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Abstract

There is a growing interest in the combined
use of NLP and machine learning methods
to predict gaze patterns during naturalistic
reading. While promising results have been
obtained through the use of transformer-based
language models, little work has been un-
dertaken to relate the performance of such
models to general text characteristics. In
this paper we report on experiments with two
eye-tracking corpora of naturalistic reading
and two language models (BERT and GPT-
2). In all experiments, we test effects of a
broad spectrum of features for predicting hu-
man reading behavior that fall into five cat-
egories (syntactic complexity, lexical rich-
ness, register-based multiword combinations,
readability and psycholinguistic word prop-
erties). Our experiments show that both the
features included and the architecture of the
transformer-based language models play a
role in predicting multiple eye-tracking mea-
sures during naturalistic reading. We also
report the results of experiments aimed at de-
termining the relative importance of features
from different groups using SP-LIME.

1 Introduction

Extensive studies using eye-trackers to observe
gaze patterns have shown that humans read sen-
tences efficiently by performing a series of fixa-
tions and saccades (for comprehensive overviews,
see, e.g. Rayner et al. (2012), Seidenberg (2017),
and Brysbaert (2019)). During a fixation, the eyes
stay fixed on a word and remain fairly static for
200-250 milliseconds. Saccades are rapid jumps
between fixations that typically last 20-40 ms and
span 7-9 characters. In addition, when reading,

humans do not fixate one word at a time, i.e. some
saccades run in the opposite direction, and some
words or word combinations are fixed more than
once or skipped altogether. Much of the early
work in this area was concerned with the care-
ful construction of sentences to model human
reading behavior and understand predictive lan-
guage processing (Staub, 2015; Kuperberg and
Jaeger, 2016). The use of isolated, decontextu-
alized sentences in human language processing
research has been questioned on ecological va-
lidity grounds. With the growing awareness of
the importance of capturing naturalistic reading,
new corpora of eye movement data over contigu-
ous text segments have emerged. Such corpora
serve as a valuable source of data for establish-
ing the basic benchmarks of eye movements in
reading and provide an essential testing ground
for models of eye movements in reading, such as
the E-Z Reader model (Reichle et al., 1998) and
the SWIFT model (Engbert et al., 2005). They
are also used to evaluate theories of human lan-
guage processing in psycholinguistics: For ex-
ample, the predictions of two theories of syntac-
tic processing complexity (dependency locality
theory and surprisal) were tested in the Dundee
Corpus, which contains the eye-tracking record
of 10 participants reading 51,000 words of news-
paper text (Demberg and Keller, 2008). Subse-
quent work has presented accounts where the abil-
ity of a language model to predict reading times
is a linear function of its perplexity (Goodkind
and Bicknell, 2018). More recent work has em-
ployed transformer-based language models to di-
rectly predict human reading patterns across new
datasets of eye-tracking and electroencephalogra-
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phy during natural reading (Schrimpf et al., 2021;
Hollenstein et al., 2021, for more details see the
related work section below). While this work
has made significant progress, there is limited
work aimed at determining the role of general
text properties in predicting eye movement pat-
terns in corpora of naturalistic reading. To date,
research has addressed this issue only peripher-
ally (Lowder et al., 2018; Snell and Theeuwes,
2020; Hollenstein et al., 2021), examining the
role of text features only on the basis of a small
number of linguistic features.

In this paper, we conduct a systematic inves-
tigation of the effects of text properties on eye
movement prediction: We determine the extent to
which these properties affect the prediction accu-
racy of two transformer-based language models,
BERT and GPT-2. The relationship between these
properties and model performance is investigated
in two ways: (a) building on the approaches in
Lowder et al. (2018) and Hollenstein et al. (2021),
by investigating the sensitivity of model predic-
tions to a wide range of text features, and (b) by
incorporating text features into the transformer-
based language models. With respect to the latter,
we examine the effects of the preceding sentence
on gaze measurement within the sentence of in-
terest. This was motivated by psycholinguistic
literature that has demonstrated “spillover” ef-
fects, where the fixation duration on a word is
affected by linguistic features of the preceding
context (Pollatsek et al., 2008; Shvartsman et al.,
2014, see also Barrett and Hollenstein (2020) for
a reference to the utility of information about
preceding input). Computational reading models
have not addressed linguistic concepts beyond the
level of the fixated word much, with a few excep-
tions, e.g. spillover effects related to previewing
the next word n+1 during the current fixation on
word n (Engbert et al., 2005). Here we extend
the study of spillover effects to the effects of tex-
tual features of the preceding sentence. To our
knowledge, this is the first systematic attempt to
investigate the effects of textual features on the
prediction of eye-tracking measures in a corpus of
naturalistic reading by considering a large number
of features spanning different levels of linguistic

analysis.

2 Related work

In this section, we provide a brief overview of
the available literature that has used transformer-
based language models to predict human reading
patterns, as well as the literature that has inves-
tigated the role of text properties on word pre-
dictability during naturalistic reading.

Schrimpf et al. (2021) evaluated a broad range
of language models on the match of their internal
representations to three datasets of human neural
activity (fMRI and ECoG) during reading. Their
results indicated that transformer-based models
perform better than recurrent networks or word-
level embedding models. They also found that
the models with the best match with human lan-
guage processing were models with unidirectional
attention transformer architectures: specifically
the generative pretrained transformer (GPT-2)
(Radford et al., 2019), consistently outperformed
all other models in both fMRI and ECoG data
from sentence-processing tasks. Hollenstein et al.
(2021) presented the first study analyzing to what
extent transformer language models are able to
directly predict human gaze patterns during natu-
ralistic reading. They compare the performance
of language-specific and multilingual pretrained
and fine-tuned BERT and XLM models to predict
reading time measures of eye-tracking datasets
in four languages (English, Dutch, German, and
Russian). Their results show that both monolin-
gual and multilingual transformer-based models
achieve surprisingly high accuracy in predicting
a range of eye-tracking features across all four
languages. For the English GECO dataset, which
is also used in the current study, the BERT and
XLM models yielded prediction accuracies (100
- mean absolute error (MAE)) ranging between
91.15% (BERT-EN) and 93.89% (XLM-ENDE).

To our knowledge, the first study to investigate
the role of textual characteristics on word pre-
dictability during naturalistic reading is an exper-
imental study conducted by Lowder et al. (2018).
This study implemented a large-scale cumulative
cloze task to collect word-by-word predictability
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data (surprisal and entropy reduction scores) for
40 text passages which were subsequently read by
32 participants while their eye movements were
recorded. Lowder et al. (2018) found that sur-
prisal scores were associated with increased read-
ing times in all eye-tracking measures. They also
observed a significant effect of text difficulty, mea-
sured by Flesch–Kincaid grade level of each para-
graph (Kincaid et al., 1975), such that increases in
text difficulty were associated with increased read-
ing times. Crucially, their study yielded evidence
of interactions between predictability (surprisal
scores) and paragraph difficulty. In the above-
mentioned computational study, Hollenstein et al.
(2021) also investigated the influence of textual
characteristics (word length, text readability) on
model performance. Text readability was mea-
sured using Flesch Reading Ease scores (Flesch,
1948). Their results indicated that the models
learned to reflect characteristics of human read-
ing, such as sensitivity to word length. They also
found that model accuracy was higher in more
easily readable sentences.

3 Experiments

3.1 Datasets

We analyze eye movement data from two eye-
tracking corpora of natural reading, the Ghent
Eye-Tracking Corpus (GECO; (Cop et al., 2017))
and the Provo corpus (Luke and Christianson,
2018). In both corpora the participants read full
sentences within longer spans of naturally oc-
curring text at their own speed while their eye
movements were recorded. The GECO corpus
is large dataset of eye movement of a monolin-
gual and bilingual readers who read a complete
novel, Agatha Christie’s ‘The Mysterious Affair
at Styles’. It contains eye-tracking data from 14
English native speakers and 19 bilingual speakers
of Dutch and English, who read parts of the novel
in its original English version and another part
of its Dutch translation. In the present work, we
focus on the analysis of the data from the monolin-
gual English native speakers. These participants
read a total of 5031 sentences amounting to a
total of 54364 word tokens. The Provo Corpus

is a dataset of eye movements of skilled readers
reading connected text. It consists of eye move-
ment data from 84 native English-speaking par-
ticipants from Brigham Young University, who
read 55 short passages from a variety of sources,
including online news articles, popular science
magazines, and public-domain works of fiction.
These passages were an average of 50 words long
for a total of 2,689 word tokens.

3.2 Measurement of text properties

The texts from both datasets (GECO and PROVO)
were automatically analyzed using CoCoGen
(Ströbel et al., 2016), a computational tool that
implements a sliding window technique to cal-
culate sentence-level measurements that capture
the within-text distributions of scores for a given
language feature (for current applications of the
tool in the context of text classification, see Kerz
et al. (2020, 2021)). We extract a total of 107 fea-
tures that fall into five categories: (1) measures
of syntactic complexity (N=16), (2) measures of
lexical richness (N=14), (3) register-based n-gram
frequency measures (N=25), (4) readability mea-
sures (N=14), and (5) psycholinguistic measures
(N=38). A concise overview of the features used
in this study is provided in Table 5 in the ap-
pendix. Tokenization, sentence splitting, part-
of-speech tagging, lemmatization and syntactic
PCFG parsing were performed using Stanford
CoreNLP (Manning et al., 2014). The syntactic
complexity measures comprise (i) surface mea-
sures that concern the length of production units,
such as the mean length of words, clauses and sen-
tences, (ii) measures of the type and incidence of
embeddings, such as dependent clauses per T-Unit
or verb phrases per sentence or (iii) the frequency
of particular types of particular structures, such as
the number of complex nominal per clause. These
features are implemented based on descriptions
in Lu (2010) and using the Tregex tree pattern
matching tool (Levy and Andrew, 2006) with syn-
tactic parse trees for extracting specific patterns.
Lexical richness measures fall into three distinct
sub-types: (i) lexical density, such as the ratio of
the number of lexical (as opposed to grammati-
cal) words to the total number of words in a text,
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(iii) lexical variation, i.e. the range of vocabulary
as displayed in language use, captured by text-
size corrected type-token ratio and (iii) lexical
sophistication, i.e. the proportion of relatively
unusual or advanced words in the learner’s text,
such as the number of New General Service List
(Browne et al., 2013). The operationalizations
of these measures follow those described in Lu
(2012) and Ströbel (2014). The register-based
n-gram frequency measures are derived from the
five register sub-components of the Contemporary
Corpus of American English (COCA, (Davies,
2008)): spoken, magazine, fiction, news and aca-
demic language1. These measures consider both
the register-specific frequency rank and count:

Normn,s,r =
|Cn,s,r|·log

[∏
c∈|Cn,s,r |

freqn,r(c)

]
|Un,s| (1)

Let An,s be the list of n-grams (n ∈ [1, 5])
appearing within a sentence s, Bn,r the list of
n-gram appearing in the n-gram frequency list of
register r (r ∈ {acad, fic,mag, news, spok})
and Cn,s,r = An,s ∩ Bn,r the list of n-grams ap-
pearing both in s and the n-gram frequency list
of register r. Un,s is defined as the list of unique
n-gram in s, and freqn,r(a) the frequency of n-
gram a according to the n-gram frequency list of
register r. The total of 25 measures results from
the combination of (a) a ‘reference list’ containing
the top 100k most frequent n-grams and their fre-
quencies from one of five registers of the COCA
corpus and (b) the size of the n-gram (n ∈ [1, 5]).
The readability measures combine a word famil-
iarity variable defined by prespecified vocabulary
resource to estimate semantic difficulty together
with a syntactic variable, such as average sen-
tence length. Examples of these measures are the
Fry index (Fry, 1968) or the SMOG (McLaugh-
lin, 1969). Finally, the psycholinguistic measures
capture cognitive aspects of reading not directly
addressed by the surface vocabulary and syntax
features of traditional formulas. These measures
include a word’s average age-of-acquisition (Ku-
perman et al., 2012) or prevalence, which refers

1The Contemporary Corpus of American English is the
largest genre-balanced corpus of American English, which
at the time the measures were derived comprised of 560
million words.

to the number of people knowing the word (Brys-
baert et al., 2019; Johns et al., 2020).

3.3 Eye-tracking measures

We analyze data from eight word-level reading
time measures, which were also investigated in
Hollenstein et al. (2021). The measures include
general word-level characteristics such as (1) the
number of fixations (NFX), i.e. the number of
times a subject fixates on a given word w, av-
eraged over all participants, (2) mean fixation
duration (MFD), the average fixation duration of
all fixations made on w, averaged over all par-
ticipants and (3) fixation proportion (FXP), the
number of subjects that fixated w, divided by the
total number of participants. ‘Early processing’
measures pertain to the early lexical and syntactic
processing and are based on the first time a word
is fixated. These features include: (4) first fixa-
tion duration (FFD), i.e. the duration of the first
fixation on w (in milliseconds), averaged over
all subjects and (5) first pass duration (FPD), i.e.
the sum of all fixations on w from the first time
a subject fixates w to the first time the subject
fixates another token. ‘Late processing’ mea-
sures capture the late syntactic processing and
are based on words which were fixated more than
once. These measures comprise (6) total fixation
duration (TFD), i.e. the sum of the duration of all
fixations made on w, averaged over all subjects,
(7) number of re-fixations (NRFX), the number
of times w is fixated after the first fixation, i.e.,
the maximum between 0 and the NFIX-1, aver-
aged over all subjects and (8) re-read proportion
(RRDP), the number of subjects that fixated w
more than once, divided by the total number of
subjects. The means, standard deviations and
observed ranges for all eye-tracking features are
shown in Tables 1 and 2. Like in Hollenstein et al.
(2021), before being entered into the models, all
eye-tracking features were scaled between 0 and
100 so that the loss can be calculated uniformly
over all features.
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Feature M SD Min Max
NFX 0.81 0.45 0.00 7.50
MFD 128.41 58.98 0.00 350.92
FXP 0.61 0.25 0.00 1.00
FFD 129.28 60.06 0.00 371.31
FPD 143.25 77.49 0.00 1425.86
TFD 168.20 102.44 0.00 1804.00
NRFX 0.20 0.26 0.00 6.50
RRDP 0.15 0.16 0.00 1.00

Table 1: Descriptive statistics of eye-tracking
measures for the GECO dataset.

Feature M SD Min Max
NFX 0.95 0.47 0.13 3.61
MFD 139.91 52.13 23.07 272.71
FXP 0.66 0.22 0.13 1.00
FFD 139.83 52.02 23.18 276.86
FPD 165.91 80.27 24.24 736.62
TFD 198.21 107.20 24.24 940.50
NRFX 0.28 0.29 0.00 2.62
RRDP 0.21 0.17 0.00 0.87

Table 2: Descriptive statistics of eye-tracking
measures for the PROVO dataset.

4 Modeling approach

Deep neural transformer-based language mod-
els create contextualized word representations
that are sensitive to the context in which the
words appear. These models have yielded sig-
nificant improvements on a diverse array of NLP
tasks, ranging from question answering to coref-
erence resolution. We compare two such models
in terms of their ability to predict eye-tracking
features: ‘Bidirectional Encoder Representations
from Transformers’ (BERT) (Devlin et al., 2018)
and ‘Generative Pre-trained Transformer 2’ (GPT-
2) (Radford et al., 2019). BERT is an auto-
encoder model trained with a dual objective func-
tion of predicting masked words and the next sen-
tence. It consists of stacked transformer encoder
blocks and uses self-attention, where each token
in an input sentence looks at the bidirectional con-
text, i.e. tokens on left and right of the considered
token. In contrast, GPT-2 is an autoregressive
model consisting of stacked transformer decoder
blocks trained with a language modelling objec-
tive, where the given sequence of tokens is used
to predict the next token. While GPT-2 uses self-
attention as well, it employs masking to prevent
words from attending to following tokens, hereby
processing language fully unidirectionally. BERT
is trained on the BooksCorpus (800M words) and
Wikipedia (2,500M words), whereas GPT-2 is
trained on WebText, an 8-million documents sub-
set of CommonCrawl amounting to 40 GB of text.
We chose the BERT base model (cased) because
it is most comparable to GPT-2 with respect to

number of layers and dimensionality (BERT base
model (cased) has 110M trainable parameters,
GPT-2 has 117M).

We evaluate the eye-tracking predictions of
the models both on within-domain text, using an
80/10/10 split of the much larger GECO dataset
(representing fiction language), as well as on out-
of-domain text using the complete, much smaller
PROVO dataset (comprising also online news and
popular science magazine language). Further-
more, since overly aggressive fine-tuning may
cause catastrophic forgetting (Howard and Ruder,
2018), we perform all experiments both with
‘frozen’ language models, where all the layers
of the language model are frozen and only the
attached neural network layers are trained, and
also ‘fully fine-tuned’ language models, where
the error is back-propagated through the entire ar-
chitecture and the pretrained weights of the model
are updated based on the GECO training set.

For all models we explored in this paper, we
apply a dropout rate of 0.1 and a l2 regularization
of 1×10−4. We use AdamW as the optimizer and
mean squared error as the loss function. We use a
fixed learning rate with warmup. During warmup,
the learning rates are linearly increased to the
peak learning rates and then fixed. For BERT
with a ‘frozen’ language model, the peak learn-
ing rate is 5× 10−4 with 5 warmup steps and for
GPT-2 with a ‘frozen’ language model, it is 0.001
also with 5 warmup steps. Models with ’fully
fine-tuned’ language models are trained with two
phases. In the first phase, the weights of the lan-
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guage models are frozen and only regression lay-
ers are trained. During this phase, peak learning
rates of 3 × 10−4 for BERT and 0.001 for GPT-
2 are used. For both models, the first phase is
performed over 12 epochs with 5 warmup steps.
In the second phase, we unfreeze the weights
of language models and fine-tune the language
models together with the regression layers. Dur-
ing this phase, the BERT-based model is trained
with a peak learning rate of 5× 10−5 while GPT-
2-based model is trained with a peak learning
rate of 5 × 10−4. The number of warmup steps
for training both models in this phase is 3. We
adopted a two-phase training procedure since pre-
liminary experiments showed that this procedure
yields same results as training the entire models
from the first epoch, yet it can speed up model
convergence. All hyper-parameters are optimized
through grid search.

4.1 Influence of text characteristics on model
performance

To investigate the impact of the text properties
listed in Section 3.2 on prediction accuracy, we
partitioned the GECO testset into deciles accord-
ing to each textual property, i.e. each of the
107 features. We then calculated the Pearson
correlation coefficients between the decile of a
given textual feature and the mean absolute er-
ror (MAE) of a given model. We expected to
observe higher prediction accuracy (lower MAE)
for sentences with higher readability, lower syn-
tactic complexity, lower lexical richness, higher
n-gram frequency and less demanding psycholin-
guistic properties, i.e. lower age-of-acquisition
scores and higher prevalence scores.

4.2 Integration of text characteristics using a
hybrid modeling approach

To determine whether eye movement patterns
were affected by textual characteristics of the
previous sentences (sentence spillover effects),
a bidirectional LSTM (BLSTM) model was inte-
grated into the predictive models (Figure 1). This
BLSTM model reads 107 dimensional vectors
of textual features CMi−N , · · · , CMi−1 from N

previous sentences2 as its input, transforms them
through 4 BLSTM layers of 512 hidden units
each, and outputs a 1024 dimensional vector
[
−→
h 4N |

←−
h 41], that is a concatenation of the last hid-

den states of the 4th BLSTM layer in the forward
and backward directions

−→
h 4N ,

←−
h 41. A fully con-

nected (FC) layer is added on top of the BLSTM
layers to reduce the dimension of BLSTM model
output to 256 (Ci). Meanwhile, another FC layer
is added to the pre-trained language model (BERT
or GPT-2) in order to reduce its logits to the same
dimension (Ei1, · · · , EiM ). The reduced BLSTM
output is then added to each of the reduced lan-
guage model logits. Finally, the 256-dimensional
joint vectors are fed to a final regression layer
to predict human reading behavior. The proce-
dures used to train the ‘hybrid’ models with tex-
tual characteristics of the previous sentences was
identical to those specified above. Grid search
yielded the same optimized values for all hyper-
parameters, except for the peak learning rate of
‘fully fine-tuned’ model with GPT-2 in second
training phase, which was 1× 10−4.

To assess the relative importance of the fea-
ture groups, we employed Submodular Pick Lime
(SP-LIME; Ribeiro et al. (2016)), a method to
construct a global explanation of a model by ag-
gregating the weights of the linear models. We
first construct local explanations using LIME with
a linear local explanatory model, exponential ker-
nel function with Hamming distance and a kernel
width of σ = 0.75

√
d, where d is the number of

feature groups. The global importance score of
the SP-LIME for a given feature group j can then
be derived by: Ij =

√∑n
i=1 |Wij |, where Wij is

the jth coefficient of the fitted linear regression
model to explain a data sample xi.

2Experiments with N ∈ [1, 5] were performed and N =
1 performed best.
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Figure 1: Visualization of approach used to integrate
information on complexity of preceding language in-
put for sentence i.

5 Results & Discussion

We use sentence-level accuracy (100-MAE) and
coefficients of determination (R2) as metrics to
evaluate the performance of all models. Table
3 shows the evaluation results for all models av-
eraged over all eye-tracking features. Table 3
shows that both BERT and GPT-2 models pre-
dicted the eye-tracking features of both datasets
with more than 92% accuracy. The fine-tuned
models performed consistently better than the
pretrained-only (‘frozen’) models both on the
within-domain text (GECO) and on the out-of-
domain text (PROVO). This result indicates that
the learned representations are general enough
to be successfully applied both in the prediction
of reading patterns of fiction texts as well as in
the prediction of news and popular science texts.
The BERT models consistently outperformed the
GPT-2 models with a difference in R2 of as much
as 10.54% on the within-domain data (GECO).
This result stands in sharp contrast with those re-
ported in Schrimpf et al. (2021) summarised in
Section 2. In their interpretation of the success of
GPT-2 in predicting neural activity during read-
ing, Schrimpf et al. (2021) state that “GPT-2 is
also arguably the most cognitively plausible of
the transformer models (because it uses unidirec-
tional, forward attention)”. Especially in view
of the remarkable margin by which the BERT
models outperformed the GPT-2 models here, it
appears that arguments that infer cognitive plausi-
bility from prediction success should be viewed
with caution (see also Merkx and Frank (2020) for

Table 3: Model performance across datasets.

Model Dataset R2(%) MAE Acc

BERT fr
GECO 42.14 7.01 92.99
PROVO 42.19 6.93 93.61

BERT fr
+ com S-1

GECO 43.29 6.93 93.07
PROVO 51.70 5.74 94.26

BERT ft
GECO 56.83 5.95 94.05
PROVO 67.64 4.51 95.49

BERT ft
+ com S-1

GECO 58.36 5.92 94.08
PROVO 68.59 4.49 95.51

GPT-2 fr
GECO 35.00 7.32 92.68
PROVO 40.15 6.26 93.74

GPT-2 fr
+ com S-1

GECO 35.19 7.32 92.68
PROVO 43.67 6.08 93.92

GPT-2 ft
GECO 46.29 6.48 93.52
PROVO 55.73 5.06 94.94

GPT-2 ft
+ com S-1

GECO 47.53 6.38 93.62
PROVO 56.77 5.08 94.92

Note: ‘fr’ = freeze all layers of language model;
‘ft’ = the entire model is fine-tuned; ‘+ com S-1’
= including textual features of previous sentence

further intricacies of the issue). The most accu-
rately predicted individual eye-tracking measures
were fixation probability (FXP), mean fixation
duration (MFD) and first fixation duration (FFD),
indicating that prediction accuracy was generally
better for early measures than for late measures.
A detailed overview of the results for each eye-
tracking measure across all models and datasets is
provided in Table 7 in the appendix. This finding
suggests that the accurate prediction of late mea-
sures – that are assumed to reflect higher order
processes such as syntactic and semantic integra-
tion, revision, and ambiguity resolution – may
benefit from the inclusion of contextual informa-
tion beyond the current sentence.

5.1 Relationship of prediction accuracy and
text characteristics

The correlation analyses of the textual features
and the mean absolute error revealed that predic-
tion accuracy was affected by the text character-
istics of the sentence under consideration. Such
effects were found across all eye-tracking met-
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rics for both BERT and GPT-2 models in both
their frozen and fully fine-tuned variants. For
reasons of space, we focus our discussion on the
predictions of the BERT frozen model of first pass
durations on the GECO dataset (additional results
for both frozen and fine-tuned BERT models for
both first pass duration and total fixation duration
are provided in Figure 3 in the appendix). Fig-
ure 2 visualizes the impact of all textual features
that reached correlation coefficients r > |0.2|
along with the feature group they belong to. As
is evident in Figure 2 the prediction accuracy of
the BERT frozen model was impacted by fea-
tures from all five feature groups with individ-
ual features affecting prediction accuracy in op-
posite ways. A strong impact (r > |0.5|) was
observed for several features of the n-gram fea-
ture group: Fixation durations of sentences with
higher scores on ngram-frequency features from
the news, magazine and spoken registers were
predicted more accurately than those with lower
scores on these measures. The SMOG readability
index, which estimates the years of education a
person needs to understand a piece of writing,
also has a strong impact: Predicted first pass
durations were less accurate in sentences with
higher SMOG scores. Several features from the
lexical richness, syntactic complexity and read-
ability groups had a moderate impact on predic-
tion accuracy (|0.3| < r < |0.5|): For exam-
ple, predictions of fixation durations were less
accurate on sentences of with a more clausal em-
bedding (ClausesPerSentence) and greater lexi-
cal sophistication (MeanLengthWord, Sophisti-
cation.ANC and Sophistication.BNC). A similar
effect was also observed for the psycholinguis-
tic age-of-acquisition features (AoA mean, AoA
max), where predictions of fixations times were
less accurate for later acquired words. Note that
the finding that the correlation coefficients of the
readability features have opposite signs is due
to the fact that these are either defined to quan-
tify ease of reading (e.g. Flesch Kincaid Reading
Ease) or reading difficulty (e.g. SMOG index).
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Figure 2: Pearson correlations between model per-
formance (mean absolute error), and the deciles of
the respective text characteristics. For measures with
negative correlation coefficients, model performance
increased with higher values of the text characteristics
(Data from ‘BERT frozen’ predictions of First pass
duration (FPD) on GECO testdata).

5.2 Prediction accuracy of hybrid models
Turning to the results of the hybrid models with in-
tegrated information on textual characteristics of
the preceding sentence, we found that highest ac-
curacy (R2 = 58.36%) was achieved by the fine-
tuned BERT model. This amounts to an increase
in performance over a model trained without that
information of 1.53%. This result demonstrates
that future studies should take textual spillover
effects into account. Our best-fitting model out-
performed not only the best-performing BERT
model in Hollenstein et al. (2021), BERT-BASE-
MULTILINGUAL-CASED (Wolf et al., 2019)
but also the overall best-performing transformer-
based model, XLM-MLM-ENDE-1024 (Lample
and Conneau, 2019) tested in that study. This
result demonstrates that the claim put forth in
Hollenstein et al. (2021) that multilingual models
show an advantage over language specific ones
and that multilingual models might provide cogni-
tively more plausible representations in predicting
reading needs to be viewed with caution.

The results of the feature ablation experiments
revealed that the main sources of the greater pre-
diction accuracy of the hybrid models was asso-
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Table 4: Feature ablation of different models on
PROVO dataset. Most important feature groups are
bolded.

Syn.
complex

Lex.
richness

Psych. Reg.
ngram

Read.

B
E

R
T fr 5.69 5.34 3.22 5.44 4.74

ft 2.48 1.64 1.25 1.44 1.30

G
PT

-2 fr 9.06 9.62 7.91 10.10 9.85
ft 16.07 7.02 12.20 18.82 12.68

ciated with information concerning the syntac-
tic complexity, lexical richness and n-gram fre-
quency of the preceding sentence. An overview
of the results is presented in Table 4. We fo-
cus here on the results on the out-of-domain
testset (PROVO) for which improvements over
models without the integrated textual informa-
tion were more pronounced. As is evident in Ta-
ble 4, the central role of the three feature groups
listed above result was observed across models
(BERT vs. GPT-2) and across training procedures
(frozen vs. fine-tuning). However, Table 4 also
demonstrates clear differences between the mod-
els: While the BERT models show greater sensi-
tivity to syntactic complexity, the GPT-2 models
mostly benefit from information concerning n-
gram frequency. A possible interpretation of this
finding is that a unidirectional model like GPT-2
relies more strongly on word sequencing than a
bidirectional one. Future research is needed to
examine this in more detail so that effects asso-
ciated with differences in model architecture can
be disentangled.

6 Conclusion

In this paper we conducted the first system-
atic investigation of the role of general text fea-
tures in predicting human reading behavior us-
ing transformer-based language models (BERT &
GPT-2). We have shown (1) that model accuracy
is systematically linked to sentence-level text fea-
tures spanning five measurement categories (syn-
tax, complexity, lexical richness, register-specific
N-gram frequency, readability, and psycholinguis-
tic properties), and (2) that prediction accuracy
can be improved by using hybrid models that con-

sider spillover effects from the previous sentence.
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A Appendix

Table 5: Overview of the 107 features investigated in the work

Feature group Number Features Example/Description
of features

Syntactic complexity 16 MLC Mean length of clause (words)
MLS Mean length of sentence (words)
MLT Mean length of T-unit (words)
C/S Clauses per sentence
C/T Clauses per T-unit
DepC/C Dependent clauses per clause
T/S T-units per sentence
CompT/T Complex T-unit per T-unit
DepC/T Dependent Clause per T-unit
CoordP/C Coordinate phrases per clause
CoordP/T Coordinate phrases per T-unit
NP.PostMod NP post-mod (word)
NP.PreMod NP pre-mod (word)
CompN/C Complex nominals per clause
CompN/T Complex nominals per T-unit
VP/T Verb phrases per T-unit

Lexical richness 14 MLWc Mean length per word (characters)
MLWs Mean length per word (sylables)
LD Lexical density
NDW Number of different words
CNDW NDW corrected by Number of words
TTR Type-Token Ration (TTR)
cTTR Corrected TTR
rTTR Root TTR
AFL Sequences Academic Formula List
ANC LS (ANC) (top 2000, inverted)
BNC LS (BNC) (top 2000, inverted)
NAWL LS New Academic Word List
NGSL LS (General Service List) (inverted)
NonStopWordsRate Ratio of words in NLTK non-stopword list

Register-based 25 Spoken (n ∈ [1, 5]) Frequencies of uni-, bi-
Fiction (n ∈ [1, 5]) tri-, four-, five-grams
Magazine (n ∈ [1, 5]) from the five sub-components
News (n ∈ [1, 5]) (genres) of the COCA,
Academic (n ∈ [1, 5]) see Davies (2008)
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Table 6: Overview of the 107 features investigated in the work(Cont.

Feature group Number Features Example/Description
of features

Readability 14 ARI Automated Readability Index
ColemanLiau Coleman-Liau Index
DaleChall Dale-Chall readability score
FleshKincaidGradeLevel Flesch-Kincaid Grade Level
FleshKincaidReadingEase Flesch Reading Ease score
Fry-x x coord. on Fry Readability Graph
Fry-y y coord. on Fry Readability Graph
Lix Lix readability score
SMOG Simple Measure of Gobbledygook
GunningFog Gunning Fog Index readability score
DaleChallPSK Powers-Sumner-Kearl Variation of

the Dale and Chall Readability score
FORCAST FORCAST readability score
Rix Rix readability score
Spache Spache readability score

Psycholinguistic 38 WordPrevalence See Brysbaert et al. (2019)
Prevalence Word prevalence list

incl. 35 categories
(Johns et al. (2020))

AoA-mean avg. age of acquisition
(Kuperman et al. (2012))

AoA-max max. age of acquisition
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Table 7: Model performance by eye-tracking feature across datasets

model dataset R2(%) mean
NFX FFD FPD TFD MFD FXP NRFX RRDP R2(%)

BERT frozen
GECO dev 46.38 44.50 46.22 45.21 44.62 46.01 31.80 34.50 42.40
GECO test 46.99 42.60 45.34 45.05 42.94 44.91 33.68 35.61 42.14
PROVO 42.91 50.28 46.11 42.83 48.99 44.76 29.67 31.95 42.19

BERT frozen
+ complexity S-1

GECO dev 46.99 46.31 46.81 45.81 46.42 48.65 31.79 35.05 43.48
GECO test 47.76 44.36 45.96 45.78 44.80 47.80 33.79 36.09 43.29
PROVO 52.20 61.44 54.03 50.12 60.15 61.53 33.96 40.19 51.70

BERT fine-tuned
GECO dev 60.89 56.98 58.64 59.15 57.15 60.60 47.60 51.11 56.51
GECO test 61.67 56.47 58.28 59.74 57.10 60.62 49.09 51.67 56.83
PROVO 68.81 74.80 68.20 65.86 74.93 78.06 53.01 57.46 67.64

BERT fine-tuned
+ complexity S-1

GECO dev 62.50 57.89 60.85 60.47 58.09 61.14 47.61 50.03 57.32
GECO test 64.17 57.66 61.59 61.83 58.20 61.27 50.14 52.00 58.36
PROVO 70.49 75.39 70.05 67.16 75.21 77.60 52.54 60.27 68.59

GPT-2 frozen
GECO dev 41.06 40.69 41.26 39.54 40.83 42.73 25.94 29.30 37.67
GECO test 38.01 38.08 38.69 36.08 38.19 40.55 23.43 26.98 35.00
PROVO 38.40 51.14 43.17 38.36 50.06 47.19 23.43 29.41 40.15

GPT-2 frozen
+ complexity S-1

GECO dev 41.02 41.14 41.16 39.46 41.27 43.97 25.27 29.28 37.82
GECO test 37.98 38.55 38.56 36.08 38.66 41.81 22.70 27.19 35.19
PROVO 43.09 54.07 45.78 41.77 52.65 53.37 27.49 31.14 43.67

GPT-2 fine-tuned
GECO dev 52.17 51.63 51.83 49.97 51.79 55.68 33.36 37.70 48.02
GECO test 50.65 49.69 49.71 47.86 49.97 54.13 32.24 36.09 46.29
PROVO 55.02 67.48 56.59 52.43 66.64 68.82 35.56 43.27 55.73

GPT-2 fine-tuned
+ complexity S-1

GECO dev 54.46 53.34 53.91 52.21 53.69 57.20 35.11 39.63 49.94
GECO test 51.91 50.97 51.24 49.30 51.28 55.02 33.11 37.42 47.53
PROVO 56.19 68.20 58.44 53.98 67.84 68.79 35.81 44.95 56.77

Note: ‘frozen’ = all the layers of the language model are frozen and only the attached neural network
layers are trained on the GECO dataset; the weights of only the attached layers will be updated during
model training. ‘fine-tuned’ = the entire pretrained model is fine-tuned on the GECO training set; the
error is back-propagated through the entire architecture and the pre-trained weights of the model are
updated based on the GECO training set. Best-performing models on the two testsets (GECO test,
PROVO) are highlighted in bold.
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(a) Model: BERT frozen. Eye-tracking metric: Total
fixation duration (TFD)
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(b) Model: BERT frozen. Eye-tracking metric: First
pass duration (FPD)
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(c) Model: BERT fine-tuned. Eye-tracking metric: Total
fixation duration (TFD)
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(d) Model: BERT fine-tuned. Eye-tracking metric: First
pass duration (FPD)

Figure 3: Pearson correlations between model performance (Mean Absolute Error), and the deciles of the
respective text characteristics. For measures with negative correlation coefficients, model performance increased
with higher values of the text characteristics.
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