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Tableaux and Restricted Quantification for Systems

Related to Weak Kleene Logic∗

Thomas Macaulay Ferguson

ILLC, University of Amsterdam, Amsterdam, The Netherlands

Arché Research Centre, University of St. Andrews, St. Andrews, Scotland

ABSTRACT

Logic-driven applications like knowledge representation typically operate with the tools of classical, first-order
logic. In these applications’ standard, extensional domains—e.g., knowledge bases representing product features—
these deductive tools are suitable. However, there remain many domains for which these tools seem overly strong.
If, e.g., an artificial conversational agent maintains a knowledge base cataloging e.g. an interlocutor’s beliefs or
goals, it is unlikely that the model’s contents are closed under Boolean logic. There exist propositional deductive
systems whose notions of validity and equivalence more closely align with legitimate inferences over such inten-
tional contexts. E.g., philosophers like Kit Fine and Stephen Yablo have made compelling cases that Richard
Angell’s AC characterizes synonymy, under which such intentional contexts should be closed. In this paper,
we adapt several of these systems by introducing sufficient quantification theory to support e.g. subsumption
reasoning. Given the close relationship between these systems and weak Kleene logic, we initially define a novel
theory of restricted quantifiers for weak Kleene logic and describe a sound and complete tableau proof theory.
We extend the account of quantification and tableau calculi to two related systems: Angell’s AC and Charles
Daniel’s S⋆

fde
, providing new tools for modeling and reasoning about agents’ mental states.

1. INTRODUCTION

Logic-oriented fields incorporating semantics and reasoning tend to rely on a fragment of the classical, first-order
predicate calculus. E.g., although description logics like ALC and SROIQ differ with respect to expressivity,
they rest on the same Boolean semantic foundations. In most extensional contexts—e.g., cases in which a
knowledge base is interpreted as a collection of truths about a domain—inferences drawn on this foundation are
appropriate. But knowledge bases representing intentional contexts may not be closed under classical validity;
that ϕ is an agent’s belief does not entail that every classical consequence of ϕ is counted as a belief as well.

Thus, semantic representations of such contexts would benefit from having access to weaker deductive bases
that more closely align with the closure conditions for intentional contexts. One candidate is Richard Angell’s
logic of analytic containment AC of [1]. Philosophers like Fabrice Correia (in [2]), Kit Fine (in [3]), and Stephen
Yablo (in [4]) have provided sustained arguments that AC characterizes a notion of fine-grained synonymy. A
description logic based on AC would close an intentional context under synonymy, which is a plausible closure
condition. f Tools like description logics require at least enough quantification theory to describe class relations
like subsumption, but convincing quantification theory has been lacking for these systems. It is our goal to
open up new deductive bases for such applications by introducing sufficient quantification theory to support
description logics, providing semantics and tableaux for several plausible deductive systems. The results of [5]
show that AC and a closely related system of S⋆

fde
bear a very close relationship with weak Kleene logic wK. A

theory of restricted quantification for wK could therefore be directly applied to provide these systems with the
desired quantification; likewise, a tableau calculus for wK will form a foundation for tableau calculi for AC and
S⋆
fde

. (As we will describe, the matter of quantification in wK is itself a nontrivial problem, so such a theory is
independently interesting.)

We will proceed by first examining wK, looking at some of the difficulties for quantification and providing
semantics and tableaux for a reasonable theory of restricted quantification. We will conclude by showing how
this work on wK can be leveraged to induce similar model theory and tableau calculi for AC and S⋆

fde
.

∗This is the author’s version of a paper accepted for publication in the proceedings of TABLEAUX 2021. Some corrections,
editing, and typesetting differences will exist between this and the final version.



2. WEAK KLEENE LOGIC

In [6], Kleene introduces three-valued matrices for connectives to account for cases in which a recursive procedure
calculating truth values fails to converge:

In this section, we shall introduce new senses of the propositional connectives, in which, e.g., Q(x)∨
R(x) will be defined in some cases when Q(x) or R(x) is undefined. It will be convenient to use truth
tables, with three “truth values” t (‘true’), f (‘false’) and e (‘undefined’), in describing the senses
which the connectives shall now have. [6, p. 332]

Kleene considers that for each predicate there is a “range of definition” over which it is then defined. For example,
a predicate Q(x) understood as a function with range {t, f} may not converge for every argument. This is in line
with the Halldén-Bochvar interpretation (in [7] or [8]), in which a predicate has a range of objects about which
it may be meaningfully applied. A natural interpretation of these ranges is that ϕ(c) evaluates to e when an
agent lacks competence with the concept ϕ(x) and is unable to determine a truth value.

This interpretation accords with thinking about reasoning about beliefs; if an agent is not familiar with the
use of a predicate—or does not have a clear grasp of how a predicate may apply to certain objects—an atomic
formula may be viewed as not truth-evaluable.

2.1 The Propositional Case

We will first review the propositional basis of weak Kleene logic before embellishing with additional expressivity.
For our propositional language, let At be a collection of propositional atomic formulas {p0, ..., q0, ...} and let L
be the language standardly defined by closing At under the unary ∼ and binary ∧ and ∨.

To provide semantics, we first describe the weak Kleene truth tables over the set of truth values V3 = {t, e, f}:

Definition 1. The weak Kleene truth tables are:

∼ ∧ t e f ∨ t e f

t f t t e f t t e t

e e e e e e e e e e

f t f f e f f t e f

The tables in Definition 1 induce the weak Kleene truth functions. For convenience, denote a connective’s
corresponding truth function by decorating it with a dot, e.g., we write ∼̇t or I(ϕ) ∧̇ I(ξ).

Definition 2. A propositional weak Kleene interpretation I is a function I : L → V3 respecting the conditions
that:

• I(∼ϕ) = ∼̇(I(ϕ))

• I(ϕ ∧ ψ) = I(ϕ) ∧̇ I(ψ)

• I(ϕ ∨ ψ) = I(ϕ) ∨̇ I(ψ)

Now, let us explore an account of restricted quantification.



2.2 Adding Restricted Quantifiers

Many applications for logical systems in semantics, artificial intelligence, or computer science presuppose some
degree of quantification theory. For example, a description logic like SROIQ expresses the subsumption of
one concept by another by making a universally quantified statement that every individual falling under once
concept falls under the other. We thus have an interest in providing a quantification theory for the systems we
are studying.

In practice, however, such applications are keenly concerned with decidability and computational complexity,
meaning that the requirement is not for full first-order quantification, but rather the limited resources provided
by restricted quantifiers. With an eye to allowing e.g. the representation of concept subsumption or existential
quantification of roles, we then wish to consider a language of the form: Given a set C of individual constants
and a set R of relation symbols, we define a language L′ in the standard way, also introducing for any open
formula ϕ(x) and ψ(x) the formulae [∃xϕ(x)]ψ(x) (“some thing that is a ϕ is a ψ”) and [∀xϕ(x)]ψ(x) (“all ϕs
are ψs”) for restricted existential and universal quantification, respectively.

Intuitions concerning the truth conditions of these sentences are fairly clear. [∃xϕ(x)]ψ(x) should be evaluated
as t if there is a c ∈ C such that ϕ(c) and ψ(c) are t; [∀xϕ(x)]ψ(x) should be t if there is a guarantee that any time
ϕ(c) is true, ψ(c) will be true. If we follow typical interpretations of weak Kleene-like many-valued logics—e.g.,
that of Halldén and Bochvar—we also allow for cases in which a quantified sentence receives the value e. The
line we will take on this is that a sentence like [∃xϕ(x)]ψ(x) is treated as not truth-evaluable precisely in case
there is no point of comparison between ϕ(x) and ψ(x), that is, there is no individual for which both properties
can be meaningfully considered. Absent such an individual, it is not clear how the necessary comparison could
be carried out.

To formalize these desiderata about restricted quantification, let us consider a precise description of the
expectations. Given the foregoing discussion, we would require of an interpretation I that it observes:

I([∃xϕ(x)]ψ(x)) =



















t if for some c, I(ϕ(c)) = t & I(ψ(c)) = t

e if for all c, either I(ϕ(c)) = e or I(ψ(c)) = e

f if

{

for all c, if I(ϕ(c)) = t then I(ψ(c)) 6= t and

for some c, I(ϕ(c)) 6= e & I(ψ(c)) 6= e

I([∀xϕ(x)]ψ(x)) =































t if

{

for all c, if I(ϕ(c)) = t then I(ψ(c)) = t and

for some c, I(ϕ(c)) 6= e & I(ψ(c)) 6= e

e if for all c, either I(ϕ(c)) = e or I(ψ(c)) = e

f if

{

for some c, I(ϕ(c)) = t & I(ψ(c)) 6= t and

for some c′, I(ϕ(c′)) 6= e & I(ψ(c′)) 6= e

To make definitions a bit more elegant, we generalize Carnielli’s account of distribution quantifiers introduced
in [9], where a quantifier is interpreted as a function mapping non-empty sets of truth values to truth values.

Au fond, evaluating restricted quantifiers involves considering for each c the truth values assigned to I(ϕ(c))
and I(ψ(c)); the distribution of these pairs of truth values, as it turns out, is sufficient to reproduce the above
reasoning. This observation permits us to interpret a restricted quantifier as a function mapping sets of pairs of
truth values to truth values.

Definition 3.

The restricted Kleene quantifiers are functions ∃̇ and ∀̇ mapping a nonempty sets X ⊆ V2
3 to truth values

from V3 as follows:

∃̇(X) =











t if 〈t, t〉 ∈ X

e if for all 〈u, v〉 ∈ X, either u = e or v = e

f if 〈t, t〉 /∈ X & for some 〈u, v〉 ∈ X, u 6= e and v 6= e



∀̇(X) =











t if 〈t, f〉, 〈t, e〉 /∈ X & for some 〈u, v〉 ∈ X, u 6= e and v 6= e

e if for all 〈u, v〉 ∈ X, either u = e or v = e

f if {〈t, f〉, 〈t, e〉} ∩X 6= ∅ & for some 〈u, v〉 ∈ X, u 6= e and v 6= e

Definition 4. A predicate weak Kleene interpretation I is a pair 〈CI ,RI〉 where CI is a domain of individuals
and RI is a collection of functions where I assigns:

• every constant c an individual cI ∈ CI

• every n-ary predicate R a function RI : (CI)n → V3

In order to simplify matters, it is assumed that every element of CI is cI for some constant c.

Definition 5. A predicate weak Kleene interpretation induces a map from L′ to V3 defined as in Definition 2
with the exception that for atomic formulae:

• I(R(c0, ..., cn−1)) = RI(cI0 , ..., c
I
n−1)

and quantified formulae are evaluated as follows:

• I([∃xϕ(x)]ψ(x)) = ∃̇({〈I(ϕ(c)), I(ψ(c))〉 | c ∈ C})

• I([∀xϕ(x)]ψ(x)) = ∀̇({〈I(ϕ(c)), I(ψ(c))〉 | c ∈ C})

We note that although the above quantifiers align with reasonable intuitions about restricted quantifiers, De-
Morgan’s laws fail. Despite this, the quantifiers will satisfy DeMorgan’s laws for S⋆

fde
and AC, as we will see in

subsequent sections.

Validity is then described naturally as:

Definition 6. Validity in weak Kleene logic is defined as truth preservation, i.e.

Γ �wK ϕ if for all wK interpretations such that I[Γ] = {t}, I(ϕ) = t

where I[Γ] = {I(ϕ) | ϕ ∈ Γ}.

2.3 Brief Excursus on Quantification

We have mentioned that the emphasis on restricted quantifiers here is driven not only by the suitability to
applications like description logics, but also by difficulties with the general theory of quantification in the weak
Kleene setting. Given our concerns, the suitability of a quantification theory stands and falls with its treatment
of sentences of the form [∀xϕ(x)]ψ(x) and [∃xϕ(x)]ψ(x), with standard (and intuitive) translations as ∀x(ϕ(x) ⊃

ψ(x)) (where ⊃ is the defined material conditional) and ∃x(ϕ(x) ∧ ψ(x)), respectively. A special desideratum
of full quantification theory on the weak Kleene basis, then, is the suitable interpretation of sentences of these
forms.

We have several candidates from the three-valued Kleene family available to extend propositional weak
Kleene logic. Most obvious are the strong Kleene and weak Kleene quantifiers, which are essentially infinitary
conjunctions/disjunctions. To capture the semantic features, we will describe these as distribution quantifiers in
the sense of [9], i.e., functions from sets of truth values to truth values.

Definition 7. The strong Kleene quantifiers are defined as:

∃(X) =











t if t ∈ X

e if e ∈ X and t /∈ X

f if X = {f}

∀(X) =











t if X = {t}

e if e ∈ X and f /∈ X

f if f ∈ X



Comparing Definition 7 to the strong Kleene tables of [6] makes clear that e.g., strong Kleene existential quan-
tification is essentially infinitary strong Kleene disjunction (and mutatis mutandis for universal quantification).

By applying this analogy to weak Kleene connectives, we can define weak Kleene quantifiers in a manner that
carries over the hallmark features.1 The weak quantifiers may be defined as follows.

Definition 8. The weak Kleene quantifiers are defined as:

∃(X) =











t if t ∈ X and e /∈ X

e if e ∈ X

f if X = {f}

∀(X) =











t if X = {t}

e if e ∈ X

f if f ∈ X and e /∈ X

Upon examination, each set of quantifiers has properties that conflict with our intuitive understanding of the
above first-order formulae, making neither account entirely suitable for our purposes.

If we look to universally quantified statements, the strong Kleene quantifiers seem to conflict with our
intuitions. We might expect that ∀x(ϕ(x) ⊃ ψ(x)) should be considered true if it holds that whenever ϕ(c) is
evaluated as t, also ψ(c) is evaluated as t. But this is contradicted in cases in which there exists some c′ for which
either ϕ(c′) or ψ(c′) is evaluated as e. In such a case, ϕ(c′) ⊃ ψ(c′) will be evaluated as e, and ∀x(ϕ(x) ⊃ ψ(x))
will not be evaluated as t. As an example from the Halldén-Bochvar tradition, this is akin to saying that even
though every thing that is a dog is a mammal, the fact that “the number two is a dog” is meaningless is sufficient
to render “all dogs are mammals” meaningless.

In the existentially quantified case, the weak quantifiers diverge from expected behavior. According to the
weak Kleene quantifiers, having a witness c for which ϕ(c) and ψ(c) are true is insufficient to establish the truth
of the formula in case for some c′, ϕ(c′) is evaluated as e. To provide a simple illustration, even if we know, e.g.,
that both “Caesar is a skilled writer” and “Caesar is a general” are true, the fact that “the number two is a
skilled writer” is meaningless propagates and renders “there exists a skilled writer who is a general” meaningless
as well.

In short, both pairs of Kleene quantifiers conflict in some way with our intuitions.2 There are potential
alternatives to consider. In the context of strict-tolerant interpretations of weak Kleene, [12] considers Carnielli
et al.’s quantifiers from [13], calling them “immune Kleene quantifiers” due to their being infinitary analogues of
the immune connectives of [14]. The discussion in [12] suggests that it is plausible that the restricted quantifiers
here respect the immune quantifiers. But this is left for another time.

2.4 Tableau Calculus for Weak Kleene Logic with Restricted Quantifiers

A tableau T is a tree with nodes that are decorated with a signed formula of the form u : ϕ. Although our truth
values appear as signs, we also incorporate two additional signs to simplify the rules: m and n. m—understood
as “meaningful”—decorates a formula ϕ when both t : ϕ and f : ϕ are available for branching. Likewise,
n—understood as “nontrue”—decorates a formula when both f : ϕ and e : ϕ are available.

Each node that is not a hypothesis is added to T by applying a rule to a target node. In describing the rules,
we follow [9] in using ◦ to indicate that one or more items are to be added to the same branch and + to indicate
that new branches should be created for each formula in its scope.

Definition 9. The tableau calculus wKrQ for weak Kleene with restricted quantifiers is captured by the following
rules:

v : ∼ϕ

∼̇v : ϕ

m : ϕ

t : ϕ+ f : ϕ

n : ϕ

f : ϕ+ e : ϕ

v : ϕ ∧ ψ

+
v0∧̇v1=v

{v0 : ϕ ◦ v1 : ψ}

v : ϕ ∨ ψ

+
v0∨̇v1=v

{v0 : ϕ ◦ v1 : ψ}

1Although not frequently encountered in the literature, Malinowski describes them in [10].
2One qualification is in order, namely, that the critique emphasizes the semantic interpretations. Recent work by Andreas Fjellstad

in [11] provides a very elegant proof-theoretic analysis but explicitly declines to “engage in the discussion” of interpretation.



t : [∃ϕ(x)]ψ(x)

t : ϕ(c) ◦ t : ψ(c)

f : [∃ϕ(x)]ψ(x)

m : ϕ(c) ◦ m : ψ(c) ◦ (n : ϕ(a) + n : ψ(a))

e : [∃ϕ(x)]ψ(x)

e : ϕ(a) + e : ψ(a)

t : [∀ϕ(x)]ψ(x)

m : ϕ(c) ◦ m : ψ(c) ◦ (n : ϕ(a) + t : ψ(a))

e : [∀ϕ(x)]ψ(x)

e : ϕ(a) + e : ψ(a)

f : [∀ϕ(x)]ψ(x)

m : ϕ(c) ◦m : ψ(c) ◦ t : ϕ(c′) ◦ n : ψ(c′)

where v is any element of V3, c or c′ are new to a branch, and a is arbitrary.

Definition 10. A branch B of a tableau T closes if there is a sentence ϕ and distinct v, u ∈ V3 such that both
v : ϕ and u : ϕ appear on B.3

Definition 11. {ϕ0, ..., ϕn−1} ⊢wKrQ ϕ when every branch of a tableau T with initial nodes {t : ϕ0, ..., t :
ϕn−1, n : ϕ} closes.

We now show soundness of wKrQ:

Theorem 1 (Soundness of wKrQ). If Γ ⊢wKrQ ϕ then Γ �wK ϕ.

Proof. Inspection confirms that each rule of wKrQ exhaustively characterizes the corresponding semantic
conditions from Definitions 4 and 5. Thus, when every branch closes in a tableau proving Γ ⊢ ϕ, this shows that
no model I for which I[Γ] = {t} and I(ϕ) 6= t is possible, i.e., Γ �wK ϕ.

For completeness, we give several definitions and lemmas:

Definition 12. Given a tableau with an open branch B, we define the branch interpretation IB and domain
CIB as follows:

• For all constants c appearing on the branch, cIB is a unique element of CIB

• For all relation symbols R and tuples c0, ..., cn−1 appearing on the branch, RIB(cIB

0 , ..., cIB

n−1) =

{

v if v : R(c0, ..., cn−1) is

e otherwise

Lemma 2.1. For all sentences ϕ and v ∈ V3, if v : ϕ is on B, then IB(ϕ) = v.

Proof. As basis step, note that Definition 12 guarantees the property to hold of atomic sentences. As induction
hypothesis, assume that the property holds for all subformulae of ϕ.

In case ϕ = ∼ψ, if v : ∼ψ is on B, then the appropriate rule from wKrQ must at some point be applied on
the branch, whence ∼̇v : ψ is on the branch. By induction hypothesis, IB(ψ) = ∼̇v, whence IB(∼ψ) = v.

For binary connectives, we treat the case in which v : ψ ∧ ξ is on B. The rules then guarantee values v0 and
v1 such that v0 : ψ and v1 : ξ are on B. By the induction hypothesis, then, IB(ψ) = v0 and IB(ξ) = v1. But per
Definition 9, v0 and v1 are selected just in case v0 ∧̇ v1 = v, whence IB(ψ ∧ ξ) = v.

For the quantifiers, suppose that v : [∃xψ(x)]ξ(x) is on B. Then we consider a case for each possible choice
of v:

• If v = t, then there is a constant c for which t : ψ(c) and t : ξ(c) are on B. By induction hypothesis, also
IB(ψ(c)) = t and IB(ξ(c)) = t, whence IB([∃xψ(x)]ξ(x)) = t.

• When v = e, for every constant c on B, either e : ψ(c) or e : ξ(c) appears on B. By choice of CIB , for all c′,
either IB(ψ(c

′)) = e or IB(ξ(c
′)) = e; that IB respects ∃̇ thus guarantees that IB([∃xψ(x)]ξ(x)) = e.

• That v = f reveals two points about B: One, there is a c for which both ψ(c) and ξ(c) appear on B signed by
either t or f. By induction hypothesis, this means that IB(ψ(c)) 6= e and IB(ξ(c)) 6= e. Two, for no c′ are both

3N.b. that the criterion for closure is that a formula appears signed with distinct truth values and not distinct signs. E.g., m : ϕ
is merely a notational device for potential branching, so both m : ϕ and t : ϕ may harmoniously appear in an open branch.



t : ψ(c′) and t : ξ(c)′ on B; by the induction hypothesis, nor do both IB(ψ(c
′)) = t and IB(ξ(c

′)) = t hold for any
c′. Between these two observations, the definition of ∃̇, and induction hypothesis, IB([∃ψ(x)]ξ(x)) = f.

The cases of disjunction and the universal restricted quantifier follow from nearly identical reasoning.

Theorem 2 (Completeness of wKrQ). If Γ �wK ϕ then Γ ⊢wKrQ ϕ.

Proof. In line with the standard argument, we prove the contrapositive. Suppose that Γ 0wKrQ ϕ. Then
there is an open branch on a tableau including t : γi for each γi ∈ Γ but on which either f : ϕ or e : ϕ appears.
By Lemma 2.1, IB(γi) = t for all γi ∈ Γ but IB(ϕ) 6= t. IB serves as a counterexample witnessing that Γ 2wK ϕ.

3. BILATERAL LOGICS RELATED TO WEAK KLEENE LOGIC

Although we find the question of providing an intuitive quantification theory in the weak Kleene setting to be
intriguing, weak Kleene logic seems to have little promise as a tool for e.g. semantic representation of intentional
contexts. However, several logical frameworks that are obviously good candidates enjoy a close relationship to
weak Kleene logic, allowing us to directly employ the results on wK.

We now examine two propositional logics related to wK: Charles Daniels’ “first degree story logic” S⋆
fde

described in [15] and Richard Angell’s logic of analytic containment AC described in [1]. Each is weaker than
classical propositional logic and each has been offered as a notion of validity under which weak, non-veridical
theories can be closed. [15] argues that fictions are closed under S⋆

fde
; Correia in [2] and Fine in [3] have argued

that AC preserves equivalence of facts, whence even classes of e.g. desires are closed under AC consequence. Both,
therefore, are intriguing foundations for applications like description logics—presuming the details of restricted
quantification are worked out.

As these two systems are less familiar than wK, it may help the reader to provide axiomatic presentations of
propositional AC and S⋆

fde
. As consecution calculi, the first-degree account of AC is determined by the following

axioms:

AC1a ϕ ⊢ ∼∼ϕ
AC1b ∼∼ϕ ⊢ ϕ
AC2 ϕ ⊢ ϕ ∧ ϕ
AC3 ϕ ∧ ψ ⊢ ϕ
AC4 ϕ ∨ ψ ⊢ ψ ∨ ϕ
AC5a ϕ ∨ (ψ ∨ ξ) ⊢ (ϕ ∨ ψ) ∨ ξ
AC5b (ϕ ∨ ψ) ∨ ξ ⊢ ϕ ∨ (ψ ∨ ξ)
AC6a ϕ ∨ (ψ ∧ ξ) ⊢ (ϕ ∨ ψ) ∧ (ϕ ∨ ξ)
AC6b (ϕ ∨ ψ) ∧ (ϕ ∨ ξ) ⊢ ϕ ∨ (ψ ∧ ξ)

and rules:

AC7 If ϕ ⊢ ψ and ψ ⊢ ϕ are derivable then ∼ϕ ⊢ ∼ψ is derivable
AC8 If ϕ ⊢ ψ is derivable then ϕ ∨ ξ ⊢ ψ ∨ ξ is derivable
AC9 If ϕ ⊢ ψ and ψ ⊢ ξ are derivable then ϕ ⊢ ξ is derivable

S⋆
fde

can be defined by adding the following:

S1 ϕ ⊢ ϕ ∨ ∼ϕ

For a multiple-premise formulation with finite premises Γ, provability of Γ ⊢ ϕ can be understood as derivability
of

∧

Γ ⊢ ϕ.

In [5], a tight connection between wK (on the one hand) and S⋆
fde

and AC (on the other) is described. This
connection can be summarized as the idea that these two logics are essentially bilateral—tracking distinct values
for both truth and falsity—with the calculation of truth values and falsity values being performed by parallel
positive weak Kleene interpretations.



3.1 S⋆
fde

and AC

A semantic value for S⋆
fde

and AC is a pair 〈u, v〉 with u, v ∈ V3. We can read the first coordinate as an indicator of
corroborating evidence for a formula and the second coordinate as representing whether there is refuting evidence.
For example, that ϕ receives value 〈t, f〉 can be understood as “there exists evidence in favor of the truth of ϕ
and no evidence refuting ϕ”; that it receives value 〈f, f〉 can be read as “there no evidence either supporting or
refuting ϕ.”

We define propositional interpretations for AC:

Definition 13. A propositional AC interpretation I is a function I : L → V3 × V3. Let I0 and I1 denote
functions mapping formulae ϕ to the first and second coordinates of I(ϕ).

• I(∼ϕ) = 〈I1(ϕ), I0(ϕ)〉

• I(ϕ ∧ ψ) = 〈I0(ϕ) ∧̇ I0(ψ), I1(ϕ) ∨̇ I1(ψ)〉

• I(ϕ ∨ ψ) = 〈I0(ϕ) ∨̇ I0(ψ), I1(ϕ) ∧̇ I1(ψ)〉

N.b. that negation is clearly a “toggle” negation in the sense of [16] as it simply exchanges the truth coordinate
for the falsity coordinate. Moreover, the duality between e.g. conjunction and disjunction is respected by defining
the falsity of a conjunction as the disjunction of the falsity values of the conjuncts.

Semantically, S⋆
fde

is yielded from AC by restricting the available values to V̂2
3 = {〈t, t〉, 〈t, f〉, 〈f, t〉, 〈f, f〉, 〈e, e〉}.

From the Halldén-Bochvar perspective, this is equivalent to enforcing a condition that a formula is meaningless
precisely when its negation is.

Definition 14. A propositional S⋆
fde

interpretation I is an AC interpretation where atoms are mapped to the
set V̂2

3 .

We now enrich the propositional base with the needed expressivity.

3.2 Adding Restricted Quantifiers

The discussion of restricted quantification and the way that duals are reflected in the bilateral interpretation of
truth values jointly lead to a natural interpretation of quantification in S⋆

fde
and AC.

Definition 15. A predicate AC (respectively, S⋆
fde

) interpretation is a function I from L′ to V2
3 (respectively,

V̂2
3 ) evaluating connectives as in Definition 13 and respecting the following:

I([∃xϕ(x)]ψ(x))=〈∃̇({〈I0(ϕ(c)), I0(ψ(c))〉 | c ∈ C}), ∀̇({〈I0(ϕ(c)), I1(ψ(c))〉 | c ∈ C})〉

I([∀xϕ(x)]ψ(x))=〈∀̇({〈I0(ϕ(c)), I0(ψ(c))〉 | c ∈ C}), ∃̇({〈I0(ϕ(c)), I1(ψ(c))〉 | c ∈ C})〉

The restricted quantifiers we have introduced are perfectly harmonious with the bilateral, weak Kleene-based in-
terpretation from [5]. In the bilateral context, consider two notions—one weak, one strong—in which [∃xϕ(x)]ψ(x)
might be thought to be false in an interpretation. In a weak sense, the sentence might be considered refuted
whenever searches for a c satisfying both ϕ(x) and ψ(x) have failed, i.e., one has not successfully verified the
sentence. In contrast, a stronger notion can be invoked, i.e., that there is a demonstration that any c satisfying
ϕ(x) must falsify ψ(x).

Such a distinction is reflected in the assignment of a bilateral truth value 〈u, v〉 ∈ V2
3 to a quantified sentence

[∃xϕ(x)]ψ(x). As in the propositional case, the coordinates u and v represent the status of the verification
and falsification of [∃xϕ(x)]ψ(x), respectively. Thus, the weak notion of refutation described in the foregoing
paragraph may be codified by the assignment of a value 〈f, v〉 to the sentence, i.e., whenever it is false that the
sentence has been verified. In contrast, the strong type of refutation of [∃xϕ(x)]ψ(x) is reflected in its receipt of
a value of the form 〈v, t〉, i.e., there is positive information attesting to the falsification of the sentence.

The reader can confirm that the bilateral approach in fact improves on the presentation for wK inasmuch
as DeMorgan’s laws are reestablished; as S⋆

fde
and AC are our actual targets, this should relieve concerns about

their failure in wK.



One further observation is required, establishing that V̂2
3 is in fact closed under the bilateral interpretation

of the restricted quantifiers.

Lemma 3.1. V̂2
3—the collection of S⋆

fde
truth values—is closed under the above interpretation of the restricted

quantifiers.

Proof. For a valuation I mapping all atomic formulae to one of the S⋆
fde

truth values, the atomic and literal
cases form a basis step. Assume that for all subformulae ψ of ϕ, I0(ψ) = e if and only if I1(ψ) = e. That the
set is closed under negation and binary connectives is straightforward (see [5]), leaving only the quantifiers; we
consider existential quantification, as universal quantification is analogous.

We show that the induction hypothesis entails that I0([∃xϕ(x)]ψ(x)) = e occurs if and only if I1([∃xϕ(x)]ψ(x)) =
e. Suppose that I0([∃xϕ(x)]ψ(x)) = e. By definition, this holds when for all 〈u, v〉 ∈ {〈I0(ϕ(c)), I0(ψ(c))〉 | c ∈
C} either u = e or v = e. By induction hypothesis, I0(ψ(c)) = e precisely when I1(ψ(c)) = e. Thus, this holds
if and only if the same can be said for each 〈u, v〉 ∈ {〈I0(ϕ(c)), I1(ψ(c))〉 | c ∈ C}. But this is just to say that
I1([∃xϕ(x)]ψ(x)) = e.

We define validity in S⋆
fde

and AC jointly:

Definition 16. Let L be either S
⋆

fde
or AC. Then L validity is defined as truth preservation,4 i.e.

Γ �L ϕ if for all L interpretations such that I0[Γ] = {t}, I0(ϕ) = t.

3.3 Tableau Calculi for S⋆
fde

and AC with Restricted Quantifiers

Rather than introduce signed tableau calculi with five or nine values for S⋆
fde

and AC, we leverage their close
relationship with wK to supply tableaux.

A trick employed by Kamide in [17] for the study of the bilateral Nelson logic N4 will play a role. Nelson’s N4
from [18] can be given a bilateral interpretation in which its measures of truth and falsity are being individually
calculated by positive intuitionistic logic; Kamide shows that by introducing for each atomic parameter p a
parameter p⋆ corresponding to p’s falsity value, N4 can be embedded into positive intuitionistic logic. As a
similarly bilateral semantics, the trick can be employed in our case as well:

Definition 17. For a language L, let L⋆ be the language that includes for every predicate R a predicate of the
same arity R⋆; for a sentence ϕ ∈ L, let ϕ⋆ ∈ L⋆ be:

• R(t0, ..., tn−1)
⋆ = R(t0, ..., tn−1) and (∼R(t0, ..., tn−1))

⋆ = R⋆(t0, ..., tn−1)

• (∼∼ϕ)⋆ = ϕ⋆

• (ϕ ∧ ψ)⋆ = (ϕ)⋆ ∧ (ψ)⋆ and (ϕ ∨ ψ)⋆ = (ϕ)⋆ ∨ (ψ)⋆

• [∀xϕ(x)]ψ(x))⋆ = [∀x(ϕ(x))⋆ ](ψ(x))⋆

• [∃xϕ(x)]ψ(x))⋆ = [∃x(ϕ(x))⋆ ](ψ(x))⋆

• (∼(ϕ ∧ ψ))⋆ = (∼ϕ)⋆ ∨ (∼ψ)⋆ and (∼(ϕ ∨ ψ))⋆ = (∼ϕ)⋆ ∧ (∼ψ)⋆

• (∼[∀xϕ(x)]ψ(x))⋆ = [∃x(ϕ(x))⋆](∼ψ(x))⋆

• (∼[∃xϕ(x)]ψ(x))⋆ = [∀x(ϕ(x))⋆](∼ψ(x))⋆

4A reviewer has observed that alternative definitions could be considered, e.g., requiring preservation of non-refutability in the
second coordinate. Whether such alternatives determine distinct consequence relations is an interesting question.



For a set of sentences Γ, give Γ⋆ the natural definition as the translation of each element of Γ.

The techniques of [5] immediately adapt when restricted quantifiers are in play to yield the following lemmas:

Lemma 3.2. For an AC interpretation I, I(ϕ) = I(ϕ⋆).

Lemma 3.3. Γ �AC ϕ iff Γ⋆
�wK ϕ

⋆

The tableau proof theory ACrQ is yielded by modifying Definition 9:

Definition 18. Let wKrQ+ be the result of dropping the ∼ rule from wKrQ. Then the tableau calculus ACrQ

is defined by adding to wKrQ+:

v : ∼R(c0, ..., cn−1)

v : R⋆(c0, ..., cn−1)

v : ∼R⋆(c0, ..., cn−1)

v : R(c0, ..., cn−1)

v : ∼∼ϕ
v : ϕ

v : ∼(ϕ ∧ ψ)

v : (∼ϕ ∨ ∼ψ)

v : ∼(ϕ ∨ ψ)

v : (∼ϕ ∧ ∼ψ)

v : ∼[∀ϕ(x)]ψ(x)

v : [∃ϕ(x)]∼ψ(x)

v : ∼[∃ϕ(x)]ψ(x)

v : [∀ϕ(x)]∼ψ(x)

where v is any element of V3.

Lemma 3.4. If u : ϕ and v : ψ, for distinct u and v, are on a branch of an ACrQ tableau such that ϕ⋆ = ψ⋆,
then the branch will close.

Proof. This clearly holds for atomic formulae, so take this as a basis step and assume that it holds for all
subformulae of ϕ and ψ and their negations.

Now, if either ϕ and ψ are negated, applying negation elimination rules to the branch yields non-negated
formulae, so assume them to not be negated. Importantly, that ϕ⋆ = ψ⋆ ensures that ϕ and ψ will share a
common primary logical operator.

For the case of a binary connective, suppose without loss of generality that ϕ = ϕ0 ∧ ϕ1 and ψ = ψ0 ∧ ψ1.
Applying the conjunction rule to these nodes will yield a number of branches in which truth values are distributed
to u0 : ϕ0, u1 : ϕ1, v0 : ψ0, and v1 : ψ1. But the functionality of ∧̇ ensures that in any such branch, either
u0 6= v0 or u1 6= v1. Because ϕ

⋆

i
= ψ⋆

i
for each i, the induction hypothesis ensures that each branch will close.

Similar considerations apply to the case in which ϕ and ψ are quantified sentences; suppose them to be
[∃xϕ0(x)]ϕ1(x) and [∃xψ0(x)]ψ1(x). No matter the values of u and v, applying the appropriate rules in the right
order will result in assortment of branches in which u0 : ϕ0(c), u1 : ϕ1(c), v0 : ψ0(c), and v1 : ψ1(c) appear. But
either u0 6= v0 or u1 6= v1 must hold in every such case and, by the induction hypothesis, any resulting branches
will close.

Lemma 3.5. Γ ⊢ACrQ ϕ if and only if Γ⋆ ⊢ACrQ ϕ⋆

Proof. Take a tableau T and construct a new tableau T ◦ by replacing every node n with formula u : ϕ
by a node n◦ decorated with u : ϕ⋆. We first prove that the application of rules is preserved through the
transformation. There are two cases to consider: those in which ϕ is negated and when it is not.

When ϕ is not negated then there must be one of the wKrQ+ rules that applies. In all such cases, ϕ
and ϕ⋆ have the same primary logical operator, e.g., when ϕ is a conjunction, ϕ⋆ is a conjunction. Thus,
whenever a node n on T with a non-negated sentence u : ϕ has children, the same rule will be applicable to
n◦. Moreover, the decomposition of complex sentences to subformulae induced by the rules are respected by the
clauses defining ⋆. In other words, if the application of a wKrQ+ rule to a node n decorated by u : ϕ yields
children u0 : ϕ0, ..., un−1 : ϕn−1, the same rule, applied to n◦, yields children u0 : ϕ⋆

0, ..., , un−1 : ϕ⋆

n−1.

When ϕ is negated, T must apply one of the proper ACrQ rules involving negation. In this case, both
parent and child nodes in T ◦ will be decorated by the same signed formula. What was a negation rule in T will
be a vacuous repetition in T ◦.

Importantly, whenever distinct u : ϕ and v : ϕ appear in a branch in T , u : ϕ⋆ and v : ϕ⋆ will appear in that
branch in T ◦, i.e., a closed branch in T will remain closed in T ◦. This establishes the left-to-right direction of
the lemma.



Because ⋆ is not injective, T ◦ may identify many sentences that T sees as distinct. Thus, one may worry
about cases in which T has an open branch that is closed in T ◦, precluding the right-to-left direction of the
lemma. But Lemma 3.4 clears a path forward; if such a case occurs, T can be extended to a new tableau T ′ in
which any such branches will ultimately be closed.

Given our results on wK, soundness of ACrQ is established:

Theorem 3 (Soundness of ACrQ). If Γ ⊢ACrQ ϕ then Γ �AC ϕ.

Proof. Suppose that T is a tableau demonstrating that Γ ⊢ACrQ ϕ. Then by Lemma 3.5, there is a closed
ACrQ tableau showing that Γ⋆ ⊢ACrQ ϕ⋆. But this proof involves no properly ACrQ rules—it is thus awKrQ+

(and a fortiori a wKrQ) tableau. Thus, Γ⋆ ⊢wKrQ ϕ⋆ and by Theorem 1, Γ⋆
�wK ϕ

⋆. Finally, by Lemma 3.3,
we conclude that Γ �AC ϕ.

Completeness similarly follows from previous remarks:

Theorem 4 (Completeness of ACrQ). If Γ �AC ϕ then Γ ⊢ACrQ ϕ

Proof. We prove the contrapositive. Suppose that Γ 0ACrQ ϕ. Then by Lemma 3.5, Γ⋆
0ACrQ ϕ⋆. As

negation is essentially eliminated, Γ⋆
0wKrQ ϕ⋆, whence we infer the existence of a wKrQ tableau with an open

branch B. Definition 12 can then be applied to yield a weak Kleene branch model IB for which IB[Γ] = {t} and
IB(ϕ) 6= t.

IB induces an AC interpretation I⊲⊳

B
that preserves the interpretation of constants while bilaterally interpreting

n-ary predicates so that RI
⊲⊳

B (c
I

⊲⊳

B

0 , ..., c
I

⊲⊳

B

n−1) = 〈RIB(cIB

0 , ..., cIB

n−1), (R
⋆)IB(cIB

0 , ..., cIB

n−1)〉. The semantic clauses
ensure that I⊲⊳

B
verifies all of Γ⋆ while failing to verify ϕ⋆. By Lemma 3.2, this lifts to Γ and ϕ, whence we

conclude that Γ 2AC ϕ.

These results summarize the presentation of restricted quantification for AC. Now, we define an appropriate
calculus for S⋆

fde
:

Definition 19. The tableau calculus SrQ for S⋆
fde

with restricted quantifiers is captured by adding the following
rules to ACrQ where v ∈ {t, f}:

e : R(c0, ..., cn−1)

e : R⋆(c0, ..., cn−1)

e : R⋆(c0, ..., cn−1)

e : R(c0, ..., cn−1)

v : R(c0, ..., cn−1)

m : R⋆(c0, ..., cn−1)

v : R⋆(c0, ..., cn−1)

m : R(c0, ..., cn−1)

with the proviso that an above rule may be applied to a formula R(c0, ..., cn−1) or R⋆(c0, ..., cn−1) at most once
on any branch.

Thinking of the notation m as indicating “not e” may aid in interpreting the above rules. That R(c0, ..., cn−1) is
assigned e.g. t establishes only that its mate R⋆(c0, ..., cn−1) is not e, entailing a branch on the two remaining
values.

To show soundness and completeness, we first establish some results about a class of weak Kleene interpre-
tations. Let S denote the class of weak Kleene interpretations I over the broader language L⋆ such that for all
atomic sentences, I(R(c0, ..., cn−1)) = e if and only if I(R⋆(c0, ..., cn−1)) = e. Furthermore, let �S denote weak
Kleene validity over the restricted class S.

Lemma 3.6. Γ �S⋆

fde
ϕ iff Γ⋆

�S ϕ⋆

Proof. By definition, Γ �S⋆

fde
ϕ holds if and only if it holds in an AC interpretation over V̂2

3 , in which no
formula will correspond to values 〈t, e〉, 〈f, e〉, 〈e, t〉, or 〈e, f〉. But the corresponding class of wK interpretations
will be S. So the results of [5] that support Lemma 3.3 establish this lemma as well.

Lemma 3.7. Let IB be a branch model defined on an open branch from an SrQ tableau. Then IB ∈ S.

Proof. Suppose that IB(R(c0, ..., cn−1)) = e. Then one of two cases must have occurred: First, suppose that
for no v ∈ V3 does v : R(c0, ..., cn−1) appear on the branch. Then the rules of SrQ ensure that neither does a



signed formula u : R⋆(c0, ..., cn−1) appear on B. In the second case, e : R(c0, ..., cn−1) does appear on B, in which
case the SrQ rules guarantee that e : R⋆(c0, ..., cn−1) is on the branch. Either way, Definition 12 guarantees that
IB(R

⋆(c0, ..., cn−1)) = e.

Lemma 3.8. Let wKrQS be the result of adding properly SrQ rules to wKrQ+. Then wKrQS is sound with
respect to S.

Proof. By Theorem 1, all rules of wKrQ+ respect the semantics. But the properly SrQ rules precisely
correspond to the semantic conditions defining S.

Now we have the necessary lemmas to prove soundness and completeness:

Theorem 5 (Soundness of SrQ). If Γ ⊢SrQ ϕ then Γ �S⋆

fde
ϕ.

Proof. For any tableau demonstrating that Γ ⊢SrQ ϕ, Lemma 3.5 can be applied to generate a proof of

Γ⋆ ⊢SrQ ϕ⋆. This proof includes only properly SrQ rules, and is thus a wKrQS tableau. By Lemma 3.8,
Γ⋆

�S ϕ⋆. Finally, by Lemma 3.6, we conclude that Γ �S⋆

fde
ϕ.

Theorem 6 (Completeness of SrQ). If Γ �S⋆

fde
ϕ then Γ ⊢SrQ ϕ

Proof. Suppose that Γ 0SrQ ϕ. Just as in Theorem 4, we can extract a branch model I⊲⊳

B
from an SrQ

tableau that does not close. By Lemma 3.7, I⊲⊳

B
is a member of S. By Lemma 3.6, Γ 2S⋆

fde
ϕ.

4. CONCLUDING REMARKS

The deductive systems wK, S⋆
fde

, and AC capture notions of validity and equivalence that are stricter than classical,
Boolean logic. Given the interpretative and philosophical work on these systems, they are plausible candidates
for modest closure conditions for intentional contexts, including collections of agents’ beliefs, knowledge, or goals.

In this paper, we have introduced sufficient quantification theory for these systems to support applications
like description logics. The end results envisioned are description logics that can felicitously and plausibly
capture and reason about agents’ intentional states. The present work has provided a formal foundation for
these applications, but work remains to be done, e.g., determining the complexity of deductions in the tableau
calculi introduced in this paper and adapting them to calculi including the syntax of e.g. ALC or SROIQ.

One concluding note on the matter of the complexity of determining validity: Definition 17 translates both
systems into a positive logic and in the propositional case, this corresponds to classical validity in conjunction with
a variable-inclusion property. Thus, validity in propositional S⋆

fde
or AC is polynomial-time reducible to classical

validity. It is worth investigating whether a similar approach will work in the case of restricted quantification.
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