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RESOLUTIONS OF PROPER RIEMANNIAN LIE GROUPOIDS

H. POSTHUMA, X. TANG, AND K.J.L. WANG

Abstract. In this paper we prove that every proper Lie groupoid admits a desingularization
to a regular proper Lie groupoid. When equipped with a Riemannian metric, we show that it
admits a desingularization to a regular Riemannian proper Lie groupoid, arbitrarily close to
the original one in the Gromov–Hausdorff distance between the quotient spaces. We construct
the desingularization via a successive blow-up construction on a proper Lie groupoid. We also
prove that our construction of the desingularization is invariant under Morita equivalence of
groupoids, showing that it is a desingularization of the underlying differentiable stack.
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1. Introduction

A groupoid is a small category with invertible morphisms. Over the last 50 years, groupoids,
a generalization of groups, have become a fundamental tool in the study of spaces with
singularities.

Let G be the set of morphisms of the category, and M be the set of objects. The set M is
equipped with a canonical equivalence relation. Two objects x and y in M are equivalent if
and only if there is a morphism g ∈ G, such that the source s(g) of g is x and the target t(g)
of g is y. Accordingly, the set M is naturally decomposed into a disjoint union of subsets of
objects in the same equivalence class. Each such subset is called a leaf, or an orbit, of the
groupoid G. The quotient space of M with respect to this equivalence relation is called the
orbit space, or the leaf space, of G. Many interesting examples of singular spaces in geometry
can be described by orbit spaces of Lie groupoids, e.g. orbifolds, leaf spaces of foliations,
moduli spaces of curves, etc.

A groupoid is called proper when the structure map G → M × M, g 7→ (s(g), t(g)),
is proper. Proper Lie groupoids can be viewed as the groupoid generalizations of proper
Lie group actions. Proper Lie groupoids share many nice properties with proper Lie group
actions. For example, a proper Lie groupoid can be linearized near an orbit, its object space
is stratified accroding to orbit type [21, 22, 20, 5, 8], etc.

If the dimension of the leaves of a groupoid G is constant, the groupoid is said to be
regular. Moerdijk obtained in [15] a beautiful structure theorem about regular Lie groupoids
by showing that they fit into an exact sequence

K → G → E,
1
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where K is a bundle of Lie groups and E is a foliation groupoid. In case G is proper, the
groupoid E is an orbifold groupoid, and the fibers of K are compact Lie groups. In general, a
proper Lie groupoid may have leaves of varying dimension, and the corresponding orbit space
may have more complicated singularity than that of an orbifold. In this paper, we aim to
answer the following natural question:

“How close is a proper Lie groupoid to a regular one?”

It is well-known, c.f. [10, 1], that a proper action of a Lie group G on a manifold M admits

a “desingularization” M̃ satisfying the following two properties:

(1) M̃ is a smooth manifold equipped with a proper G-action whose orbits all have the
same dimension;

(2) There is a G-equivariant surjective map p : M̃ →M which is a diffeomorphism on an
open dense subset of M .

In the first main theorem of this paper (Theorem 5.8 and Corollary 5.12), we present a
generalization of this construction to a general proper Lie groupoid.

Theorem 1.1 (Theorem 5.8 and Corollary 5.12). Any proper Lie groupoid admits a desingu-

larization to a regular proper Lie groupoid. Moreover, Morita equivalent proper Lie groupoids

admit Morita equivalent desingularizations.

The main tool we use in the proof of the above Theorem 1.1 is the blow-up construction for
Lie groupoids. The blow-up construction for Lie groupoids has been studied extensively in
the literature, e.g. [12, 18, 6]. In this paper, we restrict our attention to full subgroupoids of a
proper Lie groupoid. The advantage of proper Lie groupoids is that they can be linearized (c.f.
[8]) around closed saturated submanifolds S ⊂M . More concretely, a proper Lie groupoid is
locally isomorphic to a linear action groupoid of a proper Lie groupoid. As the blow-up is a
local construction, we are therefore able to give a relatively simple expression for the blow-up
of the groupoid than the general case, which naturally generalizes the one of Duistermaat and
Kolk in [10].

Theorem 1.1 shows that at the differential topological level, a proper Lie groupoid is “al-
most” a regular proper Lie groupoid. To improve our understanding of such a desingulariza-
tion process, in the second half of this paper we investigate Riemannian geometry on proper
Lie groupoids and their desingularizations. Our study is inspired by Alexandrino’s results
on desingularizations of singular Riemannian foliations. In [2], by a successive blow-up con-
struction, Alexandrino constructed a regular Riemannian foliation that desingularizes the
original singular Riemannian foliation. In [20], Pflaum and the first two authors observed
that the unit space of every proper Lie groupoid carries a singular Riemannian foliation. In
[8], del Hoyo and Fernandes introduced the concept of Riemannian groupoid and proved that
every proper Lie groupoid is Riemannian. With these developments, it is natural for us to
improve Alexandrino’s theorem, [2], in the case of proper Lie groupoids in the framework of
Riemannian groupoids.

Theorem 1.2 (Theorem 6.10 and Theorem 6.14). Any Riemannian proper groupoid admits

a Riemannian desingularization. Moreover, Morita equivalent Riemannian groupoids admit

Morita equivalent desingularizations.

It should be remarked that in general it is not difficult to define a metric on the desingu-
larization of a proper Lie groupoid, however:
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• this metric will not be simplicial, i.e., compatible with the groupoid structure,
• the two quotient spaces, viewed from the point of view of metric topology, may be
quite far away from each other.

The point of our Theorem above is that our proof takes care of both these issues. It turns out
that in the context of proper Lie groupoids, the original proof of Alexandrino can be signific-
antly simplified in our case. Furthermore, the Riemannian groupoid structure in Theorem 1.2
naturally strengthens the property of being a singular Riemannian foliation associated to a
proper Lie groupoid.

The Morita invariant properties in Theorem 1.1 and Theorem 1.2 show that the (Rieman-
nian) desingularization of a proper (Riemannian) groupoid is an invariant of the underlying
(Riemannian) differentiable stack associated to a proper Lie groupoid. In the future, we plan
to use the desingularization introduced in this paper to investigate topological and geometric
properties of the underlying stack.

Organization of the paper. We start with recalling some basics on groupoids in Section 2.
Then we continue in Section 3 by showing thatM , the space of objects, admits a stratification,
where each stratum has leaves of a fixed dimension. Before we use these stratifications, we
first briefly discuss general resolutions in Section 4, of which the desingularizations are special
examples. Then we will define the blow-up construction in Section 5 and use the stratification
to prove Theorem 1.1. In Section 6 we recall the definition of a simplicial metric on a groupoid
and continue with proving Theorem 1.2. We end the paper with a discussion in Section 7.

Acknowledgements. The authors would like to thank Marcos Alexandrino, Marius Crainic,
Rui Fernandes, Matias del Hoyo, Markus Pflaum, David Martinez Torres for helpful discus-
sion. In a late stage of this work we were informed that David Martinez Torres has considered
resolutions similar to those in §5 in the context of Poisson manifolds of compact type. Tang’s
research is partially supported by NSF DMS 1362350. The research of Wang is supported by
NWO TOP nr. 613.001.302.

2. Background

We start by introducing some notation. Given a groupoid G ⇒ M , we denote its source
and target maps by s and t respectively and the unit map M → G by u. A groupoid is called
proper if the combined target and source map (t, s) : G →M ×M is a proper map. If this is
the case, then G →M admits proper Haar systems.

Recall that a Haar system on G is a family {µx}x∈M of measures on s−1(x) which are

right-invariant : R∗
g(µ

s(g)) = µt(g) for g ∈ G, and smooth: for all f ∈ C∞
c (G), the map

x 7→ µx(f |s−1(x)) is smooth. Such a Haar system µ is called proper if the source map restricted
to the support of µ is a proper map. Proper Haar systems will later on be used to perform
an averaging procedure.

Given any map f : N → M , we say that G acts on N , or N admits a G-action, whenever
there is a smooth map θ : G ×M N → N , θ(g, n) = g · n such that f(g · n) = t(g). Given a
connection σ on G, i.e., a vector bundle morphism σ : s∗TM → TG such that ds ◦σ = ids∗TM

and σ|M = du, we can lift this action to a quasi-action of G on TN , defined as:

g · w := dθ(σg ◦ df(w), w), ∀w ∈ TN.(2.1)

We will call this the tangent lift of θ, and denote it by Tθ.
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The morphisms between groupoids we will use are the so-called right-principal bibundles.
Recall that a bibundle between two groupoids G′ and G consists of a manifold P with smooth
maps α : P →M and α : P ′ →M ′, called moment maps on which the groupoids act.

G′ P G

M ′ M

αα′

These two actions commute and each moment map is invariant with respect to the other
action. If the map α′ is a submersion, the action of G on α is free and proper, and its orbits
are the fibers of α′, we call the bibundle right-principal. Left-principal bibundles are defined
similarly. Two bibundles P and Q are diffeomorphic as bibundles if they are diffeomorphic
as manifolds and the diffeomorphism commutes with all the bibundle maps and actions.

Definition 2.1. A generalized morphism [P ] : G′ 99K G is an isomorphism class of right
principal bibundles between G′ and G.

The easiest example of a generalized morphism is given by an actual morphism of groupoids:
if G′ → G is a groupoid morphism, then P := M ′ ×M G defines a generalized morphism
[P ] : G′ 99K G. From now on, we will denote the isomorphism class of P by the same symbol
P . Given two generalized morphisms Q : G′′ 99K G′ and P : G′ 99K G, a representative of their
composition is given by (Q ×M ′ P )/G′ : G′′ 99K G, with the G′-action on Q ×M ′ P given by
(q, p) · g′ = (q · g′, (g′)−1 · p). An isomorphism in the category of groupoids with generalized
morphisms as morphisms leads to the notion of Morita equivalence:

Definition 2.2. Two groupoids are called Morita equivalent if there exists a generalized
morphism P : G′ 99K G which is also left-principal.

The local study of groupoids has a long history, see for example [5, 8, 20, 21, 22]. The
main results of this local study are linearization results, which we state as Theorem 2.3 and
Corollary 2.4. Proofs can for example be found in [8], which uses the notion of a Riemannian
metric on a groupoid, to which we come back in Section 6. Recall that for a groupoid G ⇒M ,
S ⊂M and NS its normal bundle is a groupoid

NS(G) = GS ×S NS ⇒ NS,(2.2)

where the target map is given by the action as t(g, [(dgs)(v)]) = [(dgt)(v)] for v ∈ TgG. Then
the linearization results are:

Theorem 2.3. Let G ⇒ M be a proper Lie groupoid and let S ⊂ M be saturated. Then G
is linearizable around S, i.e., there exist open sets S ⊂ U ⊂ M and S ⊂ V ⊂ NS such that

G|U ≃ NS(G)|V .

Corollary 2.4. Let G ⇒ M be a s-proper Lie groupoid and let S ⊂ M be saturated. Then

G is invariantly linearizable around S, i.e., there exist saturated open sets S ⊂ U ⊂ M and

S ⊂ V ⊂ NS such that G|U ≃ NS(G)|V .

Besides this linearization around a saturated submanifold, one can also linearize a proper
Lie groupoid more locally near a point. By [20] for all x ∈ M there exists open subsets
U ⊂M , O ⊂ Lx and V ⊂ NxLx, with Lx the leaf through x, such that: U ≃ V ×O and

G|U ≃ (Gx × V )× (O ×O) ⇒ V ×O.(2.3)
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3. Stratifications of proper Lie groupoids

Besides the local picture of the groupoid, the orbit space M/G also has a local structure,
namely that of a stratified space. A thorough account of stratifications can, for example, be
found in [19]. We recall:

Definition 3.1. A stratification of a Hausdorff, second-countable paracompact space X is a
locally finite partition {Xi} of X into locally closed, connected subsets Xi ⊂ X, called strata,
such that:

• Each Xi is a smooth manifold with the induced topology from X;
• The closure of each Xi is a union of Xi with strata of lower dimension.

The second condition is called the Frontier condition. If a partition {Xi} of X satisfies all
conditions of a stratification except that the subsets Xi are not connected, we call {Xi} a
decomposition of X.

Lemma 3.2. Let {Xi} be a stratification of X and suppose that X1 and X2 have the same

dimension. Then there exist open neighbourhoods Ui of Xi in X such that U1 ∩ U2 = ∅.

Proof. Since the Frontier condition holds, we know that X1 ∩X2 = ∅. Since X is Hausdorff
and paracompact, we can separate closed sets. �

When X = M , a manifold, one usually asks the strata Xi to be smooth submanifolds. In
this case the following lemma holds, see e.g. [14].

Lemma 3.3. Let {Xi} be a stratification of a manifold M and suppose there are no strata

of codimension one. Then, there exists a unique maximal stratum, which is dense, open, and

connected.

We will continue by discussing two natural partitions of M , which lead to a saturated
stratification of M .

3.1. Dimensional type. Let G ⇒M be a proper Lie groupoid. Since we want to construct
regular groupoids, i.e. groupoids for which each leaf has the same dimension, it is natural to
consider the following partition of M . For 0 ≤ j ≤ dim(M) define:

Sj := {x ∈M | codim(Lx) = j}.(3.1)

The different connected components of the Sj can have different dimensions. In fact, the
dimensions are easily computable.

Lemma 3.4. Let Lx be the leaf through x ∈ M , j := codim(Lx) and let x ∈ Sx ⊂ Sj be its

connected component. Then we have:

dim(Sx) = dim(Lx) + dim
(
(NxLx)

G◦
x

)
,

with V G = {v ∈ V | g · v = v, ∀g ∈ G} for a linear action G y V and G◦ is the connected

component of G at the identity.

Proof. Using the local linearization around x ∈M , we have that G|Ux ≃ (Gx×NxLx)× (Ox×
Ox) ⇒ NxLx×Ox. Hence for any v ∈ NxLx, we have that its leaf locally looks like Gx ·v×Ox.
Therefore:

dim(Lv) = dim(Gx · v) + dim(Ox).
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This is equal to dim(Ox) if and only if Gx · v is discrete, i.e. v ∈ (NxLx)
G◦
x . Hence Sx ∩ U ≃

(NxLx)
G◦
x ×Ox, which proves the lemma. �

Proposition 3.5. The connected components of Sj form a stratification of M .

Proof. Let S ⊂ Sj be a connected component and let y ∈ S̄ \ S. Local linearization around
y gives an open neighbourhood Uy of y such that

G|Uy ≃ (Gy ×NyLy)× (Oy ×Oy) ⇒ NyLy ×Oy ≃ Uy.

Since y ∈ S̄ there exists an x ∈ S ∩ Uy. Without loss of generality, we can assume that
x = v ∈ NyLy. We immediately realize that Lx ∩ Uy ≃ Gy · v ×Oy. Since S is connected, we
have that dim(Lx) 6= dim(Ly) and therefore dim(Lx) > dim(Ly) and Gy · v is not discrete.

Hence Gy · v ∩ (NyLy)
G◦
y = ∅ and we can view (NyLy)

G◦
y as a subspace of NxLx = Nv(NyLy).

Moreover, Gx ≃ Stab(v) < Gy, the stabilizer of v with respect to the Gy-action. Hence

(NyLy)
G◦
y is in fact a subspace of (NxLx)

G◦
x . Therefore, we find that:

dim(Sx) = dim(Lx) + dim((NxLx)
G◦
x) > dim(Ly) + dim((NyLy)

G◦
y ) = dim(Sy).

To conclude that the Frontier condition holds, we need to show that Sy, the stratum through
y, lies completely inside S̄. Let A = Sy ∩ S̄, so that A ⊂ Sy. Since S̄ is closed, A is a closed
subset of Sy. We will show that it is open as well and hence by the connectedness of Sy, we
conclude that A = Sy. In the notation as above, if y ∈ S̄ and v ∈ NyLy belongs to S, then for

all y′ ∈ Oy, all w ∈ (NyLy)
G◦
y and all λ > 0, we have that (w+λv, y′) ∈ S. Hence (w, y′) ∈ S̄.

Note that Sy ∩Uy = (NyLy)
G◦
y ×Oy. Hence S̄ is indeed open in Sy and therefore the Frontier

condition holds. Note that for all y, we have that Sy ∩ Uy = (NyLy)
G◦
y ×Oy also shows that

the Sy are embedded submanifolds of M . This concludes the proposition. �

Definition 3.6. Let G ⇒ M be a proper Lie groupoid. The stratification by connected
components of the subsets Sj is called the dimension stratification of G.

Proposition 3.7. Let G ⇒M be a proper Lie groupoid and define the integers j = max{0 ≤
i ≤ dim(M) |Si 6= ∅} and m = min{0 ≤ i ≤ dim(M) |Si 6= ∅}. Then the following properties

hold:

(1) Each stratum S ⊂ Sj is closed;

(2) For all S1, S2 ⊂ S
j there exist open neighbourhoods Si ⊂ Ui ⊂M such that U1∩U2 = ∅;

(3) Each stratum S ⊂ (Sm)c has dim(S) < dim(M)− 1;
(4) Sm is open, dense and connected;

(5) x ∈ Sm if and only if G◦x acts trivially on NxLx.

Proof. Using the proof of Proposition 3.5, we know that the leaf of any y ∈ S̄ \ S has higher
co-dimension than the leaves in S itself. Since j is chosen as the maximum, we conclude
property (1). Property (2) then follows immediately as we can separate closed sets. For
property(3), note that Lemma 3.4 implies that if dim(Sx) = dim(M) − 1, NxLx/(NxLX)G

◦
x

is one-dimensional and therefore generated by a vector v ∈ NxLx. Therefore, there exists
g ∈ G◦x such that g · v 6= v and g acts trivially on the rest of NxLx. As the linearization of G
is through a metric, we know that ||g · v|| = ||v|| and hence g · v = −v. But this shows that
G◦x has a Z2 component, which is a contradiction with G◦x being connected. Hence there are
no codimension-one strata. Now Lemma 3.3 implies property (4). The final property is now
easily realized by the denseness of Sm. �
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3.2. Reduced normal orbit type. It is obvious that the action of G◦x plays a natural role
in stratifying M by dimension. Again, let G ⇒M be a proper Lie groupoid. In this section,
we will show that the dimension stratification comes naturally from a decomposition, which is
defined using the G◦x-action. As the results of this section give exactly the same stratification
as the dimension stratification, it is not necessary to read this section in order to understand
the rest of the paper.

Given a connected Lie group G acting linearly on a vector space V , we define:

S(G,V ) := {x ∈M | (G◦
x y NxLx) ≃ (G y V )}.(3.2)

Note that these subsets are smooth saturated manifolds. Moreover, if x ∈ S(G,V ) for some
pair (G,V ), we immediately get that

codim(Lx) = dim(NxLx) = dim(V ),

and therefore

S(G,V ) ⊂ Sdim(V ).(3.3)

Moreover, Lemma 3.4 shows that all the connected components of the S(G,V ) have the same
dimension.

Proposition 3.8. The set of S(G,V ) form a decomposition of M . Moreover, it connected

components agree with the connected components of the Sj defined in Equation 3.1. Hence

the corresponding stratification is the same as the dimension stratification.

Proof. Using the local linearization, similarly to the proof of Proposition 3.5, one immediately
realizes that if S̄ ∩ S′ 6= ∅, then S′ ⊂ S̄. Once again, using Lemma 3.4, we conclude that the
Frontier condition holds. Hence the partition into sets S(G,V ) forms a decomposition. Now,
let S be a connected component of S(G,V ) and let k = dim(V ). For any y ∈ S̄ ⊂ Sk, an
open neighbourhood Uy ⊂M of y such that G|U ≃ (Gy ×NyLy)× (Oy ×Oy), and v ∈ NyLy

corresponding to x ∈ S ∩Uy, we have that Gx ≃ Stab(v) < Gy. This is a closed Lie subgroup,
which is of the same dimension. Hence G◦x = G◦y and y ∈ S, which is therefore closed in

Sk. This argument shows that S ⊂ Sk is also open: given a leaf in S, any leaf has either
a different dimension or the same reduced normal orbit type. That is, for y ∈ S we have
that S ∩ Uy = (NyLy)

G◦
y × Oy = Sk ∩ Uy. Thus S ⊂ Sk is both open and closed and hence

connected. �

Definition 3.9. Let G ⇒ M be a proper Lie groupoid. The decomposition of M into the
sets S(G,V ) is called the reduced normal obrbit decomposition.

Remark 3.10. The above decomposition is called reduced, as we only use the connected
components of the isotropy groups. One could also use the whole groups, but the induced
stratification will be different. An easy example of this phenomenon is the S1-action on the
(open) Mobiüs band. Indeed, this groupoid is regular and connected and hence only has one
stratum in the dimension stratification. The middle leaf, however, has a Z2-action as isotropy,
and all the other leaves have trivial isotropy.

4. Resolutions of Lie groupoids

Definition 4.1. Let G ⇒ M be a connected Lie groupoid of dimension n. We define the
category of resolutions over G, denoted by ResG , as the category which has as objects (H, π)
with H a regular Lie groupoid of dimension n and π : H → G a surjective proper map, which
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is an isomorphism almost everywhere. An arrow (H′, π′) → (H, π) in the category ResG is a
generalized morphism H′ →H which commutes with π and π′:

H′ H

G
π′ π

Properness of the map in a resolution comes into play in the next lemma:

Lemma 4.2. Let H⇒ N be a resolution of G ⇒M . Then G is proper if and only if H is.

Proof. Consider the commutative diagram:

H G

N ×N M ×M

π

(s,t) (s,t)

π0×π0

Note that the horizontal morphisms are by assumption proper. Using surjectivity, it follows
that for KM ⊂M ×M and KN ⊂ N ×N we have:

(s, t)−1(KM ) = π1
(
(π0 × π0 ◦ (s, t))

−1(KM )
)
,

(s, t)−1(KN ) ⊂ ((s, t) ◦ π1)
−1 (π0 × π0(KN )) .

The first equation immediately shows that if H is proper, so is G. The second one does the
reverse when we consider that closed subsets of compact sets are compact. �

With this definition of a resolution, we allow the existence of several resolutions for a single
groupoid. For example, if H → G is a resolution, then so is H ×K for any finite group K.
Therefore, we want to be able to measure how large the resolution is.

Definition 4.3. Let (H, π) be a resolution of G. We call it an action resolution if the map
H → G ×M N , given by h 7→ (π(h), s(h)), is an isomorphism.

Action resolutions are the same as regular groupoid actions in the following sense: if H is
an action resolution, then G acts regularly on the proper map N →M , and if G acts regularly
on any proper map N →M , then H := G ×M N is an action resolution.

Remark 4.4. Note that H being an action resolution does not imply that the map π is
submersive. Indeed, as H is regular, the isotropy groups are all of the same dimension, but
the isotropy groups of G change dimension. When we start constructing resolutions, we will
see an example of this.

Before showing existence of (action) resolutions, which is done in the next section, we
consider the behaviour of resolutions under Morita equivalences. The following proposition
shows that action resolutions are stable under Morita equivalence.

Proposition 4.5. Let G′ be Morita equivalent to G via a principal bibundle P and let H be

a action resolution of G. Then G′ admits an action resolution H′ which is Morita equivalent

to H.

Proof. Let Q := P ×M N . Since P is a Morita equivalence bibundle, we obtain that G′ is
isomorphic to P ×M P/G and M ′ to P/G. Now let H′ := Q ×N Q/H and N ′ := Q/H. As
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H acts freely and properly on Q by the action (p, n) · h = (p · π(h), s(h)), the above defined
H′ and N ′ are smooth manifolds. Also, it is clear that H′ ⇒ N ′ has the structure of a Lie
groupoid and by construction Q is a Morita equivalence bibundle between H′ and H.

Define π′ : H′ = (Q ×N Q)/H → G′ ≃ (P ×M P )/G as the map induced by Q → P . It
is easy to check that π′ is well-defined and surjective. Moreover, since N → M is a proper
map, so is Q → P . This immediately implies that π′ is proper. We are left to show that H′

is a regular groupoid, which implies that it is a resolution, and to show that it is an action
resolution.

The morphism

H′ → G′ ×M ′ N ′, [p2, p1, n]H 7→ ([p2, p1]G , [p1, n]H).

has well-defined inverse defined by

G′ ×M ′ N ′ → H′, ([p2, p1]G , [p0, n]H) 7→ [p2 · g, p0, n]H,

with g such that p1 · g = p0. Hence if we are able to show that H′ is regular, so that it is a
resolution, we can immediately conclude that it is an action resolution.

To show that H′ is regular, we will show that it has isomorphic isotropy groups to H. A
groupoid is regular if and only if the dimension of its isotropy groups is constant, so H being
regular then implies that H′ is regular. Let n′0 = [q0] ∈ N

′ be given for q = (p0, n0) ∈ Q and
let ξ : Hn0 → H

′
n′

0
be defined as h 7→ [q0 · h, q0]. It is an injective group morphism. Hence we

are left to show that it is surjective. Let [q2, q1] ∈ H
′
n0

be given. That is, [q2] = [q1] = [q0]
and hence there exists hi ∈ H such that qi ·hi = q0. Note that this implies that hi ∈ Hn0 and
[q2, q1] = [q2 · h1, q0] = ξ(h−1

1 h2). So indeed, the proposition holds.
�

5. Blow-up and desingularization

In this section we will define the blow-up of a proper Lie groupoid G ⇒M along a saturated
submanifold S ⊂ M in an explicit manner. When we choose S to be a stratum of the strat-
ification by dimension of leaves, the resulting groupoid will be ‘more regular’. In particular,
after blowing-up a finite amount of times, we will end up with a resolution of our original
groupoid. This will then show that resolutions always exist. Our blow-up construction agrees
with the one by Debord and Skandalis in [6]. Let us start by recalling the real-projective
blow-up of a manifold.

Definition 5.1. Let M be a manifold, S ⊂ M a closed submanifold and φ : V ⊂ NS →

U ⊂ M a tubular neighbourhood of S. Then, the blow-up M̃ of M along S is given by the

manifold (̃M , where:

M̃ :=M \ S ∪φ Ṽ ;(5.1)

Ṽ := {(v, l) ∈ V × P(NS) | v ∈ l}.

Note that the isomorphism class of the blow-up is independent of the choice of tubular
neighbourhood. For later use, we will prove two lemmas on the behaviour of blow-up with
respect to maps and to fibre products.

Lemma 5.2. Let f : N → M be a map and let SN ⊂ N , SM ⊂ M be closed submanifolds

such that SN = f−1(SM ). Then f lifts to a map f̃ : M̃ → Ñ , where the blow-ups are with

respect to SM and SN respectively. Moreover, if f is a submersion, then so is its lift.
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Proof. Pick metrics on M and N such that f satisfies:

ηN (X,Y ) = ηM (df(X), df(Y )), ∀X,Y ∈ (ker df)⊥.

Note that if f is a submersion, this is the definition of f being a Riemannian submersion.
Let jM : NSM → M and jN : NSN → N be tubular neighbourhoods obtained using the
exponential map of the metrics. Then we get that:

jN ◦ df = f ◦ jM ,

since f∗ sends geodesics to geodesics. Hence we can define d̃f as:

d̃f(v, [w]) := (df(v), [df(w)]).

Gluing d̃f with f along the tubular neighbourhood gives f̃ : M̃ → Ñ . The last claim follows
immediately. �

Lemma 5.3. Let fA : A → C and fB : B → C be transverse maps and let SA ⊂ A, SB ⊂ B
be smooth submanifolds such that SC := fA(SA) = fB(SB) is also a smooth manifold. Then:

Ã×C B = Ã×
C̃
B̃.

Proof. Since T (A ×C B) ≃ TA ×TC TB, we get that N(SA ×SC
SB) ≃ NSA ×NSC

NSB .
Therefore, a choice of tubular neighbourhoods for SA and SB and SC which are compatible,
give a tubular neighbourhood j for SA ×SC

SB by:

j : NSA ×NSC
NSB → A×C B,

(vA, vB) 7→ (jA(vA), jB(vB)).

Using this tubular neighbourhood for Ã×B C gives the wanted isomorphism when we extend
it with the identity outside the tubular neighbourhoods, as all the maps in the following
diagram commute:

˜N(SA ×SC
SB) ÑSA ×ÑSC

ÑSC

N(SA ×SC
SB) NSA ×NSC

NSB

A×C B A×C B

π

≃

πA×πC
πB

j

≃

jA×jC
jB

id

This completes the proof. �

5.1. Proper groupoids. Let G ⇒ M be a proper Lie groupoid and let S ⊂ M be a closed
saturated submanifold. In this subsection, we will use the blow-up construction to construct
a resolution of G. Let S ⊂ U ⊂ M and S ⊂ V ⊂ NS be a tubular neighbourhood of S such
that G|U ≃ (GS ×S NS)|V , which exists by the linearization theorem, Theorem 2.3, and let

M̃ be the blow-up of M along S, using this tubular neighbourhood.

Lemma 5.4. The Lie groupoid G acts on M̃ .
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Proof. Since G ×M (M \ S) ≃ G|M\S we only have to define the action of G on Ṽ and check
that it is compatible along the tubular neighbourhood φ. Note that:

G|U ×U Ṽ ≃ (GS ×S NS)|V ×U Ṽ ≃ (GS ×S V )×U Ṽ

≃ GS ×S Ṽ .

Therefore, it is enough to show that GS acts on Ṽ , which is due to the action:

gs · (v, [w]) := (gs · v, [gs · w]),(5.2)

with [w] the line through w 6= 0. Note that if v 6= 0, we have that [w] = [v] and hence

φ(gs · (v, [v])) = φ(gs · v, [gs · v]) = φ(gs · v) = gs · φ(v),

using the linearization. Therefore, the action is compatible with the action on U \S of G. �

Another way to construct this action groupoid is to blow-up G itself along the full sub-
groupoid GS := s−1(S) = t−1(S) ⇒ S.

Lemma 5.5. The action groupoid G ×M M̃ is isomorphic to the blow-up of G along GS.

Proof. Let G̃ denote the blow-up of G along GS = s−1(S). Using Lemma 5.2, we see that we

can lift s to s̃ : G̃ → M̃ and denote the blow-down map of G̃ by πG . Let ξ : G̃ → G ×M M̃ be
given by πG × s̃. This map is an isomorphism. Indeed, one checks that it is an isomorphism
away from GS . Around GS , we have an isomorphism of vector bundles:

NGS ≃ GS ×S NS.

Since the blow-up procedure is fiberwise, we also get:

ÑGS ≃ GS ×S ÑS.

Hence, when restricting both to a neighbourhood of GS , we get that G̃ ≃ G ×M M̃ . �

Definition 5.6. The blow-up of G along S is defined as the action groupoid

G̃ := G ×M M̃ ⇒ M̃.(5.3)

Proposition 5.7. Let G be an proper Lie groupoid and let S ⊂ Sj with j = max{0 ≤ i ≤

dim(M) | si 6= ∅} be a ‘most singular’ stratum . Then the blow-up G̃ of G along S is a proper

Lie groupoid. Moreover, the blow-down map π : G̃ → G is a surjective proper map, which is

an isomorphism almost everywhere and the leaves L̃ ⊂ π−1(S) satisfy:

• π(L̃) is a leaf in S;

• dim(L̃) > dim(π(L̃)).

Proof. First note that since S is a most singular stratum, it is closed, and therefore the blow-

up is well-defined. Let E := π−1(S) ⊂ M̃ . By construction, away from E, G̃ is isomorphic

to G and hence away from E, π is a proper surjective map and G̃ is proper. Hence we are

only considering what happens close to E, where we have that G̃|
Ũ
≃ GS ×S Ṽ |Ṽ . Since

π : ÑS → NS is a proper surjective map, so is its restriction π : Ṽ = π−1(V ) → V . As G̃ is

an action groupoid, it immediately follows that G̃ → G is surjective and proper.
Consider the following diagram.
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GS ×S Ṽ GS ×S V

Ṽ × Ṽ V × V

π

(s̃,t̃) (s,t)

π×π

For a compact K̃ ⊂ Ṽ × Ṽ , we see that the set

(s̃, t̃)−1(K̃) ⊂ π−1
(
(s, t)−1

(
(π × π)(K̃)

))

is a closed subset fo a compact set and hence is compact. Therefore, G̃ is a proper Lie
groupoid.

Now let L̃ ⊂ E be a leaf and let (0, [wi]) ∈ L̃ for wi ∈ NS and i = 1, 2. Since they belong
to the same leaf, there exists gs ∈ Gs such that gs · (0, [w1]) = (0, [w2]). Hence s(gs) = π(w1)

and t(gs) = π(w1). That is, π(0, [w1]) and π(0, [w2]) belong to the leaf L and π(L̃) ⊂ L ⊂ S.

Now given any x ∈ L, let y = π(0, [w]) ∈ π(L̃) be arbitrary. Then there exists gs ∈ GS such

that gs : y → x. It follows that x = π(gs · (0, [w])) ∈ π(L̃) and hence π(L̃) = L.

Finally, for (0, [w]) ∈ L̃ one can assume by rescaling that w ∈ V ⊂ NS and hence corres-

ponds to an x ∈ U ⊂ M . Then, locally, we see that L̃ ≃ Lx/Z2 where the Z2-action comes

from [w] = [−w] and can be trivial. Hence the dimension of L̃ is equal to the dimension of Lx.

Now note that Lx does not lie in S and hence its dimension is bigger than that of π(L̃). �

Note that G̃ being proper is independent of S being a most singular stratum. In fact, any
blow-up of a proper Lie groupoid along a closed saturated submanifold is once again proper.
By blowing-up a finite amount of times we get:

Theorem 5.8. Any proper Lie groupoid admits an action resolution.

Proof. Let j(G) := max{0 ≤ i ≤ dim(M) |Sj 6= ∅} and m = min{0 ≤ i ≤ dim(M) |Sj 6= ∅}.
If j−m = 0, G is regular and we are done. Assume by induction that all proper Lie groupoids
with j(G)−m(G) < k admit an action resolution. We will show that any proper Lie groupoid
with j(G)−m(G) = k also admit an action resolution. The theorem then follows by induction.

Hence let j(G) −m(G) = k for a groupoid G ⇒M . Since Sj is by construction saturated,

we can define the blow-up π : G̃ → G of G along Sj . Property (2) of Proposition 3.7 implies
that we can pick the tubular neighbourhood around Sk as a disjoint union of tubular neigh-
bourhoods of each connected component. Hence we can apply Proposition 5.7, which implies

that j(G̃) −m(G̃) < k and hence G̃ admits a resolution (H ≃ G̃ ×
M̃
N, p). Now, it is easily

seen that the composition π ◦ p is a surjective proper map, so that H is a resolution for G as
well. Moreover:

H ≃ G̃ ×
M̃
N ≃ (G ×M M̃)×

M̃
N ≃ G ×M N

And hence H is an action resolution. �

Definition 5.9. An action resolution obtained by several blow-ups will be called a desingu-

larization.

Note that desingularizations are almost-everywhere isomorphic to the original groupoid.
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5.2. Functoriality. In this section we will prove that generalized morphisms between proper
Lie groupoids lift to generalized morphisms between their blow-ups, as long as we blow-up
submanifolds which are somehow related. When we specialize to Morita equivalent groupoids,
we can show more: their desingularizations are again Morita equivalent. Throughout, let
(P,α′, α) : G′ 99K G be a generalized map. Given a subset S′ ⊂ M ′ or S ⊂ M , we let
P (S′) := α((α′)−1(S′)) ⊂M and P−1(S) := α′(α−1(S)) ⊂M ′.

Lemma 5.10. If S′ ⊂ M ′ and S ⊂ M , then P (S′) and P−1(S) are saturated. Moreover,

P (P−1(S)) = Sat(S), the saturation of S.

Proof. Let x ∈ P (S′) and g : y → x ∈ G. Then, by definition of S, there exists p ∈ P such that
x = α(p) and α′(p) ∈ S′. Since α′(p · g) = α′(p) ∈ S′, we conclude y = α(p · g) ∈ P (S′) and
hence P (S′) is saturated. Note that we do not use any assumptions of P being right-principal,
so the same holds for P−1(S). For the second claim, we have that S ⊂ P (P−1(S)) which is
saturated. Hence Sat(S) ⊂ P (P−1(S)). Now for the reversed inclusion note that:

P (P−1(S)) = {α(p) | ∃q ∈ P s.t. α′(p) = α′(q) and α(q) ∈ S}.

Since the action of G on P has orbits equal to the fibers of α′, for α(p) ∈ P (P−1(S)) we have
that there exists g ∈ G such that p = q · g. Hence α(p) = α(q · g) ∈ Sat(S) since α(q) ∈ S. �

In case the generalized morphism P is a Morita equivalence we also get that P−1(P (S′)) =
Sat(S′). We will call two saturated sets S′ and S related or, in case of a Morita equivalence,
equivalent, if S′ = P−1(S), which also immediately implies that S = P (S′). The idea behind
related sets is that if we want to compare blow-ups of groupoids, we have to blow-up along
related sets.

Proposition 5.11. Let (P,α′, α) : G′ 99K G be a generalized morphism between proper Lie

groupoids, S′ ⊂ M ′ and S ⊂ M be related closed saturated submanifolds and let G̃′ and G̃
be the blow-ups of G′ and G along these submanifolds. Then P lifts to a generalized map

(P̃ , α̃′, α̃) : G̃′ 99K G̃.

Proof. Let SP := α−1(S) = (α′)−1(S′) and P̃ be the blow-up of P along SP . Note that since
α′ is a submersion, we get that SP is indeed a submanifold. By Lemma 5.2, the maps α
and α′ lift to maps α̃ and α̃′ such that α̃′ is again a submersion. Similarly, we can lift the
actions, by lifting the maps P ×M G → P and G′ ×M ′ P → P , using both Lemma 5.2 and
Lemma 5.3. Note that the actions commute and that the moments maps are invariant for the
other action, since it holds on open dense subsets, where the blow-ups are isomorphic to the
original manifolds.

If g̃ = (g, x̃) and p̃ · g̃ = p̃, we also get that πP (p̃) · g = πP (p̃) and since G acts freely, g has

to be 1π(x̃). Hence g̃ = (1π(x̃), x̃) = 1x̃ and G̃ acts freely. Using the properness of the G-action,

one can verify that the G̃-action is also proper. Hence we are left to show that M̃ ′ ≃ P̃ /Q̃ to
conclude the proposition.

Let α̃′(p̃) = α̃′(q̃) ∈ E′ ⊂ M̃ ′. Then we can find γp, γq : I → P such that α′ ◦ γp = α′ ◦ γq,
[γ̇p(0)] = p̃ and [γ̇q(0)] = q̃. Hence there exists a unique γg : I → GS such that γp = γq · γg.
Therefore q̃ · g̃ = p̃ with g̃ := [γ̇g(0)]. Outside E′, the claim is true as well. This proves the
proposition. �

Corollary 5.12. Blow-ups of Morita equivalent groupoids along equivalent saturated subman-

ifolds are Morita equivalent.
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In general it does not hold that any generalized morphism between groupoids lifts to their
desingularizations. The main problem for this is that one cannot compare the stratifications.
We can however when P is a Morita equivalence:

Lemma 5.13. Let (P,α′, α) : G′ → G be a Morita equivalence and p ∈ P . Then:

codim
(
L′
α′(p)

)
= codim

(
Lα(p)

)

Hence a saturated S ⊂M is a stratum if and only if P−1(S) is.

Proof. Note that α is a submersion which maps G′ ·p ·G onto Lα(p). Therefore codim(Lα(p)) =
codim(G′ · p · G). The same holds for α′, which proves the lemma. �

In other words, there is a one-to-one correspondence between the strata of G and G′. Note
that this assignment of equivalent strata keeps the partial ordering of the stratification intact.
That is, we can use Corollary 5.12 a finite amount of times to conclude:

Theorem 5.14. The desingularizations of Morita equivalent groupoids are Morita equivalent.

5.3. Properties. Let G ⇒ M be a proper Lie groupoid and let G̃ ⇒ M̃ be its blow-up

with blow-down map π. In this section we will prove three lemma’s on the behaviour of G̃
with respect to G, which we will use in the next section on metrics. Besides G and G̃ being
almost-everywhere diffeomorphic, they also have the same kind of s-fibres. Indeed:

s̃−1(x̃) = G ×M {x̃} ≃ s
−1(π(x)).

Hence it makes sense to compare Haar systems. To this end we have the following lemma.

Lemma 5.15. Let µ be a proper Haar system on G. Then µ̃ defined as

µ̃x̃ := µπ(x̃),

is a proper Haar system on G̃.

Proof. We start by showing that µ̃ is right-invariant. For this, let (g, x̃) ∈ G̃, let ỹ := gx̃ and
let f be a smooth function on s̃−1(x) ≃ s−1(ξ(x̃)). Then, using the right-invariance of µ:

∫

(h,ỹ)∈s̃−1(ỹ)
f(hg, x̃) dµ̃x̃(h, ỹ) =

∫

h∈s−1(ξ(ỹ))
f(hg, x̃) dµξ(ỹ)(h)

=

∫

h′∈s−1(ξ(x))
f(h′, x̃) dµξ(x̃)(h′)

=

∫

(h′,x̃)∈s̃−1(x̃)
f(h′, x̃) dµ̃x̃(h′, x̃).

Next we check the smoothness of the map x̃ 7→
∫
s̃−1(x̃) f(g̃) dµ

x̃(g̃) for f smooth on G̃. As

G ≃ G̃ away from the exceptional divisor, we only have to prove it around S and E. With a
similar argument, one realizes that we only have to prove it on ξ−1(x) with x ∈ S fixed. In
this case, however, the integration domain does not change and the smoothness of the map
directly follows from the smoothness of f itself. Properness of µ̃ follows now directly from
properness of µ. �
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Next, we consider actions of G and lifts of actions. Suppose G acts on a submersion

f : N → M by θ. In this case G̃ acts on the projection p
M̃

: Ñ := N ×M M̃ → M̃ through

(g, x̃) · (y, x̃) := (g · y, g · x̃) such that the other projection pN : Ñ → N makes the following
diagram commute.

G̃ ×
M̃
Ñ Ñ

G ×M N N

θ̃

π×pN
pN

θ

A similar result holds for their tangent lifts, which rely on a choice of connection. Similar to
the previous lemma we have the following lemma.

Lemma 5.16. Let σ be a connection on G. Then σ̃ defined as

σ̃(g,x̃)(ṽx̃) := (σg ◦ dπ(ṽx̃), ṽx̃) ∈ TgG ×Tπ(x̃)M Tx̃M̃(5.4)

is a connection on G̃.

Proof. As ds ◦ σ = id, we get that σ̃ lands in TG̃ = TG ×TM TM̃ . Moreover, since ds̃ is just
the projection onto the second factor in this fibred product, we also immediately get that
ds̃ ◦ σ̃ = id. Finally, note that ũ(x̃) = (u(π(x̃)), x̃) and hence:

σ̃ũ(x̃)(ṽx̃) =
(
σu(π(x)) ◦ dπ(ṽx̃), ṽx̃

)

= (du ◦ dπ(ṽx̃), ṽx̃) = dũ(ṽx̃),

so indeed σ̃ defines a connection. �

Using this, we get:

Lemma 5.17. Let G ⇒ M act on a submersion f : N → M by θ and let σ be a connection

on G. Then the tangent lift Tθ of θ with respect to σ and the tangent lift T θ̃ of θ̃ with respect

to σ̃ commute:

G̃ ×
M̃
TÑ T Ñ

G ×M TN TN

T θ̃

π×dpN dpN

Tθ

Proof. We compute:

dpN ◦ T θ̃(g, x̃, wy, ṽx̃) = dpN ◦ dθ̃
(
σ̃(g,x̃) ◦ dpM̃ (wy, ṽx̃), (wy, ṽx̃)

)

= dθ ◦ d(π × pN )
(
σ̃(g,x̃)(ṽx̃), (wy, ṽx̃)

)

= dθ
(
dπ ◦ σ̃(g,x̃)(ṽx̃), dpN (wy, ṽx̃)

)

= dθ (σg ◦ dπ(ṽx̃), wy)

= dθ (σg ◦ df(wy), wy)

= Tθ(g,wy) = Tθ ◦ (π × dpN )(g, x̃, wy, vx̃).

This proves the commutativity. �
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6. Metrics and desingularizations

In [8] the authors prove the linearization results of proper Lie groupoids, by showing that
any groupoid with a 2-metric can be linearized and that any proper Lie groupoid admits a
2-metric. Hence instead of blowing-up proper Lie groupoids, one can blow up Riemannian
groupoids. Since we have shown that the blow-up of a proper Lie groupoid is again a proper
Lie groupoid, results in [8] show that there again exists a 2-metric on the blow-up. We will
show that we can use the metric on the original groupoid to construct an explicit metric on
the blow-up. The advantage to this is that we obtain some extra properties on the behaviour
of the blow-down map, in particular when restricted to the exceptional divisor.

6.1. Groupoid metrics. Let us start by recalling some definitions and basic properties of
metrics on groupoids, which can be found in [8]. The metrics we will use are the so-called
simplicial metrics.

Definition 6.1. A simplicial metric on a groupoid G ⇒ M consists of a metric ηk on each
component G(k) of the nerve of G such that:

• Each face map G(k) → G(k−1) is a Riemannian submersion;
• The group Sk+1 acts by isometries on the G(k).

The pair (G, η) is called a Riemannian Lie groupoid.

An important result of [8] is the existence of simplicial metrics on proper Lie groupoids:

Theorem 6.2 (c.f. [8]). Any proper Lie groupoid admits a simplicial metric.

The proof of this theorem consists of two tricks, pushing down metrics and averaging
metrics. These we will use later and hence we will now spend some time on discussing them.
Firstly, suppose that f : N → M is a submersion and ηN a metric on N . Then ηN is called
f -transverse if for all m ∈M and all n1, n2 ∈ f

−1(m) we have that the maps:

(dn1f)
∗ ◦ ((dn2f)

∗)−1 : Ann(Tn2f
−1(m))→ T ∗

mM → Ann(Tn1f
−1(m))

are isometries. In this case, there exists a unique metric ηM onM such that f is a Riemannian
submersion. This metric, defined as

ηM (df(X), df(Y )) := ηN (X,Y ),

for X,Y ∈ ker(df)⊥, is called the push-forward metric.
Secondly, recall that given a metric η on N , its dual η∗ is pointwise defined as the dual

of the map ηn : TnN → T ∗
nN . In [8], del Hoyo and Fernandes use this dual to average η,

depending on a choice of Haar system and connection:

Proposition 6.3 (c.f. [8]). Let G ⇒M be a proper Lie groupoid acting free and properly on

(N, η) → M through θ and let π : E → E/G be the quotient map. Then a choice of Haar

system µ and connection σ defines π-transverse metric Av(η), whose dual is defined as:

Av(η)∗n(α, β) :=

∫

g∈s−1(x)
η∗n·g((Tθg)

∗(α), (Tθg)
∗(β))µx(g).(6.1)

Moreover, if η was already π-transeverse, then the push-down metrics of η and Av(η) agree.

Finally, if G acts on Ni →M for i = 1, 2 and p : (N1, η1)→ (N2, η2) is a Riemannian submer-

sion which is equivariant with respect to these actions, then p : (N1,Av(η1)) → (N2,Av(η2))
is a Riemannian submersion as well.
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In our construction of the blow-up of a groupoid, we use pull-backs. Metrics behave
naturally under these pull-backs, as the following lemma shows.

Lemma 6.4. Consider the pull-back diagram of manifolds:

M ×N M ′ (M ′, η′)

(M,η) (N, ηN )

p′

p f ′

f

with f a Riemannian submersion. Such a pull-back admits a metric,

η ∗ η′ := p∗(η) + p′∗(η′)− (f ◦ p)∗(ηN ),(6.2)

such that p′ is a Riemannian submersion.

Proof. For η ∗ η′ to be a metric, it is enough to show positive definiteness. Hence let
(v, v′) ∈ TM × TM ′ be such that df(v) = df ′(v′) and ||(v, v′)|| = 0. Since f is a Riemannian
submersion, we get that:

0 = η ∗ η′((v, v′), (v, v′)) ≥ η′(v′, v′) ≥ 0

and hence v′ = 0. It now readily follows that v = 0 so that η ∗ η′ is positive definite. Note
that ker(dp′) = ker(df) × {0} ⊂ TM × TM ′ and hence ker(dp′)⊥ = ker(df)⊥ ×TN TM ′. For
(v, v′), (w,w′) ∈ ker(dp′)⊥ we get:

η ∗ η′((v, v′), (w,w′)) = η(v,w) + η(v′, w′)− ηN (df(v), df(w)) = η(v′, w′)

= η(dp′(v, v′), dp′(w,w′)).

We conclude that p′ is a Riemannian submersion. �

We will call the metric defined in Equation 6.2, the pull-back metric of η and η′. The

rest of this section is structured as follows: firstly, in Section 6.2, we prove that M̃ admits
a metric which satisfies some natural conditions. Then, mirroring the proof of Theorem 6.2,
we use this metric to get a metric on the groupoid G̃ in Section 6.3. We finish in Section 6.4
by showing that the constructed metric is Morita invariant.

6.2. Metric on the base. We start with focusing on the metric on the base M . We will
spend this section proving the following result:

Proposition 6.5. Let G ⇒ M be a proper groupoid endowed with a simplicial metric η and

S ⊂M be its most singular stratum. Then M̃ , the blow-up of M along S, admits a metric η̄
such that:

• π : E → S is a Riemannian submersion when restricted to E = π−1(S);

• π : M̃ →M is an isometry outside an open neighbourhood of E.

Note that this result is similar to a Theorem of Alexandrino, [2, Theorem 1.2], for a singular
foliation. The proof we give is a simplification of that proof, where the simplification comes
from the existence of the groupoid G. The proof will be used later on in Proposition 6.13.

Proof. The proof starts with an alteration of η0 around E. Let S ⊂ U ⊂M be a neighbour-
hood such that G is linearizable on U : G|U ≃ GS×SNS ⇒ NS. By using a partition of unity,

subordinated to U and Sc, it is enough to show that on Ũ there exists a metric such that the
first condition of the proposition holds.
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Firstly, note that for any v ∈ NxS \ {0}, we have an inclusion of Gx · v ⊂ Ov = s−1(x) · v.
This gives an inclusion on tangent spaces Tv(Gx · v) ⊂ TvOv ⊂ Tv(NS). Using the metric on
NS, which is inherited by the one on M , we can define:

Hv := (Tv(Gx · v))
⊥ ⊂ TvOv.(6.3)

One can check that dim(Hv) = dim(L) for any leaf L ⊂ S. Hence H → NS \ S is a vector
bundle. Moreover, if we let p : NS → S be the projection, we see that H ∩ ker(dp) = 0. Let
H ′ → NS \ S and B → NS \ S be defined as:

H ′ := (H ⊕ ker(dp))⊥ , B := H ⊕H ′.(6.4)

Therefore we get that T (NS \ S) = B ⊕ ker(dp). Note that ker(dp) ≃ B⊥ by the projection
pr: TNS → B⊥. Hence ker(dp) inherits a metric pr∗(η0|B⊥). Using this metric, ker(dp) splits
asK⊕K⊥ withK a line bundle generated by d

dτ
|τ=0τv. Hence we get T (NS\S) = B⊕K⊕K⊥.

With respect to this splitting, we can define:

η̄0v =



p∗(η0S) 0 0

0 pr∗(η0|B⊥) 0
0 0 1

|v|2
pr∗(η0|B⊥)


 .

The next step is to extend η̄0 over E = π−1(S), to ÑS. Note that on ÑS \ E, we have

that π : ÑS \ E → U \ S is an isomorphism and hence we can use η̄0. On E, we see that

TÑS = TE ⊕ K̃, with K̃ a line bundle generated by paths of the form γv(τ) = (τv, [v]). To

extend η̄0, we ask TE and K̃ to be orthogonal, ||γ̇v(0)|| = ||v|| and on T(0,[v])E we can view
vectors as (0, [V ]) for V ∈ Tv(NS) and we can define:

η̄((0, [V ]), (0, [W ])) := lim
τ→0

η̄0τv(τV, τW ).

Here τV ∈ Tτv(NS) is the derivative of the path γτV (ξ) := τγV (ξ).
We are left to check that π is a Riemannian submersion. However, if (0, [V ]) ∈ ker(dπ),

then τV ∈ ker(dp) for all τ . Hence on ker(dπ)⊥, we use p∗(η0S), from which it follows that π
is a Riemannian submersion.

�

6.3. Metric on the groupoid. Using the metric η̄ we have just constructed on M , we
will construct one on G(k) for all k. This construction mirrors the proof of Theorem 6.2 in
[8]. First note that s : G → M is a submersion and hence we have the submersion groupoid

G ×M G ⇒ G. Denote the (k − 1)st nerve of this submersion groupoid by G[k]. One easily
realizes that there exists diffeomorphisms ψk : G

[k] → G(k), for all k, which do not form a
groupoid map, defined by:

ψk(gk, . . . , g1) := (gkg
−1
1 , . . . , g2g

−1
1 , g1).

Lemma 6.6. The metrics ψ∗
k(η

k) on G[k] form a simplicial metric on the submersion groupoid

G[2] ⇒ G.

Proof. One can easily check that the action of Sk on G[k] is included in the action of Sk+1

on G(k) through ψk. Similarly, each simplicial map of the groupoid G̃[k] → G̃[k−1] matches

a simplicial map of G̃(k) → G̃(k−1) under ψk. Note that the latter has one more simplicial
map, but that does not matter. Hence it follows that the simplicial maps are Riemannian
submersions, and the lemma follows. �
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Now using these, we can define a simplicial metric on G̃[k]:

Lemma 6.7. Let η̄0 be the metric on M̃ of Proposition 6.5 and let η̄k on G̃[k] ≃ G[k] ×M M̃
be the pull-back metrics, as defined in Equation 6.2:

η̄k := ψ∗
k(η

k) ∗ η̄0.(6.5)

Together, they form a simplicial metric on G̃[2] ⇒ G̃. Moreover, the projections πk : G̃[k] → G[k]

are Riemannian submersions when restricted to the exceptional divisor E ⊂ M̃ .

Proof. Firstly, note that the action of Sk on G̃[k] = G[k]×M M̃ restricts to the action of Sk on
G[k]. Hence by construction of the metric it follows directly that Sk acts by isometries using
the same statement for G[k]. Similarly, the face maps are just the face maps of G[k] → G[k−1]

and we conclude that they are indeed Riemannian submersions.

Finally, when we restrict to E we get that G̃
[k]
E ≃ G

[k]
S ×S E and hence πkE : G̃

[k]
E → G

[k] is
the pull-back map of the Riemannian submersion πE : E → S, and therefore a Riemannian
submersion itself, using Lemma 6.4. �

Using maps ψ̃k, similar to ψk but for G̃, we again get metrics on G̃(k). The proof of
Lemma 6.6 shows that by using these ψk we lost some information: not all face maps were

used for example. Hence the resulting metrics ψ̃∗
k(η̄) do not form a simplicial metric. The

rest of this subsection is devoted to altering these metrics such that they become simplicial.

Proposition 6.8. Let G ⇒ M be a proper groupoid endowed with a simplicial metric η and

let S ⊂M be a saturated submanifold. Then G̃, the blow-up of G along S, admits a metric η̃
such that:

• π : G̃|E → GS is a Riemannian submersion when restricted to E = π−1(S);

• π : G̃ → G is an isometry outside an open neighbourhood of E.

Proof. Let η̄ be the simplicial metric on G̃[k] of Lemma 6.7 and let ψ∗
k(η

k) be the simplicial

metric on G[k]. Note that G acts on the source map G[k] →M via

(gk, . . . , g1) · g0 = (gk · g0, . . . , g1 · g0)

with quotient map φk : G
[k] → G(k−1)

φk(gk, . . . , g1) := (gk · g
−1
k−1, . . . , g2 · g

−1
1 )

Similarly, G̃ acts on G̃[k]. The following diagram shows our current situation:

. . . (G̃[2], η̄2) (G̃, η̄1) (G, ψ∗
1(η

1)) (G[2], ψ∗
2(η

2)) . . .

. . . G̃ M̃ (M,η0) (G, η1) . . .

φ̃2

π1

φ̃1 φ1 φ2

π

By Lemma 6.4 when we restrict the map πk to E ⊂M they become Riemannian submersions.
Now let σ be a connection on G, µ a Haar system on G and let σ̃ and µ̃ be the corresponding

connection and Haar system on G̃ as in Section 5.3. We can now average the upper row, and
push the metrics down to define:

η̃k := (φ̃k+1)∗(Av(η̄
k+1)).(6.6)

Doing the same on the right hand side of the diagram leads to:
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. . . (G̃[2],Av(η̄2)) (G̃,Av(η̄1)) (G,Av(ψ∗
1(η

1))) (G[2],Av(ψ∗
2(η

2))) . . .

. . . (G̃, η̃1) (M̃ , η̃0) (M,η0) (G, η1) . . .

φ̃2

π1

φ̃1 φ1 φ2

π

Note that on the right hand side of the diagram, the metrics ψ∗
i (η

i) were already φi-transverse
with push-forward metrics ηi and hence do not change.

We are left to show the two properties of η̃ of the proposition. Note that averaging and

restricting to a saturated submanifold commute as we only use elements of G and G̃ which
belong to the restriction. Therefore, away from E, η̄k = ψ∗

k(η
k), σ = σ̃ and µ = µ̃, and

hence the averaging and pushing down leads to ηi. On E, we know that πkE : (G̃
[k]
E , η̄kE) →

(GS , ψ
∗
k(η

k
S)) is a Riemannian submersion. Let G = (gk, . . . , g1) ∈ G

[k]
S and G·g = (gk ·g, . . . g1 ·

g). We compute:

Av(ψ∗
k(η

k
S))

∗
G(α, β) =

∫

g∈s−1(s(g1))
ψ∗
k(η

k
S)

∗
G·g ((Tθg)

∗(α), (Tθg)
∗(β)) µs(g1)(g)

=

∫

(g,x̃)∈s̃−1(s(g1),x̃)
ψ∗
k(η

k
S)

∗
G·g ((Tθg)

∗(α), (Tθg)
∗(β)) dµ̃s̃(g1,x̃)(g, x̃)

=

∫

(g,x̃)∈s̃−1(s(g1),x̃)
(η̄k)∗(G,x̃)·(g,x̃)

(
(dπk)∗ ◦ (Tθg)

∗(α), (dπk)∗ ◦ (Tθg)
∗(β)

)
dµ̃s̃(g1,x̃)(g, x̃)

=

∫

(g,x̃)∈s̃−1(s(g1),x̃)
(η̄k)∗(G,x̃)·(g,x̃)

(
(T θ̃(g,x̃))

∗ ◦ (dπk)∗(α), (T θ̃(g,x̃))
∗ ◦ (dπk)∗(β)

)
dµ̃s̃(g1,x̃)(g, x̃)

= Av(η̄k)∗(G,x̃)

(
(dπk)∗(α), (dπk)∗(β)

)
.

Here the first and last equality are by definition of the average, the second by choice of
µ̃, the third by πE being a Riemannian submersion before the averaging, and the fourth
equation by the choice of σ. This computation shows that πk is still a Riemannian submersion
after averaging. Therefore, three out of four maps of the following diagram are Riemannian
submersions:

(G̃
[k]
E ,Av(η̄k)) (G

[k]
S ,Av(ψ∗

k(η
k)))

(G̃(k−1), η̃k−1) (Gk−1, ηk)

πk
E

φ̃k φk

πk−1
E

Hence πk−1
E is a Riemannian submersion. �

Remark 6.9. Note that in the proof, we use the kth metric of G to get the (k − 1)st metric

on G̃. This explains why we use simplicial metrics instead of 2-metrics.

The following theorem now follows.

Theorem 6.10. Let G ⇒M be a Riemannian proper groupoid. Then its desingularization G̃
admits a simplicial metric η̃ such that:

• π : G̃|E → GS is a Riemannian submersion when restricted to E = π−1(S);

• π : G̃ → G is an isometry outside an open neighbourhood of E.
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6.4. Morita invariance. In the last part of this section, we combine all the previous res-
ults and prove that the desingularizations of two Morita equivalent proper Riemannian Lie
groupoids are again Morita equivalent. This statement entails more than Theorem 5.14, as
we also ask the metrics to be equivalent.

Definition 6.11. A generalized morphism (P,α′, α) : (G′, η′) 99K (G, η) with a metric ηP on
P is called Riemannian if α′ is a Riemannian submersion. Similarly, we define a Riemannian

Morita equivalence to be a Morita equivalence with a metric, such that both α and α′ are
Riemannian submersions.

Note that since for any generalized morphism P : G′ 99K G we have that M ′ ≃ P/G, and
P being Riemannian implies that ηP is invariant under the G-action. Recall that generalized
morphisms can also be defined by so-called fractions, i.e., a groupoid maps G′ ← H → G,
such that H → G′ is a weak equivalence. In [9] del Hoyo and Fernandes define a fraction to

be Riemannian if all the maps H(k) → G′(k) are Riemannian submersions for k ≤ 2. When
working with simplicial metrics instead of 2-metrics, it is natural to ask H(k) → G′(k) to be a
Riemannian submersion for all k.

The correspondence between generalized morphisms and fractions is given by H = G′ ×M ′

×P ×M G, where s(g
′, p, g) := p · g and t(g′, p, g) = g′ · p, and the groupoid maps are given by

the projections. We will refer to this Lie groupoid as the double action groupoid corresponding
to P . One can check that H → G′ is indeed a weak equivalence and hence H, being Morita
equivalent to a proper groupoid, is a proper Lie groupoid as well. Conversely, given a fraction
G′ ← H → G, the corresponding bibundle is given by P := G′ ×M ′ N ×M G/H. In the next
proposition we show that our notion of a Riemannian bibundle corresponds to a Riemannian
fractions.

Proposition 6.12. Let (P,α′, α, ηP ) : (G
′, η′) 99K (G, η) be a Riemannian generalized morph-

ism and let H := G′ ×M ′ ×P ×M G ⇒ P be the associated fraction. Then ηP induces a

simplicial metric on H for which H is a Riemannian fraction. Conversely, if G′ ←H → G is

a Riemannian fraction, then ηH induces a metric ηP on P := G′ ×M ′ N ×M G/H such that

(P, ηP ) is a Riemannian bibundle.

Proof. For the first part of the proposition, we mimic the proof of Proposition 6.8. H[k] can
be written as η̄H := G′[k]×M ′ P ×M G

[k] and hence caries the metric ψ′∗(η′k)∗ηP ∗ψ
∗(ηk) with

ψ : G[k] → G(k) the standard isomorphism. Using ψ′∗(η′k) on G′[k], we get that H[k] → G′[k]

is a Riemannian submersion if and only if P ×M G
[k] → M ′ is. This is the composition

of the Riemannian submersion α′ with the projection map P ×M G
[k] → P . The latter

is a Riemannian submersion as well, which follows from t : G → M being a Riemannian
submersion. Hence H[k] → G′[k] is a Riemannian submersion.

Now H acts on H[k], but also on G′[k], by just using the G′ multiplication. Note that the
metric for the latter action is invariant since it is already invariant for the G′-action. By
picking a Haar system and connection on H, we can average and push down both η̄H and
ψ′(η′). Since the H action on G′[k] preserves the metric, the resulting metric on G′ is again

η′. Moreover, the fact that the maps H[k] → G′[k] being Riemannian submersions implies that
the maps H(k) → G(k) with the new metric on H are Riemannian submersions as well. Hence
the first part of the proposition follows.

For the second part, using the Haar system and connection on H, we can average the pull-
back metric η′ ∗ ηN ∗ i

∗(η) on G′×M ′ N ×M G and then push it down to P , to get a metric ηP .
The map P → M ′ is given by the quotient of the projection G′ ×M ′ N ×M G → G

′. Here H
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acts on G′, by just considering the G′ component of H. Note that this projection is a double
fibred pull-back of Riemannian submersions as in the following diagram:

G′ ×M ′ N ×M G N ×M G G

N M

G′ M ′

t

φ′

Hence G′×M ′ N ×M G → G
′ is a Riemannian submersion for the metric η′ ∗ ηN ∗ η. Note that

the metric on G′ is H invariant, and hence averaging on G′ and pushing down to M ′ does
not change the metric on M ′. Combining these two statements proves the second part of the
proposition. �

Since extending the metric to the blow-up only works well when we blow up a closed
stratum, we can not expect to lift any generalized morphism. However, when the generalized
morphism is a Morita equivalence, Lemma 5.13 shows we can compare strata and hence we
can try to lift the morphism. The following proposition shows that this is indeed possible.

Proposition 6.13. Let (P,α′, α, ηP ) : (G
′, η′) 99K (G, η) be a Morita equivalence between

proper groupoids, S′ ⊂M ′ and S ⊂M equivalent closed strata and let G̃′ and G̃ be the blow-

ups of G′ and G along these submanifolds. Then P̃ , the generalized morphism between G̃′ and
G̃, admits a metric such that it is a Riemannian generalized morphism.

Proof. Let H := G′ ×M ′ P ×M G ⇒ P be the double action groupoid, corresponding to P
and let SP := (α′)−1(S′), which is a closed stratum. Proposition 6.5 gives a metric η̄P on

P̃ such that the blow-down map πP : P̃ → P is an isometry outside a neighbourhood of
EP := π−1(SP ) and a Riemannian submersion when restricted to EP . We will first show that
we can make the choices in the proof of Proposition 6.5 such that the maps α : (P, η̄)→ (M, η̄0)

and α′ : (P, η̄) → (M ′, η̄′
0
) are Riemannian submersions. Afterwards, we alter the metric on

P̃ such that the same holds for the metric η̃ on M and η̃′ on M ′.
First of all, we can pick tubular neighbourhoods U , U ′ and UP of S, S′ and SP on which

the groupoids linearize, which satisfy U = α(UP ) and U ′ = α′(UP ). Similarly we can pick
compatible partitions of unity. Since α and α′ are Riemannian submersions and the metrics
on the blow-ups agree with the metrics of the original manifold outside the tubular neighbour-
hoods, we see that α̃ and α̃′ are Riemannian submersions outside π1

P (UP ) as well. Similarly,

the metric is G̃- and G̃′-invariant outside π−1
P (UP ), sincriginal metric was G- and G′-invariant.

Hence we can restrict our attention to the tubular neighbourhoods.
As in the proof of Proposition 6.5, we will start with proving the claims on π−1

P (UP \ SP ).
Let BP ,HP ,H

′
P → NSP and B,H,H ′ → NS be the vector bundles as in Equation 6.4. We

will first show that the differential of dα : NSP → NS, which we will denote by Tα, respects
the splittings T (NSP \SP ) = BP ⊕KP ⊕K

⊥
P and T (NS \S) = B⊕K⊕K⊥. First note that:

dim(ker(dpP )) = codim(SP ) = codim(S) = dim(ker(dp)).

Hence Tα is a fiber-wise linear isomorphism between KP ⊕K
⊥
P and K ⊕K⊥. Since ker Tα ⊂

BP , and the metrics on NSP and NS is inherited by the ones on P and M , we see that
Tα is in fact a fiber-wise isometry with respect to the metrics pr∗P (ηP |B⊥

P
) and pr∗(η0|B⊥).
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Moreover, since dα is linear, it is clear that KP is mapped onto K. This proves that η̄P and
η̄0 agree on K ⊕K⊥, even with the correction term. Therefore, we are left to consider BP

and B′
P . We can extend α to a groupoid morphism H → G in the obvious way. Hence for

any vP ∈ NpSP and v := dα(vP ) ∈ NxS we get

dα(h · vp) = α(h) · v,

showing that dα maps Hp · vp 7→ Gx · v and s−1(p) · vp 7→ Gx · v. This also implies that
H ′

P is mapped to H ′. Therefore Tα : BP → B is Riemannian with respect to the original
metric. Since SP → S is Riemannian as well and twisting the metric on H to p∗(η0S) keeps
Tα Riemannian. Hence, with the metric η̄ on NS \S and η̄P on NSP \SP , the map α̃ is still
a Riemannian submersion.

Finally, we consider the extension over the exceptional divisors EP and E. Similar to

before, the line bundle K̃P is mapped to the line bundle K by dα̃ and the metrics agree here.
On TEP , the limit definition of the metric on the orthogonal complement of K immediately
implies that α̃ is still Riemannian. Note that the same argument holds for α̃′, since we did
not make any choices.

In order to conclude the proposition, we let η̃P := t∗(Av(η̄
1
P )), with η̄

1
P = η̄′1 ∗ η̄P ∗ i

∗(η̄1)

on H̃ ≃ G̃′ ×
M̃ ′

P̃ ×
M̃
G̃, where η̄1 is the metric of Lemma 6.7. The map α̃′ is the quotient

map of

(G̃′ ×
M̃ ′ P̃ ×M̃

G̃, η̄′
1
∗ η̄P ∗ i

∗(η̄1))→ (G′, η̄′
1
)

with respect to the right H̃-action. This map is a Riemannian submersion as it is the double
pull-back of Riemannian submersions in the following diagram:

G̃′ ×
M̃ ′ P̃ ×M̃

G̃ P̃ ×
M̃ ′ G̃ G̃

P̃ M̃

G̃′ M̃ ′

t̃

α̃′

Note that the metric on G̃′ is H̃-invariant if and only if it is G̃′, and hence averaging on G̃′

and pushing down to M̃ ′ gives exactly (η̃′)0. Using the standard arguments it now follows

that α̃′ is a Riemannian submersion. For α̃ a similar argument holds. Note however that the

i∗ will be cancelled as we use the left action of H̃ on G̃ instead of the right G̃ action. �

Using Lemma 5.13, we conclude:

Theorem 6.14. The Riemannian desingularizations of Morita equivalent Riemannian group-

oids are again Morita equivalent.

7. Discussion

7.1. Orbit space. Let G ⇒M be a proper Lie groupoid. In this last section we will discuss
some consequences for the orbit space X := M/G. The first result is that X carries the
structure of a stratified space:
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Proposition 7.1. The dimension stratification descends to a stratification of the orbit space

X :=M/G.

Proof. First note that since all strata and all the subsets Si are saturated, they indeed define
subsets of X. Moreover, it is easy to see that these subsets are smooth manifolds since they
have charts given by the subspaces (NxLx)

G◦
x ⊂ NxLx. For a leaf L = Lx ∈ X, we have that

XL, the stratum of X through L, has dimension equal to dim((NxLx)
G◦
x). Using an argument

similar to the one in the proof of Proposition 3.5, we realize that any leaf L′ = Ly close to

L, and not in the same stratum as L, has (NyLy)
G◦
y ⊂ (NxLx)

G◦
x and hence its stratum is of

lower dimension. Now the Frontier condition for the stratification on M implies the Frontier
condition of this partitioning on X. �

In [20], the authors show that if G ⇒M is a proper Lie groupoid and M carries a so-called
transversely invariant metric, the orbit space X is a metric space, with the metric given by:

dX(L,L′) := inf{d(x1, L) + . . .+ d(xn, Ln−1) |n ∈ N, xi ∈ Li, ∀1 ≤ i ≤ n− 1, xn ∈ L
′}.

(7.1)

It is not hard to show that the zeroth component of any simplicial metric η on G ⇒M is in
fact such a transversely invariant metric and hence we get:

Proposition 7.2. Let G ⇒ M be a proper Lie groupoid, equiped with a simplicial metric.

Then dX , as in Equation 7.1, turns X := M/G into a metric space such that the quotient

map M → X is a submetry.

Even though X̃ → X turns out to be not a submetry, one can say something about the

Gromov–Hausdorff distance between X̃ and X whenM is compact. Note that in constructing

η̄0 on M̃ as in Proposition 6.5, one only adjusts the metric on a tubular neighbourhood. By
picking smaller tubular neighbourhoods, Alexandrino shows in [2] that for all ε > 0, and for

all leaves L̃, L̃′ ⊂ M̃ , one has:

|d(L̃, L̃′)− d(π(L̃), π(L̃′))| < ε,

with respect to the metric η̄0 on M̃ , which depends on ε. One can show that this is still true

after averaging η̄0 with respect to the G̃-action and hence we get:

Proposition 7.3. Let G ⇒M be a proper Lie groupoid with simplicial metric η and assume

that M is compact. Let G̃ ⇒ M̃ be its blow-up. Then for all ε > 0, G̃ admits a metric such

that the Gromov–Hausdorff distance between X =M/G and X̃ = M̃/G̃ is smaller than ε.

Applying this a finite amount of times, leads to:

Corollary 7.4. Let G ⇒ M be a proper Lie groupoid with simplicial metric η and assume

that M is compact. Then for all ε > 0, its desingularization G̃ ⇒ M̃ admits a simplicial

metric, depending on ε, such that the Gromov–Hausdorff distance between X = M/G and

X̃ = M̃/G̃ is smaller than ε.

As the orbit space of the desingularization (̃G) is an orbifold, Corollary 7.4 shows that the
the orbit space of a general proper Lie groupoid is a Gromov–Hausdorff limit of orbifolds.
In the framework of Riemannian groupoids, it seems natural to ask whether every proper
Riemannian groupoid is a “Gromov–Hausdorff limit” of regular proper Riemannian groupoids.
A careful definition of the “Gromov–Hausdorrff limit” of Riemannian groupoids is in demand
for such an interesting statement.
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7.2. Examples. In this section we discuss some examples.

Example 7.5. Let G be a Lie group, acting properly on M and let G := G×M ⇒M be its
action groupoid. Then G is a proper groupoid and already linear. For any S ⊂ M , we have

that GS = G × S and hence GS ×S ÑS = G × ÑS. That is, G acts on M̃ and G̃ = G × M̃ .
This agrees with Duistermaat and Kolk’s blow-up of proper Lie group actions in [10].

Example 7.6. Generalizing the previous example, we can consider a proper Lie groupoid
action of a given (possibly non-proper) Lie groupoid G ⇒M on a submersion f : N →M . By
definition this means that the associated action groupoid G ⋉N ⇒ N is proper, and induces
a stratifications on N according to the theory described in §3. Once again, if we blow-up

a closed saturated submanifold S ⊂ N , we find that G acts on the blow-up M̃ , so that the
resolution is given by

G̃ ⋉N ∼= G ⋉ Ñ .

Our theory can therefore alternatively be viewed as generalizing the resolution of proper Lie
group action to the case of proper Lie groupoid actions. Notice also that any proper Lie
groupoid acts on its own base space, so in this sense this example is universal.

Recall that in the Baum–Connes conjecture for Lie groupoids [3, §II.10.α], a geometric
cycle for a Lie groupoid G is given by proper, cocompact actions of G on f : N →M , together
with a K-theory class in Ki(C

∗(G⋉TGN)), where TGN is the tangent bundle along the fibers
of f . Since G ⋉ TGN ⇒ TGN is also a proper Lie groupoid, such K0-classes are essentially
given by representations of this groupoid. We hope that our theory can help to study this
geometric K-group for Lie groupoids, and by this contribute to index theory.

Example 7.7. Another example of a proper Lie groupoid is constructed in [11]. Here one
starts with a regular Riemannian foliation (M,F , g) and considers the action of the holonomy
groupoid Hol(F) on the normal bundle NF to the foliation. Since the foliation is Riemannian,
this is given by an injective morphism of groupoids

Hol(F)→ O(NF ),

where O(NF ) ⇒M is the groupoid of isometric linear maps of the Riemannian vector bundle
NF → M . Taking the closure in the groupoid on the right hand side produces a proper Lie
groupoid overM . By the result in [20] this proper Lie groupoid induces a singular Riemannian
foliation with partition given by the closure of the leaves of the original foliation. This is the
groupoid proof of Molino’s theorem that the leaf closure of a Riemannian foliation defines a
singular Riemannian foliation.

In this context, the resolution of this groupoid (or rather the associated full resolution to
a manifold with corners) was used in [13] to give a proof of the index theorem for the basic
Dirac operator on a Riemannian foliation.

7.3. The Dixmier–Douady class. In this final subsection we show how to bring the clas-
sification of regular Lie groupoids of [15] into play. Let G ⇒ M be a proper Lie groupoid.

Its desingularization G̃ ⇒ M̃ is a proper regular Lie groupoid, and, by the main result of [15]
defines an extension

1 −→ K −→ G̃ −→ E −→ 1

of a proper foliation groupoid E by a bundle of compact Lie groups K given by the connected
components of the isotropy groups of G̃ . If we assume K to be a bundle of abelian Lie groups,

E acts on G̃ through the extension above. The quotient M̃/E has the structure of an orbifold
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and the bundle K descends to the quotient. In the case that K has fibers T and is central

in G̃, this is exactly a T-gerbe with trivial band over the orbifold M̃/E. In the general case
of an bundle of abelian groups, Moerdijk in [15] associates to such extensions a cohomology
class

δ(G̃) ∈ H2(M̃/E;K),

where K is the sheaf of smooth sections of the bundle K. This class is invariant under Morita
equivalence and therefore we conclude:

Theorem 7.8. Let G ⇒ M be a proper Lie groupoid with abelian stabilizer groups on the

principal stratum. Then G defines in a canonical way a cohomology class

δ(G) ∈ H2(M̃/E,K)

In case the band of the gerbe K is trivial with fiber T, one can use the exponential sequence
to get the cohomology class in H3(M/E,Z), the so-called Dixmier–Douady class. It would
be interesting to study proper Lie groupoids whose desingularization is a central extension
of a proper étale groupoid, which is related to [4]. For nonabelian stabilizers, when the band

of the gerbe is trivial, there is a natural class in H2(M̃/E,Z(K)), where Z(K) is the center
subgroup of K. It is an interesting open question what properties of the original groupoid G
this cohomology class exactly measures.
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