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RLupus: Cooperation through emergent
communication in The Werewolf social
deduction game

Nicolo’ Brandizzia, Davide Grossib,c,∗ and Luca Iocchia
aDipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza University of Rome, Italy
bBernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The
Netherlands
cAmsterdam Center for Law and Economics and Institute for Logic, Language and Computation, University of
Amsterdam, The Netherlands

Abstract. This paper focuses on the emergence of communication to support cooperation in environments modeled as social
deduction games (SDG), that are games where players communicate freely to deduce each others’ hidden intentions. We
first state the problem by giving a general formalization of SDG and a possible solution framework based on reinforcement
learning. Next, we focus on a specific SDG, known as The Werewolf, and study if and how various forms of communication
influence the outcome of the game. Experimental results show that introducing a communication signal greatly increases the
winning chances of a class of players. We also study the effect of the signal’s length and range on the overall performance
showing a non-linear relationship.

Keywords: Multi-agent systems, social deduction games, deep reinforcement learning, emergent communication

1. Introduction

Social deduction games (SGDs) are games char-
acterized by the confrontation between two or more
parties, one of which is usually seen as an evil fac-
tion. The other parties must deduce the real intention
of the latter, seeing through lies and deceptions.
While the details of these games may change, free
communication—i.e., players can communicate with
each other with no limitations—is a common aspect
for them all.

In artificial settings, communication would lead to
increased complexity in the environment, both on the
user side, where engineers are tasked to design an

∗Corresponding author: Davide Grossi, Bernoulli Institute for
Mathematics, Computer Science and Artificial Intelligence, Uni-
versity of Groningen, The Netherlands. Amsterdam Center for
Law and Economics and Institute for Logic, Language and Com-
putation, University of Amsterdam, The Netherlands. E-mail:
d.grossi@rug.nl.

expressive and robust syntax [15, 17, 37], and on
the artificial players who have to learn the syntax
and the meaning of the available words. For shallow
players, this task quickly becomes unfeasible. A com-
mon solution is to define a game-specific language
containing communication semantics. This language
is devised by usually injecting some expert knowl-
edge into the system. The language becomes then
part of the game, providing new available commu-
nication actions augmenting the agents’ choices in
the decision-making process. Instead of developing
a language for the agents, in this article, we pro-
pose another approach enabling players to use a free
communication mechanism.

Context of the paper. Games arising from social
interaction have been extensively studied within the
multi-agent reinforcement learning (MARL) litera-
ture. Indeed, MARL systems have been successfully
used to model a wide variety of social systems found
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in nature and modern society, from food-collective
ants systems to complex sharing of information in
social networks [7]. In these settings, the agents’
behavior can be cooperative, competitive or a mix
of the two. In [7] a study of these different kinds
of settings and the algorithms associated with them
is pursued while [29, 46] focuses on the difference
between competitive and cooperative agents.

Although MARL has been used for a wide variety
of applications, the reinforcement learning paradigm
may not scale up easily in complex multi-agent sys-
tems. For this reason, RL has been integrated with
deep neural networks (DeepRL, DRL) [38]. This
allows RL to scale to problems that were previously
intractable, such as playing video games using pix-
els as input [21]. Shortly after [45], this approach
has been applied to multi-agent systems to study the
complex emergent behavior of multiple agents inter-
acting with each other to reach a goal. Although DRL
is a well-established field of study, agent interaction
via actions or communication remains a challenging
problem.

This research area is strictly tied to the study
of complex behavior arising from the interaction
of simple agents; these aspects are mainly studied
through the usage of structured game systems. In
their work, Baker et al. [3] showed how a few sim-
ple rules from the Hide’n Seek game can generate
complicated behaviors to the point of exploiting envi-
ronmental errors to their advantages. Along the same
line, Leibo et al. [27] carried out extensive analysis
on the problem of autocurricula and non-stationary
learning in multi-agent deep reinforcement learning
(MADRL); they pointed out how the interaction of
competitive agents can culminate in an endless cycle
of counter-strategies due to the non-stationarity of the
environment.

In particular, one such complex behavior consists
in the emergence of communication between cooper-
ative agents. Recent works investigate this aspect in
various environments varying from joined image cap-
tioning [18], to negotiation [8] and simulated pointing
games [35]. Our paper is a contribution to this line
of research, focusing on communication in social
deduction games.

Paper contribution and outline. The paper makes
two main contributions:

– a formal description of social deduction games
coupled with a general reinforcement learn-
ing solution framework, which allows for free

communication among agents without requiring
to provide game-specific knowledge;

– an analysis of the performance obtained through
learned communication behaviors in an instance
of the above class of games: The Werewolf 1

social deduction game.

The paper is organized as follows. An overview of
the related work is provided in Section 2. In Section
3, the problem statement is formalized together with
the general RL framework. Section 5 describes the
Werewolf game instance in detail, defining both the
game logic and the actual implementation. This game
provides a fit ground to study language emergence
since its whole system is based on communication,
indeed it is the subject of an annual AiWolf context
in Japan. The experimental settings and results are
reported and commented in Section 6 together with
the comparison between our work and [23]. Finally,
a discussion is provided in Section 7.

The code is available at https://github.com/nicofir
st1/rl werewolf.

2. Related work

Our work relies on the findings coming from the
social interaction field of psychology, coupled with
the multi-agent systems and reinforcement learning.

Social Deduction Games.. Social deduction games
have been studied in the broader context of social
interactions [13]. In particular, they have been used
to study the role of rationality in inter-personal inter-
action [10], analyze the different forms of social
mechanics [11], and research the role of communi-
tal topology [1], however, the deduction part of these
games has been neglected.

Indeed, in their work [9], the authors give a mathe-
matical formulation for a general social game in order
to simplify the way to design such games; however,
no specific formulation is given for deduction games.

On the other hand, [54] study the most influen-
tial information source in social deduction games and
concludes that the interactions that occurred prior to
the game are regarded as most important to the player.
Although this approach is reasonable in the context of
acquaintances, no result is given for games in which
the playing parties do not know each other.

In all these works, the goal is centered around the
social interaction between players. In our work, we

1Also known as Lupus in Fabula.

http://aiwolf.org/en/
https://github.com/nicofirst1/rl_werewolf
https://github.com/nicofirst1/rl_werewolf
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shift the focus to finding an optimal policy to improve
the performances of a party.

Multi-agent Deep RL. Applying RL paradigms to
find an optimal policy for multi-agent systems is a
well-established line of work [6, 41, 46]. In recent
years deep neural networks (DNN) have been used to
solve complex tasks such as playing Atari games [21],
cooperating in Hide-and-seek [3] and competing with
humans on strategic games [42, 49].

A common paradigm for taring RL agents in a deep
setting is policy gradient methods, [43, 44] where the
gradient of a parametrized policy is used to guide the
agent in the direction of maximal expected reward. In
our work, we leverage a particular instance of these
methods called Proximal Policy Optimization [40].

In all such cases, the complexity of the environ-
ment coupled with a DNN generated unexpected
behaviors that are usually counter-intuitive for
humans but achieve greater performances in the task
at hand. In our work, we leverage this aspect and
further study how the coordination between agents
varies under different communication instances.

Emergent Communication.. This phenomenon has
been exploited in the newly born field of emer-
gent communication [51], where agents are given the
choice to use a communication channel to achieve a
common goal.

The workshop on Emergent Communication
(Emecom) includes many publications in the field
of natural language processing [28] strictly tied to
MADRL [16, 26, 29] and social deduction games
as an environment. Standard games for this line of
research are the Task & Talk [25], which is cen-
tered around dialogue, on the other hand, the Pointing
Game [35] grounds the communication into natural
image processing.

Another instance of these settings is The Werewolf
game, where the players find themselves split into
two opposite groups in a partially known environ-
ment. This game has gained increased popularity in
the field of cooperation through emergent communi-
cation, especially in Japan, where the annual AiWolf
contest [5, 20, 24, 36] sees artificial agents compet-
ing with and against human players to win the game
with fixed language syntax. In particular [52], set up
a 5-player game with additional roles and use a Deep
Q-Network to determine who to trust or kill.

In our work, we choose The Werewolf as an
instance of the general SDG framework. However,
our implementation differs from the ones in the

AiWolf contest, the closest being [23], where the
authors use Q-learning to study the winning chances
of the villagers in a game with 16 players, divided
into 14 villagers and 2 werewolves. Indeed we drop
the hand-coded syntax and let the players develop
their own communication by defining some general
attributes of the channel.

3. Problem statement

Social deduction games (SDG) are characterized
by the presence of a number of opposing parties

P (1), P (2), . . . , P (m)

(typically m = 2), each containing a finite number
n(k) of players, which may differ per party. For the
sake of conciseness, we drop the k dependency and
denote the number of players in a party as simply n:

P (k) = {p(k)
1 , p

(k)
2 , . . . , p(k)

n }
with 1 ≤ k ≤ m. We denote by N = ⋃

1≤k≤m P (k) the
set of all players.

The game evolves as a sequence of actions per-
formed by the players of the parties, typically in turns.
The effect of these actions contributes to the definition
of the game score.

The goal of each party is to prevail over the others
by performing suitable social behaviors, including,
for example, leveraging other players by means of
bluffs and lies. These deceitful methods are the base
for any SDG and force every player to perform a
deductive analysis on the member of the other par-
ties. In general we can identify two types of goals in
SDGs:

– An agent-based micro-goal, which is the main
factor steering the agent’s behavior, either in iso-
lation (in competitive environments) or together
with other agents’ goals (in cooperative environ-
ments).

– A party-based macro-goal, expressing the
aligned interests of the members of the same
party that, combined, make up the party goal.

During the execution of the game, agents can com-
municate among them, either implicitly or explicitly.
We define explicit communication as the act of shar-
ing information for the sole purpose of affecting other
agents’ mental states. On the other hand, implicit
communication regards all those actions that carry
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more than one meaning, e.g., guiding someone to a
goal. Decisions about how, when, and what to com-
municate are critical choices for the game’s success.

We thus distinguish two categories of actions per-
formed by the players: 1) game actions, that are
actions affecting the evolution of the game, 2) com-
munication actions that are actions affecting only the
mental state (i.e., the knowledge state) of the play-
ers. In this formalization, we consider only forms
of explicit communication, while studying forms of
implicit communication is left as future work.

With the previous assumptions, in this paper, we
consider the formalization of an SGD with the fol-
lowing elements:

1. the action set A = G ∪ C is made of two sepa-
rate components:

– a finite set of possible game actions G the
elements of which we will denote with g.

– a set of unidirectional communication
actions Ci,j(b) intended to convey some
information b ∈ B2 between two players:

Ci,j(b) : pj → pi ∀pj, pi j /= i ∈ N

2. the state set O = EN × WN × V , with N being
the total number of players, built out of three
elements3:

– a set of agent’s features E representing the
game situation of each agent (typically vis-
ible to all other agents),

– a set of agent’s internal states W (e.g., rep-
resentations of beliefs not visible to other
agents).

– a set of environment states V that are com-
mon for all the agents (i.e., independent
from the agent states).

3. an environment S implementing the game logic.
S can be seen as a function taking as input the
agents actions and yielding a new state obtained
as the result of execution of such actions

S : O × AN → O (1)

Notice that, while it may be relatively easy
to formalize the specifications of game actions,
for example, in terms of pre-conditions and post-
conditions using action representation formalisms, it
is less clear how to formalize communication actions
since it would require an explicit model of agents’

2A possibly infinite set of all possible signals.
3We consider a setup where all the agents N choose an action

simultaneously.

knowledge. For modeling this kind of communica-
tion actions, the use of typical action formalisms is
not straightforward. For example, they may need to
be extended with epistemic operators [14].

4. General solution framework

This article studies social deduction games that
can be formalized as a multi-agent (deep) reinforce-
ment learning (RL) scenario. In such scenarios, each
party has to choose an optimal strategy or policy4

(i.e., an optimal assignment from states to actions) to
maximize the game score. As already mentioned, a
particular feature of SDGs is the presence of com-
munication actions and the need to choose optimal
communications among the players within a party.

The problem of learning optimal policies in multi-
agent games is indeed well known, and many
solutions are available. However, when communica-
tion actions are involved, using artificial intelligence
techniques to make optimal decisions about how,
what, and when to communicate is still a challeng-
ing problem under investigation, and fewer research
works are available.

The advantage in defining a solution based on RL is
that it does not require an explicit model of the tran-
sition function for communication actions. In other
words, optimal behaviors can be computed without
associating a semantic meaning to the communica-
tion actions. While this feature can be considered
not desirable for some kinds of applications (e.g., for
mixed human-AI teams), it is very convenient for AI
teams based on RL that can learn their own commu-
nication language to win the game. Indeed AI agents
can effectively learn a communication language with-
out making the semantics of communication explicit.
The explainability of learned communication actions
is left as future work.

Action Policy. We consider a single game turn t as
a sequence of k + 1 steps, where the first k steps
are associated to only communication actions c ∈ C
while the last step is a game action g ∈ G. We denote
each time step as Oj

t ∀j ∈ [0, k + 1].
Now, we can define a policy π that uses the infor-

mation from Oj
t in order to choose an action as

4Although the coordinated behavior favors the parties’ macro-
goal, the actual policy works on the players’ micro-goal level.
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follows:

π(Oj
t ) ∈ C ∀ j ≤ k

π(Ok+1
t ) ∈ G

Note that in some cases it can be useful to compute
two distinct policies πC ; πG, one for communication
and one for the game actions.

5. R-Lupus framework

In this section, we present the RLupus framework
for the Werewolf social deduction game in which
we apply the above formalization. In this specific
context, we aim to study if and how various forms
of communication can influence the outcome of the
game, in which only one party is able to learn while
the other one has a fixed, hand-coded policy.

Under the same circumstances, the hypothesis is
that the agents who can communicate will perform
much better than those not allowed to exchange
information. Moreover, we speculate that different
communication settings will have diverse influences
on the amount of coordination among the agents and
the outcome of the game.

In the following sub-sections, we give a brief intro-
duction on The Werewolf game logic, a description
of the RL environment with all its components and
the policies used for the players in the game.

5.1. The werewolf game

Werewolf is a social deduction game modeling
conflicts between two groups in a partially known
environment. In its easiest version, the game sees two
groups (M = 2), villagers P (v) and werewolves P (w)

where P (v) > P (w) + 1. The wolves know exactly the
identity of each player, while the villagers are certain
exclusively about their role and the number of were-
wolves. In an open setup, an additional moderator is
needed to coordinate the players.
The game is divided into two phases: night and day,
interleaving each other.

The game ends either when the villagers execute
the last werewolf, or there is an even number of both
roles. The latter case implies the wolves winning
since the execution phase can be stalled, thus tak-
ing away the only possibility for villagers to kill the
wolves.

5.2. Reinforcement learning

Before describing the RLupus environment, a brief
description of the Reinforcement Learning paradigm
must be introduced.

In the canonical RL environment, the problem sat-
isfies the Markov property5 so it can be formulated
as a Markov decision process (MDP). An MDP is
defined by a tuple of five elements (O, A, T , R, γ)
defined as follows:

– A finite set of observations called the observation
space O

– A finite set of actions, the action space A
– A transition model Ta(mt, mt+1) defining the

probability to transition from state mt to a new
state mt+1 given action a.

– R(mt, mt+1) the reward associated to the previ-
ous transition.

At each timestep t, an RL agents receives a state
mt from a dynamic environment O. The agent then
selects an action at from the action space A follow-
ing a policy π(at|mt). The action is processed by S,
equation 1, which transitions to the next state mt+1
and yields a reward rt to the agent. This feedback loop
continues until the agent reaches a terminal state and
restarts.

The agent aims to maximize the expected dis-
counted reward given by:

Rt =
∞∑
i=0

γirt+i

Where γ ∈ (0, 1] is the discount factor governing
the importance of future rewards.

5.3. RLupus environment

Dealing with RL implies the presence of an action
and state set; the latter are referred to as action space
and observation space, which are presented in the
following section6.

Action Space. As mentioned in Section 5.4, the
Werewolf uses a policy π(Oj

t ) in order to choose
both the communication and game actions. In a way,
the agent can be seen as performing a game gt and
communication ct action simultaneously.

5The future depends only on the current state and action.
6For the sake of conciseness some formulations are omitted

from the body of the paper. The interested reader can refer to the
Appendix A.
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Fig. 1. Signal vector with general formulation as well as specific
values for SL and SR.

Indeed the action space is divided into two parts:

– Target: The target gt is an integer in range
gt ∈ [0, N − 1], where N is the number of play-
ers. Its intended usage is to allow players to vote
for other players during the game. The range of
possible values never changes during the exe-
cution; instead, illegal actions, such as voting
for dead players, are filtered out later in the
model.

– Signal: The signal vector ct (see Figure 1) is
defined by two integer values: its length SL ∈
[0, ∞[ which can be any value from zero (no
communication) to an arbitrary large integer; its
range SR ∈ [2, N] that defines the number of
possible values it can have. SR bounded below
by 2, since a signal with only one possible value
would be considered a static vector carrying no
information; the upper bound N comes from the
necessity for the signal to be embedded with the
target. Both are used to define the valid space for
communication before training.

Observation Space. The observation space charac-
terizes what the agents perceive in the environment.
This space includes both other agents’ actions and
information about the environment7.

Transition Model. The transition model fully
depends on the target action; that is, the environment

7The complete observation space is described in Appendix
A.1.1.

is independent of the communication between
agents. Indeed S switches between night and day at
every timestep t and removes dead players from the
environment.

Rewards. The rewards, or penalties, are the core of
the environment and determine how the players inter-
act, learn, and develop new strategies; an agent’s main
goal is to take actions that will maximize the expected
reward.

Following our formalization, the environment is
responsible for delivering a reward to each player8.

Metrics. To measure the changes in the agent
behavior, the following normalized metrics are
logged:

– Suicide: the number of times an agent votes for
itself during an execution phase.

– Wins: the villagers’ wins are plotted in the nor-
malized range of values.

– Average days : average number of days before a
match ends.

– Accord: This value represents, on average, the
percentage of agents that vote for the same target
during the two execution phases.

5.4. Policies

An agent’s policy defines the behavior of a player
during the game. In this environment, there are two
kinds of policies: trainable policies use custom algo-
rithms to collect experience and learn to maximize
the reward; static policies are hard-coded behaviors
that are used to guarantee a fixed baseline trough out
the evaluation.

In this work, we assign static policies to oppo-
nent players (werewolves) and training policies to AI
agents (villagers) learning how to win the game.

Static policies for werewolves. Static policies are
reserved for the werewolf agents; their aim is to allow
a baseline evaluation of the villager learning. Since
wolves are more likely to win in a completely ran-
dom environment, applying such policies is enough
to prove the development of new strategies for the vil-
lagers if the winning rates are to change significantly.
Three policy are implemented:

8The complete set of rewards is described in Appendix A.1.2.
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– Random Target: chooses a random non-dead
player among the villagers during the execution
phase.

– Random Target Unite: this policy targets the
same player for every wolf, both during day
and night execution; this allows the werewolf to
dominate the day execution phase with random
villagers.

– Revenge Target: with this policy, the wolves will
either vote randomly or target a villager who
previously voted for a wolf.

Trainable policies for villagers.. In our work, we
chose Proximal Policy Optimization (PPO) as a
training algorithm for its widespread success in multi-
agent environment [19, 53], but future research could
also focus on other algorithms such as TRPO [39] or
MADDPG [31]. PPO uses a surrogate loss function
to keep the difference between the old and the new
policy within a safe range9. The model is a simple
fully connected network with an LSTM cell10.

Learning Werewolves.. Up until now, only villager
agents have been able to learn from experience, while
the werewolf behave according to a static policy.
Here, we address the possibility of an environment
where both villagers and werewolves are able to
learn. Having multiple agents learning simultane-
ously void the stationary assumption that is necessary
for optimality in RL. The presence of multiple vil-
lagers already invalidates this assumption, but the
coordination between them alleviates the problem.
Introducing an adversarial set of learning agents
would cause an increased complexity that would
cloud the goal of this paper, which is to study the
emergence of a language between agents.

6. Results

Following, an analysis of the results for both nine
(Section 6.1) and twenty-one (Section 6.2) play-
ers is given. In both cases, a baseline setting with
no communication is compared with multi-channel
communication to show the increased performance
reported using the metrics in Section 5.3.

9More information on the policy loss are available in Appendix
A.1.3.

10Given the partial observability of the problem, we found the
LSTM as a suitable element to approximate the state space.

Table 1
RLupus: Multi-channel metrics. The first column reports the type
of comm(unication)channel regarding the SignalLength and the
SignalRange. The next four show the metrics values for villagers

winning rate, suicide rare, number of days elapsed and
accordance rate

Comm Win Vil Suicide Days Accord

0SL 0.044 0.086 1.55 0.47
1SL-2SR 0.19 0.078 1.58 0.47
1SL-9SR 0.21 0.078 1.58 0.47
9SL-2SR 0.45 0.067 1.9 0.47
9SL-9SR 0.19 0.077 1.58 0.46

Moreover, for the nine players instance, results for
the additional revenge and unite policies are reported
against the random one.

Finally, in Section 6.3, a summary for a setting with
16 players is given for both the AiWolf environment
[23] and the RLupus one.

6.1. Nine players

A game with nine players is relatively short but not
trivial for the villagers. Indeed, in a completely ran-
dom environment, they have a probability of 3.12%
to win11.

Since the random policy is believed to hold the
least expert knowledge about the game environment,
we present the results for this policy only in the next
section. On the other hand, Section 6.1.2 also shows
the results for the revenge and unite policies.

6.1.1. Multi-channel communication
Table 1 presents the results (columns) obtained

with different forms of communication (rows), with
different communication settings (SL=signal length,
SR = signal range). From the table, it is clear that
any form of communication improves over the non-
communication setting (0SL). Moreover, it shows
how the bit communication (2SR) performs much
better than the full ranged one (9SR). Indeed, with
the addition of just one bit of communication, the
villagers can perform as well as the full extended
communication (9SL-9SR). In fact, for the settings
where SR = 9, increasing the channel length SL has
the only effect of speeding up the convergence by a
factor of circa 25% for each increase.

On the other hand, the bit communication,
independently from the channel length, provides gen-
erally better results. This leads to the conclusion
that the two parameters dictating the change in the

11See Appendix A.2 for the complete estimation.
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Table 2
RLupus: single/no channel metrics. The Design Choice part of

the table shows which kind of policy Random, Unite or Revenge
has been used in relation to the communication, while the Results

half present the metric’ values

Design Choice Results
Comm Rnd Unt Rvg Vil Win Accord Suicide Days

0SL X 0.044 0.478 0.086 1.55
0SL X 0.03 0.695 0.059 1.5
0SL X 0.12 0.482 0.078 1.64
1SL-2SR X 0.19 0.47 0.078 1.58
1SL-2SR X 0.08 0.685 0.055 1.52
1SL-2SR X 0.4 0.479 0.065 1.9

communication channel are not equally influential
when it comes to the agent’s learning.

On a final note, the average time to train the agents
was 6 hours on a single GPU12 machine.

6.1.2. Policies comparison
Table 2 reports results also related to the were-

wolves policies (Rnd = Random, Unt = Unite, Rvg =
Revenge).

When no communication is available (0SL), the
accord value is almost identical for both the revenge
and the random policy and much higher for the unite
one, as previously anticipated.

The number of days reports a similar trend being
smaller in the unite settings where the game ends
sooner. Finally, the revenge winning rate reaches a
much greater value than the other policies, 12%. The
motivation being the simplicity of the policy itself,
i.e., the wolves can not hide behind purely random
action anymore and are not strong enough to drive
the majority of the votes toward a villager.

Following the considerations for the three policies
and bit communication (SL = 1 SR = 2) referred to
Table 2:

– Random: the villager’s winning rate reaches
20% ; 4.5 times more than the previous condition
and 6.5 times the theoretical winning rate.

– Unite: as in the previous case, the coordination
is much greater. Indeed the villagers are able to
increase their winning rate by a factor of ×3.
This result alone proves that introducing a lim-
ited communication channel can greatly favor
the outcome even in the most disadvantageous
setting.

– Revenge: again, the revenge policy is the easiest
to spot for a trained agent reaching a winning
rate of 40%.

12Nvidia Geforce GTX 1080 Ti.

Table 3
Mapping between outcomes and probabilities

Outcome Prob. % Leaves Total %

0-12 0.029 1
0-10 0.143 4
0-8 0.447 10
0-6 1.162 20
0-4 2.819 35
0-2 7.02 56 11.62
1-1 21.06 56
2-2 27.965 21
3-3 26.017 6
4-4 26.017 1 88.38
Total 1.0 210 1.0

Table 4
RLupus: 21 Player metrics

Comm Win Suicide Days Accord

0SL 0.42 0.072 7.84 0.56
1SL-2SR 0.25 0.075 7.74 0.57
9SL-2SR 0.98 0.04 7.3 0.56
21SL-2SR 0.94 0.05 7.6 0.56
1SL-21SR 0.72 0.062 8 0.56
21SL-21SR 0.61 0.066 7.9 0.56

6.2. Twenty-one players

Unlike what was studied in the previous section,
the twenty-one players (21P) environment has more
room for the villagers to win in a completely random
setting. Indeed, by building a tabular representation
of the expanded tree (shown in Table 3), the reader
can see how the total villagers’ winning possibil-
ities increased to 11.62% in a completely random
environment.

6.2.1. Multi channel communication
A comparison among all the multi-channel settings

is reported in Table 4.
According to the previous section’s findings, the

bit communication (9SL − 2SR) seems to perform
better than the full-ranged one (∗SL − 21SR) both in
terms of winning ratio and suicides.

On the other hand, the 1SL − 2SR instance per-
forms worse than the no communication one; this
anomaly can be attributed to an incorrect environment
exploration. As mentioned in Table 3, the expanded
tree size is greater than the instance with nine play-
ers; thus, the algorithm can get more easily stuck in
a local minimum. However, every other setting with
a communication channel has a higher winning rate
than the one without; thus, one could confidently say
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Table 5
Winning rate for [23] and our method in both baseline and active

learning

Design Win Vil
AiWolf RLupus

No Learning AiWolf baseline 38.6 /
RLupus baseline / 56.9

Learning DQN / hand-coded 52.9 /
PPO / 0SL / 90.2

PPO / 1SL-2SR / 98.4

that the communication signal is indeed helping the
agents exploring the possible branches better than in
other cases. For these reasons, we believe this out-
come shows how the shape of the communication
signal can improve the agents’ capacity to explore the
environment and thus should be further investigated
in future work.

6.3. Sixteen players

As previously mentioned, Kajiwara et al. [23]
presented the AiWolf framework, implementing a
well-defined semantic13 constrained to be both easy
to use for the artificial players and understandable by
humans. They extended the agents’ adaptive capa-
bilities by adopting a Deep Q-network architecture
and reported an increase in the villagers’ winning
rate when they are the only ones capable of learning.
Although their methodology is similar to ours, their
work is not directly comparable to RLupus because
the two frameworks represent the game in different
ways. The different set-ups lead to related but orthog-
onal findings, which we discuss in this section.

We trained an environment with 16 players (2
werewolves and 14 villagers) and reported our results
in Table 5, together with the results of the AiWolf
framework.

It is interesting to observe the increase in perfor-
mance due to the learning process. Indeed, the table
shows baseline results without learning in the two
frameworks and results obtained with RL.

In comparison with AiWolf, it can be seen how the
0SL setting in RLupus already improves the winning
chances by 33% reaching 90.2% and adding a single
bit communication results in almost perfect victory
on the villagers’ side (98.4%).

13More details about the AiWolf framework are available in
Appendix A.3.

7. Conclusions and future work

In this paper, we have defined a formalism for
social deduction games, in which communication is
an essential part of the game together with the allowed
actions. On top of that, a general resolution frame-
work based on reinforcement learning was defined
and applied to the The Werewolf SDG by studying
how various forms of communication influenced the
outcomes of a match.

As shown by the experimental results, the intro-
duction of different forms of communication greatly
increases the agents’ performance (villagers). In par-
ticular, we observed that a Boolean signal range is
preferred to an integer one. The reason for this is
unclear. We speculate it may lay in the duality of the
roles of the game.

Moreover, we found how much of the villagers’
winning rate is determined by the agents not vot-
ing for themselves while keeping the accord value
to a maximum. This translates into better coordina-
tion, which is possible only when there is a sufficient
amount of communication present in the environ-
ment.

Also, we noticed that there is no linear map
between the amount of communication permitted,
i.e., SL and SR, and the overall performance. Indeed
there seems to be an optimal combination of the two,
which depends mainly on the signal length.

We conclude by identifying three directions in
which our work could be extended.

Model of SDGs. One possible line of research con-
sists of studying an instance of an SDG where the
communication cannot be intrinsically tied to the
action space, i.e., multi-step communication games
such as Task & Talk [25]. Alternatively, one could
decide to depart from the deep part of the RL resolu-
tion framework and choose an SDG instance whose
environment can be optically solved with standard
reinforcement methods, e.g., Pointing game [35].

The Werewolf. On the other hand, various possibili-
ties arise from the study of The Werewolf game. One
such could be the analysis of the language used for
communication to highlight potential patterns, given
that performance alone should not be considered a
valid metric for the study of emergent communica-
tion [30]. Moreover, one could extend the RLupus
environment either by adding other roles, for exam-
ple, the medium and the witch, or using normalized
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continuous vectors for the communication channel,
which allow for the backpropagation of errors directly
through the communication channel [16]14. Finally,
a deeper analysis could be applied to understand the
impact of the communication parameters (SR and SL)
on the metrics of the system and the overall perfor-
mance.

Human-machine coordination. Coordination among
artificial agents is a key engineering challenge: from
task allocation [12, 50], knowledge management
[55], distributed constraint optimization problems
[34] to multi-robot SLAM [47, 56] and language
models [4, 48]. And even more challenging is coor-
dination between artificial and human agents. The
study of emergent communication in SDGs could
provide useful novel insights for the development of
more efficient coordination among artificial agents
and between artificial and human agents.
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Appendix

A. Appendix

Following, some specific aspects for the RLupus environment are discussed. We decided to provide them in
the Appendix to avoid interrupting the normal flow of the paper. Indeed what comes in the next paragraphs are
implementation details which are not required to understand the contribution of this article.

A.1. Environment

A.1.1. Observation Space
The observation space characterizes what the agents perceive in the environment. Multiple elements make up

this space in the environment; each of them is later packed into a common dictionary and fed to the players:

– Phase: p ∈ {1, 2, 3, 4}, to represent the four different phases of the game.
– Day: d ∈ I+, to represent the day. An upper bound for the possible maximum day is set to 10 which reduces

the one-hot encoder representation length.
– Status Map: d ∈ B, this array maps a boolean value to an agent index, effectively informing the players if

agent i is alive = 1 or dead = 0.
– Own id: oi ∈ [0, N], at the start of each game the agents’ ids are shuffled. To keep an agent informed about

its new position this integer is necessary.
– Targets: t ∈ [−1, N], to group all the targets.
– Signal: s ∈ [−1, SR − 1], to group all the signals when there are any.

A.1.2. Rewards
In the environment there are five conditions that determine if an agent is punished or rewarded:

– Day: At the end of each day every agent is penalized by a small factor (−1). The purpose is to train the
agents to quickly win the game, trying to develop new policies to win faster.

– Death: Each time a player dies, it takes a −5 penalty. While dying can be a strategy in some matches, this
behavior needs to be controlled to avoid a high number of suicides.

– Target Accord: To keep the voting system become another form of communication, the agents are penalized
when they voted for someone that later on are not killed. Since execution depends on the coordination and
communication of the required group of agents, this rewards is aimed to encourage a cooperative behavior

– Win/Lost: Until now the rewards were assigned per agent. At the end of a match each group, either werewolves
or villagers, is rewarded or penalized by a factor ±25.

A.1.3. Trainable policy
Since the neural network architecture is positioned in between the policy and the value function, the loss

function must take into account the contribution given by the latter, thus an additional error term must be
included:

LCLIP+VF = Et

[
LCLIP

t (θ) − c1L
VF
t (θ)

]

Where LVF
t (θ) = (Vθ(st) − V

targ
t )2 is the squared-error loss between the value function Vθ at state st and the

target function, c1 is its coefficient. This addiction is of fundamental importance to estimate the critic loss, that
is the how well the model is able to predict the value of each state.

An additional term is introduced to regularize the total loss:

LCLIP+VF+S = Et

[
LCLIP+VS

t (θ) + c2S[πθ](st)
]

The entropy coefficient is maximized when all the policies have equal probability to be chosen, that is when the
agent is acting at random. Adding such value to the loss function incentives the training algorithm to minimize
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the entropy value, thus avoiding the premature convergence of one action probability dominating the policy and
preventing exploration15. The term c2 scales the value of the entropy.

A.2. Baselines

Understanding how AIs learn is a hard problem in the field of machine learning. In computer vision and
specifically with convolutional neural networks (CNN), visualizing the activation layers together with the filters
is a common practice to better understand the structure of the network itself.

On the other hand, for RL environments, there has been some research in the area of visual diagnostic for RL
systems using CNNs to elaborate visual stimulus [32]; for emergent language, the preferred way to quantitatively
evaluate the collaboration between agents has been accomplished by measuring the performances of the agents
themselves.

It is trivial to see that, whichever method is preferred, there must be some kind of evaluation method for the
communication system. In the following, such evaluation is estimated firstly by drawing some baselines with
complete random agents, and then by comparing the latter with the results yield by the training.

A game with nine players is relatively short.
These agents determine a simple set of actions that can be easily mapped in a table; for this reason, the

following section will focus only on nine players’ settings (9P). Before showing any results the study of the
complete behavior of a 9P setting is performed by inspecting its tree of possibilities.

An expanded tree, or tree of possibilities, shows every outcome of a particular process. At each possible
intersection, a new branch is created associated with a probability p; in the context of the werewolf game, each
branch represents an outcome where, during the execution phase, the player has killed either a villager or a
werewolf.

It is worth noticing that in a random 9P environment, the villagers are most likely to lose. As can be seen in
the expanded tree for the game, 2, the villagers either execute a werewolf during the first day, with probability
p = 3/8, or they lose. Moreover the only chance to win is achievable with probability:

p = 3

8
· 1

3
· 1

4
= 0.03125

Hence they have a probability of 3.12% to win with a complete random policy.

A.3. AiWolf

This section aims to provide some further details concerning the different implementation between the RLupus
framework and the AiWolf one [23].

A.3.1. Syntax protocol
On their website they define a specific protocol for the structure of sentences which is the combination of 6

words, i.e. unit of meaning:

1. Subject: an agent identifier which has a clear mapping with the Own Id parameter specified in the previous
Section A.1.1

2. Target: an agent identifier, again the parallelism is the same with the RLupus setting.
3. Role: one of the 6 implemented roles. This kind of specification is not needed in our setting since only two

roles are available.
4. Species: either human or werewolf.
5. Verb: a set of 15 valid verbs.
6. Talk number: a unique id for each sentence.

These atomic information units can define 13 different type of sentences which can be broadly divided into 5
categories:

15For a complete understanding of the influence entropy has on policy optimizations, the reader is referred to [2].

http://aiwolf.org/en/protocol
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Fig. 2. Expanded tree for a 9 players game with 3 wolves and 6 villagers.

1. Sentences expressing knowledge or intent.
2. Sentences about ongoing actions.
3. Sentences about past actions and their results.
4. Sentences that express dis/agreement.
5. Sentences referring to the flow of the conversation.

Finally, there are 8 types of operators which are used to frame sentences and express their relationship:

1. Request operators which are directed towards the acquisition of new knowledge.
2. Reasoning operators: e.g., because.
3. Time indication operators.
4. Logic operators such as: and, not, or, xor.
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A.3.2. Comparison
An initial parallelism can be traced between the number of words and the signal parameters16. Still, the main

difference is that AiWolf forces a prior meaning on the available words while RLupus leaves them free to be
used by the agents. On one hand, defining a grammar and a syntax beforehand allows for a highly interpretable
language, but on the other, this constrains the agents to adapt to a syntax that could not be optimal.

Moreover, since a sentence must be grammatically correct, some constraint enforcing this aspect must be
applied to the agent through policy-shaping or on their output in a later phase. This further increases the complexity
of the AiWolf environment and define a solid discrepancy with the freedom expressed in the RLupus one.

Finally, in the RLupus framework, no direct relationship between sentences can be express by the agents since
no unique id is defined for a sentence in the observation space.

16SL, SR in Section A.1.1


