

A limitation of the present study is that although a large number of contingency tables
were analyzed, they only stemmed from two datasets. This study provides a first insight
into the distributions underlying the responses to ordinal variables, but more data must
be investigated in order to verify the results. Moreover, the present study examined only
a few non-normal bivariate distributions. It would be interesting to evaluate the fit of
other non-normal bivariate distributions to empirical data as well. For example, Timofeeva
and Khailenko [10] proposed a polychoric correlation assuming a generalized lambda
distribution for the underlying continuous variables. The generalized lambda distribution
is a non-symmetric extension of Tukey’s lambda distribution and is known for its high
flexibility in physical and social science settings, among others [40]. Research shows that
the bivariate generalized lambda distribution is rejected less often for empirical data than
the bivariate normal distribution [10]. It would be interesting to examine the rejection
percentages of the generalized lambda distributions in other, possibly larger, empirical
datasets that consist of ordinal responses.

5.2. Conclusions

Overall, this study showed that the bivariate normal and skew-normal distribution
were often rejected when tested against empirical data. The results of this study also
showed that the polychoric correlation estimates based on the skew-normal distribution
and mixture distributions can be substantially different from the estimates assuming under-
lying bivariate normality. Hence, the present study underlines the importance of testing the
assumed underlying distribution for the estimation of the polychoric correlation coefficient.
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Appendix A

## Script: Functions for the bivariate (skew -) normal distribution

# Fit function



Psych 2021, 3 574

LR_skew <- function(params) {
nthresholds1 = length(params [1: nthresholds1 ])
nthresholds2 = length(params [( nthresholds1 +1):( nthresholds1+nthresholds2 )])
upperlimit1 = 10 + params[nthresholds1]
upperlimit2 = 10 + params[nthresholds1+nthresholds2]
limits1 = c(params [1: nthresholds1], upperlimit1)
limits2 = c(params [( nthresholds1 +1):( nthresholds1+nthresholds2 )], upperlimit2)
if(is.na(params["alpha1"])){ alpha1 = 0} else {alpha1 = params["alpha1"]}
if(is.na(params["alpha2"])){ alpha2 = 0} else {alpha2 = params["alpha2"]}
cumul = matrix(0, ncats1 , ncats2)
expp = matrix(0, ncats1 , ncats2)
for (i in 1: ncats1) {
for (j in 1: ncats2) {
cumul[i,j] = sn::pmsn(c(limits1[i], limits2[j]), c(0,0),
matrix(c(1, params["corr"], params["corr"], 1),2,2),
c(alpha1 , alpha2 ))
}
}
expp [1,1] = cumul [1,1]
for (i in 2: ncats1) { expp[i,1] = cumul[i,1] - cumul[i-1,1] }
for (j in 2: ncats2) { expp[1,j] = cumul[1,j] - cumul[1,j-1] }
for (i in 2: ncats1) {
for (j in 2: ncats2) {
expp[i,j] = cumul[i,j] - cumul[i-1,j] - cumul[i,j-1] + cumul[i-1,j-1]
}
}
pi = ifelse(expp > 0, expp , 0.0000000001)
p = ifelse (obsp > 0, obsp , 0.0000000001)
return (2*ntot*sum(obsp*log(p/pi)))
}

# Optimization
fit_skewnorm <- function(parameters ){
results_skew = nlminb(parameters , LR_skew , control = list(rel.tol = 1e-3))
out = data.frame(matrix(NA, 1, 1))
colnames(out) = c("chisq")
out$chisq = results_skew$objective
out$df = ncats1 * ncats2 - 1 - length(results_skew$par)
out$p = 1 - pchisq(results_skew$objective , out$df)
out$corr = results_skew$par["corr"]
if(!is.na(results_skew$par["alpha1"])) {
out$alpha1 = results_skew$par["alpha1"]
}
if(!is.na(results_skew$par["alpha2"])) {
out$alpha2 = results_skew$par["alpha2"]
}
options(scipen =999)
return(list("results" = results_skew , "output" = out))
}

Appendix B

## Script: Functions for the mixture of bivariate distributions

# Bivariate normal distribution
biv <- function(thresholds1 , thresholds2 , muvar , covma) {
nthresholds1 = length(thresholds1)
nthresholds2 = length(thresholds2)
ncats1 = nthresholds1 + 1
ncats2 = nthresholds2 + 1
upperlimit1 = 10 + thresholds1[nthresholds1]
upperlimit2 = 10 + thresholds2[nthresholds2]
limits1 = c(thresholds1 , upperlimit1)
limits2 = c(thresholds2 , upperlimit2)
cumul = matrix(0, ncats1 , ncats2)
expp = matrix(0, ncats1 , ncats2)
for (i in 1: ncats1) {
for (j in 1: ncats2) {
cumul[i,j] = mnormt :: pmnorm(c(limits1[i], limits2[j]), muvar , covma)
}
}
expp [1,1] = cumul [1,1]
for (i in 2: ncats1) { expp[i,1] = cumul[i,1] - cumul[i-1,1] }
for (j in 2: ncats2) { expp[1,j] = cumul[1,j] - cumul[1,j-1] }
for (i in 2: ncats1) {
for (j in 2: ncats2) {
expp[i,j] = cumul[i,j] - cumul[i-1,j] - cumul[i,j-1] + cumul[i-1,j-1]
}
}
return(expp)
}
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# Fit function
LR_mixed <- function(params) {
thresholds1 = params [1: nthresholds1]
thresholds2 = params [( nthresholds1 +1):( nthresholds1+nthresholds2 )]
nthresholds1 = length(params [1: nthresholds1 ])
nthresholds2 = length(params [( nthresholds1 +1):( nthresholds1+nthresholds2 )])
if(is.na(params["sigmastar1"])){ sigmastar1 = 1} else {sigmastar1 = params["sigmastar1"]}
if(is.na(params["sigmastar2"])){ sigmastar2 = 1} else {sigmastar2 = params["sigmastar2"]}
if(is.na(params["mustar1"])){ mustar1 = 0} else {mustar1 = params["mustar1"]}
if(is.na(params["mustar2"])){ mustar2 = 0} else {mustar2 = params["mustar2"]}
if(is.na(params["corrstar"])){ corrstar = params["corr"]}
else {corrstar = params["corrstar"]}
covstar = corrstar*sqrt(sigmastar1*sigmastar2)
expp = biv(thresholds1 , thresholds2 , c(0,0), matrix(c(1, params["corr"],
params["corr"], 1),2,2))
if (params["prop"] > 0) {
exppstar = biv(thresholds1 , thresholds2 , c(mustar1 , mustar2),
matrix(c(sigmastar1 , covstar , covstar , sigmastar2 ),2,2))
expp = (params["prop"]*expp) + ((1- params["prop"])*exppstar)
}
pi = ifelse(expp > 0, expp , 0.0000000001)
p = ifelse (obsp > 0, obsp , 0.0000000001)
return (2*ntot*sum(obsp*log(p/pi)))
}

# Optimization
fit_mix <- function(parameters , ll, uu){
if (missing(ll)) ll = -100
if (missing(uu)) uu = 100
results_mixed = nlminb(parameters , LR_mixed , lower = ll , upper = uu)
out = data.frame(matrix(NA, 1, 1))
colnames(out) = c("chisq")
out$chisq = results_mixed$objective
out$df = ncats1 * ncats2 - 1 - length(results_mixed$par)
out$p = round (1 - pchisq(results_mixed$objective , out$df), 3)
out$corr = results_mixed$par["corr"]
if(!is.na(results_mixed$par["mustar1"])) {
out$mustar1 = results_mixed$par["mustar1"]
}
if(!is.na(results_mixed$par["mustar2"])) {
out$mustar2 = results_mixed$par["mustar2"]
}
out$prop = results_mixed$par["prop"]
if(!is.na(results_mixed$par["sigmastar1"])) {
out$sigstar1 = results_mixed$par["sigmastar1"]
}
if(!is.na(results_mixed$par["sigmastar2"])) {
out$sigstar2 = results_mixed$par["sigmastar2"]
}
if(!is.na(results_mixed$par["corrstar"])) {
out$corrstar = results_mixed$par["corrstar"]
}
options(scipen =999)
return(list("results" = results_mixed , "output" = out))
}

Appendix C

## Script: Fitting distributions to Type D personality data

# Required packages
library(polycor) # we used version 3.0.6
library(sn) # we used version 2.0.0
library(mnormt) # we used version 0.7-10
library(mokken) # we used version 2.0.2

########################
#### Initialization ####
########################

data("DS14")

obsn = table(DS14[,"Na2"], DS14[,"Si6"])

ncats1 = nrow(obsn)
ncats2 = ncol(obsn)

ntot = sum(obsn)
obsp = obsn/ntot
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proportions2 = matrix(colSums(obsp), 1, ncats2)
proportions1 = matrix(rowSums(obsp), ncats1 , 1)

premultiplier = matrix(0, ncats1 , ncats1)
for (i in 1: ncats1) for (j in 1:i) premultiplier[i, j] = 1

postmultiplier = matrix(0, ncats2 , ncats2)
for (i in 1: ncats2) for (j in i:ncats2) postmultiplier[i, j] = 1

cumulprops2 = proportions2 %*% postmultiplier
cumulprops1 = premultiplier %*% proportions1

nthresholds1 = ncats1 - 1
nthresholds2 = ncats2 - 1

thresholds1 = matrix(0, 1, nthresholds1)
for (i in 1: nthresholds1) thresholds1[i] = qnorm(cumulprops1[i])

thresholds2 = matrix (0, 1, nthresholds2)
for (i in 1: nthresholds2) thresholds2[i] = qnorm(cumulprops2[i])

corr = polycor :: polychor(obsn)

###########################
#### Fit distributions ####
###########################

# Fit bivariate normal distribution
results_norm = fit_skewnorm(c("th1" = thresholds1 , "th2" = thresholds2 ,
"corr" = corr))
results_norm

# Fit skew -normal distribution
results_skew = fit_skewnorm(c("th1" = thresholds1 , "th2" = thresholds2 ,
"corr" = corr , "alpha" = c(2 ,2)))
results_skew

# Calculate polychoric correlation assuming a skew -normal
dp = list(xi = c(0,0), Omega = matrix(c(1, results_skew$output$corr ,
results_skew$output$corr , 1),2,2), alpha = c(results_skew$output$alpha1 ,
results_skew$output$alpha2 ))
sn1 = sn:: makeSECdistr(dp, family = "SN")
summary(sn1)

polcorr = (results_skew$output$corr -2*pi^(-1)*0.3816442*0.8618373) /
(((1-2*pi^(-1)*0.3816442^2)*(1-2*pi^(-1)*0.8618373^2))^0.5)

# Fit mixture distribution
param = c("th1" = thresholds1 , "th2" = thresholds2 , "corr" = corr , "prop" = 0.7,
"corrstar" = corr , "sigmastar1" = 1, "sigmastar2" = 1, "mustar1" = 0,
"mustar2" = 0)
results_mix = fit_mix(param , c(rep(-10, nthresholds1+nthresholds2), -1, 0, -1,
0.001, 0.001, -10, -10), c(rep(10, nthresholds1+nthresholds2),
1, 1, 1, 10, 10, 10, 10))
results_mix

Appendix D

In the nlminb() function, the relative tolerance defaults to 1e-10. Relative tolerance
works as follows. The minimization stops if the algorithm is unable to reduce the value of
the objective to be minimized by a factor of the sum of the absolute value of the objective and
the relative tolerance. We prevented non-convergence by using nlminb() with a relative
tolerance of 1e-5 or 1e-3. We found similar rejection percentages but less convergence
problems with the adjusted relative tolerances. In the table below, the non-convergences
rates under the different relative tolerances are presented.
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Table A1. Nonconvergence rates of each of the distributions under different relative tolerances.

Type D Personality Health Status
Distributions

1e-10 1e-5 1e-3 1e-10 1e-5 1e-3

Normal 0.00 0.00 0.00 0.82 0.00 0.00
Skew-normal 81.32 36.26 5.49 62.15 7.79 7.79

Mixture (ρ∗ = 0) 24.18 23.08 17.58 14.13 6.09 6.09
Mixture (ρ∗ = ρ) 20.88 1.10 0.00 54.85 0.55 0.55
Mixture (ρ∗ free) 42.86 25.27 7.69 41.55 4.16 4.16
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9. Şimşek, G.G.; Noyan, F. Structural equation modeling with ordinal variables: A large sample case study. Qual. Quant. 2012,

46, 1571–1581. [CrossRef]
10. Timofeeva, A.Y.; Khailenko, E.A. Generalizations of the polychoric correlation approach for analyzing survey data. In Proceedings

of the 2016 11th International Forum on Strategic Technology (IFOST), Novosibirsk, Russia, 1–3 June 2016; pp. 254–258. [CrossRef]
11. Yamamoto, K.; Murakami, H. Model based on skew normal distribution for square contingency tables with ordinal categories.

Comput. Stat. Data Anal. 2014, 78, 135–140. [CrossRef]
12. Flora, D.B.; Curran, P.J. An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal

data. Psychol. Methods 2004, 9, 466. [CrossRef]
13. Lee, S.Y.; Lam, M.L. Estimation of polychoric correlation with elliptical latent variables. J. Stat. Comput. Simul. 1988, 30, 173–188.

[CrossRef]
14. Quiroga, A.M. Studies of the Polychoric Correlation and other Correlation Measures for Ordinal Variables. Ph.D. Thesis, Acta

Universitatis Upsaliensis, Univsersity of Uppsala, Uppsala, Sweden, 1992.
15. Grønneberg, S.; Foldnes, N. A Problem with discretizing Vale–Maurelli in simulation studies. Psychometrika 2019, 84, 554–561.

[CrossRef]
16. Foldnes, N.; Grønneberg, S. The sensitivity of structural equation modeling with ordinal data to underlying non-normality and

observed distributional forms. Psychol. Methods 2021. [CrossRef]
17. Foldnes, N.; Grønneberg, S. Pernicious polychorics: The impact and detection of underlying non-normality. Struct. Equ. Model.

Multidiscip. J. 2020, 27, 525–543. [CrossRef]
18. Foldnes, N.; Grønneberg, S. On identification and non-normal simulation in ordinal covariance and item response models.

Psychometrika 2019, 84, 1000–1017. [CrossRef]
19. Jin, S.; Yang-Wallentin, F. Asymptotic robustness study of the polychoric correlation estimation. Psychometrika 2017, 82, 67–85.

[CrossRef] [PubMed]
20. Azzalini, A.; Dalla Valle, A. The multivariate skew-normal distribution. Biometrika 1996, 83, 715–726. [CrossRef]
21. Azzalini, A.; Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew

t-distribution. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2003, 65, 367–389. [CrossRef]
22. Mardia, K.V. Multivariate pareto distributions. Ann. Math. Stat. 1962, 33, 1008–1015. [CrossRef]
23. Roscino, A.; Pollice, A. A generalization of the polychoric correlation coefficient. In Data Analysis, Classification and the Forward

Search; Springer: Berlin/Heidelberg, Germany, 2006; pp. 135–142. [CrossRef]
24. Uebersax, J.S. Latent Correlation with Skewed Latent Distributions: A Generalization of the Polychoric Correlation Coefficient

and a Computer Program for Estimation. Available online: https://www.john-uebersax.com/stat/skewed.htm (accessed on
17 September 2021).

25. Uebersax, J.S.; Grove, W.M. A latent trait finite mixture model for the analysis of rating agreement. Biometrics 1993, 49, 823–835.
[CrossRef] [PubMed]

http://doi.org/10.1098/rsta.1900.0022
http://dx.doi.org/10.1007/BF02723328
http://dx.doi.org/10.2307/2340126
http://dx.doi.org/10.3389/feduc.2020.589965
https://escholarship.org/uc/item/583610fv
http://dx.doi.org/10.1007/BF02294408
http://dx.doi.org/10.1007/s11135-011-9467-4
http://dx.doi.org/10.1109/IFOST.2016.7884099
http://dx.doi.org/10.1016/j.csda.2014.04.007
http://dx.doi.org/10.1037/1082-989X.9.4.466
http://dx.doi.org/10.1080/00949658808811095
http://dx.doi.org/10.1007/s11336-019-09663-8
http://dx.doi.org/10.1037/met0000385
http://dx.doi.org/10.1080/10705511.2019.1673168
http://dx.doi.org/10.1007/s11336-019-09688-z
http://dx.doi.org/10.1007/s11336-016-9512-2
http://www.ncbi.nlm.nih.gov/pubmed/27660261
http://dx.doi.org/10.1093/biomet/83.4.715
http://dx.doi.org/10.1111/1467-9868.00391
http://dx.doi.org/10.1214/aoms/1177704468
http://dx.doi.org/10.1007/3-540-35978-8_16
https://www.john-uebersax.com/stat/skewed.htm
http://dx.doi.org/10.2307/2532202
http://www.ncbi.nlm.nih.gov/pubmed/10798855


Psych 2021, 3 578

26. Grønneberg, S.; Moss, J.; Foldnes, N. Partial Identification of Latent Correlations with Binary Data. Psychometrika 2020,
85, 1028–1051. [CrossRef] [PubMed]

27. Pearson, K. Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. A 1894, 185, 71–110. [CrossRef]
28. Olsson, U. Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika 1979, 44, 443–460. [CrossRef]
29. Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178.
30. Agresti, A. Categorical Data Analysis; Wiley-Interscience: New York, NY, USA, 2002; Volume 482.
31. Denollet, J.; Pedersen, S.S.; Vrints, C.J.; Conraads, V.M. Predictive value of social inhibition and negative affectivity for

cardiovascular events and mortality in patients with coronary artery disease: The type D personality construct. Psychosom. Med.
2013, 75, 873–881. [CrossRef] [PubMed]

32. Denollet, J. DS14: Standard assessment of negative affectivity, social inhibition, and Type D personality. Psychosom. Med. 2005,
67, 89–97. [CrossRef] [PubMed]

33. Aaronson, N.K.; Muller, M.; Cohen, P.D.; Essink-Bot, M.L.; Fekkes, M.; Sanderman, R.; Sprangers, M.A.; Te Velde, A.; Verrips, E.
Translation, validation, and norming of the Dutch language version of the SF-36 Health Survey in community and chronic disease
populations. J. Clin. Epidemiol. 1998, 51, 1055–1068. [CrossRef]

34. Ware, J.E.; Snow, K.K.; Kosinski, M.; Gandek, B. SF-36 Health Survey: Manual and Interpretation Guide; The Health Institute,
New England Medical Center: Boston, MA, USA, 1993.

35. Raykov, T.; Marcoulides, G.A. On examining the underlying normal variable assumption in latent variable models with categorical
indicators. Struct. Equ. Model. Multidiscip. J. 2015, 22, 581–587. [CrossRef]

36. Gay, D.M. Usage summary for selected optimization routines. Comput. Sci. Tech. Rep. 1990, 153, 1–21.
37. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018.
38. Monroe, S. Contributions to Estimation of Polychoric Correlations. Multivar. Behav. Res. 2018, 53, 247–266. [CrossRef]
39. Maydeu-Olivares, A. Limited information estimation and testing of discretized multivariate normal structural models.

Psychometrika 2006, 71, 57–77. [CrossRef]
40. Karian, Z.A.; Dudewicz, E.J. Fitting the generalized lambda distribution to data: A method based on percentiles. Commun.-Stat.-

Simul. Comput. 1999, 28, 793–819. [CrossRef]

http://dx.doi.org/10.1007/s11336-020-09737-y
http://www.ncbi.nlm.nih.gov/pubmed/33346887
http://dx.doi.org/10.1098/rsta.1894.0003
http://dx.doi.org/10.1007/BF02296207
http://dx.doi.org/10.1097/PSY.0000000000000001
http://www.ncbi.nlm.nih.gov/pubmed/24163388
http://dx.doi.org/10.1097/01.psy.0000149256.81953.49
http://www.ncbi.nlm.nih.gov/pubmed/15673629
http://dx.doi.org/10.1016/S0895-4356(98)00097-3
http://dx.doi.org/10.1080/10705511.2014.937846
http://dx.doi.org/10.1080/00273171.2017.1419851
http://dx.doi.org/10.1007/s11336-005-0773-4
http://dx.doi.org/10.1080/03610919908813579

	Introduction
	The Polychoric Correlation Assuming Different Underlying Distributions
	The Bivariate Normal Distribution
	The Skew-Normal Distribution
	Mixture of Normal Distributions
	Testing Underlying Distributions

	Illustrative Example
	Empirical Study on the Fit of Different Distributions
	Empirical Data
	Type D Personality Data
	Health Status Data

	Fitted Distributions
	Analysis
	Results
	Rejections of the Distributions
	Absolute Difference in  


	Discussion
	Future Research and Limitations
	Conclusions

	
	
	
	
	References

