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ABSTRACT

Context. Red supergiants are observed to undergo vigorous mass loss. However, to date, no theoretical model has succeeded in explain-
ing the origins of these objects’ winds. This strongly limits our understanding of red supergiant evolution and Type II-P and II-L
supernova progenitor properties.
Aims. We examine the role that vigorous atmospheric turbulence may play in initiating and determining the mass-loss rates of red
supergiant stars.
Methods. We analytically and numerically solve the equations of conservation of mass and momentum, which we later couple to an
atmospheric temperature structure, to obtain theoretically motivated mass-loss rates. We then compare these to state-of-the-art empir-
ical mass-loss rate scaling formulae as well as observationally inferred mass-loss rates of red supergiants.
Results. We find that the pressure due to the characteristic turbulent velocities inferred for red supergiants is sufficient to explain the
mass-loss rates of these objects in the absence of the normally employed opacity from circumstellar dust. Motivated by this initial
success, we provide a first theoretical and fully analytic mass-loss rate prescription for red supergiants. We conclude by highlighting
some intriguing possible implications of these rates for future studies of stellar evolution, especially in light of the lack of a direct
dependence on metallicity.
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1. Introduction

The lack of a satisfactory theory explaining the strong,
>10−7 M� yr−1, mass loss for evolved massive stars on the
red supergiant branch has been a long-standing problem in our
understanding of these objects (see Levesque 2017, for a recent
discussion of this and other current puzzles in studying red
supergiants). While this considerable gap in our knowledge has
been patched over somewhat by empirical rates and scaling for-
mulae (see, e.g., Mauron & Josselin 2011, for a review), the
overall disagreement between any given two of these leaves those
attempting to model red supergiants directly, or attempting to
model stellar evolution including or approaching this phase, with
a rather untenable problem. Namely, one must somehow distin-
guish and select between rates that may differ from each other by
as much as four orders of magnitude in some parts of the param-
eter space without a general understanding of the underlying
process that determines this mass loss.

In order to understand why theories generally struggle so
much in this region, it is important to highlight some general
features of previous modeling attempts. In analogy to the lower-
mass asymptotic giant branch (AGB) stars, it has generally been
assumed that the primary driving mechanism of red supergiant
winds is radiation pressure on dust grains (see, e.g., Höfner &
Olofsson 2018, for a review). For AGB stars, pulsations pro-
vide an atmospheric piston levitating material off the stellar
surface and up to a region where the temperature has dropped
far enough to allow dust to condense (e.g., Bladh & Höfner
2012; Bladh et al. 2013). However, as dust nucleation is also a

density-dependent process, it is essential not only that material
reaches this region but that enough material is levitated to make
the dust formation efficient. Due to both the lower pulsational
amplitudes inferred for red supergiants (e.g., Wood et al. 1983)
and their higher effective temperatures relative to AGB stars,
applying similar models to red supergiants thus requires gas to
reach a greater height in comparison to the stellar radius, while
less material is expected to be levitated in the first place. This
implies a strongly decreased efficiency of dust condensation.
Modeling attempts have been generally unsuccessful in gener-
ating the atmospheric extensions of red supergiants necessary to
put enough material at the dust sublimation front to recover the
observed mass-loss rates of red supergiants (e.g., Arroyo-Torres
et al. 2015).

An alternative suggestion has been that pulsational motions
might be accompanied or replaced by significant atmospheric
turbulence (e.g., Gustafsson & Plez 1992; Josselin & Plez 2007),
and that this turbulence might be seeded by the vigorous convec-
tion expected in the atmospheres of red supergiants (see Freytag
et al. 2012, for a theoretical treatment of convection in red super-
giant envelopes). At the moment, these convection simulations
produce only modestly extended atmospheres compared to what
is inferred from observations (e.g., Arroyo-Torres et al. 2015).
Nevertheless, observations of red supergiants do suggest that the
outer layers of these stars are indeed very turbulent (e.g., Josselin
& Plez 2007; Ohnaka et al. 2017).

Therefore, inspired by the work of Gustafsson & Plez (1992)
and Josselin & Plez (2007), we here undertake the derivation
of an analytic, theoretical mass-loss rate that focuses on these
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observed turbulent velocities present in the atmospheres of red
supergiants. Doing so, we find that the inferred turbulent motions
are, alone, sufficient to explain the mass-loss rates of red super-
giants even in absence of any dust opacity. This model then can
be seen as a turbulent pressure driven extension of the classical
thermal pressure driven Parker wind (Parker 1958). In contrast to
the solar wind and other applications of this theory (for instance
the “warm wind” model, Hearn 1975; Rogerson & Lamers 1975),
however, the total sound and turbulent speed can be much lower
due to the lower surface gravity of red supergiants. In Sect. 2
we lay out the basic formalism for this model in an isother-
mal set-up, under which the mass-loss rate is fully analytic. By
imposing a temperature structure, we then extend the model in
Sect. 3 by iteratively solving the relevent equations to converge
to non-isothermal mass-loss rates. We further fit over the differ-
ence between the isothermal and non-isothermal mass-loss rates
to provide a theoretically motivated mass loss rate as an analytic
function of stellar parameters and turbulent velocity. In Sect. 4
we review some of the currently used empirical mass-loss rate
prescriptions for red supergiants and compare our theoretical rate
to these, as well as to the sample of observed red supergiants
from Josselin & Plez (2007) and the observations of Antares by
Ohnaka et al. (2017). Finally, we discuss some future directions
for this model in Sect. 5.

2. Analytic mass-loss rate from levitation of an
isothermal atmosphere

2.1. Derivation of the mass-loss rate

To begin, we first consider the relevant equations that must be
satisfied at all points in an isothermal flow, namely conserva-
tion of mass and momentum. For a purely radial, spherically
symmetric outflow in a steady state these are

v
∂ρ

∂r
+ ρ

∂v

∂r
+

2ρv
r

= 0 (1)

v
∂v

∂r
= −

1
ρ

∂P
∂r
−

GM∗
r2 , (2)

expressed in terms of radial velocity v, density ρ, and total pres-
sure P as functions of spherical radius r, as well as stellar mass
M∗ and gravitational constant G.

As is done in standard static model atmosphere computa-
tions (see, e.g., Gustafsson et al. 2008; their Sect. 3) pressure
is expressed as the sum of thermal pressure Ptherm = ρc2

s , turbu-
lent pressure Pturb = ρv2

turb, and radiation pressure Prad where the
characteristic velocities of the first two are respectively the sound
speed cs and the turbulent speed vturb. As concerns the radial
component of radiation pressure gradient, we associate this with
the acceleration grad such that

−
1
ρ

∂Prad

∂r
= grad =

κFr

c
=

κL∗
4πr2c

= Γ
GM∗

r2 , (3)

with c the speed of light, κ the flux weighted mean opacity
[cm2 g−1], and Fr the radial component of the flux, related to the
stellar luminosity L∗ as Fr = L∗/(4πr2). The final equality further
introduces the Eddington factor Γ ≡ κL∗/(4πGM∗c). Explicitly
replacing pressure with this combination and substituting Eq. (1)
into Eq. (2) to eliminate density gradient terms, we find

v

1 − c2
s + v2

turb

v2

 ∂v
∂r

=
2
(
c2

s + v2
turb

)
r

−
GM∗ (1 − Γ)

r2 , (4)

where we have assumed that vturb is constant. We discuss this
approximation further below.

We note that Eq. (4) is the same equation as is solved for an
isothermal, pressure driven Parker wind (Parker 1958), only now

with a modified “effective sound speed”, cs,eff ≡

√
c2

s + v2
turb. At

the location where the flow velocity reaches this effective sound
speed the left side of Eq. (4) goes to zero, and therefore the right
side must also go to zero. Solving for this criteria yields that the
location of this critical point in the wind outflow is given by a
modified Parker radius,

Rp,mod =
G M∗ (1 − Γ)
2 (c2

s + v2
turb)

. (5)

This then suggests that the problem of wind acceleration here
can be envisioned to consist of two parts. First, a low-speed near
“levitation” of material to this modified Parker radius at which
v= cs,eff , and, second, a subsequent acceleration of the material
to infinity.

Below the modified Parker radius the contribution of the
advection term (v ∂v/∂r) in Eq. (2) is almost negligible so that
the equation reduces to the standard equation for hydrostatic
equilibrium,

1
ρ

∂ρ

∂r
=−

G M∗ (1 − Γ)
(c2

s + v2
turb) r2

. (6)

Typically, the Eddington factor and, as alluded to above, the
turbulent speed may be expected to vary in radius. However,
under the assumption that this variation is only mild, we may
replace the exact expression Γ(r) with Γ and, as already done in
Eq. (4), vturb(r) with vturb. These representative constant values
of Γ and vturb then in general would designate some appropri-
ate spatial means (see also the discussion in Gustafsson et al.
2008). Then Eq. (6) can be integrated analytically from the stel-
lar radius R∗ to an arbitrary radius r ≤ Rp,mod using the boundary
value definition ρ∗ ≡ ρ(R∗) to give

ρ(r) = ρ∗ exp
[
−

R∗
H

(
1 −

R∗
r

)]
, (7)

where we have made the substitution

H
R∗
≡

R∗ (c2
s + v2

turb)
G M∗ (1 − Γ)

= 2
c2

s + v2
turb

v2
esc,eff

=
1
2

R∗
Rp,mod

. (8)

Here vesc,eff ≡
√

GM∗(1 − Γ)/R∗ denotes the escape speed from
R∗ with

√
1 − Γ accounting for the reduction in effective gravity

due to radiative acceleration.
In order to determine the value of ρ∗, we make use of the def-

inition of the stellar radius in optical depth space, τ(R∗) ≡ 2/3,
from a spherical extension of the classical planar gray model
atmosphere (Lucy 1971; and see further Sect. 3). Within this
model, one defines a “spherically modified” optical depth scale
as

τ(r) ≡
∫ ∞

r
κ ρ

(R∗
r

)2

dr, (9)

and, as such,

κ

∫ ∞

R∗
ρ(r)

(R∗
r

)2

dr =
2
3
, (10)
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Fig. 1. Optical depth calculated inward to r. Note that most of the optical
depth is accumulated within a stellar radius of the star.

where we have again used the above approximation that Γ, and
therefore κ, is independent of radius. Inserting the hydrostatic
density profile from Eq. (7) into Eq. (9) yields an analytic value
of ρ∗,

ρ∗ =
2

3 κH

[
1 − exp

(
−

R∗
H

)]−1

. (11)

Before combining the above terms to derive a turbulent pres-
sure driven mass-loss rate, it is important to examine a few of
the assumptions that went into the derivation. First, we con-
sider the approximation that the advection term is negligible
for r < Rp,mod. If we relax this approximation, we find that
integrating Eq. (2) from R∗ to an arbitrary radius r gives

log
(
ρ(r)
ρ∗

)
=−

R∗
H

(
1 −

R∗
r

)
−

1
2 (c2

s + v2
turb)

∫ r

R∗

∂v2

∂r
dr. (12)

While in general solving this equation at an arbitrary radius
requires numerical integration, the integration from R∗ to Rp,mod

remains analytic as v(R∗)2/(c2
s + v2

turb) ≈ 0 and v(Rp,mod)2/(c2
s +

v2
turb) ≡ 1. Comparing ρ(Rp,mod) computed with and without the

advection term shows that including this term reduces the den-
sity at the modified Parker radius by a constant factor exp(−1/2).
As this reduction is analytic and constant, we therefore include
it in all calculations for the remainder of this section.

Related to this change in density, it is also important to exam-
ine whether the optical depth, and as such the base density ρ∗, is
significantly impacted by the inclusion of the advection term or
by a radial profile in the opacity. To test this we plot τ(r/R∗)
computed from the hydrostatic density structure with a constant
opacity in Fig. 1, assuming that H/R∗ = 0.07, a characteristic
value for a red supergiant atmosphere. We note here, from exam-
ining Eqs. (7), (9), and (11), that τ(r/R∗) only depends on this
chosen H/R∗ as the definition of τ(1) = 2/3 results in κ in Eqs. (9)
and (11) cancelling. As expected, almost all of the optical depth
is accumulated within only a few scale heights of the stellar sur-
face, here within about half a stellar radius of R∗. This is well
away from the modified Parker radius, here ∼7R∗, and therefore
the optical depth used to define the stellar radius and ρ∗ is all
accumulated in a region where the advection term is indeed neg-
ligible. Similarly, this means that κ and (v2

turb + c2
s ) only need to

be constant over this same small spatial extent in order for ρ∗ to
be unaffected by any variations they may have. Section 3 will

revisit the implications of allowing cs to take on a realistic radial
profile.

Finally, to turn the terms derived thus far into a mass-
loss rate, we note that Eq. (1) is equivalent to the constraint
ρvr2 = const.; the total mass-loss rate is this conserved quan-
tity integrated over all solid angle, Ṁ ≡ 4πρvr2. Further, as this
quantity is independent of radius, we can simply take its value at
the modified Parker radius

Ṁ = 4 π ρ(Rp,mod)
√

c2
s + v2

turb R2
p,mod, (13)

as the total mass-loss rate of the star. Combining Eqs. (7), (8),
and (11) and accounting for the additional factor exp(−1/2) from
advection gives ρ(Rp,mod) to be

ρ(Rp,mod) =
4
3

Rp,mod

κR2
∗

exp
[
−

2Rp,mod

R∗
+ 3

2

]
1 − exp

[
−

2Rp,mod

R∗

] . (14)

All quantities in Eqs. (13) and (14) are analytically known within
this formalism, such that these expressions together offer a fully
analytic mass-loss rate.

2.2. Scaling of mass-loss rate with key parameters of the
model

In understanding the regimes of stellar parameters where such
a mass-loss rate model is and is not viable, it is important to
note that H/R∗ = R∗/(2Rp,mod) as shown in Eq. (8). This means
that the same scale which controls the exponential stratification
of density also controls where the critical point lies. Therefore,
H/R∗ must be relatively large compared to, for instance, the Sun
in order to prevent the exponential density stratification of the
atmosphere from driving Ṁ to zero. At the same time, Rp,mod
and by extension R∗ must be large (in absolute units) simply due
to the R2

p,mod dependence of Ṁ.
The mass-loss rate derived in Sect. 2.1 is a function of only

a few key parameters of the physical set-up, namely stellar mass
M∗, stellar radius R∗, sound speed cs, turbulent velocity vturb, and
opacity κ. Specifically,

Ṁ ∝
1
κ

(R∗
H

)3

exp
(
−

R∗
H

)
R∗, (15)

where H/R∗ itself scales as

H
R∗
∝

R∗
(
c2

s + v2
turb

)
M∗ (1 − Γ)

. (16)

We can trade the sound speed dependence for a stellar parame-
ter by assuming for the following discussion that the wind has
cs =
√

kB Teff/mH with Boltzmann constant kB, mean molecular
mass equal to the mass of a hydrogen atom mH, and temperature
equal to the stellar effective temperature Teff = (L/(4 πR2

∗ σ))1/4,
where σ is the Stefan-Boltzmann constant. To investigate
the behavior of this analytic expression, we begin by cal-
culating the mass-loss from a star with parameters selected
to be consistent with a “typical” RSG, namely M∗ = 10 M�,
R∗ = 500 R�, Teff = 3500 K (cs = 5.4 km s−1), vturb = 15 km s−1,
and κ= 0.01 cm2 g−1. Note that here opacity is estimated from
the OPAL opacity tables (Iglesias & Rogers 1996) as a lower
limit to the total opacity as will be discussed further below. For

A180, page 3 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039224&pdf_id=0


A&A 646, A180 (2021)

8 10 12 14
M  (M )

10 8

10 7

10 6

10 5

M
 (M

/y
r)

500 750 1000 1250
R  (R )

10 9

10 7

10 5

10 3

M
 (M

/y
r)

2500 3000 3500 4000 4500
Teff (K)

10 6

6 × 10 7

M
 (M

/y
r)

Fig. 2. Dependence of the analytic mass-loss rate on stellar mass (left), stellar radius (center), and temperature (right).
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Fig. 3. Dependence of the analytic mass-loss rate on turbulent velocity.

these parameters, Ṁ = 8.5× 10−7 M� yr−1, in the range of plau-
sible mass-loss rates for a red supergiant (see, e.g., Josselin &
Plez 2007).

For the remaining discussion in this section, we vary indi-
vidual model parameters while holding all others to the values
provided immediately above to show how Ṁ reacts to such vari-
ations. The scaling of this mass-loss rate with stellar parameters
is relatively straightforward as shown by Fig. 2. Specifically,
increasing the stellar radius or effective temperature over a rea-
sonable range for red supergiants increases the mass-loss rate
because increasing either of these increases H/R∗. This goes
into the exponential term in Eq. (15) which increases faster than
the power-law terms fall off. Conversely, increasing M∗ has the
opposite effect on H/R∗ and therefore increasing stellar mass
decreases mass-loss rate. Note that Teff only appears through the
sound speed, and thus only in the combination c2

s + v2
turb. There-

fore, it is unsurprising that varying this parameter has a much
weaker effect than either stellar mass or radius, a fact we return
to later in the discussion.

Next, we examine the scaling of mass-loss rate with vturb,
shown in Fig. 3. In order to emphasize the importance of vturb
as the driving mechanism for this model, we vary vturb from
a minimum microturbulence for red supergiants (∼3 km s−1)
up through the characteristic turbulent velocities inferred by
Josselin & Plez (2007). As was the case with the variation of stel-
lar parameters, for much of the range of vturb the dominant effect
is on the scale height. As H/R ∝ v2

turb for vturb � cs, this depen-
dence is quite steep. However, note here that we allow a much
larger range of variation in vturb than in the other parameters,
which means that we see an additional regime that did not appear
in the variation of stellar parameters, namely the asymptotic

mass-loss rate reached at high vturb. Here exp(−R∗/H) begins to
vary less rapidly with the increase in H/R∗ and the decrease of
Rp,mod and ρ∗ with increasing H/R∗ takes over. The scaling is
truncated at the point where increasing vturb means Rp,mod < R∗,
as the model is no longer meaningful in this regime. If vturb
were allowed to vary to arbitrarily low values, a lower asymp-
tote would also appear corresponding to the negligibly low mass
loss that could be driven by cs alone.

Finally, we examine the scaling of Ṁ with opacity, shown
in Fig. 4. While the first calculation of Ṁ for characteristic red
supergiant parameters above assumed the Rosseland mean opac-
ity from OPAL, the acceleration of the wind means that a purely
static opacity model may not be the most accurate one (see also
Gustafsson & Plez 1992). In fact, the Doppler shifting of spectral
lines from atomic and molecular species will increase the char-
acteristic opacity scale of the wind, as discussed in Appendix A.
In practice, the computation presented in Appendix A for κ and Γ
from these Doppler shifted spectral lines becomes computation-
ally expensive to include in a model such as the one we discuss
in the remainder of the paper. Specifically, millions of spectral
lines are involved (see especially the tabulations of infrared spec-
tral lines of water, e.g., Barber et al. 2006), with the opacity of
each line becoming position-dependent due both to the veloc-
ity gradient and the radial temperature variation. In studies of
hot, OB star winds, this is circumvented by introducing a dis-
tribution function that allows one to analytically approximate
the cumulative effects of all these spectral lines. As a first step,
we have taken the brute force approach of computing the full
sum but only for fixed hydrodynamic structures, thus allowing
us to approximate the net effect of this additional radiative driv-
ing. By computing the force from infrared spectral line lists of
CO (Goorvitch 1994), TiO (McKemmish et al. 2019), and H2O
(Barber et al. 2006) as a sample, we find that the net increase
in flux-weighted mean opacity may be an order of magnitude
or more over the basal OPAL opacity. However, this prelimi-
nary study deserves further attention as it is based on analyses of
fixed hydrodynamic structures, while line acceleration is a sensi-
tive function of the velocity field. Further, we have only included
three molecules here, and also used a simplified radiative trans-
fer treatment based on the so-called Sobolev approximation (see
Appendix A), implying the real effect could be a bit different
than the 1 dex mentioned above.

Here we take a more general view of the effect of opacity
variation, simply allowing Γ to increase from its basal value as
implied by the Rosseland mean opacity, ΓRos. As was the case
for vturb, we truncate the plot when Rp,mod = R∗ as this is again the
limit at which the model breaks down. To emphasize the complex
behavior induced by varying Γ and thus κ, we show the scaling of
Ṁ for three models: vturb = 10 km s−1 and R∗ = 500 R� (left panel
of Fig. 4), vturb = 15 km s−1 and R∗ = 500 R� (center panel of

A180, page 4 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039224&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039224&pdf_id=0


N. D. Kee et al.: Analytic RSG mass-loss rates from turbulent pressure

10 2 10 1 100

10 11

10 9

10 7

M
 (M

/y
r)

10 2 10 1 100

10 7

10 6

M
 (M

/y
r)

10 2 10 1 100

10 5

10 4

M
 (M

/y
r)

Fig. 4. Dependence of the analytic mass-loss rate on Γ for M∗ = 10 M� and Teff = 3500 K. Left panel: uses R∗ = 500 R� and vturb = 10 km s−1, middle
panel: uses R∗ = 500 R� and vturb = 15 km s−1, and right panel: uses R∗ = 1000 R� and vturb = 15 km s−1.

Fig. 4), vturb = 15 km s−1 and R∗ = 1000 R� (right panel of Fig. 4).
Note here that ΓRos = κR L∗/(4 πG M∗ c) = κR R2

∗ σT4
eff
/(G M∗ c).

All parameters are the same for the three cases except R∗, such
that this minimal point for Γ is lower for the two models with
R∗ = 500 R� (ΓRos = 2.6× 10−3) than the one with R∗ = 1000 R�
(ΓRos = 1.0× 10−2).

In general, as increasing Γ means increasing the radiation
force available to levitate the atmosphere, one might expect that
Ṁ would monotonically increase with Γ. However, it is important
to recall that we choose our unique solution for the mass-loss rate
by requiring τ(R∗) = 2/3 through Eq. (10), which results in an
inverse dependence of the stellar photosphere density on opac-
ity in Eq. (11). When Γ is small and the wind is predominantly
driven by turbulent pressure, this inverse dependence wins out
and increasing Γ and therefore κ implies a reduction of the den-
sity of the wind and therefore also of the mass-loss rate to keep
R∗ fixed.

As Γ approaches unity, radiation then contributes more
meaningfully to the total force budget of the wind and the
expected increase manifests itself. In the case that the turbulent
pressure gradient is not already driving a strong wind mass loss
(e.g. vturb and R∗ small as in the left panel of Fig. 4) then radia-
tive acceleration is able to drive a much stronger mass loss near
Γ unity than pressure could at low Γ. In the case where turbulent
pressure already drives a strong mass loss (i.e., vturb and R∗ large
as in the right panel of Fig. 4) the net effect is only to cancel out
the reduction in Ṁ from the increased opacity. However, even
this increase (or flattening) is not able to hold out all the way to
Γ unity. Eventually, as was the case with increasing vturb, Rp,mod

is driven to R∗ and Ṁ drops off. Again, this point merely denotes
where such a turbulent pressure driven wind model breaks down.

As mentioned in the introduction, it is intriguing that this
model is able to recover reasonable mass-loss rates for red super-
giants without appealing to dust opacity. In fact, as ΓRos is small
in the standard case we consider, this model does not appeal to
significant radiative driving from any source. One of the theo-
ries present in the literature is that red supergiant winds behave
analagously to the winds of AGB stars with some atmospheric
extension allowing for the condensation of dust, the opacity
of which is the main mass-loss rate driver (see e.g. Höfner &
Olofsson 2018, for a review). Instead, we here find that it is plau-
sible that the extreme extension of their atmospheres by turbulent
pressure alone could be the dominant part determining the red
supergiant mass-loss process.

However, it is important to note here that opacity may still
play an important role in altering the structure of the winds of red
supergiants. While we have here assumed a constant opacity as a
function of distance from the star in order to examine the scaling
of Ṁ with Γ, this is not expected to be the case. As the wind cools

away from the star, additional molecules and dust will form,
thereby enhancing the wind opacity. Even the continuum opacity
is likely to shift as the Hydrogen anion is no longer the dominant
continuum opacity source. As discussed in the prior subsection,
the effect of this enhanced opacity on at least the optical depth
scale, and as such the density scale used in this model, may not
be substantial as long as the opacity enhancement occurs beyond
the first stellar radius or so. This is because, as shown by Fig. 1,
the majority of optical depth is accumulated in a region quite
near to the star making κ in Eq. (11) effectively an average over
this near star region. Enhancing the opacity further out would,
however, contribute to extending the scale height of the atmo-
sphere, and even potentially allow the wind to switch from being
turbulence driven to radiation driven at some location. Both
these effects could increase Ṁ somewhat over what is presented
here. In light of these open items related to wind opacity, as we
discuss further in Sect. 5, future work should re-examine what
role depth dependent dust, molecular, and continuum opacity
may play, especially in setting the terminal velocity of the stel-
lar wind as this is ill-defined under a Parker-like pressure driven
wind (see also the discussion in Sect. 3). For the remainder of
this paper, however, given the highly promising results through-
out, we proceed with turbulent pressure supplemented only by
the marginal additional contribution of a constant ΓRos.

3. Numerically determined mass-loss rate from
steady-state, nonisothermal, dynamical winds

3.1. Iteration procedure to find a unique mass-loss rate

While the simplified, isothermal treatment has the benefit of
being purely analytic, we can also treat the non-isothermal
wind structure in a numerical approach. To do so, we use the
spherically symmetric generalization to the plane parallel gray
atmosphere introduced by Lucy (1971)

T 4 = T4
eff

(
W +

3
4

∫ r

R∗
κ ρ

(R∗
r

)2

dr
)

(17)

= T4
eff

(
W +

3
4
τ

)
, (18)

where W ≡ (1 −
√

1 − (R∗/r)2 )/2 is the geometric dilution fac-
tor. The second equality again uses the spherically modified
optical depth as given by Eq. (9). For low optical depth material,
and for distances away from the stellar surface this temperature
structure behaves like T ∝ 1/

√
r as is generally assumed for the

dust free regions near red supergiants (e.g. Decin et al. 2006).
Accounting for this temperature structure in Eqs. (1) and (2)
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Fig. 5. Radial dependence of density (left), velocity (center), and temperature (right) for the non-isothermal case with M∗ = 10 M�, R∗ = 500 R�,
Teff = 3500 K, vturb = 15 km s−1, and κ= 0.01 cm2 g−1. The red dashed line denotes the modified Parker radius.

while still maintaining the assumption that vturb is constant leads
to the system of non-isothermal equations

v
∂ρ

∂r
+ ρ

∂v

∂r
+

2 ρ v
r

= 0 (19)

v
∂v

∂r
=−

c2
s + v2

turb

ρ

∂ρ

∂r
−

G M∗ (1 − Γ)
r2 −

kB

mH

∂T
∂r

(20)

∂T 4

∂r
= T4

eff

(
∂W
∂r

+
3
4
κρ

(R∗
r

)2)
. (21)

Note that, by combining this system of differential equations into
a single equation to eliminate ∂ρ/∂r and ∂T/∂r in Eq. (20), we
can see that these equations still contain the same critical point
where v2 = c2

s + v2
turb, although now with cs a function of r.

In order to solve these differential equations, we begin by
assuming initial velocity and density profiles

v(r) =

√
c2

s + v2
turb

1 − Rp,mod/r

(
1 −

R∗
r

)
(22)

ρ(r) =
Ṁ

4 π v(r) r2 . (23)

As boundary conditions, we fix R∗ and impose that T (R∗) = Teff .
These are then sufficient conditions to begin the following
iteration procedure.
1. A radial grid is built up inward (toward R∗) and outward

(away from R∗) from the critical point, Rp,mod, as determined
in the prior iteration (or the initial conditions for the first iter-
ation). Radial points are spaced by H(r)/3 to properly resolve
the variations in all hydrodynamic quantities.

2. The prior structures in velocity, density, and temperature are
interpolated onto the new radial grid.

3. Gradients of all necessary quantities for Eqs. (19)–(21) are
computed at each grid point. At the critical point, r = Rp,mod,
where the velocity gradient is ill-defined, l’Hopital’s rule is
used.

4. Using these gradients, Eqs. (19)–(21) are numerically solved
at each point on the radial grid inward and outward from the
critical point, Rp,mod.

5. The resulting velocity, density, and temperature as functions
of radius are used to begin the process again from Step 1.

This loop is repeated until velocity, density, and temperature at
each point agree from one iteration to the next to better than 1%.
At this point, the total optical depth of the wind is computed at
the current mass loss rate. As the stellar radius is defined to be at
τ(R∗) = 2/3, the stellar mass-loss rate is re-computed according
to

Ṁnew = Ṁold
2/3

τold(R∗)
. (24)

As optical depth is proportional to density, which is in turn pro-
portional to Ṁ, a constant change in mass-loss rate and thus
density at every point has the effect of forcing τ(R∗) = 2/3,
assuming v(r) is unchanged. As changing ρ(r) will certainly
change v(r), however, the final velocity profile is combined with
the updated mass loss as new initial conditions to restart the loop
described above. This outer iteration to update mass-loss rate is
repeated until the update in Ṁ is also less than 1%, at which
the final mass loss rate is returned as Ṁnum. Note that for the
remainder of the paper we include the subscript “num” to differ-
entiate this numerically determined, non-isothermal mass-loss
rate from the isothermal, analytic one derived in Sect. 2, which
we henceforth call Ṁan.

Here it is again interesting to examine our “typical” model
with M∗ = 10 M�, R∗ = 500 R�, Teff = 3500 K, vturb = 15 km s−1,
and κ= 0.01 cm2 g−1. Using the method described above,
we find that it has a non-isothermal mass-loss rate of
Ṁnum = 4.4× 10−7M� yr−1, approximately half the analytic rate.
We can also take this opportunity to plot the radial profiles of
density, velocity, and temperature as shown in Fig. 5. In all pan-
els we use a vertical, red, dashed line to denote the numerically
determined Rp,mod. As was the case in Sect. 2.1, optical depth is
predominantly accumulated below Rp,mod such that the mass-loss
rate in each simulation is primarily determined by integration
over only these near star regions. However, like the isothermal,
thermal pressure-driven Parker wind, the total driving energy
available to the wind diverges as the outer radius goes to infinity
because vturb is constant, such that v∞ is not uniquely determined
by such a model. While the terminal velocity of the wind will
depend on the details of the radial vturb profile, radial tempera-
ture profile, and any additional forces acting on the outer wind
(for instance dust opacity), it is promising that these simula-
tions already generate velocities at 30 R∗ comparable to typically
inferred values of v∞ for red supergiants.

While we here present the mass-loss rate from a simplified
gas temperature structure arising from radiative equilibrium, in
reality red supergiant winds may have regions that are heated
by shocks and dissipation of turbulence (see, e.g. Schrijver &
Zwaan 2000). In general, such shock heating and dissipation is
not inferred to generate wind temperatures throughout the full
wind acceleration region significantly in excess of the stellar
effective temperature, nor should the wind be expected in general
to cool below radiative equilibrium. Therefore, the simplified
cases we present here of an isothermal wind at the stellar effec-
tive temperature and a wind with temperature set according to
the spherically modified gray atmosphere can be roughly taken
as thermal structures leading to, respectively, upper and lower
limits to the mass-loss rate. For individual objects where more
is known about the temperature profile, however, the method
presented in this section can be directly applied by replacing
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Fig. 6. Ratio of Ṁ calculated numerically for a non-isothermal situ-
ation to the analytic Ṁ calculated for an isothermal wind plotted as a
function of vturb and colored by M∗, varying R∗, M∗, and vturn. The effec-
tive temperature and Rosseland opacity are held fixed at Teff = 3500 K
and κR = 0.01 cm2 g−1.

the temperature information in Eqs. (17) and (21). As a sample
case, let us take the chromospheric temperature profile inferred
by O’Gorman et al. (2020) for Antares. In these observations,
gas temperature is inferred to decrease from the stellar effective
temperature to a minimum around 1.35R∗ before coming back
up to a maximum approximately equal to the stellar effective
temperature around 2.5 R∗, and then finally falling off outward
from there (see O’Gorman et al. 2020, their Fig. 3). Inserting
this temperature profile into our model with all other parameters
still as defined in our “typical” model above returns a mass-
loss rate 7.7× 10−7M� yr−1. As anticipated, this falls between
the limiting mass-loss rates from an isothermal model at the
stellar effective temperature (8.5× 10−7M� yr−1) and a model
using the Lucy (1971) spherically modified gray atmosphere
(4.4× 10−7M� yr−1).

3.2. Non-isothermal correction factor

To investigate the role of the radial decline in temperature on the
mass-loss rate, we run a grid of steady-state models varying stel-
lar mass, stellar radius, and turbulent velocity and then plot the
ratio Ṁnum/Ṁan. For this test we fix Teff = 3500 K, motivated by
the only modest dependence of Ṁ on this property (see Fig. 2),
and continue to use κR = 0.01 cm2 g−1. As shown by Fig. 6, this
correction factor is itself a function of the model parameters that
we can fit. We choose two methods of doing so, one where we
fit the product of a constant normalization and power-laws over
stellar mass, stellar radius, and turbulent velocity individually
(hereafter Method 1), and one where we apply our knowledge
that the dominant competition in getting material off the star is
between gravity and turbulent pressure to replace the power-law
fits over each parameter independently with a single power-law
fit over vturb/vesc(M∗,R∗) (hereafter Method 2).

As figures of merit to compare the two fits, we use χ2, the
mean and standard deviation of the difference between the fit
formula and the actual ratio Ṁnum/Ṁan, and the maximum error
between the fit and Ṁnum/Ṁan. The comparison of the best mod-
els from each method is summarized in Table 1. Given that
Method 1 uses four free parameters (a mean and three power-
law indices) versus the two free parameters used by Method 2
(a mean and one power-law index), and that the figures of
merit we have selected to compare between the two methods

Table 1. Comparison of the fit methods.

Method 1 Method 2

χ2 6.73 13.11
〈 Error 〉 0.091 0.118
σError 0.077 0.119
max(Error) 0.81 1.01

are comparable, we propose that the two parameter fit from
Method 2 should be preferable moving forward. Therefore, the
non-isothermal correction factor is(

Ṁnum

Ṁan

)
=

(
vturb/(17 km s−1)

vesc(M∗,R∗)/(60 km s−1)

)1.30

, (25)

where we have omitted the leading constant as the best fit for this
constant was 100.00 = 1.0.

Note from Table 1 that this fit is quite good, with the correc-
tion factor recovered to about a factor of two in the worst case for
the two parameter fit. Therefore we present the combination of
Eq. (25) with Eqs. (5), (13), and (14) as a predictive, theoretical
mass-loss rate scaling for red supergiants.

4. Comparison of the theoretical mass-loss rate
scaling with empirical rates and observed
mass-loss

Now that we have this theoretical, predictive mass-loss rate as a
function of stellar parameters, a natural next step is to compare
this with empirical fits to red supergiant mass loss and individual
observations. Given that no systematic theoretical predictions for
RSG mass loss exist at the present, such empirical fits constitute
the state of the art regarding RSG mass loss in applications such
as stellar evolution. We review the empirical rates implemented
in the stellar evolution code MESA, as well as the recently pub-
lished rates from Beasor et al. (2020) in Sect. 4.1 in order to build
up a representative sample. In Sect. 4.2 we then compare these
empirical rates to our theoretical ones. Here we highlight that the
empirical rates in general do not depend on all three fundamen-
tal stellar parameters (i.e. M∗, R∗, and L∗) while the theoretical
mass-loss rates presented here does. Therefore Sect. 4.2 also
includes a discussion of the scalings of stellar luminosity, mass,
and radius with one another that we use to perform the compar-
ison of our rates with the empirical ones. Finally, in Sect. 4.3
we compare our predicted rates with observationally inferred
mass-loss rates for a selection of red supergiants.

4.1. Background on empirical rates used so far

The current version of the stellar evolution code MESA (Paxton
et al. 2011, 2013, 2015, 2018, 2019) provides built-in access to
three empirical mass-loss rates for red supergiants. These come
from de Jager et al. (1988)

Ṁ = 10−8.158
(

L∗
L�

)1.769

(Teff)−1.676 , (26)

Nieuwenhuijzen & de Jager (1990)

Ṁ = 10−14.02
(

L∗
L�

)1.24 (
M∗
M�

)0.16 (
R∗
R�

)0.81

(27)
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Fig. 7. Luminosity as a function of mass from red supergiants in Paxton
et al. (2011) and Ekström et al. (2012). The overplotted curves assume
L∗/L� = f (M∗/M�)3 with f = 12.5 for the MESA data and f = 18.5 for
the Geneva data.

and van Loon et al. (2005)

Ṁ = 10−5.65
(

L∗
104L�

)1.05 ( Teff

3500

)−6.3

. (28)

To these we add the recently published empirical rate from
Beasor et al. (2020)

Ṁ = 10−26.4−0.23M∗/M�

(
L∗
L�

)4.8

, (29)

as the authors identify that this rate is notably lower than those
previously published, a fact that we use to provide an indica-
tion to the range of possible observationally inferred rates. While
these four are far from the only empirical mass-loss prescriptions
that are used, they provide a representative sample. For a review
of a variety of other empirical rates, see, for example, Mauron &
Josselin (2011).

4.2. Comparison of the theory model to empirical rates

As mentioned above, it is common for empirical rates to be pro-
vided as functions that do not include a dependency on all three
fundamental stellar parameters (i.e. M∗, R∗, and L∗, or equiva-
lently M∗, L∗, and Teff). For the theoretical rates, however, all
three parameters are needed. To obtain these, we consider stel-
lar evolution tracks for nonrotating stars from both MESA (Paxton
et al. 2011) and GENEC (Ekström et al. 2012). Note that GENEC
uses a somewhat different prescription for the mass-loss rate than
what is discussed above for MESA. For M∗ ≤ 12 M� GENEC adopts
the Reimers (1975, 1977) rates, whereas for M∗ ≥ 15 M� GENEC
uses de Jager et al. (1988) for log10(Teff) > 3.7 and a linear fit
to data from Sylvester et al. (1998) and van Loon et al. (1999)
otherwise. Despite these differences in mass-loss prescription,
comparison of Paxton et al. (2011) and Ekström et al. (2012)
shows that in both cases the red supergiant branch roughly fol-
lows L∗/L� = f (M∗/M�)3 as shown by Fig. 7 with f = 12.5 for
MESA and f = 18.5 for Geneva. Therefore, as a compromise
we chose f = 15.5 for our mass-luminosity relation to compare
with the empirical rates. As a simplifying assumption, we con-
tinue to hold Teff fixed at 3500 K as was done in Sect. 3, so that
L∗ ∝ R2

∗.
Using these mass-radius-luminosity relationships, we can

now compare the empirical and theoretical rates as shown by
Fig. 8. As the empirical rates differ from one another by several
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Fig. 8. An overplot of three of the theoretical mass-loss rate scalings
used in MESA with the predicted mass-loss rate from the theoretical
scaling. Four values of vturb are used as noted in the plot label.

orders of magnitude at all luminosities, we select four values
of vturb from 15 to 21 km s−1 for this comparison. Despite this
scatter between individual empirical rates and in turn between
the theoretical rates using different turbulent velocities, the the-
oretical rates are broadly consistent with the empirical ones for
reasonable values of vturb (see, e.g. Josselin & Plez 2007; Ohnaka
et al. 2017). Further examining this comparison, one notes that
the empirical rates have shallower slopes than the theoretical
rates. This may suggest that there is a trend of decreasing vturb for
more massive, more luminous, and larger radius red supergiants.
Alternatively, as is suggested by the mismatch in both value and
slope of the empirical rates with one another, this shallower slope
may simply reflect some missing physics when inferring and cal-
ibrating these empirical rates or potential biases in the observed
sample.

We note that the mass-luminosity-radius relations that we use
here may not be appropriate to Galactic stars starting out their
lives rapidly rotating, as these tend to evolve to higher lumi-
nosities for the same initial mass (see, e.g. Heger & Langer
2000; Meynet & Maeder 2000; Brott et al. 2011). Given, how-
ever, the very similar effective temperatures of these stars on the
red supergiant branch this is consistent with these stars evolving
to have larger radii, lower surface gravities, and higher mass-loss
rates if all other physics remains the same. This further suggests
that two stars with different masses can reach the same point
on the HR diagram with different mass-loss rates which would
confound any mass-loss rate predictions omitting a dependence
on M∗. In fact the general treatment that mass-loss rates are
enhanced by rotation would go in the direction of only further
exacerbating this discrepancy (see, e.g. Friend & Abbott 1986;
Langer 1997; Heger & Langer 1998; Maeder & Meynet 2000).
However, as further discussed in Sect. 5, these predictions of
increased mass-loss rate with increased rotation rate are based
on fits to the theoretical predictions of Friend & Abbott (1986).
This work addresses only the wind mass-loss rate of hot stars
with radiation driven outflows, and has been questioned by sub-
sequent work (e.g. Owocki et al. 1996; Petrenz & Puls 2000)
such that the question of the role of rotation in the mass-loss of
red supergiants remains open.

4.3. How does the theory model compare to what is
observationally inferred?

While the preceding comparison of the empirical rates with
theoretical ones helps to generally motivate the quality of the
theoretical mass-loss rate predictions, we can go one step further
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Table 2. Observed parameters from Josselin & Plez (2007) with the addition of Antares as observed by Ohnaka et al. (2013, 2017), including vturb
as required by theory to recover the mass-loss rate keeping all other parameters fixed.

Number Name Mass Teff Radius Ṁgas
(a) vturb,Obs vturb,Theory

(M�) (K) (R�) (10−7 M� yr−1) (km s−1)

1 α Ori 15 3780 589 5.0 19 17
2 V466 Cas 12 3780 331 0.5 12 19
3 AD Per 12 3720 457 2.0 21 17
4 FZ Per 12 3920 324 1.75 16 20
5 BD+243902 15 4240 427 7.25 23 21
6 BI Cyg 20 3720 851 10.25 23 16
7 BC Cyg 20 3570 1230 8.0 22 13
8 RW Cyg 20 3920 676 8.25 20 19
9 SW Cep 9 3570 234 11.5 24 23
10 µ Cep 25 3750 1259 3.75 23 14
11 ST Cep 9 4200 174 6.25 23 26
12 TZ Cas 15 3670 646 9.5 17 17
13 Antares 12.7 (1) 3660 (1) 680 (1) 20.0 (2) 20 (3) 15

Notes. (a)A constant gas to dust mass ratio 250 has been assumed to convert Ṁdust as compiled by Josselin & Plez (2007) to Ṁgas.
References. (1)Ohnaka et al. (2013), (2)Braun et al. (2012), (3)Ohnaka et al. (2017).

and compare theory and observation for a sample of observed
stars. For this we select the observations compiled by Josselin
& Plez (2007) with the addition of Antares using data from
Ohnaka et al. (2017). Note that this limited sample is based on
these authors compiling velocity dispersion measurements that
we can compare with the vturb required by our model. Table 2
recapitulates the stellar masses, effective temperatures, and radii
from Josselin & Plez (2007) and Ohnaka et al. (2017). As the
model we present predicts gas mass-loss rates while Josselin
& Plez (2007) report dust mass-loss rates, we apply a constant
gas to dust mass ratio Ṁgas = 250 Ṁdust. This ratio is itself not
particularly well constrained by the existing literature as shown
by a sample comparison of the gas mass-loss rates of De Beck
et al. (2010) with the dust mass-loss rates of Harwit et al. (2001)
and Verhoelst et al. (2009) for VY CMa, µ Cep, and α Ori,
which returns ratios between ∼70 and ∼700. Finally, we report
the velocity dispersion measurement that Josselin & Plez (2007)
and Ohnaka et al. (2017) associate with turbulent velocity as
vturb,Obs, and the turbulent velocity that would be required for the
theoretical model to reproduce Ṁgas as vturb,Theory. For the data
from Josselin & Plez (2007), we round their reported values to
the nearest km s−1 as the errors on the original data may be as
large as ±2 km s−1. We report our required vturb with the same
accuracy.

Comparing the mean value of the observed turbulent veloc-
ity vturb,Obs to the mean theoretical turbulent velocity vturb,Theory,
the two are consistent with each other over the population to
within one standard deviation, as vturb,Obs = 20.2± 3.4 km s−1 and
vturb,Theory = 18.2 ± 3.5 km s−1. Repeating this exercise with the
extremal gas to dust mass ratios above also retrieves vturb values
consistent with the vturb,Obs and vturb,Theory values reported here
to within one standard deviation, such that this choice has not
significantly impacted our results. These ranges are also gener-
ally consistent with the turbulent velocities required to recover
the empirical rates in the prior subsection. Moreover, the over-
all ranges are consistent with vturb,Obs ∈ [12, 24] km s−1 and
vturb,Theory ∈ [13, 26] km s−1. Finally, looking at the distribu-
tions of vturb for both theory and observation, plotted in the left
panel of Fig. 9, as well as comparing vturb,Obs to vturb,Theory for

individual objects as plotted in the right panel of Fig. 9, one can
see that the majority of turbulent velocities required by theory
(10 out of 13) are lower than what is observationally inferred.
This argues that turbulent pressure is an ample driving source
for the wind of red supergiants, strongly reinforcing the quality
of this model in explaining the general behavior of these objects’
mass loss.

As turbulent velocity is not observationally inferred for many
red supergiants, vturb = 18.2 km s−1 as the mean vturb,Theory found
above may thus be a reasonable value to use for application of our
model in future works. Similarly, a reasonable range of variations
on this would be 14.8 km s−1 < vturb < 21.6 km s−1 as suggested
by plus or minus one standard deviation about this mean. While
this will not provide a perfect match to the mass-loss rates of
individual objects (see for example the right panel of Fig. 9) it
provides a representative prediction for the average mass-loss
behavior of red supergiants such that it would be appropriate
to use in stellar evolution codes. As such, and as discussed fur-
ther in the following section, future work should be dedicated
to improving this estimation, establishing whether vturb varies in
time for individual stars, and testing its dependence on key stellar
parameters.

5. Summary and future directions

We have here derived a theoretical, analytic (dust-free) model for
the mass loss-rates of red supergiants. Building upon the works
by Gustafsson & Plez (1992) and Josselin & Plez (2007), we
examine the role of turbulent pressure in levitating material in
the stellar atmosphere up to a modified equivalent of the stan-
dard Parker wind critical point. This is achieved by employing
a standard decomposition of pressure into thermal and turbulent
pressure components as, for instance, employed in standard 1D
spherically symmetric model atmospheres (e.g. Gustafsson et al.
2008). By applying the resulting expression for pressure in the
steady-state equations for conservation of mass and momentum,
we examine both hydrostatic and low velocity levitation for an
isothermal model (Sect. 2). We also numerically solve the full
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1D steady-state equation-of-motion for a non-isothermal model
employing the Lucy (1971) temperature structure as a stand in
for an energy equation. By combining each of these cases of
steady-state levitation with the constraint that the total accumu-
lated optical depth of circumstellar material from infinity down
to the stellar photosphere at R∗ = r(τ= 2/3), we provide unique
mass-loss rates.

As shown in Sect. 2 this method provides a fully analytic
mass-loss rate for an isothermal wind. Using a grid of numer-
ical models, we further provide a fit to the correction factor
between the isothermal and non-isothermal mass-loss rate for
the same input parameters (Sect. 3.2). Combining this correction
factor with the isothermal mass-loss rates then presents a fully
analytic mass-loss rate prescription for red supergiants, given
by the combination of Eqs. (5), (13), (14), and (25). Compar-
isons of this mass-loss rate with both observations and empirical
mass-loss rate prescriptions show that such a turbulent pres-
sure driven mass-loss rate is able to recover realistic mass-loss
rates over the range of parameters appropriate to red super-
giants. These comparisons also inform our suggested choice of
vturb = 18.2± 3.4 km s−1 as an appropriate representative value
of vturb in mass-loss rate calculations where this parameter is not
well constrained.

To continue the discussion, we enumerate some items of
future work required to place this analytic, theoretical model of
red supergiant mass-loss on even firmer footing. From an obser-
vational side, as an immediate first item estimations of turbulent
velocities for a wider body of red supergiants are needed. As
it stands, the limited sample that we have examined here pro-
vides highly encouraging results, and additional objects would
allow the model to be calibrated more carefully. Additionally,
such observations would be of key importance to understand
how this current free parameter of the model scales with stel-
lar parameters. Finally, such future observations could also help
constrain the depth dependence of vturb. Prior work has suggested
that turbulent velocity may actually increase with distance from
the star over at least part of the wind launching region (de Koter
et al. 1988; Josselin & Plez 2007), and better understanding this
profile would be highly useful in further developing the model
presented here.

To further develop the model itself, main efforts may focus
on relaxing key approximations made in this paper. One of the

first of these would be to use a radial profile of vturb, perhaps as
inferred by observations above, rather than the spatial average
employed here. Such a radial profile might arise from dissipa-
tion of turbulence by shocks. Inclusion of a radial profile in vturb
would allow, for instance, for a prediction of the terminal veloc-
ities of red supergiant winds instead of only mass-loss rates, as
the energy available to drive the wind would no longer diverge
with increasing outer radius of the model. Further generalization
of vturb could also include variations over the surface of the star
and/or in time. Both of these would arise naturally if turbulence
is related to surface convection in the star, and their inclusion
would help to explain the observed clumpy structure of the wind.

A further investigation of the overall structure of red super-
giant winds may also re-introduce dust and/or molecules and
their associated opacity to examine the impact this would have
for the proposed model. As discussed in the introduction, previ-
ous models have assumed that radiation pressure is the dominant
driving force in carrying the mass loss of red supergiants, with
the main question being the origin of the “missing force” neces-
sary to get material from the stellar photosphere up to the region
where molecules and dust can form, the latter occurring poten-
tially several stellar radii away from the photosphere. Seemingly
circumventing such a model, we show that turbulent pressure
extended red supergiant atmospheres are already able to gener-
ate the appropriate mass-loss rates in the absence of radiation
pressure on dust or molecules. However, it is important to recog-
nize that this does not necessarily mean that enhanced opacity
from dust or molecules has a negligible contribution. In fact,
these opacities almost certainly play a crucial role in setting the
wind terminal speed as turbulent pressure dies off away from the
stellar surface (see the discussion in Sect. 3.1). It is also clear,
as discussed in Sect. 2.2, that the overall scale of opacity and
its radial profile may contribute to the optical depth and scale
height of the wind and thus to the mass loss rate retrieved by this
model. Further, it is even possible that the radial profile of turbu-
lent pressure is such that turbulent pressure plays the dominant
role in levitating material off the stellar surface, but that dust or
molecular opacity carries the wind through the critical point as
previously theorized.

Another important line of investigation regards the origin
of the turbulent velocities and extended atmospheres this model
leverages. As discussed by Arroyo-Torres et al. (2015), previous
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models have focused on convection through 3D, so-called “star-
in-a-box” radiation hydrodynamics simulations such as those
computed with CO5BOLD (Freytag et al. 2012), and on pulsa-
tions through 1D simulations akin to those used for AGB stars
and especially Mira variabls (e.g. CODEX, Ireland et al. 2008,
2011). While convection and pulsations in the stellar atmosphere
both provide tempting options, convection simulations generally
fail to generate the turbulent velocities or atmospheric extensions
inferred from observations, and pulsations are required to be of
unrealistically high amplitude compared to observed lightcurves
for red supergiants (see, e.g. Josselin & Plez 2007; Arroyo-Torres
et al. 2015).

Similarly, one can examine the role that rotation might have
in generating similar levels of extension to the stellar atmo-
sphere. This can be done by applying the centrifugal term (Ω2r)
either along side or instead of vturb in the preceding analysis. Tak-
ing the limiting case where turbulent pressure is omitted, we
find that matching the atmospheric extension of a 18.2 km s−1

turbulent velocity even at the most optimal position on the stel-
lar equator (including the effects of stellar oblateness) requires
a rotation velocity almost 94% of the orbital velocity, implausi-
bly fast for a red supergiant. As we reinforce through this paper
that atmospheric extension is crucial for the mass-loss process,
further examination of the possible missing ingredients for such
models as well as potential constructive interactions between
them is now highly timely.

To wrap up the discussion, we address some of the potential
implications of applying our mass-loss rates, especially for the
case of stellar evolution modeling. As discussed in Sect. 4.2, the
current state-of-the-art mass-loss rates for stellar evolution mod-
eling are all empirical. Given that none of the empirical rates
match the theoretical one we present here for all stars, these new
theoretical rates should impact the mass, luminosity, and radius
distributions of supergiant supernova progenitors. Additionally,
the steeper trend of increasing mass-loss rate with increasing
luminosity would naturally turn more massive stars evolving
toward the red supergiant branch back to the blue due to envelope
stripping, thereby predicting a decreased upper luminosity limit
for red supergiants. Finally, these rates provide intriguing impli-
cations for stellar evolution in lower metallicity environments.
Many standard stellar evolution implementations of mass loss in
the red supergiant branch impose a downturn with metallicity
partially inspired by the Ṁ ∝ Zn dependence of line-driven hot
star winds (Vink et al. 2001; Mokiem et al. 2007; Björklund et al.
2020). Observations analyzed by Mauron & Josselin (2011) do
seem to suggest such a scaling of Ṁ ∝ (Z/Z�)0.7 from the Galaxy
to the red supergiants in the Small Magellanic Cloud. However,
they concluded that the scaling to the Large Magellanic Cloud
was not well constrained by the samples they considered, empha-
sizing that more investigation is needed. Meanwhile, the model
we present here should not be strongly dependent on metallicity.
While the optical depth and scale height of the wind clearly do
depend on dust and molecular content, which in turn depend on
metallicity, this is a weaker secondary scaling when compared
with the turbulent pressure itself. Moreover, decreasing opacity
can lead to increased mass-loss rates in this model depending
where in parameter space a star sits (see Sect. 2.2). So long as the
turbulent pressure mechanism itself is not strongly metallicity
dependant, which turbulence triggered by hydrogen recombi-
nation is not, this could then imply much stronger mass loss
on the red supergiant branch at low metallicity than previously
assumed, and as such significantly different stellar evolution
tracks.
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Appendix A: Computation of grad and κ from
accelerating molecules

As discussed in Sect. 2, the total opacity scale of the winds we
treat here can be strongly impacted by the Doppler shifting of
spectral lines, leading to opacities exceeding the static Rosseland
mean opacity. To show this, we begin with a generalized form of
radiative acceleration in the n̂ direction,

grad =
1
c

∮ ∫ ∞

0
κν Iν dν n̂ dΩ, (A.1)

with speed of light c, extinction coefficient κν [cm2 g−1], and
intensity per unit frequency Iν. If one assumes that the extinction
comes from a single, isolated spectral line, then a natural choice
is to split κν into a normalized, frequency-dependent shape of the
spectral line, or profile function φν, and a line-integrated total
extinction coefficient

κL =
σcl nl flu

ρ

(
1 − exp

(
−

h νo

kB T

))
. (A.2)

In this expression for κL, σcl is the classical oscillator cross sec-
tion, nl is the number density of particles in the lower level of the
transition, flu is the quantum mechanical oscillator strength of
the transition, and ρ is mass density. The final exponential term
accounts for stimulated emission under the assumption of local
thermodynamic equilibrium (LTE). Such stimulated emission
can play an important role for the considered infrared spectral
lines transitions as the energy of the transition, given by Planck’s
constant h times rest frequency νo, can be comparable to the
thermal energy of the gas, given by Boltzmann’s constant kB
times gas temperature T . Note that here κL has picked up units
of [cm2 g−1 Hz] as the profile function is defined per unit fre-
quency. Under these substitutions, the equation we now need to
solve becomes

gline =
κL

c

∮ ∫ ∞

0
φν Iν dν n̂ dΩ. (A.3)

At this point, it is important to recognize that the intensity
fed into this expression can itself be a strong function of fre-
quency even in the presence of an optically thin continuum, as
is the case for red supergiants, due to the attenuation of inten-
sity by the spectral line we consider itself. Therefore, we have to
obtain intensity from the formal solution of the radiative transfer
equation

Iν = Io
νe−τν +

∫
S ν(tν) e−|τν−tν | dtν. (A.4)

While in general this becomes quite complex as the source func-
tion S ν depends on Iν, we can simplify by leveraging symmetry
arguments. In the Sobolev limit considered here (see further
below), the second term here becomes fore-aft symmetric such
that it cancels out in the integral

∮
n̂dΩ. As regards the optical

depth τν, we take the approximation that this arises only from
extinction from the spectral line itself such that

τν =

∫
κL φν ρ dl, (A.5)

where the mixed frequency and spatial notations can be rectified
by using the Doppler formula

ν − νo

νo
=
vl

c
, (A.6)

such that

τν =

∫
κL φν ρ

(
∂l
∂vl

) (
∂vl

∂ν

)
dν=

∫
κL ρ c
νo ∂vl/∂l

φν dν. (A.7)

Finally, we can take the Sobolev approximation (Sobolev 1960)
which argues that all hydrodynamic variables are effectively con-
stant over a line resonance region and therefore can be pulled
through the frequency integral to give

gline =
κL

c

∮ ∫ ∞

0
φν Io

ν e−τS
∫ ∞

0 φν dνdν n̂ dΩ, (A.8)

where we have introduced the Sobolev optical depth
τS = κLρc/(νo∂vl/∂l). This final expression can now be
analytically solved to give

gline =
κL

c

∮
Io
ν

(
1 − e−τS

τS

)
dΩ, (A.9)

which further simplifies in the case of a spherically symmetric
flow and radiation from a point star to

gline,r =
π κL Io

ν

c

(
1 − e−τS,r

τS,r

)
, (A.10)

with τS,r replacing the general line of sight velocity gradient
∂vl/∂l in τS with the radial velocity gradient ∂vr/∂r.

The Sobolev approximation which we have employed here
is valid in wind outflow regions where the flow speed exceeds
a few times the characteristic thermal speed, vth, such that there
is not significant absorption of intensity entering the resonance
region by a spectral line in the hydrostatic stellar atmosphere,
and such that the physical size of the resonance region is small
compared to the scale over which the hydrodynamic quantities
entering τS vary. In practice, this condition is nearly always met,
however, as the thermal speeds of the molecules we examine are
reduced compared to the bulk wind sound speed by the poten-
tially quite substantial ratio of mean molecular mass of the bulk
gas to mass of the molecule. Therefore, as this expression holds
for each individual line over the bulk of the wind, to generalize
this to a spectrum of lines one simply needs to sum gline. Numer-
ous tabulated line lists are available to facilitate this process, each
including νo, either flu or the Einstein coefficients necessary to
compute it, and the energy and degeneracy of the levels involved
in each of the transitions, which can be used to compute nl, for
instance from the Boltzmann distribution in Local Thermody-
namic Equilibrium. Taking this fully summed acceleration, it is
then straightforward to back out a flux-weighted mean opacity κ
of the line acceleration by appealing to Eq. (3) such that

κ=
c
Fr

∑
gline,r, (A.11)

where the summation is over all lines. As more force is avail-
able from an accelerating spectral line than a static one, this will
always return flux-weighted mean opacity that is larger than the
Rosseland mean opacity, thereby substantiating our choice to test
the effects of varying κ in Sect. 2.2.
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