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LIFTING CHERN CLASSES BY MEANS OF

EKEDAHL-OORT STRATA

GERARD VAN DER GEER AND EDUARD LOOIJENGA

Abstract. The moduli space Ag of principally polarized abelian vari-
eties of genus g is defined over Z and admits a minimal compactification
A∗g, also defined over Z. The Hodge bundle over Ag has its Chern classes
in the Chow ring of Ag with Q-coefficients. We show that over Fp, these
Chern classes naturally lift to A∗g and do so in the best possible way:
despite the highly singular nature of A∗g they are represented by alge-
braic cycles on A∗g ⊗ Fp which define elements in the bivariant Chow
ring. This is in contrast to the situation in the analytic topology, where
these Chern classes have canonical lifts to complex cohomology of the
minimal compactification as Goresky-Pardon classes, which are known
to define nontrivial Tate extensions inside the mixed Hodge structure
on this cohomology.

1. Introduction and statement of the main result

Few objects in algebraic geometry have such a rich structure as the mod-
uli space Ag of principally polarized abelian varieties of dimension g. Its
modular interpretation makes it a stack over Z and it comes as such with a
rank g vector bundle, the Hodge bundle Eg (which we may regard as the ba-
sic automorphic bundle over Ag in the sense that all other such over Ag are
manufactured from it). Its determinant bundle det(Eg) is ample and when
g ≥ 2, the graded algebra of automorphic forms ⊕∞N=0H

0(Ag, (det(Eg)⊗N ) is
finitely generated so that its Proj defines a natural projective completion A∗g
of Ag. The complex-analytic space Aan

g underlying Ag ⊗ C has the familiar
description as the quotient of the Siegel upper half space Dg of genus g by the
integral symplectic group Sp2g(Z) and A∗gan is then the Satake-Baily-Borel
compactification. Since Ag is a Deligne-Mumford stack, the (operational)
Chow ring of Ag with Q-coefficients, A•Q(Ag) is well-defined. The Chern

classes of Eg generate a subalgebra Rg herein (we recall its presentation be-
low). Since every automorphic bundle over Ag is universally expressed via
a Schur functor in terms of its Hodge bundle, Rg contains the Chern classes
of all such bundles. This is why we refer to Rg as the tautological ring of
Ag.
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2 GERARD VAN DER GEER AND EDUARD LOOIJENGA

The cycle map embeds this ring in H•(Aan
g ;Q) and its image can be

characterized in several ways. One is that after tensoring with R, it is the
subalgebra representable by differential forms whose pull-backs to Dg are
Sp2g(R)-invariant (such forms are automatically closed). Charney and Lee
[3] had shown in 1983 that in the stable range (that is, for cohomological de-
gree < g) these classes are liftable to H•(A∗gan;Q), but Goresky and Pardon
[13] proved in 2002 that they admit in fact a natural lift, provided we use the
complex cohomology of A∗gan. They raised the question whether their lifts
lie in the rational cohomology. The answer to that question, given by one of
us [17], is in general no. To see why, it is better to use the Chern characters
rather than the Chern classes, for then the even indexed Chern characters
are zero, so that the issue regarding liftability only concerns the odd indexed
ones. The answer is then that for k = 2r + 1 odd, the Goresky-Pardon lift
chgp
k (Eg) of chk(Eg) lies in the Hodge space F kH2k(A∗gan) ⊂ H2k(A∗gan;C).

If we are also in the stable range 0 < k < g/2, then, as we recall below, it lies
in fact in the complexification of a mixed Tate substructure of H2k(A∗gan):
an extension of Q(−k) by Q(0). This extension is nontrivial in the sense that
it is proportional to a standard nontrivial one whose invariant is given by
(2π
√
−1)−kπ−kζ(k). Since k is odd, this implies that in this range, chgp

k (Eg)
will not even be a real cohomology class.

We noted already back in 2015 that the situation is entirely different for
Ag⊗Fp. For this, let us recall that Ekedahl and van der Geer [4] had proved
that Rg is then generated by the Ekedahl-Oort strata. Our observation at
the time was that these strata intersect the boundary ofA∗g⊗Fp transversally
with respect to its natural stratification (with “minimal perversity”), which
means that these classes naturally lift to `-adic cohomology classes on A∗g ⊗
Fp. We then realized that the notion of an F -zip, introduced by Moonen
and Wedhorn in [18] and the classifying space of such as introduced by Pink-
Wedhorn-Ziegler [21] make it fit into an even neater picture. This classifying
space of zips is an Artin stack, denoted [EZ\ Sp2g ⊗Fp] (we give more details
below), which can be regarded as the characteristic p counterpart of the
compact dual Ďg of the Siegel upper space Dg. The Chow ring Řg :=

A•Q([EZ\ Sp2g ⊗Fp]) is isomorphic to the one of Ďg. We have a natural

morphism of Artin stacks Ag → [EZ\ Sp2g ⊗Fp]. It has the property that it

maps Řg onto Rg. Our main observation now becomes:

Theorem 1.1. The morphism Ag⊗Fp → [EZ\ Sp2g ⊗Fp] naturally extends
to the minimal compactification: A∗g⊗Fp → [EZ\ Sp2g ⊗Fp] and the induced

ring homomorphism Řg → A•Q(A∗g ⊗ Fp) is an embedding.

Here the ring A•Q(A∗g ⊗ Fp) is Fulton’s bivariant Chow ring [9]. One may

be tempted to call this image the tautological ring of A∗g, although (as was
shown in [3]), the stable cohomology of the Baily-Borel compactification is
larger than the algebra generated by the λi .
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Remark 1.2. A natural analogue of this theorem can be stated for Shimura
varieties X of Hodge type, where the role of Rg is taken by the subalgebra
RG ⊂ A•Q(X ⊗ k), with k a finite field, generated by Chern classes of auto-
morphic bundles. Here the subscript G refers to the algebraic group that is
part of the data that give X the structure of a Shimura variety. It is here
implicit that we employ an integral model for X which has good reduction
over the prime with residue field k. Such models have been constructed by
Vasiu [25] and Kisin [14].

The work of Pink, Wedhorn and Ziegler [21, 22] applies to this setting:
we still have a moduli stack of zips [EZ\G] and a classifying morphism
ζ : X → [EZ\G], the fibres of which are the Ekedahl-Oort strata. The
Chow Q-algebra of [EZ\G] (here denoted ŘG) is according to [2, Thm. 2.4.4]
isomorphic to that of the compact dual Ď. If ζ is faithfully flat and surjective
and can be extended to a morphism ζ̃ of a toroidal compactification of
Faltings-Chai type, then essentially the same proof shows that ŘG embeds
in the Chow algebra of the toroidal compactification (see [26, 28, 19, 15] for
results in this direction). The strata extend to the boundary and enjoy good
intersection properties with the boundary, see [1, Thm. 6.1.6] and [16]. The

morphism ζ̃ factors through a morphism η of the minimal compactification
to the stack [EZ\G] and we thus find in a way similar to the case of Ag a

copy of ŘG in the Chow algebra of the minimal compactification A•Q(D∗Γ).
We will confine ourselves however to the case Ag.

Let us note that Esnault and Harris [6] recently proved a lifting property
in the case of mixed characteristic, but on the level of `-adic cohomology. It
would be interesting to see whether their result can be lifted to the level of
Chow algebras.

Recent work of Wedhorn-Ziegler [27] and Goldring-Koskivirta [11], [12]
points towards a possible generalization to Shimura varieties of Hodge type.

2. The Case Ag

2.1. Review of the situation in characteristic zero. We let Ãg be a
toroidal compactification of Ag of Faltings-Chai type and denote by q :

Ãg → A∗g the natural projection. The Hodge bundle Eg on Ag extends to

Ãg and this extension is again denoted by Eg.
The analytic space of the complex fibre Aan

g can be described in terms
of the Chevalley group G = Sp2g, the automorphism group of the stan-

dard symplectic lattice Z2g as G(Z)\Dg where Dg = G(R)/K is a bounded
symmetric domain with K a maximal compact subgroup.

Let us briefly review what is known about the Chow ring of the compact
dual of Dg in the more general case where G is a reductive algebraic R-
group whose symmetric space D has the structure of a bounded symmetric
domain. Then the compact dual Ď of D is of the form (G/P )(C) with P
a maximal parabolic subgroup of G. We have a decomposition G/P into
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Schubert cells: G/P =
⊔
BwP/P , where w runs over the elements of the

Weyl group W of G, or rather (in order to keep the union disjoint), over
a complete set WP of coset representatives for W/WP , where WP is the
subgroup of W associated to P . It is known that the Chow ring A•(Ď) has
as an additive basis the classes of the closures of Schubert cells (Schubert
varieties) in Ď. The ring structure on the Chow ring with Q-coefficients,
A•Q(Ď), is described by Borel (see [24, p. 142, (28)]:

A•Q(Ď) ∼= SWP /〈SW+ 〉 .

Here S is the symmetric Q-algebra on the character group of a Borel sub-
group, SWP is the invariant part under WP and 〈SW+ 〉 is the ideal generated
by W -invariant elements of positive degree. In case the group is ‘special’,
e.g. for GLn and Sp2n, this isomorphism also holds for Z-coefficients.

In our case, where G = Sp2g, this graded Q-algebra is isomorphic to

Řg = Q[u1, . . . , . . . , ug]/I,

where ui has degree i and I is the ideal generated by the graded pieces of

(1 + u1 + · · ·+ ug)(1− u1 + u2 − · · ·+ (−1)gug)− 1.

So this gives a relation in every positive even degree ≤ 2g. Note that
dimQ Řg = 2g.

For a field k, the Chern classes λi := ci(Eg) in AiQ(Ãg ⊗ k) satisfy the

same relation as the ui in the Chow ring of Ãg as the ui:

(1 + λ1 + · · ·+ λg)(1− λ1 + · · ·+ (−1)gλg) = 1

(see [10, 7]) and they generate a subring of the Chow ring A•Q(Ãg⊗k) isomor-

phic to the rational Chow ring of Ďg. This extends the Hirzebruch-Mumford
Proportionality to the Chow rings. This ring is called the tautological sub-
ring of A•Q(Ãg ⊗ k)) and denoted again by Řg. Its image in A•Q(Ag) under

restriction via j : Ag ⊗ k ↪→ Ãg ⊗ k is Rg = Řg/(λg) ∼= Řg−1.

2.2. The Artin stack of zips. We now restrict to characteristic p and
consider Ag ⊗ Fp and Ãg ⊗ Fp. The compact dual of Siegel space (or of any
symmetric domain) has no obvious counterpart in positive characteristic.
But it turns out that there is a good substitute, viz. the Artin stack of
zips, that can take on that role for our purposes. Its origin is the so-called
Ekedahl-Oort stratification, introduced in [20]. As we will recall below, it
has 2g strata, and as was shown in [10, 4], each of these has the virtue that
the cycle class of its closure lies in the tautological subring. For example,
we have the (closed) p-rank loci Vf (p-rank ≤ f with 0 ≤ f ≤ g) with cycle

classes [Vf ] = (p− 1)(p2 − 1) · · · (pg−f − 1)λg−f . Thus the generators of Řg
are represented by these effective cycles.
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The basic definition. For a principally polarized abelian variety X of dimen-
sion g over a perfect field of characteristic p > 0 the de Rham cohomology
space H1

dR(X) comes equipped with a non-degenerate alternating form. The
Frobenius operator induces a p-linear endomorphism of H = H1

dR(X) whose
kernel is its Hodge subspace H0(X,Ω1

X). Both the kernel and the image
of this endomorphism are Lagrangian subspaces F, F ′ of dimension g. As
we will see below, this structure (consisting of a symplectic vector space H
and a Frobenius-linear endomorphism ϕ of H whose kernel and image is
a Lagrangian subspace) has only finitely many isomorphism types. Such a
structure is called a zip and was studied in [18]. (To make the isomorphism
type explicit one usually endows kernel and image with filtrations by taking
preimages and images of iterates of ϕ and then extends these to self-dual fil-
trations on H by adding their symplectic perps. This results in a descending
filtration (a refinement of the Hodge filtration) C•, and an ascending filtra-
tion (a refinement of the conjugate filtration) D•, connected by the Cartier

operator giving Frobenius-linear identifications (Ci/Ci+1)(p) ∼= Di/Di−1.
(The dimensions of the intersections of these filtrations determine the iso-
morphism type. This will however not matter to us in what follows.)

Moduli space and Schubert varieties. In an evident manner we have defined a
moduli space Z(H) of all zip structures on H; it is the moduli space of triples

(L1, L2, ϕ) with L1, L2 Lagrangian subspaces of H and ϕ : (H/L1)(p) ∼→L2

an isomorphism. If F (H) is the Grassmannian of Lagrangian subspaces of
H and FF (H) → F (H) denotes its universal bundle, then Z(H) is an open
subset in the total space of the exterior tensor product bundle

Fr∗p(H ⊗OF (H)/FF (H)) � FF (H) = Fr∗p(FF (H))
∨ � FF (H)

over F (H)×F (H), where Frp is the absolute Frobenius on F (H). The group
G = Sp(H) acts in an evident manner on Z(H). We shall call the closure of
a G-orbit in Z(H) a Schubert variety.

There are 2g such Schubert varieties. This is based on the observation
that the relative position of a pair (F, F ′) of Lagrangian subspaces (in other
words, the G-orbit of such a pair) is given by a double coset of G: if P (resp.
P ′) is the G-stabilizer of F (resp. F ′), then the g ∈ G for which F = gF ′

make up the double coset PgP ′, so that we get an element of P\G/P ′. We
can identify this set of double cosets in terms of Weyl groups: if we choose
a Borel subgroup B contained in P with maximal torus T and NG(T ) (resp.
NP (T )) is the normalizer of T in G (resp. in P ), then W = NG(T )/T (resp.
is WP := NP (T )/T ) is the Weyl group of the pair (G,T ) (resp. (P, T )) and
it is a standard fact of the theory of algebraic groups that the natural map

WP \W ∼= NT (P )\NT (G)→ P\G/P ′

is a bijection. One finds that in our case WP \W has 2g elements, and hence
there are as many Schubert varieties.
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The Artin stack of zip data. Let us make here the connection with the way
this notion appears in the literature. The groups P and P ′ are maximal
parabolic subgroups of G whose Levi quotients LP resp. LP ′ can be identified
with the general linear groups of F (or of its dual H/F for that matter)
resp. F ′. So an isomorphism LP ∼= L′P ′ can be understood as giving an
isomorphism H/F ∼= F ′ up to a scalar. Similarly, a Frobenius-linear map of
H/F onto F ′ determines a Frobenius isogeny LP → LP ′ . We can formulate
this in terms of G only: in our setting a zip datum is given by a 4-tuple
Z = (G,P, P ′, ϕ), where G = Sp2g/Fp, P and P ′ are maximal parabolic
subgroups of G and ϕ : LP → LP ′ is an isogeny between their Levi quotients
given by Frobenius. We form the fibre product of P and P ′ over LP ′ (the

former via the group homomorphism P → LP
ϕ−→ LP ′) in the category of

algebraic groups:

EZ := P ×LP ′ P
′.

This group acts on G by (p, q) ∈ EZ : g 7→ pgq−1 and we can form the Artin
stack [EZ\G]. Brokemper determined the Chow ring of the stack [EZ\G]
(which is essentially by definition the G-equivariant Chow ring of Z(H)).
He considers in [2] more generally the case of a connected group G and an
algebraic zip datum. Choose g ∈ G such that T ′ := gTg−1 ⊂ P ′. If we
identify T resp. T ′ with their images in LP resp. LP ′ , then we can even
arrange that ϕ takes T to T ′, so that we have defined an isogeny

ϕ̃ : T → T, t 7→ g−1ϕ(t)g

Then ϕ̃ acts on S, the symmetric algebra of the character group of T . The
Chow ring of the stack is ([2, Thm. 2.4.4, page 27])

A•([EZ\G]) = SWP /
(
f − ϕ̃(f) : f ∈ SW+

)
In our case, this group is additively generated by the Schubert varieties as
defined above.

This Chow ring can be regarded as the ring of characteristic classes for
symplectic vector bundles over Fp endowed with a zip structure for the
following reason. If we have a symplectic vector bundle H over a base
scheme S (or stack, for that matter) over Fp of rank 2g, then the above
construction yields the zip bundle Z(H) over S, so that to endow H with
a zip structure amounts to giving a section of Z(H)/S. This comes with
relative Schubert varieties and these define an embedding of A•([EZ\G])
in Fulton’s bivariant Chow ring A•(Z(H)) as a subalgebra, having these
relative Schubert varieties as additive generators. If a zip structure on H

has associated section σ, then we may define its ring of characteristic classes
as the image of this subalgebra under σ∗ : A•(Z(H)) → A•(S). Note that
when σ has proper intersection with a given relative Schubert variety Z in
Z(H), then the associated class σ∗[Z] is represented by a specific algebraic
cycle ≥ 0 on S defined over Fp; we shall refer to these as the Ekedahl-Oort
cycles.
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2.3. Degenerations of zips. Let us for a moment return to our fixed sym-
plectic vector space H over Fp and suppose we are given an isotropic sub-

space I ⊂ H over Fp. Then H ′ := I⊥/I is a symplectic vector space over
Fp and we if assign to a Lagrangian subspace F ⊂ H which contains I
the subspace F/I ⊂ H ′, we get a bijection between the Lagrangian sub-
spaces of H containing I and the Lagrangian subspaces of H ′. Denote by
Z(H, I) ⊂ Z(H) the subscheme defined by the Frobenius-linear endomor-
phisms ϕ of H that are zero on I, preserve I⊥, and induce the Frobenius on
H/I⊥. The kernel of ϕ is sandwiched between I and I⊥ and the induced en-
domorphism ϕ′ of H ′ defines an element of Z(H ′), as both its kernel and im-
age are Lagrangian subspaces. The resulting morphism Z(H, I)→ Z(H ′) is
equivariant over the evident group homomorphism from the Sp(H)-stabilizer
of I to Sp(H ′) and this makes Z(H, I) a torsor over a vector bundle on Z(H ′).
The preimage of a Schubert subvariety of Z(H ′) is contained in a Schubert
subvariety of Z(H) of the same codimension. To be precise, every Sp(H)-
orbit in Z(H) orbit meets Z(H, I) transversally, and when this intersection
is nonempty, then it is the preimage of a Sp(H ′)-orbit in Z(H ′). Recall
that the Schubert cells correspond bijectively to the elements of WP \W
with P the stabilizer of a Lagrangian F ⊂ H and similarly the Schubert
cells of Z(H ′) correspond to WP ′\W ′ with P ′ the stabilizer of F/I and W ′

the Weyl group of Sp(H ′). The map Z(H, I) → Z(H ′) is a stratified map
corresponding to an embedding ιI : WP ′\W ′ ↪→WP \W .

We use these observations to understand a class of degenerations of zips
over a discrete valuation ring. Let R be a discrete valuation ring of finite
type over Fp with residue field κ and field of fractions K.

Let H denote a symplectic space of rank 2g over R and I ⊂ H an isotropic
subspace over R (so that H′ := I⊥/I is a symplectic space over R). If
H := κ ⊗R H with isotropic subspace I (resp. H ′ := κ ⊗R H′) denotes
the fiber over the closed point, then we have evident specialization maps
Z(H)→ Z(H) (resp. Z(H′)→ Z(H ′)).

Suppose given ϕ ∈ Z(H, I) and assume that ϕK belongs to the Schubert
cell with index w. We let ϕ′ be the image in Z(H′) with specialization
ϕ′o ∈ Z(H ′). The discussion above implies the following result.

Lemma 2.1. If the element ϕK belongs to the Schubert cell with index w
and ϕ′o to the Schubert cell w′, then the specialization ϕo belongs to the
Schubert cell with index ιI(w

′) = w.

2.4. Extension of the stratification across the Satake compactifica-
tion. By assigning to a principally polarized abelian variety of dimension
g the isomorphism type of its zip on its first de Rham cohomology space,
we obtain a stratification of the moduli space Ag ⊗ Fp, the Ekedahl-Oort
stratification. It is is induced by a morphism of stacks

ζ : Ag → [EZ\G] .

This morphism is smooth (see [28, Thm. 4.1.2]) and the fibres are the strata.
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This stratification can be extended to a toroidal compactification (of Chai-

Faltings type) Ãg ⊗Fp. The space Ãg admits a stratification by torus rank:

if q : Ãg → A∗g is the canonical map to the Baily-Borel compactification

and A∗g = tgi=0Ag−i is the standard decomposition, then the restriction of

the Hodge bundle to A〈g−i〉g := q−1(Ag−i), contains a rank g − i subbundle

E(g−i) which is the pullback of the Hodge bundle on Ag−i.
The canonical extension of the de Rham complex is the logarithmic de

Rham complex where logarithmic singularities are allowed along the divisor
added to compactify the semi-abelian variety, cf. [8, VI, Theorem 1.1, p.
195]. The logarithmic de Rham sheaf

H1 := R1π∗(Ω
•
X̃g/Ãg

(log))

extends the de Rham sheaf H1
dR(X/Ag). On Ãg ⊗ Fp it comes again with

two filtrations forming a zip. In fact, the morphism ζ can be extended to a
morphism ζ̃ : Ãg ⊗ Fp → [EZ\G] which is again smooth as can be seen by

using [4, Lemma 5.1] or [1], see also below. The closed strata on Ãg ⊗ Fp
are the closures of the strata on Ag ⊗ Fp.

The Ekedahl-Oort stratification on Ãg⊗Fp intersects the boundary strata
transversally as we will now explain. The reason is that the Ekedahl-Oort
stratification is defined by the action of Frobenius and Verschiebung acting
on the logarithmic de Rham cohomology H1

dR of a semi-abelian variety and
on the toric part this action is essentially trivial.

We consider a semi-abelian variety G0 over S = Spec(R) with R a discrete
valuation ring of finite type over Fp. We assume that the generic fibre is
abelian and the special fibre is the Néron model of a semi-abelian variety of
torus rank r. We let G/S be a toroidal compactification of G0 of Faltings-

Chai type. It can be obtained via the action on a semi-abelian variety G̃ over
S by a group of periods ι : Y → G̃(S) with Y free abelian of rank r. Here the

semi-abelian variety G̃ is an extension 0 → T → G̃ → A → 0 of an abelian
scheme A/S by a split torus T/S of rank r. In this case the logarithmic
de Rham cohomology can be described with the help of universal vector
extensions, that is, extensions of group schemes by vector group schemes.
We refer to [8] pages 81–86 for a description. The universal vector extension

EG̃ of G̃ is a vector group extension

0→ LG̃ → EG̃ → G̃ → 0

that is canonically isomorphic to the pullback under G̃ → A of the universal
vector extension 0→ LA → EA → A→ 0 of A, where LA = Lie(A∨/S)∨ is
the sheaf of invariant relative 1-forms on the dual abelian variety A∨ of A.
For the quotient construction we need an equivariant form of this, that is, we
need in addition a lifting of the homomorphism Y → G̃(S) to Y → EG̃(S).
Then Y acts via translation.
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The dual of the logarithmic de Rham cohomology H1 is the Y -equivariant
Lie-algebra of the universal vector extension of G̃. By the toroidal construc-
tion as in [8, Ch. VI] this Lie-algebra has a weight filtration with subquo-
tients the Lie algebra LT of T , the homology of the abelian variety A and
Y . The ranks are r, 2g − 2r and r. The subspace of rank 2g − r of H1

will be denoted by I⊥ and its orthogonal complement by I. We can identify
I with the invariant differentials of the torus T . Then I is isotropic and
contained in the kernel of Frobenius. We are thus in the situation described
above in subsection 2.3. Since I is contained in the kernel of Frobenius the
isomorphism type of the zip on the special fibre of H1 depends only on the
zip of the de Rham cohomology of the abelian part. We can apply Lemma
2.1 to conclude that the closures of the strata on Ag ⊗ Fp are the strata on

Ãg ⊗ Fp and by induction that the intersection with the boundary strata is
proper. Indeed, with the notation used there, if ϕK ∈ Z(HK , IK) and ϕ′K
belongs to the Schubert cycle with index w′ ∈ WP ′\W ′ then ϕK extends
uniquely to ϕ with Schubert index ιI(w

′).

Remark 2.2. The valuation of the torus part of the periods defines a Z-
valued bilinear form on Y which we can see as the analogue of the mon-
odromy operator of Hodge theory. Its invariant part defines a subspace I⊥

of dimension 2g − r in the special fibre of the logarithmic de Rham coho-
mology over S. (One might view it as associated to the Dieudonné module
of the kernel of multiplication by p on the semi-abelian special fibre of G.)

We thus see that the map ζ̃ : Ãg ⊗ Fp → [EZ\G] factors through a map

Ãg ⊗ Fp
ζ̃ //

q

%%

[EZ\G]

A∗g ⊗ Fp

η
99

The morphism ζ̃ : Ãg ⊗ Fp → [EZ\G] induces a homomorphism of Chow
rings

A•Q([EZ\G])→ A•Q(Ãg ⊗ Fp)

and it induces an isomorphism A•Q([EZ\G]) ∼= Řg. Indeed, the closed

Ekedahl-Oort strata on Ãg ⊗ Fp are effective cycles with non-zero classes.

Proof of Theorem 1.1. The image under push forward via q : Ãg → A∗g of

λi ∈ AiQ(Ãg) in the Chow cohomology group AiQ(A∗g) is independent of the

chosen toroidal compactification, see [5, Def-Prop. 3.1]. Thus these define
classes λ′i in AiQ(A∗g). On the other hand we have the generators λi of the

Chow ring of the stack [EZ\G] and via the map η : A∗g⊗Fp → [EZ\G] these
act as bivariant classes by cap product ∩λi : Ak(A∗g ⊗ Fp)→ Ak−i(A∗g ⊗ Fp)
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on the Chow groups of A∗g ⊗ Fp. These satisfy ζ̃∗(λi) = λi. By [9, 17.1] and
the projection formula ([9, p. 323]) we have

∩λi (q∗(c)) = q∗(λi · c) = λ′i q∗(c)

for all c ∈ Ak(Ãg). This enables us identify the bivariant classes λi with the
λ′i. It thus gives rise to a diagram

A•Q([EZ\G])

((

ζ̃∗ // Řg �
� //

∼=
��

A•Q(Ãg ⊗ Fp)

q∗

��
Ř′g
� � // A•Q(A∗g ⊗ Fp)

�

Remark 2.3. In the end the argument is based on the observation that all
the tautological classes λi have an effective representative on Ãg ⊗ Fp that
intersects the boundary properly. This fails to be so in characteristic zero,
although it is then true for the ample λ1, and hence for any power on λ1, like
λ2 = (1/2)λ2

1. But this is not so for λ3. This seems related to the question
of whether for a given field k the space Ag⊗k contains complete subvarieties
of codimension g. For g = 3 every complete subvariety of A3⊗k has as class
a multiple of λ3. Conversely, an effective representative for λg transversal

to the boundary of Ãg ⊗ k does not intersect the boundary because λ2
g = 0,

hence yields a complete subvariety of codimension g .
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