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ABSTRACT

Context. Vigorous mass loss in the classical Wolf-Rayet (WR) phase is important for the late evolution and final fate of massive stars.
Aims. We develop spherically symmetric time-dependent and steady-state hydrodynamical models of the radiation-driven wind out-
flows and associated mass loss from classical WR stars.
Methods. The simulations are based on combining the opacities typically used in static stellar structure and evolution models with a
simple parametrised form for the enhanced line opacity expected within a supersonic outflow.
Results. Our simulations reveal high mass-loss rates initiated in deep and hot, optically thick layers around T ≈ 200 kK. The resulting
velocity structure is non-monotonic and can be separated into three phases: (i) an initial acceleration to supersonic speeds (caused by
the static opacity), (ii) stagnation and even deceleration, and (iii) an outer region of rapid re-acceleration (by line opacity). The charac-
teristic structures seen in converged steady-state simulations agree well with the outflow properties of our time-dependent models.
Conclusions. By directly comparing our dynamic simulations to corresponding hydrostatic models, we explicitly demonstrate that the
need to invoke extra energy transport in convectively inefficient regions of stellar structure and evolution models, in order to prevent
drastic inflation of static WR envelopes, is merely an artefact of enforcing a hydrostatic outer boundary. Moreover, the dynamically
inflated inner regions of our simulations provide a natural explanation for the often-found mismatch between predicted hydrostatic WR
radii and those inferred from spectroscopy; by extrapolating a monotonic β-type velocity law from the observable supersonic regions
to the invisible hydrostatic core, spectroscopic models likely overestimate the core radius by a factor of a few. Finally, we contrast our
simulations with alternative recent WR wind models based on co-moving frame (CMF) radiative transfer to compute the radiation
force. Since CMF transfer currently cannot handle non-monotonic velocity fields, the characteristic deceleration regions found here are
avoided in such simulations by invoking an ad hoc very high degree of clumping.

Key words. stars: mass-loss – stars: Wolf-Rayet – stars: winds, outflows – stars: atmospheres

1. Introduction

The evolution of stars with initial masses higher than eight
times that of the Sun plays an essential role in the chemistry
and dynamics of galaxies similar to our Milky Way (Crowther
2007; Doran et al. 2013; Ramachandran et al. 2018; Prantzos
et al. 2018). These massive stars are a vital source of heavy ele-
ments and UV radiation, enriching their surroundings through
strong radiation-driven winds (Lucy & Solomon 1970; Castor
et al. 1975; Puls et al. 2008; Vink et al. 2001; Björklund et al.
2021). In the final evolutionary stages, some of those massive
stars become hydrogen-depleted, usually core He-burning pro-
genitors of neutron stars or black holes (Yoon et al. 2012; Groh
et al. 2013). Among these are so called classical Wolf-Rayet
(WR) stars (Wolf & Rayet 1867), which are characterised by
strong spectral emission lines and a high luminosity to mass
ratio, L/M? ∼ 104L�/M�, (Crowther 2007). Classical WR stars
are distinct from very massive, main-sequence WR stars, which
are core H-burning (de Koter et al. 1997; Crowther et al. 2010).
Classical WR stars are also different in their composition and
evolutionary state from hydrogen-deficient WR central stars of
planetary nebula (e.g. Todt et al. 2010).

As first suggested by Beals (1929), the prominent emission
lines visible in WR spectra indicate strong stellar winds with
high terminal speeds (v∞ ∼ 2000−3000 km s−1) and mass-loss

rates (Ṁ ∼ 10−5−10−3 M� yr−1) (Hamann et al. 2019; Sander
et al. 2019). However, while the overall wind properties of mas-
sive main-sequence OB-stars (see Puls et al. 2008 for a review)
are rather well reproduced by the line-driven wind theory for-
mulated first by Castor et al. (1975; CAK), this standard theory
typically fails to explain the order of magnitude higher mass-loss
rates of classical WR stars (Cassinelli 1991; Lamers & Leitherer
1993).

Nonetheless, WR winds are still thought to be radiation
driven, as their high L/M? ratio brings them close to the limit
at which the acceleration due to radiation gr balances that of
gravity g (i.e. close to Γ = 1, for Eddington factor Γ = gr/g).
In fact, consulting the opacities used in stellar structure calcula-
tions, which are generally obtained from tabulations computed
assuming a static medium (e.g. Iglesias & Rogers 1996), the
Eddington limit for classical WR stars is already reached in sub-
surface layers with temperatures of about 150−250 kK. Since
convection is highly inefficient in these layers (Gräfener et al.
2012), static models then typically display density inversions
and highly inflated stellar envelopes (Ishii et al. 1999; Petrovic
et al. 2006; Gräfener et al. 2012; Sanyal et al. 2015). For corre-
sponding stellar evolution calculations, such envelope inflation is
computationally difficult to treat and various numerical tricks are
thus typically required to make computations tractable (Paxton
et al. 2013; Ekström et al. 2012). This then leads to very hot
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(Teff
>∼ 100 kK) and compact (R ∼ R�) WR stellar surfaces. On

the other hand, spectroscopic studies aiming to constrain the
WR surface from observationally inferred Teff typically deduce
hydrostatic radii that are factors of ∼2−3 higher than predicted
by such evolution models (e.g. Crowther 2007; Sander et al.
2019; Hamann et al. 2019); this mismatch is sometimes referred
to as the core-radius problem of classical WR stars.

Rather than retaining a static envelope, breaching the
Eddington limit in sub-photospheric layers can initiate an opti-
cally thick supersonic outflow. Nugis & Lamers (2002) and
Grassitelli et al. (2018) suggested that WR mass-loss rates can be
computed simply by considering only the conditions at the point
where the sonic speed is reached (at Γ ≈ 1, since gas pressure
terms typically are very small in comparison). Using the OPAL
tables of Rosseland mean opacity (Iglesias & Rogers 1996), Ro
& Matzner (2016) showed that supersonic velocities are indeed
found in deep sub-photospheric layers, but that a successful wind
solution that could bring the initiated mass flux to infinity could
not be found.

However, these models neglect the strong enhancement of
the line opacity expected in a supersonic outflow. Previous mod-
elling attempts including the Doppler effect in the line opacity
calculations have either relied on a pre-assumed fixed velocity
field to solve for the mass loss (e.g. see Lucy & Abbott 1993;
Springmann 1994; Springmann & Puls 1998; de Koter et al.
1997), or attempted an iterative (assuming time independence)
solution towards a self-consistent velocity field and mass loss
(Gräfener & Hamann 2005; Sander et al. 2020; Sander & Vink
2020). The latter models have used comoving-frame (CMF)
radiative transfer for the calculation of gr. Such CMF transfer is a
computationally intensive numerical technique that requires the
velocity field to remain smooth and monotonic (see, e.g. discus-
sion in Sander et al. 2020). Moreover, all these previous studies
of classical WR outflows have been performed in the steady-state
limit.

In this paper we present a first attempt to build a model
that addresses both (dynamic) envelope inflation and line driv-
ing, using a hybrid opacity approach based on combining the
opacities used for static stellar structure calculations with a sim-
ple variant of the standard parameterisation for line opacities in
supersonic flows. This formalism then allows for computation of
both steady-state and time-dependent WR wind structures. The
organisation of the paper is as follows: in Sect. 2, we describe
our basic physical set-up. We present dynamical models in the
steady-state limit and compare these to corresponding static
calculations in Sect. 3. Then in Sect. 4 we compare these steady-
state models to full time-dependent radiation-hydrodynamical
simulations of dynamically inflated WR outflows. In Sect. 5 we
discuss our results and some open questions regarding WR stel-
lar outflows, and finally we summarise our results and provide
an outlook for future work in Sect. 6.

2. Physical model

We describe the WR wind outflow by the appropriate hydro-
dynamical equations of mass and momentum conservation
assuming spherical symmetry:

∂ρ

∂t
+

1
r2

∂

∂r
(r2ρv) = 0, (1)

∂

∂t
(ρv) +

1
r2

∂

∂r
(r2vρv) = −

∂Pg

∂r
− ρg + ρgr. (2)

Here ρ, v and Pg = kBTρ/(µmH) are mass density, velocity and
gas pressure, where T is gas temperature, kB is the Boltzmann
constant, µ is the mean molecular weight, and mH is the mass of
the hydrogen atom, g = GM?/r2 is the gravitation acceleration
for a constant stellar mass M? and

gr =
κFF

c
, (3)

is the acceleration due to stellar radiation, for radiation flux
F and flux-weighted opacity (mass-absorption coefficient) κF
in cm2 g−1. Using the Eddington factor we can also write the
equation of motion (e.o.m) as:

∂

∂t
(ρv) +

1
r2

∂

∂r
(r2vρv) = −

∂Pg

∂r
− ρ

M?G
r2 (1 − Γ). (4)

The Eddington ratio can be expressed as:

Γ =
κF L

4πM?Gc
, (5)

for a stellar luminosity L = 4πr2F. In this paper, we assume
that the radiative luminosity remains constant throughout the
outflow. This means that we neglect a term corresponding to
the work of the radiation field against gravity. We can estimate
the corresponding expected luminosity variation by computing
the photon-tiring parameter m = Ṁ/Ṁmax (Owocki et al. 2017),
which is the ratio of the stellar mass loss Ṁ to the maximum
amount of mass loss that the stellar luminosity can drive, Ṁmax =
LRc/(M?G), where Rc is the core radius defined at the fixed
lower boundary. Taking the stellar parameters used throughout
this paper, M? = 10 M�, Rc = 1R�, log10(L/L�) = 5.416, and a
typical order of magnitude mass loss, Ṁ ∼ 5.0 × 10−5 M� yr−1,
one gets

m =
ṀGM?

RcL
≈ 0.06, (6)

which demonstrates that the luminosity variation is only a
marginal effect for the cases considered in this paper.

In practice, especially for time-dependent dynamical com-
putations with possibly non-monotonic velocity fields, it is not
computationally feasible to derive the temperature structure, for
example, from radiative equilibrium by means of full solutions
to the frequency-dependent radiative transfer equations. To sim-
plify,we therefore follow the common approach of replacing
the full energy equation by the Lucy (1971) analytic radiative
equilibrium model for a grey, spherically symmetric, diluted
atmosphere, however, replacing the grey opacity by the actual
flux weighted κF (e.g. see Lucy & Abbott 1993). This allows us
to write the temperature structure as:

T 4 = T 4
c, eff

(
W(r) +

3
4
τsp

)
, (7)

where T 4
c, eff

= L/(4πσSBR2
c) is a core effective temperature,

defined here from the lower boundary set at Rc,σSB is the Stefan-
Boltzmann constant, W(r) = 0.5

(
1 −

√
1 − R2

c/r2
)

is the dilution
factor, and τsp is the spherically modified optical depth

dτsp = −κFρ
(Rc

r

)2

dr, or τsp =

∫ ∞

r
dr′κFρ

(Rc

r′

)2

. (8)
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Here again the radius of our fixed lower boundary Rc is used as
a scaling radius for the spherically modified optical depth scale.
This is similar to the WR models by Sander et al. (2020) who
also define their stellar radius from the hydrostatic lower bound-
ary. It is different, however, than, for example, Sundqvist et al.
(2019) who set the reference radius for the temperature structure
in their O-star models at a photospheric radius Rph. An argu-
ment against using Rph as a scaling radius for optically thick WR
winds is, however, that Rph � Rc, such that the geometric dilu-
tion of the radiation field would be neglected for large parts of
the outflow (see also discussion in Nugis & Lamers 2002). In
principle, the explicit choice of the reference radius will affect
the temperature structure throughout our models. However, test
calculations have shown that this is a quite marginal effect for
the resulting mass loss and velocities of the simulations consid-
ered in this paper. In any case, to facilitate comparison with other
models we also introduce a stellar photospheric effective temper-
ature Tph, eff at this photospheric radius Rph. Since the definition
of a stellar photosphere in a spherically diluted stellar envelope
is non-trivial1 and depends on the specific computation of the
temperature structure, we here simply approximate

T (Rph)4 =
L

4πσSBR2
ph

≡ T 4
ph, eff , (9)

such that the photospheric and core effective temperatures and
radii are related through

Tph, eff =

√
Rc

Rph
Tc, eff . (10)

For given stellar parameters L, M?, and Rc, and a known
variation of κF, Eqs. (1)–(8) form the basic system of coupled dif-
ferential equations under investigation in this paper. In general,
κF is a complicated function that depends on chemical compo-
sition, density, temperature, velocity and redial position of the
absorbing and emitting gas. In this study, we focus on two cases.
First, we consider static opacities such as those used for stel-
lar structure and evolution computations (see Ro & Matzner
2016). Due to the high continuum optical depth of WR outflows,
conditions in the wind launching regions resemble those of radi-
ation diffusion, allowing us to replace the flux-weighted opacity
with a Rosseland mean, and so to utilise standard OPAL tables
for the opacity mapping as a function of T and ρ (Iglesias &
Rogers 1996). However, since these tabulations ignore the influ-
ence of Doppler shifts on the line opacity (which are critical for
WR wind driving, e.g. Sander et al. 2020), we also consider a
hybrid model accounting at least approximately for this effect.
More specifically, we use a CAK-like parametrisation to add the
cumulative force from an ensemble of spectral lines to the OPAL
tables (see, Sect. 3.3).

3. Steady-state approximation

To build physical insight we first examine a simplified steady-
state case. Equations (1) and (4) are then written as:

Ṁ = 4πr2ρv = constant, (11)(
1 −

a2

v2

)
v

dv
dr

=
2a2

r
−

da2

dr
−

M?G
r2 (1 − Γ), (12)

1 For example, in Sect. 3.6 the stellar photoshere is located at the
τsp = 4/3 surface in the radiation diffusion approximation, rather than
the typically assumed photoshere location at the τsp = 2/3 surface.

for an isothermal sound speed a2 = kBT/(µmH). Equation (11)
defines the spherically symmetric mass-loss rate Ṁ. Here we
assume µ = 4/3 corresponding to a fully ionised helium plasma.

It is commonly believed that the winds of WR stars are
initiated in the deep sub-photospheric layers where the gas tem-
perature is T ∼ 150−200 kK. In this temperature region, due to
iron recombination, a significant increase of the Rosseland mean
opacity is observed, sometimes called the iron opacity bump. A
simple comparison of scales reveals that throughout the super-
sonic wind outflow the first two terms of the r.h.s. in Eq. (12) are
much smaller than the radiation and gravitation terms, so that we
can approximate the e.o.m with

1
2

(
1 −

a2

v2

)
dv2

dr
=

M?G
r2 (Γ − 1). (13)

Here, the sound-speed term on the l.h.s. is retained in order to
enable a mapping of the supersonic solution onto the subsonic
part.

3.1. Boundary conditions

Equations (7)–(13) impose a two-point boundary value problem,
with boundaries at Rc and at2 r → ∞. The inner boundary at
r = Rc is defined to be a sonic point, with v2 = a2 = a2

s , where
as is defined to be the sound speed at this sonic point. As can be
seen from Eq. (13), this implies Γ(Rc) = 1. Below the sonic point
as the velocity rapidly diminishes from its sonic point value as
inwards, the density structure is well approximated by the hydro-
static solution (e.g. see Ro & Matzner 2016; Grassitelli et al.
2018). In contrast, in the supersonic part, the density structure
diverges from the structure given by the hydrostatic solution.
As such, we initiate the calculation at the sonic point and only
consider the supersonic part of the outflow, assuming that the
sub-sonic region still can be described by hydrostatic equilib-
rium. The tabulated OPAL opacities can then be used to locate
points for which Γ = 1, constraining the lower boundary density
as a function of temperature. In this way, the range of possible
mass-loss rates Ṁ = 4πR2

cρ(as)as is set as a function of the lower
boundary temperature.

The outer boundary is set by requiring that the wind temper-
ature decreases sufficiently at large radii. Replacing density with
the mass-loss rate using Eq. (11), the spherically modified opti-
cal depth (Eq. (8)) is used to compute the temperature structure
according to Eq. (7). We compute the optical depth at the outer
boundary τout by radially integrating Eq. (8) in r ∈ [Rmax, ∞),
assuming a terminal velocity v(r ≥ Rmax) = v(Rmax) = v∞ and
κF(r ≥ Rmax) = κe, where κe is the Thompson scattering mass
absorption coefficient. The outer boundary temperature is then
set by the maximum between applying τout in Eq. (8) and a floor
value, which is typically set to a few tenths of the stellar effec-
tive temperature (see Puls et al. 2005; Sundqvist et al. 2019). By
matching the inner and outer boundary constraints, we uniquely
constrain the wind structure. In turn this then sets the unique
mass-loss rate of the model from the range of possible solutions
at the lower boundary.

3.2. Energy requirement

Additionally, for wind material to escape the stellar potential, the
global energy requirement must be satisfied, which means that
the integrated mechanical energy of the wind has to be positive.
2 For numerical computations the outer formal boundary is simply
replaced by a maximum radius Rmax � Rc.
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Table 1. Summary of stellar parameters used in this paper.

M?/M� Rc/R� log(L/L�) vesc ( km s−1)

10 1 5.416 1950

Notes. Here we set our standard stellar parameters such that they
roughly represent the average value of the mass-to-radius ratio of the
observationally inferred WR stellar population from Hamann et al.
(2019) and Sander et al. (2019). The luminosity is then set such that the
resulting Γe = 0.40, also corresponding to the observationally inferred
average (Hamann et al. 2019; Sander et al. 2019).

Taking the supersonic limit a2/v2 � 1 in Eq. (13) yields:

v2
∞

2
−
v2

0

2
=
v2

esc

2

∫ ∞

Rc

dr
RcΓ

r2 −
v2

esc

2
. (14)

Here v0 ∼ as is the initial velocity and v2
esc = 2M?G/Rc is the

escape velocity from Rc. The first term on the r.h.s. corresponds
to the work done by the stellar radiation and the second term is
the work done by gravity. We can then introduce W as the net
energy change in units of v2

esc/2:

W =

∫ ∞

Rc

dr
(

RcΓ

r2

)
− 1. (15)

For the wind to escape to r → ∞, this net energy change has to
be positive, that isW ≥ 0. Alternatively, we can also introduce
the ratio of kinetic to core potential energy as a square of the
velocity to core escape velocity ratio:

w(r) =

(
v(r)
vesc

)2

, (16)

which goes to W as r → ∞ so that by construction we require
w(r → ∞) > 0 in order to escape.

3.3. Failed Winds in the static opacity limit

We first investigate the possibility of driving the stellar outflow
in the static opacity limit, i.e. the limit in which we only consider
OPAL opacities, thus neglecting the Doppler effect; κF ≈ κOPAL
(see also Ro & Matzner 2016). To set up the problem, we choose
the stellar mass and the core radius (as given in Table 1) such that
they roughly represent the average value of the mass-to-radius
ratio of the observationally inferred WR stellar population from
Hamann et al. (2019) and Sander et al. (2019). The luminosity
is then set such that the resulting Thompson scattering Edding-
ton ratio Γe = 0.40, which also corresponds approximately to
the observationally inferred average (Hamann et al. 2019; Sander
et al. 2019). All models presented in Sect. 3 and 4 of this paper
use these stellar parameters, and also the OPAL tables for solar
metallicity Z = 0.02 and composition by Grevesse & Noels
(1993). This set-up then gives a range of possible sonic-point
values of a2

s , ρs such that the condition Γ(a2
s , ρs) = 1 is fulfilled

(see Fig. 1a). These points are used as a single point boundary
condition, after which forward integration from the sonic point
is carried out. The results of these integrations for various fixed
mass-loss rates Ṁ = 4πRcρsas are shown in Fig. 1a. The figure
displays a colour map of Γ with the temperature on the abscissa
and the ratio between the radiation pressure

Pr =
4σSB

3c
T 4, (17)

1
1

1
1

1
1

1

1

1

1

1

1

0.5

1

1.5

(a)

(b)

Fig. 1. (a) Colour map of ΓOPAL for the stellar parameters from Table 1.
Temperature is given on the abscissa and radiation-to-gas pressure ratio
on the ordinate. Γ(ρs, a2

s ) = 1 is identified with a white contour. The
colour bar on the right corresponds to the colour coding of the plot
and gives the numerical value of ΓOPAL for a given temperature and
radiation-to-gas pressure ratio. Different line styles show the radiation-
to-gas pressure ratio and temperature structure for the different fixed
mass-loss rates. (b) Ratio of kinetic to core potential energy w = v2/v2

esc
of the corresponding solutions from panel a. The abscissa here shows
the radius coordinate x.

and gas pressure Pg on the ordinate (the ratio Pr/Pg is a proxy
for the density). The integration curves show the density and
temperature structure for the different cases, starting from var-
ious positions on the Γ = 1 curve at the inner boundary Rc and
extending outwards. Figure 1b then shows the corresponding net
gain of kinetic energy (Eq. (16)), demonstrating that after an
initial acceleration and increasing velocities, all of the curves
start to decelerate until eventually reaching zero velocity and so
terminating the outward integration (some solutions had to be
formally terminated before actually reaching zero velocity, due to
numerical difficulties in the steep deceleration region). This indi-
cates that none of the potential solutions starting from the Γ = 1
curve are able to escape the stellar gravitation potential. These
results are consistent with Ro & Matzner (2016), who also found
that OPAL opacities were not able to sustain a radiation-driven
mass loss initiated in the deep layers around the iron bump, and
indicates that an additional source of opacity is required, raising
the question of a missing force.

3.4. Missing force

The natural candidate for the missing opacity source discussed
above comes from the cumulative effect of spectral lines due to
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the Doppler effect. To estimate this we use the CAK parametri-
sation for a distribution of spectral lines, using here a simple
approximation of taking the absolute value of the velocity
gradient:

ΓCAK = Γe
Q̄1−α

1 − α

(
1

κecρ

∣∣∣∣∣dvdr

∣∣∣∣∣)α , (18)

where Q̄ is an effective strength of the line ensemble (Gayley
1995), and α sets the CAK line distribution power index. In
reality, once regions where dv/dr < 0 arise, it is possible for a
photon proceeding from the stellar core to be Doppler shifted
into resonance with the same spectral line at multiple locations
in the outflow, thereby requiring a fully non-local computation
of the line acceleration. As discussed further below, this could
(in principle) be handled in a more self-consistent manner by,
for example, Monte-Carlo (MC) line-force calculations. In this
initial study, however, we opt for a simpler approach, in order to
make time-dependent simulations feasible as well. Two possible
approximations that can be taken then are to either take the abso-
lute value of the velocity gradient |dv/dr| or use max(0, dv/dr).
The first approach estimates (approximately) an upper limit to
the CAK-like force in regions with negative velocity gradients,
whereas the second approach would correspond to a lower limit.
As most previous studies of line-driven dynamical flows have
used |dv/dr| (for example, in investigations of line-driven winds
from rapidly rotating stars, Petrenz & Puls 2000, and around
discs, Proga et al. 1998; Kee et al. 2016), we follow this standard
approach in this paper. However, test computations using instead
the lower limit max(0, dv/dr) show that although some details
of the radiation force profile then are changed, none of our con-
clusions are affected. With this approximation, using Eq. (18)
for ΓCAK then accounts for the force from spectral lines in super-
sonic regions, while ΓOPAL handles the force from the continuum
and spectral lines in the static limit. As such, the total radiative
acceleration can be simply estimated by the sum of the CAK-like
contribution and the static OPAL opacities, Γtot = ΓOPAL + ΓCAK.

Let us note here directly that the CAK line force is orig-
inally derived for application in winds that are optically thin
for continuum radiation. In the lower layers of the dense WR
outflows considered here, this will typically not be the case.
A more rigorous treatment would then also need to take into
account the change in continuum intensity by solving the trans-
fer equation for line+continuum opacities. While approximations
for the diffusion limit exist (Gayley et al. 1995) no general for-
malism has been developed. As such, in this first study of WR
wind dynamics we opt for the simple radial-streaming CAK form
above.

Furthermore, due to the explicit dependency of the CAK line
force on dv/dr the sonic point is now formally not a critical point
(see Castor et al. 1975). However, our iteration scheme circum-
vents this issue by always applying the velocity gradient from the
previous iteration, meaning that Γtot(r) technically is no longer an
explicit function of dv/dr. Nevertheless, since we require dv/dr
to be converged between iterations the corresponding feedback
upon Γtot(r) is still (implicitly) accounted for. The agreement
between the converged structures of these steady-state models
and the time-dependent simulations presented in the next section
brings further support to this method.

A key question then becomes whether ΓCAK also has a sig-
nificant impact on the conditions at the optically thick lower
boundary at the sonic point. Assuming typical O-star values
α = 0.66, Q̄ = 2300 (e.g. Puls et al. 2000), approximating the

velocity gradient3 as dv/dr ∼ ∆vmax/∆R(v = vmax), and using the
mass density and velocity computed in the static opacity limit for
Ṁ = 5.0×10−5 M� yr−1, we find the Eddington ratio for the CAK
force at the lower boundary to be ΓCAK = gCAK/g ∼ 0.1. Such
a small contribution from the CAK force is not surprising due
to the high density at the lower boundary4 (ΓCAK ∼ 1/ρα, with
α > 0). However, from test calculations it turns out that although
the CAK contribution indeed increases as we move outwards in
the wind, a simple model with constant α = 0.66, Q̄ = 2300 is
still not able to provide the force necessary to achieve a positive
total wind energy and so drive the wind to infinity (see previous
section).

There are, however, several indications that the line force
in the outer winds of classical WR stars indeed might be sig-
nificantly enhanced as compared to O-type stars. For example,
the independent MC line-force calculations by Lucy & Abbott
(1993) and Springmann & Puls (1998) both find global momen-
tum rates for WR stars that exceed those of O-stars by an order
of magnitude or more. In these MC computations, the outer-
wind enhancement of the line force stems from the decreasing
level of ionisation with increasing distance from the star in the
optically thick WR outflows. Due to this shift from high-to-low
ionisation stages as photons move outwards in the wind, new
spectral lines become available for photons to interact with. As
these new lines have different interaction frequencies than those
previously available in the inner wind parts, this means that
the line-frequency gaps typically observed for the nearly con-
stant (frozen-in) ionisation conditions of optically thin O-star
winds are effectively closed. This then leads to photon trapping
(Lucy & Abbott 1993) and efficient multi-line scattering, which
significantly increases the line force.

To mimic the effect of an outer wind line-force enhance-
ment, we introduce here a simple spatial variation α = α(r),
which increases the CAK force away from the star by a mod-
est decrease of α. To this end, we assume α(r) as a piecewise
linear function with a constant αmax from the lower boundary to
r1 and a constant αmin from r2 to the outer boundary, interpolat-
ing between the two values in the range [r1, r2]. This then allows
the wind outflow initiated at the lower boundary to achieve pos-
itive total energy, and so be sustained until the upper boundary.
While the specific treatment of α is done here in an ad hoc
manner, the overall assumed form is quite consistent with the
multi-scattering line-force enhancement found in the MC line-
force computations for a CAK-like spectral line distribution by
Springmann (1994). The approximate values of α(x) that cor-
respond to the line force computed by Springmann (1994) are
given in Fig. 2 as black asterisks, with the α(x) as adapted in
the standard model of this paper over-plotted as a solid line. The
figure shows that the order of magnitude outer-wind line-force
enhancement applied here indeed is on the same order as that
found in these MC calculations.

We note, however, that the Springmann (1994) calcula-
tions were performed only for parameterised (monotonic) β-type
velocity laws. As such, there is not a complete one-to-one corre-
spondence between the spatial and velocity scales in these MC
3 We define vmax as the maximum velocity found for the given fixed
mass loss in the static opacity limit.
4 The numerical simulations presented in Sects. 3–4 a posteriori con-
firm the simple order of magnitude estimate made here, showing
explicitly that the force contribution from the CAK-like opacities near
the lower boundary indeed is very small for our considered cases
(see, e.g. Fig. 3c). This thus resolves some potential issues of our
basic approach (simple summation of OPAL and CAK-like opacities)
regarding double counting the effect of spectral lines in the static limit.
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Fig. 2. Plot that demonstrates values of α (see text) required to repro-
duce the line force computed from MC radiative transfer calculations by
Springmann (1994; asterisks). The solid line then over-plots the piece-
wise linear function adopted in this paper to describe the corresponding
variation of α. The vertical dashed lines correspond to r1 (x1) and r2
(x2).

Table 2. Summary of standard line-force parameters used in this paper.

Q̄ αmax αmin r1/Rc (x1) r2/Rc (x2)

2300 0.66 0.50 1.7 (0.4) 2.8 (0.65)

calculations and those of the present paper. Nonetheless, the
overall similarity with the very simple radial dependence of the
α parameter adopted here is encouraging. In a follow-up work,
we plan to couple the hydrodynamic simulations presented here
directly to such MC computations, building on the method devel-
oped by Puls et al. (2000) for proper estimation of occupation
numbers, and accounting fully for multi-scattering effects as well
as non-monotonic velocity fields.

As outlined in detail in the following sections (for our stan-
dard values listed in Table 2) the formalism outlined above gives
rise to dynamically inflated wind solutions, where the structure
in the optically thick deep layers near the iron bump is primarily
governed by ΓOPAL but where ΓCAK takes over the driving in the
diluted outer regions. This then causes a typical wind structure
that is characterised by a high mass-loss rate ignited from the
lower boundary, a slow (end even partially negative) accelera-
tion of the deeper layers, and a rapid re-acceleration of the outer
wind. As such, the typical velocity laws we find not only dras-
tically deviate from the standard β-type laws assumed by most
atmospheric models, but they also contain a significant region of
negative acceleration (see also Fig. 14 in Pauldrach et al. 1993).

3.5. Dynamically inflated steady-state model

Based on the hybrid formalism introduced above we can now
numerically solve Eqs. (7)–(13), iterating towards convergence
using a simple scheme based on Runge-Kutta integrations. As
discussed in Sect. 3.1, to constrain the mass-loss rate it is critical
to here take into account the two-point boundary value nature of
the problem. At a basic level, every iteration is performed using
two steps: (i) an inside-out integration Rc → Rmax, where the
velocity, density, and temperature structure are computed, fol-
lowed by (ii) an outside-in integration Rmax → Rc updating the
temperature structure using the correct boundary condition from
the optical depth found in the first step. The mass-loss rate is

then updated for the next iteration by finding the correct loca-
tion on the Γ = 1 curve at the lower boundary, using the updated
temperature structure from the outside-in integration.

Using this scheme, Fig. 3a shows the final, converged tem-
perature profile for our standard stellar parameters (Table 1) and
choice of line-force parameters (Table 2). The final (also con-
verged) mass-loss rate for the model is Ṁ = 1.47×10−5 M� yr−1.

In addition to a high predicted mass-loss rate, the solution
displays a non-monotonic velocity field. The resulting velocity
profile shown in Fig. 3b can be split into three basic regions: (1)
an initial acceleration from the core followed by (2) stagnation
and even a deceleration part (and so a negative velocity gradient,
marked with crosses in the figure), and (3) an outer region of
fast re-acceleration to outflow velocities >1000 km s−1. The dis-
tinct behaviour of these three regions can be understood via the
different contributing parts of the total radiation force.

Figure 3c illustrates this, plotting the individual contribu-
tions of OPAL and CAK-like opacities to the total radiative
acceleration. From the figure, on one hand, it is clear that in the
inner regions the radiation force is dominated by OPAL opacities
and the CAK-like contribution is small; indeed, the sonic point
conditions at the lower boundary can here be quite well approx-
imated using only OPAL opacities, i.e. neglecting any influence
from the Doppler-shift enhancement of line opacities. On the
other hand, in the outer regions ΓCAK becomes the dominant
part, causing a re-acceleration of the flow and setting a high ter-
minal wind velocity. This re-acceleration ensures that the energy
requirement of Eq. (15) is satisfied. As such, it is this part that
ultimately allows the wind to be sustained all the way to the outer
boundary, in contrast to the failed outflow and fallback seen in
the previous section.

To explore the influence of different opacity contributions
on the mass loss of the model, we explore the logarithm of
the spherically modified optical depth (Eq. (8)) as a function of
radius in Fig. 3d. The dashed vertical line marks the location of
the stellar photosphere defined by Eq. (9). We note, however, that
at the photosphere τsp(Rph) , 2/3 as Rc is used as a scaling radius
in Eq. (8). For most stars, this photospheric radius Rph serves
as the hydrostatic stellar radius; by contrast, for the WR stars
examined in this paper, the photosphere is located well in the
outflowing regions. Inspection of Fig. 3d shows that the majority
of τsp is accumulated within few stellar radii in the regions dom-
inated by OPAL opacities, thus the converged lower boundary
temperature, and thus the mass-loss rate, is primarily controlled
by ΓOPAL.

Inspection of the density distribution in Fig. 3e further clar-
ifies the terminology dynamic inflation. In this figure, we have
again identified the location Rph with a vertical dashed line.
The figure shows a relatively slow decline of the density in the
sub-photospheric parts, which is somewhat reminiscent of the
profiles seen in hydrostatic stellar models near the Eddington
limit that undergo envelope inflation (see further below). But
unlike such static inflation mod0els, the simulations here allow
for a velocity field to develop; the low-density envelope now
represents a dynamically inflated star.

3.6. Comparison to static inflation

For the same lower boundary conditions as adopted above, we
can also compute static models. This can then serve as a direct
comparison between the dynamic inflation found in the models
above, and the static inflation that often occurs in stellar struc-
ture models neglecting the v dv/dr term in the e.o.m. (and so
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(a) (b) (c)

(d) (e)

Fig. 3. Solutions of a steady-state model with stellar parameters as in Table 2. (a) Temperature profile. (b) Velocity profile in solid line, the region
of stagnation or negative acceleration in X markers. (c) Eddington ratios for full radiation force in solid line, only the OPAL contribution in dotted
line, only CAK contribution in dashed line, and Γ = 1 in thin horizontal dashed line. (d) Profile of spherically modified optical depth. (e) Density
Profile. Panels d,e: the vertical dotted line at Rph = 4.48Rc = 4.48R� shows the location of the photosphere. The top axis gives the radial distance
in units of R�, but since in this paper Rc = R� this is also equivalent to normalising the radius to Rc.

assuming a hydrostatic stellar envelope throughout, e.g. Petrovic
et al. 2006; Gräfener et al. 2012).

To construct such static models, we simply set v ∼ dv/dr ∼ 0
in our steady-state e.o.m. above. Introducing a column mass

dr
dm

=
1
ρ
, (19)

we write the resulting equation of hydrostatic equilibrium as:

dPg

dm
=

M?G
r2 (Γ − 1). (20)

We further simplify the temperature calculation by assuming
radiative diffusion in these optically thick hydrostatic layers:

dPr

dm
= −

M?G
r2 Γ, (21)

for a radiation pressure according to Eq. (17). Combining the
equations for gas and radiation pressure, one obtains

dPg

dPr
=

1 − Γ

Γ
, (22)

where now Γ = ΓOPAL throughout the complete model.
This set-up imposes a similar two-point boundary value

problem as previously analysed. To provide a fair comparison
with those dynamical simulations, we assume the same lower
boundary radius r = R� as before and re-use the lower boundary

temperature T ≈ 230 kK found from the converged hydrody-
namic steady-state model presented above. However, at this inner
boundary we now impose Γ < 1 as Γ ≥ 1 would lead to non-zero
gas pressure at r → ∞ (see also Sect. 2.2 in Gräfener et al. 2012).
The outer boundary conditions for gas and radiation pressure
(i.e., density and temperature) are also set up in the same way as
before. Assuming Γ = const = Γe for the region r ∈ [Rmax, ∞),
we may integrate the hydrostatic equations to estimate the tem-
perature and the density at the outer boundary r = Rmax. This
fixes the effective temperature and the spherically modified opti-
cal depth scale dτ̃sp = −κOPAL ρ (Rmax/r)2 dr of these hydrostatic
(HS) models, requiring that the outer boundary always satisfies
τ̃sp(Rmax) = 4/3. Thus in this model, the stellar photospheric
radius is defined as

R̃ph ≡ r(τ̃sp = 4/3), (23)

for the corresponding hydrostatic effective temperature

T 4
HS, eff ≡

L
4πσR̃2

ph

, (24)

quite analogous to how these quantities typically are defined in
static stellar structure and evolution models.

These boundary conditions are used to numerically solve the
new set of equations from the outer boundary inwards. A consis-
tent solution is obtained by shooting for the fixed inner boundary
temperature and radius, varying the stellar photospheric radius
R̃ph and assuming inner-boundary values as discussed above. In
this way we obtain static envelopes corresponding directly to
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Fig. 4. Density profiles of different static and steady-state solutions. On both plots the solid lines show the different cases of hydrostatic solutions
and dashed lines show the sub-photospheric part of the steady-state outflow (see Fig. 3e). The different markers then compare hydrostatic solutions
for different assumed Thompson scattering Eddington factor Γe (left panel) and for different assumed L/Lrad ratios for the fixed total luminosity
log10(L/L�) = 5.416 (right panel). The numbers at the right end of each density profile correspond to the photospheric effective temperature of the
corresponding model in kilo-Kelvins, as defined in the text. To better visualise the innermost parts of the simulations, the right panel displays the
logarithm of the scaled radius x = 1 − Rc/r on the abscissa.

our previous dynamic models. The right panel of Fig. 4 shows
the predicted densities for static models with different assumed5

Γe ∈ [0.37, 0.40, 0.41] (for comparison see Fig. 1 in Gräfener
et al. 2012). These densities are then compared to those of the
steady-state computation in Sect. 3, for which Γe = 0.40.

We note directly that in the static case an extended region
of low density is formed. The photospheric radius R̃ph of this
inflated envelope is extremely sensitive to Γe, with R̃ph grow-
ing notably as Γe is increased. For the static model with highest
assumed Γe = 0.41, we already find a large R̃ph ≈ 35R� accom-
panied by a relatively cool effective temperature THS, eff = 21 kK;
further increasing Γe causes the inferred photospheric radius to
inflate to increasingly unrealistic, extremely large values. For the
Γe = 0.40 that we use in our dynamic models we find R̃ph =
4.7 R� and THS, eff = 56 kK. The reason for the inflation here is
the same as in the models by Petrovic et al. (2006) and Gräfener
et al. (2012). Basically, it is related to the fact that for high values
of Γe the integration moves along a Γ ≈ 1 curve, forcing the den-
sity to remain low and almost constant over a large radial extent.
Since enough column mass (or equivalently optical depth) still
has to be accumulated in order to meet the lower boundary con-
dition, the only way the star can react is by expanding in radius
(see also discussion in Owocki 2014). Comparing this now to our
dynamic solutions shows that, for the same Γe, inclusion of the
dynamical terms reduces the inflation somewhat. Nonetheless,
Rph still lies very far away from the core in such outflow mod-
els of dynamically inflated envelopes; indeed, for our standard
Γe = 0.40 we obtain Rph = 4.48 R� and Tph, eff = 62 kK. Such
a close agreement of photospheric radii in dynamic and static
models is however not generally found. Namely, a very small
increase to Γe = 0.41 in the static model leads to an order of
magnitude increase of the star’s photospheric radius (see Fig. 4),
in contrast to the dynamic model where this barely affects the
location of Rph.

The analysis above assumes that all luminosity is carried
by radiation. In stellar models, the strong increase in opacity
around the iron bump will typically lead to an onset of convec-
tion, such that L = Lrad + Lconv. In principle, this may alleviate

5 For the fixed stellar mass and electron scattering mass absorption
coefficient the variation of Γe is equivalent to the variation of Lrad.

the inflation by allowing a portion of the luminosity to be car-
ried by convection, lowering the effective Γe ∼ Lrad. However, for
the conditions prevailing in WR stars convection in these near-
surface layers should be very inefficient. Following Gräfener
et al. (2012), an upper limit to the fraction of the total stellar
flux F that can be carried by convection is:

Fconv

F
≈ 0.0034

105 K
Tc, eff

. (25)

This means that for the Tc, eff > 105 kK considered in this paper,
less than a percent of the total luminosity will be carried by
convection.

This convective inefficiency is confirmed by the computa-
tion of WR stars using the stellar structure and evolution code
package MESA (Paxton et al. 2019). Namely, using the stan-
dard mixing-length theory (MLT) prescription for convection
shows that such stellar structure and evolution computations6

indeed undergo similar inflation in the WR stage as seen here
in Fig. 4. However, in these stellar evolution simulations enve-
lope inflation and the associated density inversions often imply
prohibitively short time steps within the model calculations. To
prevent this from happening, such stellar models often invoke an
additional energy transport that is far greater than that implied by
the upper-limit estimate of Lconv above (see, for example, the so-
called MLT++ prescription in MESA, Sect. 7.2 in Paxton et al.
2013). This then forces Lrad to always be low enough such that
the calculation can proceed.

To mimic these tricks, in the next step we artificially reduce
Γe ∼ Lrad by introducing L = Lconv + Lrad. Then using Lrad in
Eq. (20), while computing the radiation pressure from the total
luminosity in Eq. (21), we solve the differential equations exactly
as above. By then assuming different ratios L/Lrad for the same
fixed total luminosity, we can directly compare dynamic and
static inflation models with and without such a reduction in
radiative luminosity. Analogous to the left panel, the right panel
of Fig. 4 shows the radial density structure of a case with reduced
radiative luminosity L/Lrad = 4 (solid line), comparing this to

6 Detailed description of these models as well as Input files to repro-
duce our MESA simulations are provided at https://doi.org/10.
5281/zenodo.4054811
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the original case L/Lrad = 1 (solid, marked line). The ratio of
L/Lrad = 4 here is chosen such that the stellar envelope no longer
experiences a density inversion. The figure demonstrates clearly
that the two solutions have vastly different radial scales; while
the original model had R̃ph = 4.7 R� and THS, eff = 56 kK, the
model with reduced radiative luminosity has a very hot THS, eff =
121 kK and a photospheric radius that lies less than a percent
above the core Rc = R�.

The reason for these drastically different stellar photospheric
radii is the same as described earlier; including an additional
(artificial) energy transport reduces the effective Γe ∼ Lrad, so
that a dense exponential atmosphere with small scale height is
formed. This then avoids inflation and density inversions, and the
upshot is a hot and compact WR stellar surface. This is a good
example of how envelope inflation and density inversions are
often avoided in stellar structure computations by reducing Lrad
well beyond the limits implied by standard convective energy
transport.

A key result of our analysis here is thus that such tricks of the
near-surface regions in WR stars are necessary only because of
enforcing a hydrostatic solution. As shown above, when includ-
ing the dynamical terms the stellar envelope will instead quite
naturally develop a dynamically inflated outflow region.

4. Time-dependent numerical hydrodynamic
simulations

The previous section presented calculations in the steady-state
limit, using various degrees of approximations for solving the
dynamical (and static) equations. Building on the same basic
formalism, this section now presents full time-dependent numer-
ical hydrodynamics simulations for spherically symmetric WR
wind outflows. A key objective is to examine whether such time-
dependent simulations relax to similar solutions as the simplified
steady models of Sect. 3.

The hydrodynamic simulations are performed using the finite
volume code MPI-AMRVAC (Xia et al. 2018) to solve Eqs. (1), (4),
and (7). We use the HLL solver (Harten 1983) with a MINMOD
flux limiter (van Leer 1979). The radiative acceleration is com-
puted as in Sect. 3.3 by summing up the contributions from
OPAL and CAK-like opacities, Γtot = ΓOPAL + ΓCAK. Here the
OPAL contribution is trivially obtained from the local density
and temperature, and the CAK contribution from a simple central
finite difference scheme applied to Eq. (18). To avoid information
propagating over multiple cells in a single integration we further
limit the integration time step dt by:

dt = min

dtCFL, 0.3

√
∆r

g + gr

 ,
where dtCFL is the time step set by the standard Courant-
Friedrichs-Lewy condition (Courant et al. 1928), and ∆r the
width of one numerical cell.

As Eq. (7) is not the standard way of computing the energy
balance in MPI-AMRVAC we have implemented an additional rou-
tine to handle this. In this subroutine the optical depth Eq. (8) is
first computed by trapezoid integration starting from the outer
boundary i = imax, setting τ(imax) = τout as before, inwards to
i = imin. The radial temperature structure Ti is then updated at
each hydrodynamical time step according to Eq. (7). For sim-
plicity, we here define Rc to always be at the lower boundary of
the simulation.

Fig. 5. Surface plot of velocity as a function of time and reduced radius
x for the model as described in text. The figure demonstrates how the
velocity profile relaxes from the initially assumed vβ to (quasi) steady-
state profile over ≈40 ks.

4.1. Initial and boundary conditions

Analogous to our steady-state simulations, we define the outer
boundary to be located at some radius Rmax and use the same
optical depth and temperature conditions as described in the
previous section, Eq. (7) and the pre-specified minimum temper-
ature (see above). As in, for instance, Driessen et al. (2019), the
numerical outer boundary conditions on the velocity and density
are set by simple extrapolation from the outer most points of the
simulation grid. To properly resolve the sonic point we set the
inner boundary to a lower radius than the expected sonic point
Ra, i.e. now Rmin ≡ Rc = 0.99 R� < Ra. At this Rmin we then fix
the lower boundary density ρ? and allow the velocity to adjust to
the overlying wind conditions (see, e.g. Owocki et al. 1988). ρ?
is initially estimated from our corresponding steady-state mod-
els by simply assuming hydrostatic equilibrium below the sonic
point. The stellar mass and luminosity are still as in Table 1.

The initial wind condition is an analytic outflow structure, in
the form of a simple β-law:

vβ = v∞

(
1 − b

Rc

r

)β
, (26)

where the terminal velocity v2
∞ = 2M?G(Γ − 1)/Rc, and β = 0.5

are derived from a simple assumed Γ = const > 1. The param-
eter b sets the minimum initial velocity 3min at r = Rc, here
chosen such that vmin ≈ 50 km s−1. The equation of continuity
then directly provides the initial density structure. Finally, the
initial temperature structure is computed from Eq. (7) with the
opacity set according to the assumed input Γ from above. Using
these initial and boundary conditions, numerical time integration
is carried out until the wind relaxes to a (quasi) steady state. We,
however, note that the results of our simulations are not sensitive
to these assumed initial conditions.

4.2. Time-dependent dynamic inflation model

Starting from the initially assumed structure the wind outflow
gradually relaxes to a hydrodynamically consistent structure. The
velocity relaxation is displayed in Fig. 5 as a surface plot, where
along one horizontal axis the physical time t in ks of the simu-
lation is shown and along the other the radius in x = 1 − Rc/r.
The vertical axis then measures velocity (in km s−1). At t = 0 the
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(a) (b)

Fig. 6. Profiles of final time step from the time-dependent numerical model (see Sect. 4.2). (a) Eddington ratio, with the definition of line styles
the same as on Fig. 3c. (b) Comparison of the initial (dotted line), final time step (solid line) and steady-state (dashed line) velocity fields.

initial velocity structure, vβ, is visible, however as time increases
this β-type structure gradually evolves towards the three-phased
velocity profile discussed in Sect. 3.5. Around at t ≈ 40 ks the
simulation has relaxed to a state very similar to that found in our
corresponding steady-state model (Sect. 3.5).

Running the simulation for in total 600 ks, Figs. 6a and b
show the Eddington ratio Γ and the velocity profile of the final
time step. From Fig. 6a we observe that, just as in the steady-state
model, the CAK-like force near the lower boundary on average
only has a small contribution to the total force; contrarily, near
the outer boundary, it is dominant. The radiation force from the
OPAL contribution has the opposite behaviour, dominating at the
sonic point and in the inner regions, but becoming secondary in
the outer parts. This then again leads to a velocity profile (solid
line in Fig. 6b) with a non-monotonic behaviour, which clearly
can not be fit with the simple β-type velocity law assumed in the
initial conditions (dotted line).

This velocity profile can be directly compared to that found in
our corresponding steady-state model, illustrated by the dashed
line in Fig. 6b, which shows close agreement between the two.
The mass loss of the time-dependent model is Ṁ = 1.64 ×
10−5 M� yr−1, which also agrees well with the mass-loss rate
of Ṁ = 1.47 × 10−5 M� yr−1 from our steady-state model (see
Sect. 3). In this way, our time-dependent models demonstrate
that the dynamically inflated solution discussed in the previ-
ous section indeed works as a stable attractor for the stellar
wind envelope, confirming our basic conclusions regarding a
wind outflow controlled primarily by OPAL opacities in the
inner regions, and by the CAK-like force in the outer. The
small differences in velocity magnitude and mass loss between
steady-state and time-dependent models are mainly related to
differences in setting the lower boundary. In steady-state com-
putations we define the sonic point to be exactly at the lower
boundary, whereas in time-dependent computations it is allowed
to self adjust so that the sub-sonic part is also resolved.

4.3. Ṁ dependency on CAK α

A general finding of our baseline simulations in Sects. 3 and 4
is that (as long as the wind can escape), the mass-loss rate is
primarily controlled by the conditions in the lower wind; in con-
trast, the terminal wind speed is controlled mainly by the outer

Table 3. Summary of mass-loss rates and terminal wind speeds for
models with different values of αmin.

αmin αmax
Ṁ/10−5 ṀCAK/10−5 v∞

(M� yr−1) (km s−1)

0.48

0.66

1.59 4.60 2765
0.50 1.64 2.70 2063
0.52 1.68 1.66 1279
0.53 – 1.33 –

Notes. The columns provide αmin (value of α parameter at the outer
boundary), αmax (value of α parameter at the inner boundary), the
mass-loss rate of the model Ṁ/10−5 in M� yr−1, the CAK mass loss
ṀCAK/10−5 in M� yr−1 corresponding to αmin, and the terminal velocity
v∞ in km s−1. The model with αmin = 0.53 failed to provide sufficient
force to drive the outflow to the outer boundary, leading to termination
of the numerical simulation (see text).

wind conditions. Moreover, while it has turned out that a steady-
state model, such as the one presented in Sect. 3, is quite difficult
to converge, the time-dependent simulations of this section are
computationally somewhat easier to handle.

Therefore, we have used our time-dependent set-up to fur-
ther explore the impact of the CAK-like force parameters on the
predictions of Ṁ and v∞. We investigate the impact of these
parameters by varying only αmin and αmax, however we point
out that comparable effects could also be achieved by instead
introducing corresponding radial variations of the second line-
force parameter Q̄. To this end, we test a range of values αmax ∈

[0.60, 0.66] and αmin ∈ [0.48, 0.53], corresponding roughly to
the scatter of α observed in the MC simulations displayed in
Fig. 2. The results of these tests are summarised in Tables 3 and
4, along with the mass-loss rates and terminal velocities found
for the different model runs. In addition, we also tested varia-
tions in the spatial position of the αmax to αmin transition for the
standard CAK force parameters in the range x ∈ [0.3, 0.7]. How-
ever, for these tests, no significant influence on the mass-loss
rates of the models have been observed. Therefore, the following
subsections focus exclusively on varying the values of αmax and
αmin.
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Table 4. Summary of mass-loss rates and terminal wind speeds for
different values of αmax.

αmin αmax
Ṁ/10−5 v∞

(M� yr−1) (km s−1)

0.50
0.60 2.13 1787
0.63 1.84 1937
0.66 1.64 2063

Notes. The columns are as in Table 3.

4.3.1. Dependency on αmin

As ΓCAK is the prevalent driver in the outer wind, one might
initially expect a similar dependence of the mass-loss rate on
αmin as given by the standard CAK model. The CAK expression
for the mass-loss rate ṀCAK, typically derived from critical-point
analyses for Γtot = Γe + ΓCAK in the radial streaming limit, is:

ṀCAK =
L
c2

α

1 − α

(
Q̄Γe

1 − Γe

) 1−α
α

. (27)

From this expression, it directly follows that ṀCAK increases
steeply if α is decreased while keeping all other parameters
constant. However, it can be seen from Table 3 that in our
models Ṁ varies only marginally across the range of consid-
ered αmin values. This distinguishes these optically thick WR
simulations from standard CAK-type models applied to the opti-
cally thin winds of O-type stars. We further confirm the finding
from the steady models that if αmin is increased too much, the
line force becomes insufficient to sustain the outflow. This hap-
pens because the line acceleration in the outer wind must be
sufficient to prevent fallback of the mass loss initiated at the
Fe-opacity bump. That is, the line acceleration must provide
enough additional energy such that the previously introduced
W ≥ 0 condition is fulfilled. As alluded to above, the CAK
mass-loss rate formula cannot be directly used to predict the
mass loss of this hybrid model. Nevertheless, the limiting value
of αmin that can sustain the wind can be estimated by inverting
the above equation, solving for the α at which the CAK mass-loss
rate equals that of our actual model. For the given model with
Ṁ = 1.64 × 10−5 M� yr−1, one finds αmin ≈ 0.52. The results of
our numerical simulations, summarised in Table 3, indeed sug-
gest that this provides a reasonable estimate for the limiting αmin
value.

This is also supported by closer inspection of the simulations
with αmin = 0.52, which results in a flattening of the wind veloc-
ity profile as W ≮ 0. With a further increase to αmin = 0.53,
we find that the CAK-like force is unable to keep up with the
mass flux initiated at the lower boundary. In the 1D simulations
presented here, this then leads to a similar failed wind situation
as discussed in the previous section; we discuss potential impli-
cations of this behaviour for multi-dimensional versions of our
simulations at the end of the next section.

Finally, as summarised in Table 3 the terminal velocity
indeed is very sensitive to small changes of αmin. Overall, this
thus suggests that within this formalism, Ṁ and v∞ are deter-
mined quite independently. As discussed further in Sect. 5.2,
such a basic decoupling of Ṁ and v∞ indeed seems to be sup-
ported by observational data of WR winds (e.g. see Hamann
et al. 2019; Sander et al. 2019). On the other hand, this result
also seems to contradict that of the most recent study from

Sander & Vink (2020), who find a correlation between Ṁ and
v∞. We further discuss possible reasons for this in Sect. 5.4.

4.3.2. Dependency on αmax

In contrast to αmin, αmax has little to no effect on determining
the terminal velocity of the outflow. Nevertheless, it can affect
Ṁ. This is illustrated in Table 4, where a modest increase in Ṁ is
found for decreasing values of αmax. We note, however, that again
the magnitude of the mass loss variation is small in comparison
to that seen in CAK-type wind models of optically thin O-stars.

This rather weak dependence on the CAK force stems from
the fact that the dominant contribution to the total radiation force
comes from the OPAL opacities in the regions near the stellar
core (see also Sect. 3). At the sonic point for αmax = 0.6, we find
ΓCAK ≈ 0.14 and for the αmax = 0.66 we find Γ = 0.02, which
is much lower even than our initial order of magnitude estimate
Γ ≈ 0.1 in Sect. 3.4. This further supports that the CAK force
has a negligible contribution at the sonic point. Moreover, since
those inner parts accumulate the majority of the integrated wind
optical depth, they also primarily control the lower-boundary
temperature to which the overlying wind adjusts, and thereby
also the mass-loss rate.

5. Discussion

5.1. Implication for core radius problem

The dynamic models presented in Sects. 3 and 4 provide a natu-
ral explanation to the so-called core radius problem of classical
WR stars (see Sect. 1). To understand this, we introduce the
standard Rosseland mean optical depth scale

τRos =

∞∫
r

κRos ρ dr =

∞∫
r

κOPAL ρ dr, (28)

where κRos is computed using the Rosseland mean opacities from
the OPAL tabulation, such that κRos = κOPAL throughout this
work.

Then, following the standard spectroscopic model approach
of fitting an assumed vβ velocity profile to the entire supersonic
region, Fig. 7 directly illustrates how the hydrostatic core Rsp

c
(where vβ reaches sub-sonic velocities) in that case would be
located at a radius Rsp

c > Rc. Indeed, the core radius recovered in
this way is a factor ≈2.6 times larger than the true value, demon-
strating the basic challenge of determining WR hydrostatic radii
from spectroscopic data (e.g. Crowther 2007). The discrepancy
essentially stems from the fact that τRos = 2/3 is reached already
at very high radii (see the grey area in Fig. 7), so that only the
outermost velocity law is visible to us. Observational estimates
of the hydrostatic stellar core radius must thus be obtained by
some extrapolation of the velocity law assumed in the spectro-
scopic model, without any knowledge of the true velocity field
in the invisible inner regions.

The dynamic models presented in this paper explain this
long-standing discrepancy simply by their extended (dynami-
cally inflated) region of low-velocity outflowing material above
the hydrostatic stellar core.

To further illustrate this effect, let us inspect the observa-
tional positioning of classical WR stars on the Hertzsprung–
Russell diagram (HRD), where the stars are placed according to
their observationally inferred luminosities and hydrostatic core
effective temperatures. Figure 8 here shows the HRD where
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Fig. 7. Steady-state velocity profile (solid) of the stellar model used in
this paper. The grey shading marks the region of high photospheric
continuum optical depth τRos ≥ 2/3, with R(τRos = 2/3) ≈ 3.5R?. In
crossed-dashed line a vβ velocity fit to the optically thin region is given,
which was extrapolated to the optically thick region to recover the stellar
core radius.

Fig. 8. Hertzsprung–Russell diagram including galactic WR stars of
nitrogen (WN), carbon (WC), and oxygen sequences (WO). The solid
shapes mark inferred core effective temperatures and luminosities from
Hamann et al. (2019; WN) and Sander et al. (2019; WO,WC); the mean
value is marked with a +. The x marks the location of the modified aver-
age luminosity and temperature, where the spectroscopically inferred
core radius has been reduced by a factor of 3 (see text). The grey dashed
line shows the approximate predicted location of the Helium Zero Age
Main Sequence (He-ZAMS) computed using MESA (see the text).

the observed galactic sample of WR stars by Hamann et al.
(2019) and Sander et al. (2019) is placed. Positions of these
stars on the HRD can then be compared to the location of the
so-called helium zero age main sequence (He-ZAMS; dashed
line in figure), computed here with MESA using the standard
mixing-length theory for convection with solar metallicity and
relative metal fractions as given by Asplund et al. (2009)7. On
average, observationally inferred positions of WR stars are then
expected to lay to the left of this He-ZAMS line. This is because
typical stellar evolution models, where an additional energy
transport is typically also invoked in order to prevent the WR
cores from inflating (see Sect. 3.5), occupy the region to the hot-
ter side of He-ZAMS on the HRD. Figure 8, however, shows that
the average position of these WR stars (indicated by + in the

7 The computed location of the He-ZAMS as well as Input files to
reproduce our MESA simulations are provided at https://doi.org/
10.5281/zenodo.4054811

Fig. 9. Distribution of mass-loss rates and terminal velocities derived
from the spectroscopic fitting by Sander et al. (2019) and Hamann et al.
(2019) for an observed stellar population of galactic WR stars of nitro-
gen (WN), carbon (WC), and oxygen sequences (WO). Mass-loss rates
and terminal velocities derived in our steady-state (log10(Ṁ/M� yr−1) =
−4.83, v∞ = 2200 km s−1) and time-dependent (log10(Ṁ/M� yr−1) =
−4.78, v∞ = 2063 km s−1) simulations are consistent with the range of
mass loss shown on this figure.

Table 5. Summary of derived parameters of our steady-state and time-
dependent models.

Model Ṁ v∞ Rph Tph, eff

(M� yr−1) (km s−1) R� kK

Steady-state 1.47 × 10−5 2200 4.48 62
Time-dependent 1.64 × 10−5 2063 4.64 60

Notes. Listed are mass-loss rate, terminal velocity, radius of photo-
sphere, and effective temperature at photosphere.

figure) is located on the cooler side of the He-ZAMS instead.
To improve the agreement between spectroscopy and evolution
predictions a simple correction factor ≈3 can be applied to the
spectroscopic radii, which then shifts the core effective temper-
ature location (now identified on Fig. 8 by x). And indeed, such
a correction factor matches quite well with the correction factor
implied by our dynamic inflation models above.

5.2. Empirical constraints and model dependencies of mass
loss and terminal velocity

The basic model presented in the previous sections shows an
overall quite good agreement with empirical constraints on ter-
minal velocities and mass-loss rates of WR stars. Figure 9
plots such empirically inferred values of Ṁ and v∞, again from
Hamann et al. (2019) and Sander et al. (2019). Compared to the
mass-loss rates and terminal velocities predicted by our hydro-
dynamic and steady-state models (summarised in Table 5), the
latter is located at the high end of the inferred values. How-
ever, since v∞ is primarily determined by the line force in the
outer wind regions, which here is parametrised by the simple
radial streaming CAK-approximation outlined in previous sec-
tions, a more detailed approach will be necessary to make more
quantitative comparisons to empirical v∞. Inspection of Fig. 9
also reveals that the empirical mass-loss rates and terminal wind
speeds show no prominent anti-correlation. This further supports
another basic characteristic of our models, namely that Ṁ and v∞
are quite decoupled (see Sect. 4.3.1).
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5.3. Dependence on metallicity

The model of dynamic inflation presented in this paper relies on
the fact that the Γ = 1 condition is reached already at the Fe-
opacity bump. As such it is sensitive to the variation of opacity
at the Fe-opacity bump, which is directly controlled by metal-
licity (e.g. Cantiello et al. 2009). Qualitatively, the model of
dynamic inflation should respond to a decrease or increase in
metallicity by reducing or enlarging the scale of inflation and
the associated mass loss. Moreover, at low enough metallicity
the Γ = 1 condition will not be fulfilled at the Fe bump, in which
case dynamic inflation will no longer take place from the hot Fe
bump, and a standard optically thin wind develops instead. This
behaviour is also in line with the recently published models by
Sander & Vink (2020).

5.4. Comparison to co-moving frame models

As mentioned above, recently Sander et al. (2020) and Sander
& Vink (2020) published time-independent wind simulations of
classical WR stars. These models solve the same steady-state
e.o.m. as here8, however using a different method to calculate
the radiative acceleration. There Γ(r) is derived from full solu-
tions of the frequency-dependent radiative transfer equation in
the co-moving frame (CMF), without the use of any parameteri-
sation to estimate the line-force contribution (see also Sundqvist
et al. 2019; Björklund et al. 2021, for similar approaches applied
to O-stars). Although these models thus compute Γ(r) for a
given velocity and density structure in a more detailed way
than here, this CMF method (as currently implemented) has
one major disadvantage. Because of the way the CMF trans-
fer equation is numerically solved, it can only be applied to
monotonically increasing (or decreasing) velocity fields v(r). As
such, this method cannot be used to derive Γ(r) for the type of
non-monotonic velocity structures found here (see Figs. 3b, 6b).

The way Sander et al. (2020) overcome this issue is by
assuming an ad hoc very high degree of clumping in the WR
outflow (see also Gräfener & Hamann 2005). They parameterise
this using a simple model where all wind mass is assumed to
be concentrated within overdense clumps, such that the densi-
ties of these clumps are ρcl = 〈ρ〉/ fvol = D〈ρ〉, where 〈ρ〉 is the
mean density (assumed to be preserved with respect to a smooth
model), fvol the volume fraction of the total wind contained by
clumps, and D the clump-overdensity factor.

By adopting a very high D = 50 ( fvol = 0.02), the ionisation
balance of the wind is shifted so that more effective driving lines
become available, and the line force is thereby increased enough
to avoid any deceleration regions. When assuming instead a more
modest D = 10 in their models, they do experience the same type
of Γ < 1 regions as here, which leads then to a non-monotonic
v(r) that cannot be handled by the CMF radiative transfer (see
Fig. 1 in Sander et al. 2020, and their corresponding discussion).
Since observations of electron scattering wings in WR out-
flows suggest quite modest values D ≈ 4−10 (see overviews by
Crowther 2007; Puls et al. 2008), and theoretical wind-clumping
models following the line-driven instability (Owocki et al. 1988)
have so far only been developed for OB-stars (with again typical
values D ≈ 10; Sundqvist et al. 2018; Driessen et al. 2019), it is
at present not clear how the high clump densities needed to keep
v(r) monotonic in CMF-based WR models might be physically
justified.

8 Except that they also include a constant turbulent velocity part in their
calculation of an effective sound speed.

The models presented here are thus very complementary
to such CMF-based simulations. Although our more simplified
treatment of Γ involves certain approximations (as discussed in
previous sections) it allows us to model regions of stagnation and
deceleration (see Sects. 3 and 4), whereas such non-monotonic
flows are incompatible with the methods currently used in CMF-
based calculations. Moreover, the method presented here allows
for time-dependent simulations that otherwise would not be
computationally feasible. In this respect, we also recall our find-
ing that if the line force in the outer wind is decreased too much,
the wind not only experiences regions of deceleration but may
eventually reach zero velocity. In the 1D simulations presented
here, this leads to failed wind solutions and model termination.
In a multi-dimensional simulation, one may speculate that it
might instead result in a very complex wind structure of co-
existing regions of upflows and inflows. In turn, this may then
cause shocks and perhaps increased levels of clump formation.
These could be simulated in multi-dimensional hydrodynamics
simulations using the method we present here.

The models presented here also demonstrate that even with
multiple extended regions where Γ < 1, the accumulated net
energy of the wind can still be positive (i.e., we can still have
W ≥ 0). This suggests that the WR outflow can be driven
without invoking such a high degree of clumping, but instead
allowing for non-monotonic velocities. For example, let us con-
sider the lower panel of Fig. 1 in Sander et al. (2020), where the
authors provide Γ(r) not only for their final D = 50 model (their
solid line) but also for their collapsed D = 10 solution (their
dashed line). From these profiles, we estimated the net energy
corresponding to both models and found that, indeed, both of
the force configurations provideW > 0. As such, both solutions
may actually escape the stellar potential, but since the D = 10
model would have contained regions of negative acceleration
it could not be treated by the assumed CMF radiative transfer
framework.

Note that Sander et al. (2020) make the argument that
although the assumed very high degree of clumping influences
v∞ significantly, it does not have a major impact on Ṁ, since
clumping is assumed to be present only at supersonic velocities.
This is quite consistent with our finding here. On the other hand,
Sander & Vink (2020) also find a correlation between Ṁ and v∞,
which we do not necessarily observe in our models. This result,
however, might simply be related to them forcing a monotonic
velocity field in their simulations, since the same correlation was
also found in the β-law WR models by Gräfener et al. (2017).

6. Summary and future work

This paper has presented a model for the wind outflows of clas-
sical Wolf-Rayet stars, based on a hybrid opacity method where
OPAL opacities are used in combination with a CAK-like line
force parametrisation. The latter is used here to account for the
effects of Doppler shifts upon spectral line opacity in an approx-
imate way. Our hybrid opacity model essentially results in a two
stage WR stellar wind: a supersonic outflow is first initiated in
optically thick layers (at the so-called Fe bump) by the OPAL
opacities. However, these opacities are not able to prevent fall-
back upon the core, and so it is the CAK-like force that takes
over the driving in the outer regions and ensures that the initiated
outflow can also escape the stellar potential.

Our approach leads to deep-seated wind initiation with
high mass-loss rates and terminal velocities (see Table 5), in
the range of values typically inferred for classical WR stars
by spectroscopic analyses. The simulations display dense and
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slow – dynamically inflated – sub-photospheric layers, offer-
ing a natural explanation to the so-called core-radius problem
of classical WR stars. Direct comparison with hydrostatic com-
putations further shows that neglecting the dynamical terms in
the e.o.m. instead leads to drastic inflation of the then assumed
static envelope. In this way, we demonstrate explicitly that the
need to invoke huge amounts of ad hoc energy transport in these
convectively inefficient regions of stellar structure and evolution
calculations is simply an artefact of neglecting the dynamic outer
boundary.

The paper here uses a line-force parameterisation that intro-
duces a very simple radial variation to the CAK power-law index
α in order to sustain the outer wind outflow. The quite simple
nature of this basic set-up means that it should be rather straight-
forward to extend these first simulations towards exploration of
a more complete stellar parameter space for classical WR stars.
Since the assumed CAK line-force parameterisation proved to
have little effect on the resulting mass loss (as long as we ensure
a positive wind energy), such model grids might then offer good
alternatives for direct inclusion of mass-loss rates into stellar
evolution models.

The assumed treatment of α does influence the outer wind
velocity profile and terminal speed. As such, constraining the
morphology of the re-accelerating part of the outflow will
require more detailed studies. This is a very challenging task,
however, since a non-parametrised calculation of the line force
in these regions must be able to deal with non-monotonic veloc-
ity fields. As such, current CMF radiative transfer methods, like
those applied in some alternative WR- (Gräfener & Hamann
2005; Sander et al. 2020; Sander & Vink 2020) and O-type star
wind models (Sundqvist et al. 2019; Björklund et al. 2021), will
not be sufficient.

The assumed variation of α can also be varied in multi-
dimensional extensions of the time-dependent simulations pre-
sented here. In such a study we may allow parts of the wind
material to fall back into the deep regions of the outflow. While
in 1D simulations such fallback eventually always leads to model
termination, in a multi-dimensional setting it may instead create
a highly structured, turbulent flow. This might then still deposit
enough momentum into the plasma that a wind can be sus-
tained, but now with clumps of material perhaps mechanically
transporting some of the momentum through collisions.

As the wind velocity field also affects spectral line forma-
tion, another important follow up regards analysis of spectral
features associated with the non-monotonic velocities found in
this paper. In particular, a key question becomes if there are any
fundamental differences in the predicted strengths and shapes of
strategic spectral lines calculated from our models as compared
to those predicted by standard spectroscopic models assuming a
monotonic β-type velocity law (e.g. cmfgen, Hillier & Miller
1998). Using the newly developed 3D radiative transfer code
by Hennicker et al. (2020), studies of this are already under-
way and will be presented in an upcoming paper. Finally, a very
interesting problem to address concerns stellar structure and evo-
lution, and the manifestation of dynamic inflation in different
evolutionary stages. Such a study might be especially important
since quite many stars (some already at earlier evolution stages)
reach the Eddington limit at opacity bumps in regions that might
have insufficient convective energy transport. As demonstrated
in Sect. 3, dynamically inflated envelopes should then develop,
which in turn could have a significant feedback on the stellar
structure as well as on the further evolution of the star.
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