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Abstract
A cohesive network keeps groups together and enables members 
to communicate about and cooperate for public goods. For ongoing 
cooperation, group members have to know if their group members 
cooperate or defect, but this information—mostly through gossip—is 
threatened by noise and biases. If there are redundant information 
channels, however, errors in monitoring and transmission in one 
imperfect channel can, to some degree, be corrected by information 
through another imperfect channel, and may lead to higher levels of 
cooperation. An influential conceptualization of social cohesion based 
on redundancy is K-connectivity: the minimum number (K) of node-
independent paths connecting pairs of nodes in a group’s network. In 
a lab experiment, we tested if higher K-connectivity yields higher levels 
of cooperation for public goods, controlling for a number of other 
network effects such as density, size, and average distance. We do 
not find the hypothesized effect, which might be due to a not-earlier-
found shortcoming of the concept, and we propose a solution.
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Public goods pose dilemmas of collective action, 
which require a mechanism (or combination of 
complementary mechanisms) to solve. Solutions 
usually come in the form of selective incentives: 
(promises of) rewards and (threats of) punishments 
(Olson, 1965). In order for incentives to have the 
intended effect, however, individuals have to 
be monitored, and gossip that establishes their 
reputations has to be passed through the group’s 
network reliably (Panchanathan and Boyd, 2004; 
Hilbe et al., 2018). As a result of unreliable information, 
people who deliver selective incentives may confuse 
cooperators and defectors, or ostracize the former 
and invite the latter in. The challenge is, therefore, 
to establish accurate reputations, on the basis of 
which indirect reciprocity can become an effective 
mechanism. The challenge is more severe in larger 
groups were most people do not know one another 
directly (Sommerfeld et al., 2007). In contrast to 
smaller groups, in which people are more likely 
to be in direct contact and can easily monitor, and 

communicate with, each other, information in larger 
groups has to be transmitted through longer network 
paths (concatenations of ties) where it deteriorates 
with distance, shown in chain experiments (Eriksson 
and Coultas, 2012). Another experiment showed 
that without indirect reciprocity, network topology 
(i.e., structure) has no effect on the contributions 
to public goods (Suri and Watts, 2011). In real life, 
however, networks are important for reputations, 
and in a recent study of indirect reciprocity, reliable 
transmission of gossip was said to be “an interesting 
direction for future research” (Hilbe et al., 2018). 
In this paper, we take up the challenge, theorize 
redundancy of information channels, and conduct 
a lab experiment to compare a low-redundancy 
network with a high-redundancy network.

Theory

A century ago, Georg Simmel (1908) noticed 
advantages of a triad over a dyad, where a third 
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person can mediate between two others in case of 
misunderstandings. In modern parlance, a direct tie 
between two actors is complemented by a second, 
indirect, connection that provides redundancy of 
monitoring and information transmission, such that 
noise and bias in one imperfect channel can, to some 
extent, be corrected by information through another 
imperfect channel. Whereas in a triad, everybody 
is connected by two node-independent paths to 
everybody else, this structural homogeneity does 
not hold in larger, typically clustered, groups where 
some people are better connected than others. 
How could we generalize path-redundancy to lar-
ger networks? Research on “complex contagions” 
(Centola and Macy, 2007; Guilbeault et al., 2018) has 
shown that multiple paths are important indeed, but 
has not measured the independence of these paths, 
which may overlap at some nodes before arriving 
at the recipient of a message. Douglas White and 
Frank Harary (2001) proposed to decompose the 
generalization challenge into the analysis of one pair 
of actors at a time. For each pair, one can count the 
number of node-independent paths between them. 
In inhomogeneous social networks with clusters, 
pairs embedded within a cluster will often turn out to 
be connected by more redundant paths than pairs 
across different clusters. A group of individuals can 
then be depicted as a “landscape” with mountains 
for more connective parts, usually dense clusters, 
separated by valleys in between the clusters (Moody 
and White, 2003). This way of looking at redundancy 
implies that for a given network and every sub-
network therein, there is a minimum number of 
node-independent paths, K, instead of one value 
that ignores heterogeneity. By using a mathematical 
theorem by Menger (1927), White and Harary showed 
that the minimum number of redundant paths in a 
(sub)network is equivalent to the minimum number of 
people who would have to be removed to break up 
the (sub)network into parts. Because these numbers 
of people and paths are identical, they can be unified 
in the notion of K-connectivity, where values of K vary 
across subgroups in the network (White and Harary, 
2001). This conceptualization of social cohesion was 
the first where redundancy on behalf of information 
transmission was explicated as a key property.

The prime reason why cohesive groups exist is 
that their members can realize public goods. To test 
if more node-independent paths yield higher levels 
of cooperation for a public good, we compare two 
networks in an experiment (Chaudhuri, 2011; Camerer, 
2003), one with low (K = 1) and the other with high 
(K = 3) connectivity. When introducing some noise in 
the information that people get about one another, we 

expect that in the network with higher K-connectivity, 
ensuing inconsistencies can be more easily resolved, 
leading to higher levels of cooperation. To show that 
the expected difference is due to K-connectivity, we 
have to control for other network effects. Figure 1 (a) 
shows two networks that can be distinguished on the 
basis of their K-connectivity, not on the basis of other 
widely used network notions (Bruggeman, 2018): both 
networks have the same size (7), number of ties hence 
density (0.57), average shortest path distance (1.43), 
degree distribution with one central node, and both 
networks are 3-cores. The wheel is less clustered (0.55) 
than the bow-tie (0.73) but has higher K-connectivity 
(K = 3), whereas the bow-tie has a topological 
bottleneck and therefore lower K-connectivity (K = 1). 
Another famous network concept, k-core (Seidman, 
1983), cannot perceive topological bottlenecks, and 
is therefore unsuited to describe redundancy. The 
concept of cluster has the same shortcoming. Taken 
together, these two networks seem to be suitable to 
test our expectation.

An earlier experiment showed that when in-
dividuals receive inconsistent gossips about some-
one from different sources, they tend to believe the 
majority (Sommerfeld et al., 2008). If the level of 
noise is not extreme and people have no incentive to 
manipulate strategically, the majority view will usually 
be right. This implies for our experiment where 
people can either contribute or free ride that an error 
in one channel can be corrected by true information 
from two other channels, if there are. We, therefore, 
expect that the wheel network, where everyone has 
three independent channels, will help the participants 
to better reduce noise than the bow-tie network, and 
that therefore contributions to the public good will be 
significantly higher in the wheel. This expectation is 
the hypothesis we test experimentally.

Experimental design

The experiment took place at the ELSE lab at 
Utrecht University, the Netherlands. Subjects for the 
experiment were students recruited at the Utrecht 
University through the online recruitment system 
ORSEE (Greiner, 2015). Experimental sessions con-
sisted of one, two or three groups (networks), de-
pending on the availability of subjects. Upon arrival, 
subjects were randomly assigned to groups and 
seated behind computer screens with separators 
preventing them from looking at each other’s screens 
and at each other. They stayed in the same network 
topology for the entire session, and made all of their 
decisions via a computer interface that prevented 
them from identifying their fellow group members. 
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Figure 1: (a) Bow-tie and wheel networks, adapted from Bruggeman (2018). (b) Experimental 
outcomes over all groups (N = 19). Error bars represent standard errors of the means.

There were 133 subjects in 11 bow-tie groups and 
8 wheel groups, hence N = 19 at the group level. 
Subjects were given instructions on paper that 
they applied in three practice rounds before the 
experiment started. After the three practice rounds, 

groups where reshuffled, with the exception of two 
sessions that consisted of only one group each. Each 
round had three stages:

First, from an initial endowment of 10 points (at an 
exchange rate of 0.7 to the Euro) subjects could decide 
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to contribute 1 or 0 points, being informed that the 
sum total of contributions would be multiplied by r = 1.6 
and then distributed equally among all seven group 
members. Formally, given N = 7 participants (Figure 1a)  
and n < N contributors without the focal individual, 
the latter faces a choice to defect and get a payoff 
PD = rn/N, or to cooperate and get PC = r(n + 1)/N − 1, 
at a cost of 1 unit. Consequently, only if there are at 
least n = 4 cooperators it makes sense for the focal 
individual to contribute herself.

Second, the subjects were shown the contributions 
of their network neighbors (direct contacts), being 
informed that there was a 1/12 chance (given 12 
ties) that information about someone’s contribution 
was wrong—our implementation of noise. Subjects 
could then gossip about their neighbors’ (lack of) 
contributions by clicking thumb up or down, visible to 
their neighbors except the gossipees.

Third, they were shown the gossips from 
their neighbors, and could propose a monetary 
punishment of 1 point for one of them, being informed 
that the computer would implement it by majority 
vote at no cost. The reason for cost-free punishment 
is to avoid that costly punishment blurs the network 
effect we are after. Because gossip and punishment 
proposals were hidden for, respectively, gossipees 
and punished individuals, the confounding effect of 
revenge against particular individuals was precluded. 
Furthermore, the subjects were informed that their 
total payoff could never become negative. At the end 
of the experiment, the points earned by the subjects 
were converted to euros and paid out discretely in 
cash.

Results

Figure 1(b) shows the aggregate results of the contri-
butions in each of the two network topologies. While 
contributions were overall slightly higher in the wheel, 
the overall difference is not significant. Only in the final 
round, contributions are significantly higher in the wheel 
than in the bow-tie (t-test with N = 19, difference = 1.85, 
p = 0.016), suggesting that the wheel network may be 
more robust against the end game-effect than the 
bow-tie network, although we did not hypothesize this 
to happen. Overall, however, we conclude that our 
hypothesis that cooperation is higher in the wheel than 
in the bow-tie network is not supported.

The main difference between the two networks 
is in the central node and others’ dependence on 
it. Rather than an overall network effect, as we 
hypothesized, it might be the case that the outcome 
is mainly due to the central node in each network, 
which we did not anticipate. We, therefore, also 

examine whether contributions of the central actor 
differ between the wheel and the bow-tie network. We 
furthermore examine whether it is the case that the 
more often a subject observes consistently positive 
information about another subject, the more likely 
they will contribute in the next round, and the more 
often a subject observes inconsistent information 
about another subject (both positive and negative), 
the less likely they will contribute in the next round.

To these ends, we estimate a multilevel mixed-
effects logistic regression model with individual 
contributions per round as the dependent variable. 
As independent variables, we include the network 
position of the subject (central or not); the network 
topology; the round number; the number of alters 
about whom the subject saw inconsistent gossips in 
the previous round; the number of alters about whom 
the subject saw two positive gossips in the previous 
round; and, the total proportion of contributions 
by network neighbors in the previous round. We 
furthermore include a coefficient for the cross-level 
interaction between network topology and network 
position, along with a random slope for network 
position.

The results of this analysis (Table 1) do not provide 
evidence that the network position, network topology, 
or the consistency of the information available to the 

Table 1. Multilevel mixed-effects 
logistic regression model of individual 
contributions per round on network 
topology, network position, and 
information available to the subject. 
N(level 1) = 133; N(level 2) = 19.

Coeff. St. Err z

Central −0.050 0.479 −0.104

Topology: wheel 0.391 0.506 0.773

Central in wheel 0.472 0.783 0.602

Round nr. −0.223* 0.093 −2.385

Inconsistent gossip −0.167 0.195 −0.860

Two thumbs up −0.200 0.369 −0.543

Tot. contrib. 0.373 1.012 0.369

Gossip tot. pos. 0.296 0.555 0.532

Gossip tot. neg. 0.150 0.402 0.374

Cons. 2.605 2.103 1.238

Note: *p < 0.05.
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subject had any impact on her contributions. The 
only significant effect is that of the increasing round 
number.

Discussion

We tested the hypothesis that under noisy conditions, 
redundancy in the form of multiple node-independent 
network paths makes it possible to reduce noise 
and to cooperate at higher levels. This was not 
supported by the experiment. To control for other 
network effects, the two networks were similar, but 
thereby perhaps too similar to make their difference 
significant. It might also be the case that a higher 
level of noise would have shown their difference more 
clearly.

One could argue that on top of redundancy, 
a proper concept of cohesion should also take 
distance into account, but in our small networks, 
distances are small and the average distances  
are identical. One candidate for such an alternative 
concept that has, to our knowledge, not yet been 
described in the literature, relies on the notion of 
nexuses. On top of node-independent paths, there 
may be nexuses between these paths, which can 
re-enforce messages from a sender (S) to a recipient 
(R), illustrated in Figure 2 both networks have the 
same K-connectivity (K = 2) but network (a) features 
nexuses, with significant positive effects on the 
reliability and accuracy of information transmission, 
shown in an experiment (Eriksson and Coultas, 2012).

There is a network measure that does take 
redundancy, distance, and nexuses into account: 
algebraic connectivity. To calculate this measure, one 
row-normalizes the adjacency matrix, as in models 
of social influence (Friedkin and Johnsen, 2011), and 
transforms it into a Laplacian matrix by putting 1 
everywhere on the diagonal, provided that everyone 
has at least one tie, and a minus sign everywhere else 
(Chung, 1997). The second smallest eigenvalue of the 
Laplacian is called algebraic connectivity (Fiedler, 
1973). It is higher if there are more node-independent 
paths (λ2 = 2/3 wheel; λ2 = 1/3 bow-tie), consistent with 
K-connectivity, hence it varies across sub-graphs, just 
like K-connectivity. Furthermore, it is lower for longer 
average distances, which nei ther K-connectivity nor 
k-core is responsive to. Information transmission 
deteriorates with distance, certainly off-line, and 
it’s therefore important to have a measure that 
takes distance into account. Algebraic connectivity 
distinguishes nexuses, and equals λ2 = 2/3 for the 
network with nexuses in Figure 2 and λ2 = 1/2 for the 
other one. Last but not least, it predicts how quickly 
consensus is achieved (Olfati-Saber and Murray, 

2004), consistent with experimental outcomes (Judd 
et al., 2010). Consensus is important in groups to 
decide which public goods to realize and how.

In our experiment, the positive effect of the 
multiple paths in the wheel might have been nullified 
by the positive effect of the additional nexus in each 
sub-network of the bow-tie. If for social cohesion, 
algebraic connectivity is a significantly better measure 
than K-connectivity remains a question for future 

Figure 2: Two 2-connective networks, 
(a) with nexuses and (b) without 
nexuses.
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research. Whereas in all likelihood, social cohesion, 
measured in one way or another, is important for 
cooperation, we note that the effect is nonmonotonic. 
High cohesion overburdens group members with 
social pressure, decreases innovation, and may 
strengthen rather than dampen false information 
(Burt, 2008). At too low cohesion, in contrast, groups 
fall apart. The sweet spot must be somewhere in 
between the extremes, which poses a challenge for 
future studies to discover.
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