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Abstract

Risk-neutral default probabilities can be implied from credit default swap (CDS)
market quotes. In practice, mid CDS quotes are used as inputs, as their risk-neutral
counterparts are not observable. We show how to imply risk-neutral default prob-
abilities from bid and ask quotes directly by means of formulating the CDS cali-
bration problem to bid and ask market quotes within the conic finance framework.
Assuming the risk-neutral distribution of the default time to be driven by a Pois-
son process we prove, under mild liquidity-related assumptions, that the calibration
problem admits a unique solution that also allows to jointly calculate the implied
liquidity of the market.

1 Introduction

Risk-neutral default probabilities play a crucial role in modeling (counterparty) credit

risk, as for instance in valuation adjustment calculations, and an approach that is of-

ten followed is that of computing them starting from credit default swap (CDS) market

quotes. This article aims to relate risk-neutral default probabilities and CDS quotes in a

two-price economy within the conic finance paradigm by means of providing a method-

ology to extract the former from bid and ask quotes directly, i.e., without relying on any

∗matteo.michielon@nl.abnamro.com (corresponding author).
†a.khedher@uva.nl.
‡p.j.c.spreij@uva.nl.

1

http://arxiv.org/abs/2108.06578v1


mid price approximation. Before explaining our contribution in detail, we first provide a

review of the relevant literature concerning bid-ask pricing and conic finance.

Bid-ask pricing can be modeled, in a consistent manner with risk-neutral valuation,

in different manners. A possible way to do so is that of transforming the risk-neutral

measure via appropriate concave distortion functions as per [Cherny and Madan, 2009].

This approach, known as conic finance and introduced in [Cherny and Madan, 2010], is

based on the idea of modeling illiquid markets as abstract entities accepting, at zero cost,

a convex cone of random variables containing the non-negative cashflows. By balanc-

ing risks and rewards to assess the “quality” or “expected performance” of contingent

claims via the concept of index of acceptability, this framework allows to use Choquet

expectations [Choquet, 1953] as building blocks for computing bid and ask prices.

The former conic modeling framework, which has triggered extensive research and

of which several applications are available in [Madan and Schoutens, 2016a], employs a

static notion of index of acceptability, which allows to choose amongst cashflows, at the

valuation date, based on their (cumulative) expected terminal value. This idea has been

further extended by [Bielecki et al., 2014b] and later by [Biagini and Bion-Nadal, 2014],

amongst others, to a dynamic setup, where dynamic indices of acceptability are defined in

a multi-period setting. Dynamic acceptability indices allow to re-assess the initial classifi-

cation of the traded cashflows on the basis of the latest information available, consistently

over time, in the sense that future preferences are conforming with the current ones. This

has lead to the possibility of pricing and hedging in a dynamic conic finance framework

for finite probability spaces in a discrete-time setting as in [Bielecki et al., 2012], where

time-dependent bid and ask prices of contingent claims, potentially including dividends

and transaction costs, are expressed in terms of dynamic indices of acceptability, and

where a (dynamically-consistent) version of the First Fundamental Theorem of Asset

Pricing is provided in terms of no-good-deal conditions. For a unified framework for the

time-consistency between dynamic risk measures and dynamic performance measures in

discrete time, see [Bielecki et al., 2018], while a survey concerning the time-consistency

property of dynamic risk and performance measures is available in [Bielecki et al., 2017].
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Security prices do not only depend on the direction of the transaction but also on the

size of the order, and different approaches can be considered to include this additional

liquidity charge in the relevant pricing equations. [Bion-Nadal, 2009] introduces, in con-

tinuous time, an approach providing dynamic bid and ask processes for contingent claims

which include both the aforementioned liquidity effect, as well as transaction costs. By re-

placing scale-invariance with sub-scale-invariance [Rosazza Gianin and Sgarra, 2013] de-

velop a dynamic framework, in a continuous-time setup and given a general probability

space, that also captures this additional liquidity cost and that allows to value financial

securities in terms of g-expectations [Peng, 1997] (comparisons between the definitions of

g- and Choquet expectations are available in [Chen et al., 2005] and [Chen et al., 2013]).

Again on general probability spaces, both liquidity and transaction costs can be included

within a dynamic conic finance approach where pricing is based on g-expectations as in

[Bielecki et al., 2014a].

Within the conic finance paradigm different studies deal with credit-related topics.

[Eberlein et al., 2001] show that, if assets and liabilities are marked at the bid and at

the ask, respectively, then the potential accounting profitability of a firm induced by

its own credit quality deterioration is eliminated. These ideas are further applied in

[Madan and Schoutens, 2016b] in the case of credit and debit valuation adjustments.

[Madan, 2014] proposes an approach to estimate the parameters of risk acceptability of

CDSs and their time dependence, and applies the methodology to a period including,

but not limited to, the 2008 financial crisis. Therein, the industry practice of taking

mid CDS quotes to proxy their risk-neutral counterparts is adopted and, for each CDS,

a flat hazard rate term structure is considered in the calibration. Further, within the

dynamic conic finance framework, bid and ask price processes for CDSs are constructed

in [Bielecki et al., 2012] and in [Bielecki et al., 2014a].

A methodology that allows to jointly calibrate a CDS model to bid and ask market

quotes and to imply risk-neutral default probabilities without computing them from mid

quotes is not yet available. In the present article we provide an approach to tackle

this problem within the conic finance paradigm. The economic rationale behind our
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research question is given by the fact that, while in practice model parameters are usually

calibrated starting frommid quotes as proxies for their risk-neutral counterparts, in reality

a security trades neither at the risk-neutral nor at the mid price, but instead either at the

bid or at the ask, depending on the direction of the trade. Thus, one might then want

to be able to include in a simple manner the liquidity effect within their CDS pricing

equations, for instance as CDS markets for single name CDSs not being amongst the most

liquid; see [Junge and Trolle, 2015]. Given our aim of extracting risk-neutral probabilities

from the currently-observed bid and ask CDS quotes, a static approach to conic finance

suffices. Moreover, this allows to easily define a term structure for the liquidity level of the

CDS market, and also to restate the bid-ask calibration problem in terms of recursively

solving a non-linear constrained system. In the case of CDSs, modeling the default time

via a reduced-form model by explicitly specifying the functional form of its distribution

is a popular choice. In particular, we consider the case of a Poisson process driving the

dynamics of the credit event, of which the standard International Swaps and Derivatives

Association (ISDA) model [White, 2014], which is a common choice amongst financial

practitioners, is a possible specification. In these settings, we show that the bid-ask CDS

calibration process has, under some mild assumptions, a unique solution. Further, the

methodology proposed here allows to jointly strip implied liquidity parameters for CDS

markets in the spirit of [Corcuera et al., 2012] with a term structure. To the best of our

knowledge, this is the first attempt to calibrate a credit model using Choquet expectations

to bid and ask CDSs quotes directly without relying on approximating their risk-neutral

counterparts with the respective mid quotes and, thus, our contribution is novel.

This paper is organized as follows. In Section 2 we recall the basics of CDS valuation in

the risk-neutral framework, how Poisson processes can be used to model the default time

for CDS valuation purposes, as well as their calibration to market data. In Section 3 we

briefly recall how pricing via distorted expectations works, while in Section 4, we introduce

the CDS bid-ask calibration problem in the settings of [Cherny and Madan, 2010]. We

show that the problem admits, under simple assumptions, a unique solution. We also

provide a calibration example, based on the standard ISDA model, which is a special case
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of Poisson-based CDS model. Section 5 concludes.

2 Basic notions and valuation of CDSs

A CDS is a bilateral derivative contract which involves the transfer of the credit risk

arising from bonds or other forms of debt issued, amongst others, by corporates, munici-

palities, or sovereign states. Thus, a CDS is a sort of insurance policy, as it provides the

protection buyer, who might or might not own the underlying credit1, with protection

against a credit event. The formal definition of a credit event is contract-specific and

complex from the legal angle. Therefore, from here onward, the expressions credit event

and default will be used to refer to a set of circumstances that trigger the protection

payment.

A CDS contract involves two parties, i.e., a protection buyer and a protection seller.

The protection seller commits to compensate for the (potential) loss of the counterparty if

a default event for the reference entity occurs within a predetermined time frame. A CDS

can be therefore seen as a derivative contract where the underlying is the default time of

the issuing entity. CDSs were initially mainly physically settled: if default event occurs,

then the protection buyer delivers one of the defaulted bonds of the reference entity to the

protection seller, in return for its par value. However, due to the size of the CDS market it

might happen that, should there not be enough supply of defaulted bonds in the market,

an auction is conducted to determine what the recovery value of the defaulted bond is.

In this case the CDS contract is, thus, cash settled, and this is nowadays the most com-

mon settlement practice (for further details refer to [ISDA, 2003]). The standardization

process of credit derivatives led by the ISDA, see [ISDA, 1998, ISDA, 2003, ISDA, 2014],

has introduced conventions on the way these contracts are traded. These conventions can

be region specific: for example, some conventions for North-American CDSs (CDS big

bang ; see [Markit, 2009b]) might differ from those of European CDSs (CDS small bang ;

see [Markit, 2009a]). Before the CDS standardization process, in a similar fashion to in-

terest rate swaps, CDSs used to be quoted at par, i.e., the coupon rate was defined such

1As CDSs do not require the buyer of the contract to hold the insured asset.
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that the contract had zero value at inception, for both parties. However, CDSs have now

standard coupons and, as a consequence, a non-zero entry cost called upfront payment,

which is payed on the cash settlement date and that is usually quoted as a percentage

(i.e., as points upfront) of the notional amount. The upfront payment can be interpreted

as an amount reflecting the difference in value between a par CDS and one with a given

standard coupon.

CDSs can be used to estimate the default probabilities of a wide range of issuing

entities by means of appropriate pricing models calibrated using the available CDS market

data. These implied probabilities can be used, for instance, as inputs in various valuation

adjustment calculations, which makes CDS useful for hedging purposes; see [Green, 2016,

Ch. 4 and Ch. 12].

We introduce now the essential notations and conventions that define CDSs; refer, for

instance, to [White, 2014] for a detailed overview. In a standard CDS contract the CDS

dates are the semi-annual termination dates of the CDS, and fall on 20 March and 20

December of each year.2 From the protection effective date (i.e., tp) the protection starts;

this date is generally defined as the valuation date plus one day. The cash settlement

date (i.e., ts) is when any upfront payments are made, and can be lagged by a few

business days compared to the valuation date (the standard ISDA model defines it as

the valuation date plus three business days; see [White, 2014]). The accrual start dates

(i.e., s1, . . . , sN) are used as starting points for calculating the coupon payments. This

increasing sequence contains all the CDS dates before the maturity date, with s1 set as

the previous CDS date before the protection effective date. This is because holding a

CDS over a coupon payment entails paying or receiving the full coupon payment amount.

The accrual end dates (i.e., e1, . . . , eN) are the dates used as end points for calculating the

premium payments, with eN the maturity of the contract. Premium payments are made

by the protection seller to the protection buyer at the payment dates (i.e., t1, . . . , tN). We

denote with LGD the loss-given-default expressed per unit of notional (i.e., one minus the

2Before 20 December 2015 the frequency of the CDS roll dates was quarterly instead of semi-annual,
with resulting termination dates falling on 20 March, 20 June, 20 September and 20 December of each
year; see [ISDA, 2015].
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recovery rate), that we assume to be constant, and with ∆(t, s) the year fraction between

t and s (t < s); see [White, 2014] for further details concerning day-count conventions.

In particular, we use the shorthand notation ∆i instead of ∆(si, ei). Further, N denotes

the notional amount, τ the default time, and 1{ · } the indicator function.

The protection leg is the contingent payment the protection seller makes to the pro-

tection buyer. Despite in practice there is usually a lag between the default time and the

protection payment, modeling-wise at τ the protection seller is assumed to pay to the

counterparty the amount

LGD ·N · 1{tp≤τ≤eN}. (1)

The premium leg is defined as the series of payments the protection buyer makes to

the counterparty until either a credit event occurs or the contract expires. We denote its

fixed coupon, per unit of notional, with C. The amount paid by the protection buyer to

the protection seller on each payment date ti is given by

C ·N ·∆i · 1{τ>ei}. (2)

In the case of a credit event, the protection buyer pays to the counterparty the accrued

coupon, i.e., if τ ∈ [si, ei], the accrued coupon payed upon default equals

C ·N ·∆(si, τ) · 1{si≤τ≤ei}. (3)

On a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), with P the real-word probabil-

ity measure, we denote with Q a risk-neutral measure, with EQ( · ) the expectation, at

valuation date, with respect to Q, with DF(t) the discount factor from t to valuation

date, while with QS(t) the survival probability of the reference entity until time t, i.e.,

QS(t) := Q(τ > t). From here onward we assume, without loss of generality, unit notion-

als.

For the protection buyer the value of a CDS equals the value of its protection leg
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minus the one of its premium leg. In symbols

PVprot = LGD · EQ
(

DF(τ) · 1{tp≤τ≤eN}

)

, (4)

while the value of the premium leg is given by

PVprem = C
N
∑

i=1

EQ
(

DF(ti) ·∆i · 1{τ>ei} +DF(τ) ·∆(si, τ) · 1{si≤τ≤ei}

)

. (5)

The present value of the CDS, from the perspective of the protection buyer, is defined as

PVCDS := PVprot − PVprem. (6)

2.1 Dynamics of the survival probabilities

There are different approaches to model the dynamics of the default time of an is-

suing entity, and the category of reduced-form (or intensity) models is one of these.

In reduced-form models the probability distribution of the credit event is modeled di-

rectly; two well-known illustrations of models belonging to this class are, amongst oth-

ers, [Jarrow and Turnbull, 1995], where a discrete Poisson bankruptcy process is pre-

sented, and [Duffie and Singleton, 1999], where the risk-free discounting short-rate pro-

cess is augmented with an instantaneous intensity process to account for credit risk.

Reduced-form models are fundamentally different, for instance, from structural (or firm-

value) models, which characterize defaults as consequences of events such as the value

of a firm being too low for covering its liabilities, of which the so called Merton’s 1974

firm-value model [Merton, 1974] is an illustration. This idea has been later extended in

[Black and Cox, 1976], where default occurs when the value of the firm’s asset falls below

a given threshold level, and that is considered the first prototype of the so called first

passage time models. While the main advantage of structural models is that of their con-

sistency with the capital structure of the firm, they require firm-specific information that

is not necessarily easily available. Thus, the main difference between the reduced-form

and the structural approaches is given by the fact that default is something exogenous in
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the former, while endogenous in the latter. The idea of modeling the default probability

distribution directly as done in reduced-form models allows, at least in theory, to simplify

the problem tractability, as modeling the default event per se is easier than modeling the

economic situations that might cause it. This often makes reduced-form models prefer-

able to structural ones for practical applications, as done in this article, given that we

explicitly consider the CDS market as source of information. For more details concern-

ing different approaches to credit risk modeling the reader can refer, amongst others, to

[Bielecki and Rutkowski, 2010].

In the context of reduced-form models a possible approach to introduce a term struc-

ture for the distribution of the default time is that of defining the survival probability QS

via

QS(t) := e−
∫ t

0
λ(s) ds, (7)

where the deterministic function λ : [0,+∞) → (0,+∞) is called hazard rate (or default

intensity) function.

Assuming that K CDS quotes for a given reference entity with the same fixed coupon

are available in the market, maturing respectively at eN1
, . . . , eNK

where eN1
< . . . < eNK

,

a possible way to define the hazard rate function with a term structure is given by setting

λ(t) :=















































l1(λ1; t) if 0 ≤ t ≤ eN1

l2(λ1, λ2; t) if eN1
< t ≤ eN2

...

lK(λ1, . . . , λK ; t) if eNK−1
< t

, (8)

where λi > 0, li(λ1, . . . , λi; · ) is deterministic and continuous, and with the function

li(λ1, . . . , λj−1, · , λj+1, . . . , λi; t) increasing, for 1 ≤ j ≤ i. The parameters λ1, . . . , λK

are those that, once set, specify the distribution of the default time. Common speci-

fications for (8) are, among others, piecewise-constant and piecewise-linear.3 The first

3That is, given K positive values λ̄1, . . . , λ̄K , in the piecewise-constant case, for every i,
li(λ1, . . . , λi; t) ≡ λ̄i. For the piecewise-linear case, on the other hand, we have l1(λ1; t) ≡ λ̄1,

li(λ1, . . . , λi; t) = λ̄i−1 +
λ̄i−λ̄i−1

eNi
−eNi−1

· (t− eNi−1
) for 2 ≤ i ≤ K − 1, while lK(λ1, . . . , λK ; t) ≡ λ̄K .
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option provides the simplest assumption possible concerning the behavior of the hazard

rate function across CDS maturities, and it as well results in better numerical stability

compared to its piecewise-linear counterpart; further, modeling the default time via this

simple approach is often enough for practical applications such as for its usage in several

credit valuation adjustment calculations; see [Green, 2016, Sec. 4.4]. Moreover, note

that (6) is a model-independent relationship which assumes interest rates being indepen-

dent from the default time. In this case, see [Brigo et al., 2010], CDS models can be

calibrated to match CDS quotes exactly, and the resulting implied default probabilities

calculated using different model specifications are expected to be in line with each other.

In [Brigo et al., 2010] this fact is illustrated by taking into account Lehman Brothers

CDSs during different periods between August 2007 until the bank files for bankruptcy

in September 2008. In particular, therein a comparison between the default probabilities

implied using the Analytically-Tractable First Passage (AT1P) model and the intensity

model with hazard rate function defined as per (8) in a piecewise-constant manner is

provided (the AT1P model is a first-passage time structural model where default events

are triggered by a firms’ assets value hitting a deterministic threshold). The results show

that the two models, despite their differences in terms of specifications, produce extremely

close default probabilities (i.e., the largest difference observed at the calibration maturi-

ties is of the order of 0.8%). Hence, as we are interested in implying default probabilities

at the valuation time, this further justifies the choice of the modeling approach we have

followed: if little model risk is linked to the model specifications used to extract the

default probabilities, then model simplicity and tractability should be encouraged.

To calibrate the model parameters, we denote with UFbid
i (UFask

i ) the bid (ask) up-

front premium of the ith quoted CDS contract. Their mid counterparts are denoted as

UFmid
i . The values λ1, . . . , λK are computed to match the quoted CDS market values.

Risk-neutral premia are not observable, and they are usually proxied with their mid

counterparts.
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Due to quoting convention, the first upfront premium is defined such that the equality

PVCDS
1 (λ1) + Acc = DF(ts) · UF

mid
1 (9)

holds, where PVCDS
1 (λ1) denotes the present value of the first CDS, as a function of λ1,

and where Acc equals DF(ts) · C · ∆(s1, tp). We can solve for λ1 > 0 such that (9) is

satisfied.4

Then, we can consider the second upfront premium. By using the value of λ1 computed

above, one can imply λ2 > 0 such that

PVCDS
2 (λ2) + Acc = DF(ts) · UF

mid
2 , (10)

with PVCDS
2 (λ2) the present value of the second CDS as a function of λ2.

By proceeding inductively for the remaining indices this procedure allows to define a

term structure for the default probabilities that is in line, via (8), with the mid quotes

“observed” in the market.

Note that no choice of the hazard rate function in (7) comes without problems. For

instance, the simple possible choice of assuming piecewise-constant hazard rates, which

is at the base of the so called standard ISDA model, can produce negative hazard rates

under specific market circumstances; see [Green, 2016, Ch. 4.4.3]. Therefore, depending

on the market conditions, some functional forms for the hazard rates can be more suitable

than others. It is thus necessary to assume, for the chosen functional form of the hazard

rate function, that risk-neutral quoted values allow the model to be properly specified,

as well as the calibration problem under one-price settings to be successful.

4The higher the values reached by the hazard rate function, the higher the chances are that there
will be a default. Thus, the more the protection seller wants to be paid to sell insurance. One would
then intuitively expect PVCDS

1 (λ1), . . . ,PV
CDS
K (λK) to be strictly increasing in λ1, . . . , λK , respectively.

In A we show that, for common coupon and LGD values, the value of the ith CDS calculated using the
setup outlined in the current section is strictly increasing in λi when i > 1, and that the same holds
when i = 1, at least when λ1 belongs to an interval wide enough for practical purposes. The strict
monotonicity of PVCDS

i (λi) guarantees that, if Acc − DF(ts) · UF
mid
i ∈ PVCDS

i ([0,+∞)), the equation
PVCDS

i (λi) + Acc = DF(ts) · UF
mid
i admits a unique solution and, as a consequence, that the CDS

calibration problem is well-defined. From here onwards we will always assume this to be the case.
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3 Bid-ask pricing via distorted expectations

An index of acceptability is a map α : L∞(Ω,F ,P) → [0,+∞] aiming to measure the

quality of random cashflows, i.e., for a given contingent claim X the higher the value

of α(X), the higher X is ranked. We say that X is acceptable by the market at level

γ whenever α(X) ≥ γ. An index of acceptability α is expected to satisfy some basic

properties. Namely, if bothX and X ′ are acceptable at level γ, then also λ·X+(1−λ)·X ′

for λ ∈ [0, 1] is (quasi-concavity property). α is assumed to be monotonic, i.e., if X ≥ X ′

then α(X) ≥ α(X ′), as well as scale-invariant, i.e., α(λ · X) = α(X) for every λ > 0.

Lastly, α is assumed to satisfy the Fatou property, which means that, if (Xn)n is a

sequence of random variables such that, for every n, |Xn| ≤ 1 and α(Xn) ≥ γ, then if

(Xn)n converges in probability to a random variable X , also α(X) ≥ γ. It can be proven,

see [Cherny and Madan, 2009], that given an index of acceptability α, for every x ≥ 0

there exists a set Qx of probability measures absolutely continuous with respect to P such

that

α(X) = sup

{

x ≥ 0 : inf
Q∈Qx

EQ(X) ≥ 0

}

(11)

and, further, if x ≤ x′ then Qx ⊆ Qx′ .

A coherent risk measure is a functional ρ : L∞(Ω,F ,P) → [0,+∞] that satisfies

the transitivity, sub-additivity, positively homogeneity and monotonicity properties; see

[Madan and Schoutens, 2016a, Ch. 4.1].5 It can be shown, see [Delbaen, 2009], that a

coherent risk measure can be identified with a functional of the form supQ∈Q EQ(X), where

Q is a set of probability measures absolutely continuous with respect to P. Therefore, the

level of acceptability of a cashflow X can be rewritten in terms of coherent risk measures,

i.e., as

α(X) = sup {x ≥ 0 : ρx(−X) ≤ 0} , (12)

5ρ is said to be transitive (or translation-invariant) when ρ(X + λ) = ρ(X) + λ for every λ ∈ R,
sub-additive when ρ(X + X ′) ≤ ρ(X) + ρ(X ′), positively homogeneus when ρ(λ · X) = λ · ρ(X) for
every λ > 0, and monotonic when ρ(X) ≤ ρ(X ′) if X ≤ X ′. Note that the definition of coherent
risk measure introduced in [Artzner et al., 1999] differs from the one provided here in the sense that,
in [Artzner et al., 1999], cash-invariance reads ρ(X + λ) = ρ(X) − λ, where λ ∈ R, while monotonicity
as ρ(X) ≥ ρ(X ′) when X ≤ X ′ (refer to [Grabisch and Ridaoui, 2016, Sec. 4.2.1] for some remarks
concerning these differences). Given that we consider here coherent risk measures within the conic
finance paradigm, we adopt therefore the definition outlined in [Madan and Schoutens, 2016a].
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where (ρx)x≥0 is a family of coherent risk measures such that ρx(−X) ≤ ρx′(−X) when-

ever x ≤ x′. From this, it then follows that α(X) ≥ γ if and only if ργ(−X) ≤ 0.6

Note that, for every x ≥ 0, one can define the acceptability set associated with α as

Ax := {X ∈ L∞(Ω,F ,P) : ρx(−X) ≤ 0}. It then follows that (Ax)x≥0 is a family of con-

vex cones, each containing the non-negative random variables, with size decreasing in

x. Thus, given an index of acceptability and a family of coherent risk measures (ρx)x≥0,

for every acceptability level x we obtain a convex cone Ax of contingent claims that are

acceptable for the market, from which the term conic finance originates.

The (asymmetric) Choquet integral of X with respect to a non-additive probability µ

is defined as

(C)

∫

Ω

X dµ :=

∫ 0

−∞

µ(X ≥ t)− 1 dt+

∫ +∞

0

µ(X ≥ t) dt, (13)

whenever it exists; see [Denneberg, 1994, Ch. 5]. Choquet integration provides a natural

extension to the Lebesgue integral able to deal with non-additive probabilities, as if µ in

(13) is σ-additive, then (13) would reduce to a Lebesgue integral; see [Mesiar et al., 2010].

We denote with ψ( · ) a concave distortion from [0, 1] to [0, 1], i.e., a concave function

such that ψ(0) = 0 and ψ(1) = 1, where ψ(Q)(A) := ψ(Q(A)), for every Q-measurable set

A; note that the distorted probability measure just defined is not, in general, additive. Let

(ψx)x≥0 be an increasing family of concave distortion functions, and assume a risk-neutral

measure Q ∈
⋂

x≥0Qx.
7 We recall, see [Delbaen, 2009, Grabisch and Ridaoui, 2016], that

the functional ρx such that X 7→ (C)
∫

Ω
X dψx(Q) defines a coherent risk measure. This

is because the (asymmetric) Choquet integral with respect to any non-additive measure

guarantees the transitivity, positive homogeneity and monotonicity properties to be satis-

fied; see [Denneberg, 1994, Prop. 5.1]. Further, the distorted probability measure ψx(Q)

is a submodular8 set function, see [Denneberg, 1994, Ex. 2.1], which guarantees subaddi-

6If ργ(−X) ≤ 0, by (12) it follows that α(X) ≥ γ. On the other hand, assume that ργ(−X) > 0.
Then, ρx(−X) ≥ ργ(−X) > 0 when x ≥ γ, from which α(X) < γ, contradiction.

7Given that Qx ⊆ Qx′ when x′ ≥ x, it is sufficient to assume that a risk-neutral measure Q belongs
to Q0.

8A non-additive probability µ is said to be submodular (or concave) if, for every µ-measurable sets
A and A′, it results that µ(A ∪A′) + µ(A ∩ A′) ≤ µ(A) + µ(A′).
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tivity; see [Denneberg, 1994, Th. 6.3]. Thus, as suggested in [Cherny and Madan, 2009],

we can employ functionals of this form as tools for modeling indices of acceptability via

the relationship

α(X) = sup

{

x ≥ 0 : (C)

∫

Ω

−X dψx(Q) ≤ 0

}

. (14)

Indices of acceptability defined as in (14) are named operational indices of acceptability ;

see [Cherny and Madan, 2009].

We now assume that the market considers acceptable only the cashflows with an

acceptability level of, at least, γ. The market is willing to buy X , which we assume

to pay off at T , at a price b if and only if α(X − DF(T )−1 · b) ≥ γ (recall footnote

6), i.e., if and only if b ≤ −DF(T ) · (C)
∫

Ω
−X dψγ(Q). It follows that, if the market

considers acceptable all the cashflows with a level of acceptability of at least γ, then the

(γ-dependent) bid price of X , denoted as bidγ(X), would equal

bidγ(X) = −DF(T ) · (C)

∫

Ω

−X dψγ(Q). (15)

Denoting the ask price of X given a level of acceptability γ as askγ(X), by observing that

askγ(X) = −bidγ(−X), from (15) it follows that

askγ(X) = DF(T ) · (C)

∫

Ω

X dψγ(Q). (16)

Thus, if the distribution function of X , as well as its bid or ask prices, are available, one

can compute the level of γ needed to obtain the quoted price.

4 CDSs in a two-price economy

Given a parametric family of distortion functions (ψγ)γ≥0, one can set a term structure

for the liquidity parameter γ by assigning a value γi to each maturity eNi
. These values

can be then interpolated, once the model has been calibrated, if one wants to calculate

bid and ask prices for non-quoted maturities. We still assume a Poisson process as

in Section 2.1 driving the risk-neutral dynamics of τ . We denote with X̃CDS
i the sum
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of the cashflows of the ith CDS where all the cashflows are deferred to maturity, i.e.,

cashflow(t) 7→ cashflow(t) · DF(t)
DF(eNi

)
. The bid and ask prices of X̃CDS

i are denoted as bidCDS
i

and askCDS
i , respectively.

We start with the first CDS. We need then to solve for λ1 > 0 and γ1 > 0 such that















bidCDS
1 (λ1, γ1) + Acc = DF(ts) · UF

bid
1

askCDS
1 (λ1, γ1) + Acc = DF(ts) ·UF

ask
1

, (17)

with

DF(ts) · UF
bid
1 < PVCDS

1 (λ1) + Acc < DF(ts) ·UF
ask
1 , (18)

where the constraint (18) guarantees that the risk-neutral price of the CDS lies between

its corresponding bid and ask prices.

By proceeding in a similar way as done in Section 2.1, at every step we need to solve

a system of the form















bidi(λi, γi) + Acc = DF(ts) · UF
bid
i

aski(λi, γi) + Acc = DF(ts) · UF
ask
i

, (19)

with

DF(ts) ·UF
bid
i < PVCDS

i (λi) + Acc < DF(ts) · UF
ask
i . (20)

Above, λi represents the implied hazard rate for the ith maturity, while γi the correspond-

ing implied liquidity in the sense of [Corcuera et al., 2012].

The problem of determining whether a (potentially unique) solution for this con-

strained non-linear system will be addressed in this section. We start by simplifying the

notation in the constrained system above by rewriting it as















bid(λ, γ) = b

ask(λ, γ) = a

, (21)
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with

b < PVCDS(λ) < a. (22)

In both (21) and (22) we have set b := DF(ts) ·UF
bid
i −Acc and a := DF(ts) ·UF

ask
i −Acc.

We provide now three lemmas that, under some mild assumptions related to the liq-

uidity of the market, will be used in Theorem 1 to prove the existence and the uniqueness

of a solution for the constrained non-linear system (21). We start by assuming that the

quoted bid and ask prices of the chosen CDS are within the interval of possible risk-neutral

prices that can be obtained by changing the parameter λ. In practice, this technical con-

dition translates into the possibility of being able to calibrate the risk-neutral parameter

λ to match bid and ask market quotes, respectively, from which Lemma 1 follows.

Assumption 1. The inequalities infλ>0 PV
CDS(λ) < b and supλ>0 PV

CDS(λ) > a hold.

Lemma 1. Under Assumption 1, there exists an interval [λb, λa] such that there is equiv-

alence between b ≤ PVCDS(λ) ≤ a and λ ∈ [λb, λa].

Proof. PVCDS(λ) is an increasing and continuous function of λ. From Assumption 1 the

result follows.

We now introduce a second assumption that guarantees that, for λ in a given range,

theoretical bid-ask spreads can exceed the observed one.9 Intuitively, Assumption 2 is

a technical condition stating that, for every fixed λ in [λa, λb], it is always possible to

construct a bid and an ask price that reflect the bid-ask spread observed in the market.

Lemmas 2 and 3 follow.

Assumption 2. For every λ ∈ [λb, λa] there exists γ > 0 such that ask(λ, γ)−bid(λ, γ) =

a− b.
9Observe that, when γ = 0, then bid and ask prices reduce to the ones calculated with respect to Q

and that, for a given λ, the function ask(λ, γ)−bid(λ, γ) is strictly increasing in γ. When γ → +∞, then
ψγ(Q) approximate the distribution that assigns zero to the null sets and one to any other set. ask(λ, γ)−
bid(λ, γ) can be rewritten, see Section 4.1, as askprot(λ, γ)−bidprem(λ, γ)−bidprot(λ, γ)+ askprem(λ, γ),
where the superscripts identify the two legs of the contract. Ignoring discount factors for simplicity,
askprot(λ, γ) has magnitude of the order of LGD · ψγ(Q)(tp ≤ τ ≤ eN) = LGD; see (4). Further, as
(C)

∫

Ω
−X dµ = (C)

∫

Ω
X dµ with µ denoting the dual measure of µ, see [Denneberg, 1994, Prop. 5.1],

from bid(X) = −ask(−X) it follows that bidprot(λ, γ) = −LGD · ψγ(Q)(tp ≤ τ ≤ eN) = 0. Therefore,
for extreme values of γ the theoretical bid-ask spread ask(λ, γ) − bid(λ, γ) reaches high values due to
its positive components askprot(λ, γ) and askprem(λ, γ), and to bidprem(λ, γ) being below its counterpart
calculated when γ = 0. Thus, for practical purposes, this assumption is in general satisfied.
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Lemma 2. Under Assumptions 1 and 2, for every λ ∈ [λb, λa] there exists a unique γ > 0

such that ask(λ, γ)− bid(λ, γ) = a− b.

Proof. Fix λ ∈ [λb, λa]. By Assumption 2 there exists (at least) one γ > 0 such that

ask(λ, γ) − bid(λ, γ) = a − b. Assume there exists γ∗ and γ∗ such that ask(λ, γ∗) −

bid(λ, γ∗) = ask(λ, γ∗)− bid(λ, γ∗) = a− b, with γ∗ < γ∗. The ask price is an increasing

function of γ, while the opposite holds for the bid. Therefore, ask(λ, γ∗) < ask(λ, γ∗) and

bid(λ, γ∗) > bid(λ, γ∗). Then a − b = ask(λ, γ∗) − bid(λ, γ∗) < ask(λ, γ∗) − bid(λ, γ∗) =

a− b, contradiction.

Lemma 3. Under Assumptions 1 and 2, for every λ ∈ [λb, λa] the function such that

λ 7→ γ(λ), where ask(λ, γ(λ))− bid(λ, γ(λ)) = a− b, is continuous.

Proof. Fix λ̄ in [λb, λa] and let (λn)n be a sequence in [λb, λa] that converges to λ̄. We

define φ(λ, γ) := ask(λ, γ)− bid(λ, γ). We proceed in steps.

Claim (i): The sequence (γ(λn))n is bounded. Say this is not the case. Then, there

exists a subsequence (γ(λnk
))k that diverges to +∞. (λnk

)k converges to λ̄, as subse-

quence of a convergent sequence, and φ is continuous in both arguments. Therefore,

limk φ(λ̄nk
, γ(λnk

)) = φ(λ̄,+∞) = a − b, as φ(λ̄nk
, γ(λnk

)) always equals a − b, by con-

struction. By Assumption 2 there exists γ̄ > 0 such that φ(λ̄, γ̄) = a− b. Therefore, as φ

is increasing in its second argument, it follows that a− b = φ(λ̄, γ̄) < φ(λ̄,+∞) = a− b,

contradiction.

Claim (ii): The sequence (γ(λn))n has limit. As this sequence is bounded, it admits a

convergent subsequence. Say there are two subsequences, namely (γ(λnk
))k and (γ(λnh

))h,

that converge to γ∗ and γ∗, respectively, where γ∗ < γ∗. Then (λnk
)k and (λnh

)h both

converge to λ̄, as subsequencies of the same convergent sequence. So we obtain that a−b =

limk φ(λnk
, γ(λnk

)) = φ(λ̄, γ∗) < φ(λ̄, γ∗) = limh φ(λnh
, γ(λnh

)) = a−b, contradiction (the

first and the last equalities follow from the definitions of (λnk
)k and (λnh

)h, respectively,

the second and the penultimate equalities from the continuity of φ, while the inequality

from φ being increasing in its second argument). Then, every convergent subsequence of

(γ(λn))n has the same limit. As (γ(λn))n is bounded, then it admits limit.10

10Here, we have used the following elementary result: if a bounded real sequence has the property that

17



Claim (iii): The limit of (γ(λn))n is γ(λ̄). Denote limn γ(λn) as γ̄. Observe that φ is

continuous in both arguments. The sequence (φ(λn, γ(λn)))n is constant by construction,

i.e., it always equals a − b. Therefore, it converges to a − b. Its limit is φ(λ̄, γ̄), as φ is

continuous. Due to Lemma 2, there exists a unique γ(λ̄) such that φ(λ̄, γ(λ̄)) = a − b.

So, γ̄ = γ(λ̄).

We now can, under Assumptions 1 and 2, use Lemmas 1, 2 and 3 to prove that the

calibration problem (21) has a unique solution. Therefore, Theorem 1 guarantees that,

under the hypotheses considered, risk-neutral default probabilities can be implied in a

unique manner from bid and ask CDS quotes without relying on their mid counterparts.

Theorem 1. Under Assumptions 1 and 2, there exists a solution of the constrained

non-linear system (21), and it is unique.

Proof. Consider the interval [λb, λa] as per Lemma 1. There exists a unique γb such

that ask(λb, γb) − bid(λb, γb) = a − b. Observe that bid(λb, γb) < PVCDS(λb) = b, so

b < ask(λb, γb) < a.

Similarly, consider λa. There exists a unique γa such that ask(λa, γa)− bid(λa, γa) =

a− b. Because a = PVCDS(λa) < ask(λa, γa), it follows that b < bid(λa, γa) < a.

The functions ask(λ, γ), bid(λ, γ), and – see Lemma 3 – γ(λ), are continuous in

λ. Thus, there exists λ̄ ∈ (λb, λa) and corresponding γ̄ such that ask(λ̄, γ̄) = a and

bid(λ̄, γ̄) = b. By virtue of Lemma 2 the pair (λ̄, γ̄) satisfying (21) is unique.

Note that to obtain the existence and uniqueness result of Theorem 1 we have relied

on the fact that, for each given maturity, the model describing the risk-neutral default

distribution has a single free parameter, i.e., the hazard rate corresponding to the matu-

rity considered. Therefore, considering the distortion parameter related to that maturity

as additional degree of freedom allows the calibration problem to be defined, up to the

constraint, by two equations and two unknowns. If more complex models with addi-

tional parameters were to be used, then the problem should have been approached in

a least-square sense, and the best possible outcome would have been that of finding an

all its convergent subsequences converge to the same real limit, then the sequence itself also converges
to it; see [Abbott, 2015, Ex. 2.5.5].
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unique minimum. This very favorable situation, however, would not necessarily guaran-

tee observed market quotes to be matched by the model, and therefore would as well not

guarantee the implied risk-neutral distribution to be the “true” one.

4.1 A calibration example

The simplest possible manner to specify model (8) consists in defining it as a piecewise-

constant function, as done in the ISDA CDS standard model commonly used in practice,

which is based on the approach of [O’Kane and Turnbull, 2003]. Note that there is no

information available on the hazard rate level between CDS maturities. Therefore, these

specifications provide the smallest possible set of assumptions concerning the default

intensity process and is a common choice amongst financial practitioners.

To compute bid and ask prices, one would need to approximate Choquet integrals

numerically. To do so, a simple approximation of (C)
∫

Ω
X dµ can be performed, see

[Wang and Klir, 2009, Ch. 11.5], as follows. Given a partition of Ω as
⋃M

i=1Ai choose, for

every i, xi ∈ X(Ai). Let σ denote a permutation of {1, . . . ,M} such that xσ(1) ≤ . . . ≤

xσ(M). Then, (C)
∫

Ω
X dµ can be then approximated as

M
∑

i=1

(xσ(i) − xσ(i−1)) · µ

(

M
⋃

k=i

Ak

)

, (23)

where x0 := 0. In the case of a CDS, one can then set a grid (for instance, daily for

simplicity), namely A1 := {τ ∈ [0, d1]} , . . . , AM := {τ ∈ [dM−1, dM ]}, where M denotes

the total number of points (i.e., dates) in the grid, and set xi := X̃CDS|τ=di (recall that,

using the notation introduced in Section 4, the superscript tilde indicates that cashflows

are deferred at the maturity of the CDS contract considered).

We recall, see [Eberlein et al., 2001], that the bid and ask prices of a contingent claim

X can be calculated as bid(X) = bid(X+)−ask(X−) and ask(X) = ask(X+)−bid(X−),

respectively, where the X+ (X−) denotes the positive (negative) part of X . We de-

note with X̃prot (X̃prem) the protection (premium) leg of X̃CDS. From (6), and by

noting that with our conventions X+ coincides with X̃prot and X− with X̃prem, it fol-
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lows that bid(X̃CDS) = −ask(−X̃prot)− ask(X̃prem) and that ask(X̃CDS) = ask(X̃prot) +

ask(−X̃prem). Therefore, in principle it is sufficient to separately calculate the ask prices

of the (signed) CDS legs only.

As an example, we consider the specifications of the standard ISDA model, i.e., we

assume a piecewise-constant hazard rate function. We take into account a set of market

quotes for a BBB European financial institution with maturities 6 months and 1, 2, 3,

4, 5, 7 and 10 years, respectively, as of 13 February 2020. The recovery rate equals 40%,

and the coupon 1%. Discounting performed with OIS EUR curve.

Figure 1a represents the bid and ask quoted upfront premia, expressed per unit of

notional, while Figure 1b the aggregated calibration errors, i.e., each value represents the

sum of the bid and ask calibration errors, respectively.
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Figure 1: Bid and ask CDS upfront premia used in the calibration example, panel (a), and
calibration errors, panel (b). In particular, the calibration errors of panel (b) represent
aggregated figures, i.e., each point corresponds to the sum of the calibration error for the
bid quote and of that of the related ask quote.

In this example we consider two common choices to define the family of distortion

function, i.e., the minmaxvar distortion [Cherny and Madan, 2009], defined via

ψγ(x) := 1−
(

1− x
1

1+γ

)1+γ

, (24)

and the Wang distortion [Wang, 2000], defined by setting

ψγ(x) := Φ
(

Φ−1(x) + γ
)

, (25)
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with Φ( · ) denoting the cumulative distribution function of a standard normal ran-

dom variable; in both (24) and (25) it is assumed that x ∈ [0, 1] (in the case of the

latter, right and left limit should be considered for 0 and 1, respectively) and that

γ ≥ 0. Other examples of families of distortion functions are outlined, for instance,

in [Madan and Schoutens, 2016a, Ch. 4.7] and in [Föllmer and Schied, 2016, Ch. 4.6].

For each of the two choices we have made in terms of the distortion function, Figure

2a shows the piecewise-constant hazard rate function, while Figure 2b the linearly in-

terpolated distortion parameter. Note that for each of the two choices of the distortion

function we have made, the minimum of the γ parameter in Figure 2b lies in proximity

of the 5Y CDS, where the latter is usually the most liquid maturity. We also note how

the pattern of the implied distortion parameter in Figure 2b follows that of the (relative)

bid-ask CDS premium spread available in Table 1 (last column therein).
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Figure 2: Implied parameters provided as a result of the calibration procedure to the bid
and ask CDS quotes of Figure 1a: hazard rates (i.e., λ) are depicted in panel (a), while
distortion parameters (i.e., γ) in panel (b).

Note that, as illustrated by Figures 2a and 2b results obtained using the minmaxvar

and Wang transforms are very similar, indicating little model risk. For completeness, the

CDS input quotes of Figure 1a, the implied hazard rates of Figure 2a and the implied

distortion parameters of Figure 2b have been reported in B; see Tables 1, 2a and 2b,

respectively.
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5 Conclusion

In this article we have considered the problem of calibrating a CDS model to the available

bid and ask quotes within the conic finance paradigm of [Cherny and Madan, 2010]. In

particular, in the context of reduced-form models, we have considered the default time

as modeled by a Poisson process. The bid-ask calibration problem requires to iteratively

solve a constrained non-linear system in two equations and two unknowns. We have

showed that, under reasonable assumption for practical purposes, the calibration problem

admits a unique solution. We have as well illustrated, with a practical example based

on real market data, how the calibration to bid and ask CDS quotes works under the

specifications of the standard CDS ISDA model and by considering two different choices

for the the distortion function. In both the cases considered, as expected from the theory,

the model could be calibrated to exactly match the observed market quotes. Despite our

work outlined in Section 4 is specific to CDSs, the fact that financial instruments trade

neither at the risk-neutral nor at the mid price apply to all contingent claims. Therefore,

being able to fit valuation models solely to bid and ask quotes in such a way that risk-

neutral parameters are implied as a result of the calibration routines is a desirable model

feature that allows to drop the common assumption of equating risk-neutral and mid

prices without additional ones being added. Hence, investigating how to calibrate models

to bid and ask quotes without relying on mid quote approximations is a field on which

further research is encouraged.

22



A A remark on the monotonicity of CDS prices

We consider here the ith CDS outlined in Section 2.1, i.e., the one maturing at eNi
, and

we denote with N(i) the number of coupon periods related to it.

From (5), the present value of its premium leg can be rewritten as

C

N(i)
∑

j=1

(

DF(tj) ·∆j ·QS(ej) + EQ
(

DF(τ) ·∆(sj, τ) · 1{sj≤τ≤ej}

))

. (26)

We define j(i) := min
{

j : ej > eNi−1
, 1 ≤ j ≤ N(i)

}

, with the convention that j(i) = 1

if i = 1. If λi increases, from (7) and (8) it follows that QS(ej) strictly decreases for each

j ≥ j(i), leaving the others, if any, unchanged. We can also rewrite the present value of

the protection leg, see (4), minus the accrual payments in (26), as

N(i)
∑

j=1

EQ
(

DF(τ) · (LGD− C ·∆(sj , τ)) · 1{max(tp,sj)≤τ≤ej}

)

− EQ
(

DF(τ) · C ·∆(s1, τ) · 1{0≤τ≤tp}

)

, (27)

due to sj = ej−1 whenever j > 1.

If i > 1, when λi increases then Q(max(tp, sj) ≤ τ ≤ ej) strictly increases for each

j ≥ j(i), leaving the other probabilities with j < j(i), as well as Q(0 ≤ τ ≤ tp),

unchanged. Thus, if the condition

LGD > C · max
j(i)≤j≤N(i)

∆(sj , ej) (28)

holds, then (27) strictly increases if λi increases.

In practice, condition (28) is verified for usual values of LGD and C: for instance,

if the often-standard value for LGD of 60% is chosen and C = 5%, then the right-hand

side of (28) would be equal, up to day-count rounding, to 5% · 0.25 = 1.25%, due to the

quarterly payments of each CDS contract. A graphical illustration is provided in Figure

3.
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Figure 3: Present value of the 6th CDS used for the calibration example provided in Sec-
tion 4.1 (5Y maturity) with risk-neutral default probabilities implied via the minmaxvar
distortion, as a function of λ6. Notional assumed unitary.

Note that, when i = 1, the second summand in (27) is, in general, negligible. This is

because the event {0 ≤ τ ≤ tp} means observing a default between the valuation date and

the protection start date of the CDS, where the latter is usually one day after the former.

With a good approximation DF(τ) equals 1, as when 0 ≤ τ ≤ tp the year fraction between

the valuation date and the default time is almost zero. Further, we can bound ∆(s1, τ)

from above, up to day-count rounding, with 0.25. Thus, an approximate upper bound for

EQ
(

DF(τ) · C ·∆(s1, τ) · 1{0≤τ≤tp}

)

is given by C · 0.25 ·Q (0 ≤ τ ≤ tp). To give an idea

about the magnitude of this term, if we consider as a simple case a piecewise-constant

hazard rate functional form for (8), we than have that Q (0 ≤ τ ≤ tp) = 1 − e−λ1·∆(0,tp).

If λ1 increases by an amount δ, by using a first order Taylor expansion we obtain that

Q (0 ≤ τ ≤ tp) increases by approximately δ · ∆(0, tp). Thus, if λ1 increases by δ then

the change in EQ
(

DF(τ) · C ·∆(s1, τ) · 1{0≤τ≤tp}

)

is approximately bounded from above

by C · 0.25 · δ · ∆(0, tp). Again, assume C equals 5% and that tp occurs one day after

the valuation date. Using the Act/360 day-count convention we obtain that this amount

equals 1.25%·δ · 1
360

, which is negligible when δ not too large; see Figure 4a for an example.

When i = 1, if λ1 = 0 then the present value of the protection leg would be zero,

making the value of the contract negative. When λ1 increases, the present value of the

contract increases as well, and for λ1 large enough it would reach a positive value. How-

ever, when λ1 diverges to +∞, then a default would occur while the contract is being

signed, which would make the value of the contract drop. Therefore, the monotonicity

would be guaranteed, when i = 1 and when usual coupon and LGD amounts are consid-
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ered, on an interval [0, λ̃1], which is usually wide enough for practical applications. This

is illustrated in Figure 4b.
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Figure 4: Present value of the first CDS used for the calibration example provided in Sec-
tion 4.1 (6M maturity) with risk-neutral default probabilities implied via the minmaxvar
distortion, as a function of λ1 for the same range for λ1 as in Figure 3, panel (a), and
when λ1 diverges, panel (b). Notional assumed unitary.

Therefore, for parameters usually considered in practice, assuming that the price of

the ith CDS strictly increases when λi increases (eventually within an interval that is

large enough for practical applications in the case i = 1) is a reasonable assumption, that

we have used throughout the paper.

B Tables

Table 1: Bid and ask CDS premia depicted in Figure 1a, rounded to
the basis-point digit. For comparison purposes, the mid CDS premia
(UFmid), as well as the absolute value of the bid-ask CDS premium
spreads with respect to mid CDS premia have been reported.

Tenor UFbid
i UFask

i UFmid
i |(UFask

i − UFbid
i )/UFmid

i |
6M -0.0033 -0.0026 -0.0030 23.73%
1Y -0.0074 -0.0068 -0.0071 8.45%
2Y -0.0149 -0.0126 -0.0138 16.73%
3Y -0.0192 -0.0169 -0.0181 12.74%
4Y -0.0221 -0.0198 -0.0210 10.98%
5Y -0.0219 -0.0198 -0.0209 10.07%
7Y -0.0162 -0.0095 -0.0129 52.14%
10Y -0.0073 0.0047 -0.0013 932.08%

25



Table 2: Calibrated parameters: hazard rates λ, panel (a), and distortion param-
eters γ, panel (b). Implied hazard rates and distortion parameters are depicted
in Figures 2a and 2b, respectively.

Tenor λminmaxvar
i λWang

i

6M 0.001302 0.002235
1Y 0.003348 0.003353
2Y 0.004790 0.005615
3Y 0.009759 0.009705
4Y 0.011977 0.011906
5Y 0.017028 0.016865
7Y 0.022719 0.023514
10Y 0.023259 0.023671

(a)

Tenor γminmaxvar
i γWang

i

6M 0.159982 0.202429
1Y 0.055352 0.063821
2Y 0.076611 0.083899
3Y 0.040828 0.042300
4Y 0.027284 0.027351
5Y 0.017690 0.017241
7Y 0.033905 0.032033
10Y 0.041636 0.038361

(b)
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