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TOOLS AND RESOURCES

Single-cell imaging of ERK and Akt activation dynamics and
heterogeneity induced by G-protein-coupled receptors
Sergei Chavez-Abiega1,2,*, Max L. B. Grönloh1, Theodorus W. J. Gadella, Jr1, Frank J. Bruggeman2 and
Joachim Goedhart1,*

ABSTRACT
Kinases play key roles in signaling networks that are activated by
G-protein-coupled receptors (GPCRs). Kinase activities are generally
inferred from cell lysates, hiding cell-to-cell variability. To study
the dynamics and heterogeneity of ERK and Akt proteins, we
employed high-content biosensor imaging with kinase translocation
reporters.ThekinaseswereactivatedwithGPCRligands.Weobserved
ligand concentration-dependent response kinetics to histamine,
α2-adrenergic and S1P receptor stimulation. By using G-protein
inhibitors, we observed that Gq mediated the ERK and Akt responses
tohistamine. Incontrast,Giwasnecessary forERKandAkt activation in
response to α2-adrenergic receptor activation. ERK and Akt were also
strongly activated byS1P, showing high heterogeneity at the single-cell
level, especially for ERK. Cluster analysis of time series derived from
68,000 cells obtained under the different conditions revealed several
distinct populations of cells that display similar response dynamics.
ERK responsedynamics toS1Pshowedhighheterogeneity,whichwas
reduced by the inhibition ofGi. To conclude, we have set up an imaging
and analysis strategy that reveals substantial cell-to-cell heterogeneity
in kinase activity driven by GPCRs.

KEY WORDS: GPCR, Biosensor, Fluorescence imaging,
Image analysis, Kinase, Signaling

INTRODUCTION
There are over 500 kinases encoded by the human genome, playing a
fundamental role in regulating key biological processes within cells
(Manning et al., 2002). Kinases are major drug targets for oncology,
with many approved drugs for the treatment of several breast and lung
cancer types (Bhullar et al., 2018). Kinases can either phosphorylate
serine/threonine residues or tyrosine, or – in some cases – both. The
activity of kinases is regulated by events such as ligand binding or
phosphorylation by other kinases (Cheng et al., 2011).
G-protein-coupled receptor (GPCR)-mediated signaling

pathways involve many different kinases. The best-characterized
and studied kinases are PKA (also known as PRKA), PKC (also

known as PRKC) and Akt (or PKB) proteins from the AGC family,
and the mitogen-activated protein kinases (MAPKs) ERK, p38 (also
known as MAPK11) and JNK. The activity of kinases such as PKA
or PKC can often be tracked back to specific heterotrimeric G-
protein families. For instance, the relative activities of both Gαs and
Gαi determine the cAMP levels in the cytosol (Sadana and
Dessauer, 2009), and cAMP modulates PKA activity by binding to
its inhibitory domain (Taylor et al., 1990). Similarly, PKC is usually
activated by increased levels of DAG and Ca2+, which occurs as
result of PLCβ activation by Gq (Mizuno and Itoh, 2009). In
contrast, the activity of kinases such as Akt or MAPKs is more
downstream of the G-protein-coupled receptor and, therefore,
determined by different G proteins and pathways. The classic
downstream effector of Gq is PKC, which can activate ERK. On the
other hand, it is not evident how Gq would affect Akt. The
molecular network that connects the activity of Gi with kinases is
also not so clear. In addition, other components involved in GPCR
signaling, i.e. the β-arrestins that are traditionally considered
exclusively as mediators of receptor internalization, can activate
the MAPK ERK (Luttrell et al., 2001).

Traditionally, kinase activities are inferred from cell lysates,
hiding the heterogeneity of the individual cellular responses to
extracellular stimuli. With the advent of genetically encoded
biosensors, individual cells can be tracked over time. Several
fluorescence-based biosensors are available that report kinase
activity, each with different designs, fluorophores, read-outs,
dynamic ranges and sensitivities (Lee et al., 2020). We decided to
use kinase translocation reporters (KTRs) because of the flexibility
in the choice of the fluorophore and because they use a single
channel (Regot et al., 2014). KTRs suitable for monitoring MAPKs
and Akt have been described (Maryu et al., 2018; Miura et al.,
2018). Because aberrant behavior of ERK and Akt is found across
cancer types, these kinases are heavily investigated as potential
therapeutic targets (Cao et al., 2019).

Single-cell studies on GPCR signaling pathways are still scarce,
and the majority of studies on ERK activity in single cells are
restricted to the study of growth factors. ERK activation kinetics is
known to be very dynamic and to vary greatly between growth factors
and concentrations (Sampattavanich et al., 2018). Such studies
indicate that cell subpopulations can be identified on the basis of
single-cell responses. Therefore, we decided to (1) examine whether
KTRs are sufficiently sensitive to detect activation of endogenous
GPCRs, and (2) to study the contribution of the Gq and Gi protein
families to the activities of the kinases ERK and Akt in single cells.

RESULTS
Establishing a cell line for detection of ERK and Akt
activation with translocation reporters
To investigate the relationship between heterotrimeric G proteins
and the activities of ERK and Akt in single cells, we employed
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KTRs. To detect Akt and ERK, we used Akt-FoxO3a-KTR (Maryu
et al., 2016) tagged with mTurquoise2 (mTq2) (Goedhart et al.,
2012), and ERK-KTR (Regot et al., 2014) fused with mNeonGreen
(mNG) (Shaner et al., 2013). To facilitate the identification of nuclei,
we added a histone-tagged mScarlet-I (mScI) (Bindels et al., 2016).
The open reading frames of the three components were connected
with P2A sequences, which ensures quantitative co-expression of the
three proteins from a single open reading frame. The plasmid is
named HSATEN (histone-Scarlet-I | Akt-KTR-mTurquoise2 | ERK-
KTR-mNeonGreen). A scheme of the open reading frame of
HSATEN and HeLa cells expressing it is shown in Fig. 1.
We used the PiggyBac transposon system (Matasci et al., 2011) to

generate cells that stably express the triple color reporter, and used
fluorescence-activated cell sorting (FACS) to isolate single cells and
obtain monoclonal populations. As can be seen in Fig. S1, ∼60% of
the cells were positive for mNG and mScI. Using the green
fluorescence intensity levels, we sorted cells with intermediate
levels of fluorescence into four pools. Next, we characterized the
KTR response to fetal bovine serum (FBS), which strongly activates
growth factor signaling and kinase activity.

To quantitatively compare the responses, we set up an analysis
pipeline that quantifies the ratio of the cytoplasmic to
nuclear intensity (C/N) of single cells, reflecting the kinase
activity (Maryu et al., 2016). The pipeline uses FIJI (Schindelin
et al., 2012) for background correction, CellProfiler (McQuin
et al., 2018) for segmentation, and the R programming language
(https://www.r-project.org/) for processing and visualizing the
data. Fig. S2 shows the different steps of the analysis procedure.
The scripts and fully reproducible instructions are available
at https://github.com/JoachimGoedhart/Nuclear-translocation-
analysis. This analysis pipeline is used for all data presented in
the paper.

Based on the KTR responses, we decided to continue with
pool 3. To examine whether the ERK and Akt basal levels could be
reduce by serum starvation, we replaced the growth medium with
serum-free imaging medium and followed the C/N ratio over time.
A reduction in the C/N ratio was observed and this reached a plateau
after ∼100 min (Fig. S3A). All of the following experiments were
performed ∼2 h after replacing the medium to reduce the basal
activity of ERK and Akt.

Fig. 1. Construction and application of a HeLa cell line that expresses fluorescent proteins that visualize the nucleus, Akt activity and ERK activity to
report on G-protein-coupled receptor activation. The top panel shows a schematic drawing of the open reading frame of the construct with histone 2A (H2A)
tagged with mScarlet-I (mSc-I), the Akt kinase translocation reporter (Akt-KTR) tagged with mTurquoise (mTq2) and the ERK kinase translocation reporter (ERK-
KTR) tagged with mNeonGreen (mNG). The P2A sequences ensure separation of the proteins. The middle panel shows HeLa cells expressing the construct.
From left to right: nuclear marker, Akt-KTR and ERK-KTR in red, cyan and green, respectively. The lower panel shows time-lapse ERK responses to maximum
ligand stimulatory concentrations, where each row reflects a single cell. HeLa cells were treated with 100 µM histamine (His), 100 pM UK 14304 (UK), 1300 nM
sphingosine-1-phosphate (S1P) or no ligand (none). The ligand was added at t=0 and remained present. The ERK cytoplasmic to nuclear intensity (C/N) ratio is
presented as a false color and reflects the cytoplasmic over nuclear ratio of the ERK-KTR, normalized by subtracting the average from the two time points prior to
stimulation. For each ligand, the data correspond to at least three biological replicates, which are combined and sorted according to their integrated response.
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Next, we examined the effect of the MEK inhibitor PD 0325901.
Pre-incubation with the inhibitor for 20 min blocked the response
of the ERK-KTR to FBS, but not that of the Akt-KTR (Fig. S3B).
This supports previous observations (Maryu et al., 2016; Goedhart
et al., 2012) that the P2A effectively separates the different
components, because the Akt-KTR and ERK-KTR show
independent relocation patterns. The pool was used to isolate
several clones. Each of the monoclonal cell lines was tested for their
response to FBS, and the fluorescence intensity of the biosensors
was quantified (Fig. S4, Table S1). A single clone was selected and
used for the remainder of our studies.

Activation dynamics of ERK after GPCR activation
We selected three GPCR families, based on their capacity to activate
different families of heterotrimeric G proteins and their expression
in HeLa cells. We selected histamine receptors (HRs) (Jain et al.,
2016; Meisenberg et al., 2015) and sphingosine-1-phosphate
receptors (S1PRs) (Gandy et al., 2013), for which we used the
respective endogenous ligands histamine and S1P. We also selected
α2-adrenergic receptors (α2ARs) (Gibson and Gilman, 2006) and
used UK 14304 (UK), also called brimonidine, a widely used full
agonist with very high potency and selectivity (Kurko et al., 2014).
To examine the activation of ERK by the three different GPCRs,

we added a saturating concentration of agonist to the HeLa cell line
expressing the KTR reporter. All three agonists were capable of
inducing an increase in ERK activation as measured by an increased
C/N ratio. The responses were transient and showed considerable
heterogeneity in amplitude (Fig. 1).

Concentration–response curves of ERK activation
Next, we examined the effect of different concentrations of agonists.
Histamine stimulation caused a transient increase in ERK activity
from concentrations as low as 0.19 µM, as shown in Fig. S5A.
The maximum activity was concentration dependent and was
reached ∼10 min post-stimulation. Similarly, UK addition led to
a rapid increase in ERK activity and reached a transient maximum
10–15 min post-stimulation, after which it decreased to reach a
plateau 30 min later (Fig. S5B). The increase was observed with
concentrations as low as 0.41 pM. In contrast to histamine and UK,
S1P showed a more complex pattern with peaks at different time
points, depending on the concentration of the agonist (Fig. S5C).
Overall, the ERK activity was concentration dependent for all three
agonists, with considerable heterogeneity at all of the tested
concentrations.
We used the ERK-KTR data to fit concentration–response curves

for ERK activity using the area under the curve (AUC) as the
measure of the response, which we calculated as the sum of C/N
ratios between 7 and 38.5 min post-stimulation. For each biological
replicate at every concentration, we calculated the average AUC,
indicated by a large dot in Fig. 2. The average of the biological
replicates was used to fit the curve, and the results are shown in
Fig. 2 and Table S2. The half-maximal effective concentration
(EC50) values for histamine, S1P and UK were 0.3 µM, 64 nM and
2.5 pM, respectively.

Effect of inhibiting heterotrimeric G proteins on ERK and
Akt activation
To examine the role of heterotrimeric G proteins in the activation
of ERK and Akt, we used YM-254890 (YM) to inhibit Gq and
pertussis toxin (PTx) to inhibit Gi (Campbell and Smrcka, 2018).
After inhibitor treatment, we stimulated the cells with histamine,
S1P or UK in a range of concentrations. The dynamics of the

responses are reported in Fig. S5. The AUC was used to construct
concentration–response curves, and these are depicted in Fig. 2. We
note that YM, which targets Gq, inhibits the ERK response by
histamine, whereas the response to UK is largely inhibited by PTx,
which interferes with Gi signaling. The response to S1P is hardly
affected by YM, but the amplitude is reduced by PTx.

Next, we examined the responses of Akt, which is simultaneously
measured. The Akt responses were noisier due to lower amplitudes.
Fig. 3 shows the Akt responses to histamine. In the absence of
inhibitors, the Akt activation is partially transient, with the response
peaking 10 min post-stimulation and decreasing in the following
25 min to reach baseline levels (Fig. 3A). Gi inhibition appears to
cause a small increase in maximum activity and possibly a short
delay in time of maximum activity, as shown in Fig. 3B. Inhibition
of Gq (Fig. 3C) decreases the maximum activity up to ∼70%, and
simultaneous inhibition of Gq and Gi causes a decrease in the
responses by up to ∼90%, as shown in Fig. 3D. These Akt
amplitudes and effects of inhibitors are largely similar to those
observed for ERK.

ERK and Akt activities are correlated
It is striking that Gq inhibition has a similar inhibitory effect on Akt
and ERK activity when cells are treated with histamine. To examine
the correlation between ERK and Akt activity in more detail, we
calculated the integrated response (AUC) for ERK and Akt in every
cell for the different treatments. By plotting the ERK versus Akt
activity, the relationship between both activities can be visualized.
As can be inferred from Fig. 4, there is a moderate positive
correlation between both kinase activities for each ligand. In
conditions in which G-protein inhibition drastically affects the
activity of the kinases, such as YM for histamine and PTx for S1P,
the ERK responses are more strongly reduced than the Akt
responses. Finally, we note that, for S1P, the Akt activity is
hardly or not reduced in the presence of inhibitors.

Basal kinase activity does not affect the response amplitude
The measured single-cell kinase activities within an experimental
condition, or even within a biological replicate, exhibit considerable
heterogeneity. This can be clearly observed in the data shown in
Figs 1–4. A possible explanation for the observed heterogeneity is
that differences in basal kinase activity affect how the cells respond
to the stimulus.

The information on basal kinase activity is lost when the data are
normalized to set the initial C/N ratio to unity. To examine how the
initial C/N ratio affects the response dynamics, we looked at the
original, non-normalized data. Fig. 5A shows the variability among
the C/N ratios for each KTR before ligand stimulation. For ERK,
these start C/N ratios are spread evenly between 0.20 and 0.75. In
Fig. 5B, the ERK and Akt C/N ratios from individual cells are
plotted, showing a weak correlation and start C/N ratios for Akt
mostly between 0.30 and 0.65.

To examine whether the start C/N ratios, which reflect basal
kinase activity, have an effect on the absolute C/N ratio changes, we
decided to split each of the three datasets (without inhibitors) into
three groups that represented relatively low, medium and high start
ratios. Fig. 5C shows the results for ERK. Overall, cells with
different start ratios show comparable curve shapes and maximum
activity for the three ligands. For the lowest concentrations, there
appears to be a trend in which the ERK maximum activity increases
slightly with the start ratio, but the differences are relatively small.

To conclude, our data show that the absolute changes in C/N
ratios are hardly or not affected by the start C/N ratios. This suggests
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that the measured biosensor responses are not saturated in our
experiments and that we can capture the entire range of kinase
activities.

Clustering reveals different kinase responses to GPCR
activation
To gain more insight into the heterogeneity and possible patterns in
the response, we turned to cluster analysis. Clustering simplifies the
data by defining different categories that group mathematically
similar responses. This method had previously been used to
examine the response of fluorescence resonance energy transfer
(FRET) biosensors (Kuchenov et al., 2016) and KTRs (Gagliardi
et al., 2021). First, we used a subset of the data to explore the optimal
clustering method and to find the optimal number of clusters.
From our data, it is clear that there are major differences between

the quantified ERK and Akt responses. First, the dynamic range of
the ERK responses to the ligands is approximately three to four
times bigger than that of the Akt responses. Second, the ERK
responses display various different curve shapes, whereas the Akt
responses vary almost exclusively in amplitude. Third, owing to the
low dynamic range, small variations in the focal plane during

imaging can have a significant effect on the Akt ratios. For these
reasons, we decided to evaluate three to five clusters for Akt, and
eight to ten clusters for ERK. We consider that these cluster
numbers capture most of the variability in the data, without
complicating interpretation of the results, providing high-quality
meaningful information. In addition, we chose to use the C/N ratio
changes between 7 and 38.5 min post-stimulation, as this time range
contains most of the information.

Owing to popularity for trajectory analysis and access to
clustering programming packages, we chose to use k-means
clustering and hierarchical clustering. After applying the different
clustering methods to a subset of the combined data from all ligands
and conditions, we used several metrics to assess and compare the
quality of the clustering methods. The advantage of considering
several metrics is that we reduce the risk of picking a cluster number
that may be favored by a single indicator, but not by the rest. For
each of the metrics, the higher the output, the better the quality of the
result.

Fig. S6 shows the metrics for various cluster numbers for the
ERK and Akt data. As can be observed, the multiple metrics do not
always show similar trends, which is not surprising given the

Fig. 2. Concentration–response curves for ERK activity under different conditions. The area under the curve (AUC) was used as the measure of response.
The AUCwas calculated as the sum of normalizedC/N ratios from time points 9–18, corresponding to 7–38.5 min post-stimulation. The datawere fitted with a four-
parameter logistic equation, using the average of the average ERK AUC per biological replicate. Biological replicates are represented by different colors and their
average is shown as a large dot. DMSO, dimethyl sulfoxide; PTx, pertussis toxin; YM, YM-254890.
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Fig. 3. Akt responses to different concentrations of histamine and the effect of Gq and Gi inhibition. (A) No inhibitor (DMSO). (B) Gq inhibition (YM).
(C) Gi inhibition (PTx). (D) CombinedGq andGi inhibition (YM+PTx). Akt C/N ratio change is calculated by subtracting the average from the two time points prior to
stimulation. Each panel shows combined data from at least three biological replicates. Gray lines represent single-cell traces. Thick colored lines show the mean
and thin colored lines the s.d. for each ligand concentration. Numbers of cells are shown between brackets.

Fig. 4. Activity of ERK versus activity of Akt
per cell. The AUC is used as the measure of
response and was calculated as the sum of
normalized C/N ratios from the time points
9–18, corresponding to 7–38.5 min post-
stimulation. Saturating concentrations of the
ligands were used. For each cell, the AUC of
Akt was plotted against the AUC of ERK, and
the data from all biological replicates per
condition are shown.
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differences in the ways they are calculated. In order to combine the
different metrics to select clustering candidates, we decided to
normalize each of the metric values by dividing it by the highest
value among all the 15 combinations. Then, for each combination
(cluster method and number), we added the values from all metrics,
and the results are shown in Table S3. From these, we picked two
combinations per kinase, shown in blue, based on a higher score and
lower number of clusters. Finally, we generated two plots to inspect
the selected clustering approaches. First, we plotted the distribution
of the clusters among the negative controls (no ligand added) and
the experiments with the highest ligand concentrations. Second, we
plotted the trajectories per cluster, using all 15,000 cells. These plots
are shown in Fig. S7. Both algorithms yielded similar results, and
we decided to use eight clusters for ERK with the Manhattan
distance and Ward2 linkage method. For Akt, we chose three
clusters based on the Euclidean distance with Ward2 linkage.
Oncewe had selected the clusteringmethod and optimal number of

clusters, we applied it to the combined data from all ligands and
inhibitory conditions (∼68,000 cells). Fig. 6 shows eight distinct
response patterns for ERK activation, including no and low responses

(cluster 1 and 2), transient responses (cluster 3 and 5) and different
patterns of a more sustained response (cluster 4, 6, 7 and 8).

Our initial qualitative judgement that the response to histamine
and UK is similar is also quantitatively supported by the graph in
Fig. 6A that shows the contribution of each cluster to a treatment. A
transient response dominates for these agonists. In contrast, the
response to S1P is very heterogeneous, with contributions of cells
that show transient ERK activity and cells that show sustained
activity. The biphasic ERK activation pattern, which is specific for
stimulation with S1P, is reflected by clusters 7 and 8.

The cluster analysis for Akt is shown in Fig. 7. The responses are
grouped in three patterns, one of non-responding cells and two with
sustained responses, differing in amplitude. The activation of Akt is
remarkably similar between the different treatments.

In Fig. 7C, the co-occurrence of ERK and Akt clusters is
depicted. Also, in this plot, there is similarity between the responses
to the ligands histamine and UK, with a high co-occurrence of
transient ERK activation (clusters 3 and 5) with a sustained Akt
response (clusters 2 and 3). The response to S1P shows again a
larger heterogeneity.

Fig. 5. Distribution of start C/N ratios
and effect on the ERK response.
(A) Frequency of the average C/N ratios of
ERK prior to ligand stimulation, using the
data from single cells from all the
experiments. (B) Relationship of the resting
ERK C/N ratios and the resting Akt C/N
ratios. (C) The data for the ERK responses
at themaximum concentration of each of the
ligands were grouped according to the start
ratio, as indicated in the labels on top of the
graphs. The ‘low’ pool had a start ratio of
0.15–0.35, the middle pool a start ratio of
0.35–0.6 and the ‘high’ pool a start ratio of
0.6–1.0. The ERK C/N ratio change was
normalized by subtracting the average of the
two time points prior to stimulation. The line
shows the average and the ribbon shows
the s.d.
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Because the ERK activation shows the largest heterogeneity, we
examined the effect of heterotrimeric G-protein inhibition. For each
of the conditions, we display the relative contribution of each of the
different patterns. The results are depicted in Fig. 8 and Fig. S8A.
The results for Akt are shown in Fig. S8B.
The fraction of non-responding cells (cluster 1) systematically

decreases when the ligand concentrations of histamine, UK or S1P
are increased. Although the inhibitors are effective in some
combinations, i.e. YM and histamine, PTx and UK, there is still a
fraction of cells that respond. This suggests that the ERK activity is
not exclusively due to the activation of the corresponding
heterotrimeric G protein.
We note that there are hardly any unresponsive cells for S1P

concentrations above 81.3 nM. However, there is substantial
heterogeneity in the responses above this concentration. At least
six different response patterns can be discerned. Surprisingly, the
heterogeneity is strongly reduced when Gi signaling is inhibited by
PTx. The rapid rise in ERK activation (as observed for stimulation
by histamine and UK) is abolished and a delayed and more
sustained response is the result. The effect of YM on the ERK
activity is weak. To summarize, cluster analysis reveals the
contribution of different ERK activation patterns and the palette
of patterns can be profoundly changed by inhibition of
heterotrimeric G proteins.

DISCUSSION
Most studies of kinases activated downstream of GPCR signaling
pathways are performed using biochemical assays on cell
populations. These methods cannot measure the dynamics in
individual cells and detect the heterogeneity of the individual
responses. The recent engineering of fluorescent biosensors that are

based on translocation has enabled high-content imaging of kinases
such as ERK, Akt, JNK and p38. These reporters have been
successfully used to study growth factor signaling in a number of
settings and systems (Blum et al., 2019; Ryu et al., 2016). So far,
only a couple of studies looked into kinase activation by GPCRs in
single cells with KTRs and these studies used overexpressed
receptors (Jung et al., 2017; Spinosa et al., 2019).

Here, we use KTRs that report on ERK and Akt (Maryu et al.,
2016) to generate monoclonal stable cell lines that can be used for
multiplex imaging and demonstrate that the KTRs are sensitive
enough to detect activation of endogenous GPCRs. This is in
marked contrast to other fluorescent biosensors that, in our hands,
typically require an overexpressed receptor for robust responses
(van Unen et al., 2016a). Our imaging pipeline enables high-content
imaging of the responses, yielding quantitative, dynamic data from
thousands of cells. The data were used to generate concentration–
response curves for three agonists from the imaging data and to
examine the effect of G-protein inhibition. The analysis revealed
different dynamics between GPCRs, and the cluster analysis
showed differences between subpopulations of cells activated
with the same agonist.

Our initial idea was to use KTRs as specific read-outs for
heterotrimeric G-protein activity, which is relevant for understanding
ligand-biased activation (Kenakin, 2019). This would be achieved
when Gq activation is linked to ERK and Gi activation results in Akt
activity. We selected three agonists that would activate three different
families of GPCRs that are endogenously present in HeLa cells.
Histamine is reported to predominantly activate Gq in HeLa cells by
the histamine H1 receptor (Pietraszewska-Bogiel and Goedhart, 2019
preprint), and UK activates Gi by α2-adrenergic receptors (van Unen
et al., 2016b). Our data with the inhibitors YM and PTx, which are

Fig. 6. Results of clustering all data for the
ERK responses. The selected method has
eight clusters and uses Manhattan distance and
the Ward2 linkage method. It was applied to all
the cells from the combined experiments with
different ligands, concentrations, conditions and
negative controls. (A) Cluster distribution of
responses in a control and in the condition of
maximal ligand concentration. The control
reflects addition of medium instead of ligand.
(B) Average trajectory and frequency of each
cluster. Per cluster, the lines represent the
average trajectory and the ribbon the s.d.
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selective for Gq and Gi, respectively, show that the two agonists
indeed preferentially activate a single heterotrimeric G-protein class.
Despite the activation of different heterotrimeric G-protein

families, the responses of the ERK-KTR to histamine and UK are
remarkably similar. Both agonists also show a comparable effect on
the amplitude and kinetics of the Akt-KTR. Therefore, our choice of
KTRs does not enable the discrimination of signaling through Gi
and Gq. The combination of an ERK-KTR and Akt-KTR is not
optimal, because their activities are largely correlated and similar for
different G-protein classes. Therefore, the measurement of Akt does
not add information. Moreover, the Akt response had a relatively
poor amplitude.
The situation for S1P is different. S1P can activate a number

of different GPCRs, all known to be expressed by HeLa cells as
shown in supplemental figure S4A of Gandy et al. (2013). As a
consequence, S1P will activate a number of different heterotrimeric
G-protein families. We observed that activation of endogenous S1P
receptors resulted in a strong, but highly heterogeneous, ERK-KTR
response, with two peaks in a population of cells. Both the dynamics
and the amplitude varied between populations of cells, and cluster
analysis was applied to define eight different patterns (including a
flat line for non-responding cells). At least six of these patterns were
identified at the higher S1P concentrations. From these data, it is
clear that genetically identical cells can respond in a highly
heterogeneous manner to a single ligand, which is in line with

previous studies (Niepel et al., 2009). Intriguingly, the
heterogeneity in ERK dynamics is reduced when Gi signaling is
inhibited. When PTx is present, the biphasic response is abolished
and the first peak of activation is reduced, suggesting that the
initial response is due to Gi signaling. This result demonstrates
that, by modulating the palette of heterotrimeric G proteins,
the response dynamics are altered, which can be readily identified
by cluster analysis. The clustering is a powerful method for the
detection of patterns and simplification of large amounts of
data. Yet, it should be realized that clustering is mathematical
procedure that is not necessarily reflecting the biological processes.
One example is the graded response of ERK and Akt activities
to ligands, whereas cells are grouped as weak, middle and
strong responders. This may be solved by developing and using
clustering methods that take the underlying biological processes
into account.

To enable better insight into the specific heterotrimeric families
that are activated by GPCRs, future studies looking into the
response of different KTRs to different heterotrimeric G proteins
and agonists are required. There is a translocation reporter, PKA-
KTR, which is expected to be specific for Gs (Regot et al., 2014),
and there are several KTRs for which selectivity remains to be
examined, e.g. p38-KTR and JNK-KTR. In addition, existing
proteins that translocate in response to cell stimulation, including
MRTF-A, YAP, NF-κB and SMAD, can be examined.

Fig. 7. Results of clustering all data for the
Akt responses. The selected method has three
clusters and uses Euclidean distance and the
Ward2 linkage method. It was applied to all the
cells from the combined experiments with
different ligands, concentrations, conditions and
negative controls. (A) Cluster distribution of
responses in a control and in the condition of
maximal ligand concentration. The control
reflects addition of medium instead of ligand.
(B) Average trajectory and frequency of each
cluster. Per cluster, the lines represent the
average trajectory and the ribbon the s.d. (C) Co-
occurrence of the ERK and Akt clusters for the
control condition and for each of the three
ligands at maximal concentration.
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The origins of the observed heterogeneity are unclear at present.
We have used a monoclonal cell population, and, therefore, the
origin of the heterogeneity is likely to be non-genetic. In addition,
we have verified that the differences between cells are not due
to saturation of the sensors. Despite the use of monoclonal
populations, gene expression is a stochastic process (Sanchez and
Golding, 2013), and cellular noise resulting in differences in the
relative concentrations of the components involved in the signaling
network may lead to the observed differences (Niepel et al., 2009).
Moreover, it is unclear what the consequences of this heterogeneity
in kinase activities as a result of GPCR activation are.
Heterogeneous single-cell response dynamics has previously been
linked to differences in physiologically relevant processes such as
proliferation (Albeck et al., 2013), metabolic adaptations (Hung
et al., 2017), migration (Aoki et al., 2017) and cell fate (Johnson and
Toettcher, 2019). Because GPCRs are expressed ubiquitously and
participate in many different processes, the implications of this
heterogeneity need to be studied in a specific physiological context.
Importantly, given the long-term cellular effects of ERK and Akt

kinase activities, special attention should be given to changes in
gene expression or the cell cycle.

A limitation of our work is that the contribution of G-protein-
independent mechanisms for ERK and Akt activation are unknown.
At least twoways of activating ERK have been reported that may not
require G proteins, i.e. β-arrestin-mediated signaling (Jean-Charles
et al., 2017) and transactivation of a receptor tyrosine kinases by a
GPCR leading to ERK and Akt phosphorylation (Cattaneo et al.,
2014). Based on our data, we cannot exclude that β-arrestin or
receptor tyrosine kinases play a role in the activation of ERK and
Akt. To study the role of non-classical routes to ERK activation,
inhibitor studies, or probes that interrogate these processes, would
be useful.

Increasing the number of probes to measure several processes
simultaneously would provide a better picture of the contribution of
different networks and their interactions. Multiplex, live-cell imaging
with six probes has been demonstrated (Valm et al., 2017) and would
enable the measurement of a reference for segmentation and five
KTRs or other probes. Ongoing efforts to engineer brighter

Fig. 8. Cluster distribution of ERK responses at different
concentrations per ligand. The temporal profile and the
corresponding color code of each cluster (repeated from Fig. 6B) is
indicated as a key at the top of the figure. (A–C) For each ligand,
histamine (A), UK 14304 (B) and sphingosine-1-phosphate (C), the
relative contribution of the clusters is shown for the different
treatments: no inhibitor (DMSO), Gq inhibition (YM), Gi inhibition
(PTx), and combined Gq and Gi inhibition (YM+PTx).
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fluorescent proteins and hybrid genetic tags (e.g. HaloTags and
SNAP tags) are important to further improve multiplex imaging. The
functional translocation read-outs can potentially be combined with
morphological profiling (Bray et al., 2016) for multiparameter, high-
content imaging-based drug screens.
We hope that the new imaging strategy and analysis presented

here will be valuable for future studies that use imaging of kinase
activity in single cells to connect GPCR activation with
physiological effects.

MATERIALS AND METHODS
Reagents
S1P (Sigma-Aldrich, S9666) was prepared as a 1.3 mM stock solution in
methanol. Histamine (Sigma-Aldrich, H7125) was prepared as a 100 mM
stock solution in water. UK 14304 (Sigma-Aldrich, U104) was prepared as a
10 µM stock solution in dimethyl sulfoxide (DMSO). YM-254890
(FUJIFILM Wako Pure Chemical Corporation, 257-00631) was prepared
as a 1 µM solution in 33%DMSO inMQwater. PTx (Invitrogen, PHZ1174)
was prepared as a 100 ng/ml solution in water. PD 0325901 (Sigma-Aldrich,
PZ0162) was prepared as a 1 mM solution in DMSO.

Cloning single KTRs and nuclear marker
The first step to generate the multicolor constructs was to clone the
individual KTRs and the nuclear marker, and tag them with the fluorescent
proteins of interest. The ERK-KTR, developed by Regot et al. (2014), and
the Akt-KTR, by Maryu et al. (2016), were part of the pHGEA plasmid
kindly shared by Dr Kazuhiro Aoki (National Institute for Basic Biology,
Okazaki, Japan). Both sequences contained a P2A sequence in front, which
we kept to ensure equimolar expression of the separate proteins from a single
transcript (Kim et al., 2011).

P2A-ERK-KTR and P2A-Akt-KTR sequences were amplified by PCR
from pHGEA (Akt: Fw 5′-TATAGGTACCAAACCATGGGGTCAG-
GGGCCACCAACTTC-3′ and Rv 5′-TATAACCGGTATGCGGCCGCC-
GAGCGTGATGTTATC-3′; ERK: Fw 5′-TATAGGTACCAAACCATG-
GGGAGCGGGGCTACCAACTTC-3′ and Rv 5′-ATATACCGGTATG-
CCGCCGGACGGGAATTG-3′) to introduce Acc65I and AgeI restriction
sites (underlined in primer sequences). Next, the P2A-KTRs PCR products
and Clontech N1 vectors containing either mTq2 (Goedhart et al., 2012),
mNG (Shaner et al., 2013) or mScI (Bindels et al., 2016) were digested with
Acc65I and AgeI, ligated using T4 DNA ligase, and transformed by heat-
shock using DH5α Escherichia coli competent cells.

In addition, the residues S294 and S344 in the Akt-KTR were mutated
to Ala (the mutation is underlined in the primer sequence) by site-directed
mutagenesis (S294A: Fw 5′-CCAAGTGGCCTGGCGCCCCCACGTCAC-
GCA-3′ and Rv 5′-TGCGTGACGTGGGGGCGCCAGGCCACTTGG-3′;
S344A: Fw 5′-TGCGCCTCTCGCGCCCATGCTCTACAGCAG-3′ and Rv
5′-AGCATGGGCGCGAGAGGCGCATCATCGTCC-3′), as it has been
reported that these residues in FOXO3 could be phosphorylated by ERK
(Yang et al., 2008). We used PfuTurbo DNA polymerase, followed by DpnI
digestion to destroy template DNA.

To generate the nuclear marker, we replaced mTq2 from a Clontech N1
H2A-mTq2 for mScI using AgeI and BsrGI.

Combining KTRs
The second step was to combine the translocation reporters and the nuclear
marker. Taking advantage of the compatible cohesive ends generated by
digestion of Acc65I and BsrGI, we first generated P2A-Akt-KTR-mTq2-
P2A-ERK-KTR-mNG by ligating P2A-ERK-KTR-mNG digested with
Acc65I and P2A-Akt-KTR-mTq2 digested with Acc65I and BsrGI. Later,
with the same approach, we generated H2A-mScI-P2A-Akt-KTR-mTq2-
P2A-ERK-KTR-mNG, which we refer to as HSATEN. The plasmid is
available from Addgene (plasmid #129631).

To incorporate HSATEN into the PiggyBac transposon vector pMP-PB
(Matasci et al., 2011), kindly shared by Jakobus van Unen and David
Hacker, we digested both constructs with NheI and XbaI and then ligated
them. Because the cohesive ends generated by these enzymes are

compatible, we performed a colony PCR to determine which colonies
expressed the construct in the right orientation. We used transposon vectors
containing antibiotic resistance for puromycin, blasticidin, hygromycin and
zeocin. The plasmid with puromycin resistance was used in this study and is
available from Addgene (plasmid #129632).

Cell culture
HeLa cells (CCL-2, American Tissue Culture Collection, Manassas, VA)
and HeLa stable cell lines were maintained in ‘full growth medium’, or
Dulbecco’s modified Eagle medium with GlutaMAX (Gibco, 61965059)
supplemented with 10% FBS (Gibco, 10270106), at 37°C in 7% CO2 in
humidifying conditions. Cells were passaged every 2–3 days by washing
with HBSS (Gibco, 14170), trypsinizing using 0.25% Trypsin-EDTA
(Gibco, 25200056), spinning down at 300 g for 5 min and resuspending
in full growth medium. All cells were routinely tested for mycoplasma
by PCR.

Generation of HSATEN cell lines
HeLa cells (200,000) in 2 ml full growth medium were plated per well on a
six-well plate (Corning, 3516) and left to grow overnight. The following
day, we co-transfected 500 ng pPuro-PiggyBac-HSATEN and 200 ng
transposase using 3.5 µl PEI (1 mg/ml in water). As a negative control, we
transfected HSATEN and transposase. Twenty-four hours post-transfection,
1 μg/ml puromycin (Gibco, A1113803) was added to the cells, and, after
48 h, both the medium and puromycin were refreshed. After 72 h of
selection with puromycin, the cells were trypsinized and passed to T25
flasks until confluency.

To sort by FACS, the cells were first washed, trypsinized, spun down and
resuspended in full growth medium as for passaging. Then, the cells were
spun down, resuspended in 2% FBS in HBSS containing 1 µg/ml 4′,6-
diamidino-2-phenylindole (DAPI; Invitrogen, D1306), spun down,
resuspended in DAPI-free 2% FBS-HBSS, and kept in the dark on ice.
Cells were sorted with the FACSAria™ III (BD Biosciences, Franklin
Lakes, NJ, USA), using a 100 µm nozzle at 20 psi pressure.

Single cells were identified by drawing gates using the area, width and
height of forward scatter and side scatter, and living cells based on being
DAPI negative. Living cells were identified based on the DAPI staining. To
draw the gates for mNG- and mScI-positive cells, we used HeLa cells as a
negative control. DAPI was excited with 405 nm and measured with a 450/
50 nm bandpass emission filter. mNG and mScI were excited with 488 nm
and 561 nm, respectively, and detected with 530/30 and 610/20 bandpass
emission filters.

We selected four gates based on mNG intensity, distributed along the
50% brightest cells. We then sorted the pools into 15 ml tubes and single
cells in 96-well plates. The tubes and plates contained full growth medium,
supplemented with 10 mM HEPES and 1% penicillin/streptomycin (P/S)
(Gibco, 15140148). Additionally, the 96-well plates were first coated with
14 µg/ml fibronectin in PBS for 1 h. The cells in the tubes were spun down,
resuspended in full growth medium with 1% P/S and seeded in wells or
flasks, depending on the number of cells. The medium of the 96-well plates
was replaced the following day by full growth medium. The single clone
populations were sequentially transferred to bigger wells/flasks to expand.

Characterization of HSATEN cell lines
To test the dynamic range of the KTRs in the sorted cells, we used 5% FBS,
given the strong stimulatory effect of the growth factors it contains on ERK
and Akt activities. We found no correlation between expression level
(inferred from fluorescence intensity) and response but observed that some
of the brightest cells displayed lower responses. Therefore, we continued
with cells from a pool with intermediate brightness.

For each of 13 monoclonal lines derived from this pool, we quantified the
cellular fluorescence intensity prior to stimulation, and the translocation of
the Akt-KTR and ERK-KTR in response to serum (Fig. S4). We selected
five clones for further characterization and examined their response to high
concentrations of histamine (100 µM), S1P (1.3 mM) and UK (10 nM). We
decided to use clone E2 for further studies with these ligands due to higher
brightness than the other clones.
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Live-cell imaging
For live-cell imaging, we used a TCS SP8 confocal microscope (Leica
Microsystems, Wetzlar, Germany) equipped with a 10× air objective Plan
Apo 0.40 NA and a Mercury lamp at 37°C. We excited mTq2, mNG and
mScI with 440 nm DPSS, 488 nm Argon and 561 nm DPSS lasers.
Fluorescence was detected using HyD detectors for mTq2 and mScI (452–
500 nm and 590–675 nm) and a PMT detector for mNG (506–560 nm). The
width of the detectors was controlled with sliders through Application Suite
X (LAS X, Leica Microsystems).

The day before imaging, ∼120,000 cells were seeded in a glass-bottom
eight-well µ-slide (Ibidi, 80827) in full growth medium. Two hours before
imaging, the medium was removed and replaced with microscopy medium
(MM) (20 mM HEPES pH 7.4, 137 mM NaCl, 5.4 mM KCl, 1.8 mM
CaCl2, 0.8 mM MgCl2, 20 mM glucose) containing 0.033% DMSO or
1 µM YM-254890 (dissolved in 33% DMSO in water). PTx was added at
the end of the day the cells were seeded, at a concentration of 100 ng/ml. We
incubated the cells for 2 h with serum-free MM prior to imaging to reduce
the basal kinase activities of ERK and Akt.

The acquired images had a 12-bit color depth and 1024×1024 pixels
resolution. Images were acquired every 3.5 min, and each image was the
average of four frames.

To keep the cells in focus, we executed Best Focus on the first well at the
beginning of each time point, and the correction was extended to the rest of
the wells. Ligands were pipetted to all wells during time point 7.

Ligand solutions were prepared in pre-warmed MM containing either
DMSO or YM, depending on the experiment. Then, 100 μl of each ligand
solution was added to the well containing 300 μl. For histamine and UK, the
stock solutions were used to prepare the solution with the highest
concentration, and serial dilutions were prepared from it. For S1P, the
serial dilutions were prepared in methanol using gastight syringes
(Hamilton, 1702 and 1710), and medium was added afterwards up to
100 µl. Ligand solutions were kept at 37°C for 10 min before pipetting to
avoid cellular stress. For stimulation with 5% FBS, 20 µl pre-warmed FBS
was added to each well containing 380 µl MM.

To determine the concentrations that yield minimum and maximum
Akt/ERK activities for each ligand, we tested concentrations in the
following ranges: 0.13–200 µM for histamine, 16–2600 nM for S1P and
0.13–10,000 pM for UK.

Image processing
A reproducible image processing pipeline using Fiji, CellProfiler and R is
available at https://github.com/JoachimGoedhart/Nuclear-translocation-
analysis. The repository includes example data, code, a manual and the
expected outcome as a graph. Below, we describe the steps in detail.

Processing of the raw images was performed using FIJI (Schindelin et al.,
2012). The individual signals were not unmixed because the cross excitation
and bleed through were close to zero. To facilitate segmentation of the
nuclei, we first subtracted 250 counts from the mScI images to remove any
counts in the cytoplasm due to overexpression of the H2A marker. To
remove the background from the mTq2 channel images, we applied a rolling
ball of 70 pixels radius and used these images for quantification of the mTq2
signals. For identification of the cell boundaries, we first applied a Gaussian
blur with sigma 2 to smoothen the mNG images and then applied a manual
threshold from 300 to 65,535 to obtain a binary mask.

Segmentation and tracking of nuclei and cytoplasm
We used a custom-made CellProfiler (version 3.0.0) (McQuin et al., 2018)
pipeline for segmentation, measurement of intensity and shape features, and
tracking. We first used the processed mScI images to identify the primary
objects, i.e. nuclei. We used a global threshold of 330 counts to separate
pixels into background and foreground, and included objects with a
diameter within 8–20 pixels. Clumped objects were identified and separated
according to intensity. To identify the cells, we used the nuclear regions of
interest (ROIs) as seeds in the binary mNG images. The nuclear ROIs were
expanded up to 5 pixels in all directions as long as there was no background.
The cytoplasmic ROIs were simply determined as a subtraction of the
nuclear ROI from the cellular ROI. The nuclear and cellular ROIs were then
tracked through the time lapses. These ROIs were identified as unique

objects if the distance between their positions in consecutive images was
lower or equal to 3 pixels. Finally, the size/shape features of the nuclear and
cytoplasmic ROIs were exported, together with the intensity features of
these ROIs in the processed mTq2 and raw mNG images.

Data processing
We then used a custom-made R script to process the exported data from
CellProfiler. First, we applied filters to exclude ROIs with mean intensity
values lower than ∼260 counts and higher than ∼4000. In addition, we
removed ROIs with an area lower than 100 pixels and average pixel radius of
1 or less. Then, we removed the objects that were not present in each time
point as a single object. Finally, we calculated the C/N ratio per cell by
dividing the mean intensities of both ROIs, for mTq2 and mNG channels.

Owing to the experimental setup, the imaging of the six wells is not
simultaneous, as there is a delay of 0.5 min between each well and the
subsequent one. To get C/N ratios at the exact same times and simplify later
analysis, we applied a linear interpolation to the data. In addition, data were
normalized by subtracting the average of two time points prior to stimulation
(usually the 5th and 6th time point) from every data point.

AUC was defined as the sum of the C/N ratios from the time points 9–18,
corresponding to 7–38.5 min post-stimulation.

Concentration–response curves fitting
To estimate the EC50 for each condition, we fitted the data using a four-
parameter logistic curve, with the function ‘drm’ from the package ‘drc’
(Ritz et al., 2015). For each concentration, we used the average of the
average value per biological replicate. The response from the negative
control was entered as a low concentration, as the log of 0 is undefined. The
data and R script for fitting the data are available at https://github.com/
JoachimGoedhart/GPCR-KTR.

Trajectories clustering with R
To cluster the data, we decided to combine the data from the three ligands, in
order to compare the heterogeneity of responses among the three ligands. In
addition, we included data from three experiments in which only vehiclewas
added, to use as negative control. To speed up the analysis, we used a subset
of 15,000 cells, equivalent to ∼20% of the total number of cells. We used
two different clustering approaches, hierarchical clustering and k-means
clustering, and applied these to the normalized ratios from the time points
9–18, corresponding to 7–38.5 min post stimulation.

For the hierarchical clustering, we first used the function ‘parDist’, from
the package ‘parallelDist’ (https://cran.r-project.org/web/packages/
parallelDist/index.html), to create a matrix with the calculated ‘distances’
between all the cells. These distances represent the (dis)similarity between
any two trajectories, and we used two of the most commonly used distance
metrics, Manhattan and Euclidean. We then used the function ‘hclust’ from
the package ‘fastclust’ (https://cran.r-project.org/web/packages/fastcluster/
index.html) to cluster the trajectories according to the values in the distance
matrix, using the linkage methods Ward and Ward2. The result is a
dendrogram that can be cut into a k number of clusters or at a certain
‘height’. The Ward method is commonly used with squared Euclidean
distances, but it can be used with non-squared Euclidean distances (Szekely
and Rizzo, 2005) or Manhattan distances (Strauss and Von Maltitz, 2017).
The only difference betweenWard andWard2, is that Ward2 first squares all
the given distances.

For k-means clustering, it is necessary to first indicate the number of
clusters (k) to be used. The Euclidean distances are then calculated and used
to cluster the cells into k clusters. We used the function ‘kmeans’ from the
base R package ‘stats’.

Cluster validation with R
Ideal clusters will be compact, well separated and connected. In other words,
we want to minimize the intra-cluster variation, maximize the inter-cluster
distances, and each object and its nearest neighbors to be in the same clusters
(Handl et al., 2005). Compactness tends to increase with cluster size,
whereas separation and connectedness decrease. There are manymetrics that
combine them and can be used to quantitatively compare different clustering
methods and to determine the ideal number of clusters.
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To validate our clustering results, we used six different metrics: BW ratio,
Dunn index, average Silhouette width, Pearson correlation index, Calinski
and Harabasz index (or variance ratio), and Connectivity. We define BW as
the ratio between the average of all distances between elements of different
clusters, and the weighted average (to cluster size) of averages of distances
between elements within a cluster. The connectivity, using a neighborhood
size of 25, was calculated using the function ‘connectivity’ from the package
‘clValid’ (Brock et al., 2008). The rest of metrics were calculated using the
function ‘cluster.stats’ from the package ‘fpc’ (https://cran.r-project.org/
web/packages/fpc/index.html).

Data visualization
Data were visualized with R and the ggplot2 package, with PlotsOfData
(Postma and Goedhart, 2019) or PlotTwist (Goedhart, 2020). The scripts to
produce the figures in the main text are available at https://github.com/
JoachimGoedhart/GPCR-KTR.
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available at https://doi.org/10.5281/zenodo.5836623.
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