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a b s t r a c t 

This paper develops a unified analysis of the impacts of production delays on aggregate 

price fluctuations in a continuous-time cobweb-type model. We find that the time incon- 

sistency between demand and supply due to production delays inherently generates an 

overshooting effect in prices. Large production delays give rise to price fluctuations, even 

with a low intensity of choice. We also provide results consistent with the rational route to 

randomness of Brock and Hommes (1997) in a continuous-time infinite-dimensional econ- 

omy. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

1. Introduction 

Cobweb theory describes a dynamic price adjustment process for a good with a supply response lag. The key message 

conveyed by the theory is that price fluctuations can be caused by the time delay needed to produce the good (we term

this the production delay). Most cobweb models, developed on discrete-time scales, assume that it takes one unit of time 

to produce the good, and hence, the impact of the length of the production delay has seldom been studied. In this paper,

we propose a unified cobweb-type price prediction system with adaptively heterogeneous beliefs in continuous time to 

systematically examine the impacts of both production delays and the belief distributions of agents on aggregate price 

fluctuations. 

Our paper extends the discrete-time cobweb model in Brock and Hommes (1997) to a general continuous-time setting 

where producers form expectations about future prices by choosing price predictors based on their past performance and 

a market maker adjusts the price based on the current excess demand. In our continuous-time cobweb-type model, the 

production delay is simply presented by a parameter that allows a unified analysis of both production delays and producers’ 

belief distributions. The predictor set can be infinite, and the resultant economy is infinite dimensional. This continuous- 
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time framework with infinite beliefs is more realistic since production delays are not necessarily integers in reality and 

goods are traded in practice in continuous time. 

We show that production delays inherently generate an overshooting effect, which can further destabilize the market. If 

there is no production delay, decisions of demand and supply are made at the same time. As a result, the economy is self-

regulating in the sense that future price dynamics are completely determined by the current price. In this case, the system is

globally stable, and the price converges to its steady-state level monotonically . With production delays, an overshooting effect 

occurs, which further leads to price oscillations. To elaborate, we consider that the initial price starts below its steady state.

With a production delay, initial demand, which is based on the current price, is greater than initial supply, which is based

on delayed prices, implying that the price will increase in following periods. However, when the price increases beyond its 

steady-state level, demand is still greater than supply due to the increasing price trend (or positive momentum); thus, the 

price keeps increasing even if it is already greater than its steady-state level. As a result, the time inconsistency between

demand and supply decisions generates an overshooting in price dynamics, followed by interchanges between periods of 

demand being greater than supply and periods of demand being less than supply. If the production delay is short, the

time inconsistency is small. In this case, agents can easily adjust their demand and supply accordingly, and the system can

eventually digest the time inconsistency, leading to consistency between demand and supply and hence a stable price in the 

long run. However, a significant production delay leads to a large time inconsistency that cannot be absorbed by the system.

As a result, the overshooting effect leads to constant, long-lasting price fluctuations. 

This overshooting effect is inherent to production delays. Without a delay, the system is linear; hence, the price mono- 

tonically converges to the steady-state level without overshooting. With a delay, the system becomes nonlinear, and price 

overshooting occurs regardless of whether the system is stable. However, changes in other parameters cannot change the 

overshooting effect since they do not alter the nonlinearity of the system, highlighting the important and distinctive role of 

production delays. We observe large price fluctuations even for a low intensity of choice as long as the production delay is

large—a topic on which there is little research in the discrete-time cobweb literature. 

Our model also verifies the rational route to randomness of Brock and Hommes (1997) . In addition to production delays,

population evolution is another economic channel through which the market is destabilized. When the perfect-foresight 

predictor is subject to positive information costs, producers switch between perfect-foresight and naive predictors, and a 

high intensity of choice leads to price fluctuations and even chaos. We show that as the intensity of choice increases,

the fixed point dynamics turn via a sequence of bifurcations into chaotic dynamics. To the best of our knowledge, our

paper provides the first numerical example of chaotic dynamics in an infinite-dimensional economy . Chaos has been found 

in discrete-time nonlinear cobweb models due to either a highly nonlinear supply curve (e.g., Jensen and Urban, 1984 ) or

adaptive behavior (e.g., Chiarella, 1988; Brock and Hommes, 1997 ). Motivated by the evidence from laboratory experiments 

(e.g., Hommes et al., 2007 and Hommes, 2011 ), we assume that producers adaptively update their beliefs. The adaptive

behavior in our model generates chaos even with linear demand and supply curves. Chaotic price dynamics have also been 

documented in strategy experiments in a cobweb framework, as in, e.g., Sonnemans et al. (2004) . 

Indeed, with a high intensity of choice, the unique steady state is a saddle point. For an initial state with most producers

using naive predictors, the price cyclically departs from the steady-state price since the initial state lies in the unstable 

manifold of the steady state. As long as the deviation of the price from its steady-state level is large enough that the

perfect-foresight predictor has a higher net profit than naive predictors, (almost) all producers immediately switch to the 

perfect-foresight predictor, and the price suddenly converges to its steady state. After this, once the orbit lies in the stable

manifold of the steady state, the system converges to the saddle-point steady state. As a result, we observe that the price

builds up slowly but crashes suddenly, and that, in the meanwhile, market fractions move slowly but experience sudden 

jumps. In this case, adding a small amount of noise to the system would lead to very irregular price fluctuations. 

Most cobweb models study only one type of naive predictor. The use of more predictors by producers gives rise to

higher-dimensional systems, which are rather difficult to analyze. 1 Our continuous-time model with (distributed) time de- 

lays inherently contains an infinite number of predictors and hence facilitates the analysis of belief distributions among 

producers. On the one hand, by examining some examples of exogenous distributions, we find that the belief distributions 

can significantly affect market stability. Unlike the discrete-time model in Brock and Hommes (1997) , our economy tends 

to be stable with uniformly distributed beliefs. 2 On the other hand, when producers update their beliefs based on certain

fitness measures, different price dynamics can, in turn, lead to different belief distributions. The belief distribution is “sta- 

tionary” when the price is stable with a low intensity of choice, while it becomes “nonstationary” and fluctuates widely 

when the price is unstable. 

The classical linear cobweb model of Ezekiel (1938) , in which homogeneous producers simply use naive predictors, 

provides an explanation of the cyclical price behavior observed in many commodity markets. However, linear demand 

and supply make the models unable to generate stable oscillations. Prompted by the growing popularity of applications 

of nonlinear dynamics theory in finance and economics, cobweb models have been extended in two directions over the 

last three decades. By exploring nonlinearities in the supply and demand curves, Jensen and Urban (1984) and Hommes 
1 Branch (2002) , Onozaki et al. (2003) and Diks and van der Weide (2005) are a few exceptions who consider more than one type of naive predictors. 
2 In fact, the infinite predictor set in the continuous-time setup includes almost-perfect-foresight predictors. The price movements become predictable 

under these predictors, and countercyclical production responses can smooth out market fluctuations, causing the cycle to disappear. 
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(1998, 2018) analytically show that cobweb models exhibit stable periodic and complex price dynamics. On the other hand, 

Brock and Hommes (1997) develops a cobweb model in which heterogeneous producers choose predictors from a large set 

of predictor functions of past prices and update their beliefs over time according to a fitness measure. They show that

the equilibrium dynamics are coupled with the population evolutions, exhibiting the rational route to randomness. This 

framework has been extended to consider different learning schemes ( Chiarella and He, 2003 ) and multiple goods markets

( Dieci and Westerhoff, 2010 ). Our continuous-time model contributes to the development of the cobweb literature in both 

directions by providing a unified treatment of different time delays used to form predictors in discrete-time cobweb models. 

In discrete-time models, different delays lead to very different systems of different dimensions that need to be analyzed 

separately; in particular, when the time horizon for historical information is long, the resultant discrete-time models are 

high-dimensional systems, which are difficult to analyze ( Chiarella and He, 2003 ). The continuous-time setup developed in 

this paper overcomes this limitation. Our model is characterized mathematically by a system of delay differential equations 

(DDEs), and the production delay is simply characterized by a parameter, allowing a unified analysis of the delay effect. 3 

The paper is organized as follows. In Section 2 , we develop a continuous-time cobweb-type model with heterogeneous 

beliefs to explicitly characterize the production delay effect. In Section 3 , we apply stability and bifurcation theory to ex-

amine the impacts of production delays and population evolution. Section 4 concludes. All the proofs and model extensions 

are included in the appendices. 

2. The model 

In this section, we develop a continuous-time cobweb-type model with heterogeneous beliefs and adaptive behavior to 

explicitly characterize the time-delay effect. The good price is jointly determined by aggregate demand and supply. Let D (·) 
and S(·) be the demand and supply functions at time t , respectively. Assume that consumer demand D (P t ) depends upon

the current market price P t and is strictly decreasing in price. 

There is a continuum of producers who can be grouped into N types. As “wine is not made in a day ,” as emphasized by

Kydland and Prescott (1982) , we assume that it takes τ ≥ 0 units of time to produce the good for all producers. Parameter

τ represents the time to produce (or the production delay). This implies that production decisions about the amount of 

output to be delivered at time t are made at time t − τ . To make production decisions, producers need to predict the future

price at time t . Each producer can choose her predictor from a predictor set. Assume that the predictor of type- i producers,

namely, H 

i 
t−τ = H 

i (P u : u ≤ t) , depends on prices prior to time t . In particular, type- i producers have perfect foresight when

H 

i 
t−τ = P t ; however, some producers may predict the future price based only on the current price H 

i 
t−τ = P t−τ , which we

term a naive predictor. 

The supply curve S(H 

i 
t−τ ) is derived from firms maximizing profits with a cost function c(q ) , where q is the supply of

the good. That is, 

S(H 

i 
t−τ ) = argmax 

{
H 

i 
t−τ q t−τ − c(q t−τ ) 

}
= (c ′ ) −1 (H 

i 
t−τ ) , (2.1) 

which is assumed to be increasing in the expected price. Let n i t be the market fraction of type- i producers at time t . Then,

the total supply at time t is given by 
∑ N 

i =1 n 
i 
t−τ S(H 

i 
t−τ ) . Note that because of the production delay, the supply delivered at

time t is determined by the market fractions n i t−τ at time t − τ . 

We model the evolution of the market fraction of type- i producers, n i t , using discrete choice models ( Anderson et al.,

1992 ), which have been widely used in the heterogeneous agent models literature to characterize adaptive behavior. That is, 

n 

i 
t = 

e βU i t ∑ N 
j=1 e 

βU j t 

, i = 1 , 2 , · · · , N, (2.2) 

where U 

i is the performance measure to be specified below and the parameter β ≥ 0 is the intensity of choice, measuring

how fast producers switch predictors. In particular, there is no switching among producers if β = 0 , while all producers

immediately switch to the optimal predictor if β = ∞ . 

Following Brock and Hommes (1997, 1998) , we assume that the predictor is chosen based upon its past performance.

The realized net profit π i from using predictor H 

i 
t−τ at time t is given by 

π i 
t = P t S(H 

i 
t−τ ) − c 

(
S(H 

i 
t−τ ) 

)
− C i , (2.3) 

where c(·) is the producer’s cost function and C i ≥ 0 is constant information cost for obtaining predictor H 

i . The performance

 

i 
t of predictor H 

i at time t is a weighted average of past realized net profits measured by 

U 

i 
t = η

∫ t 

−∞ 

e −η(t−s ) π i 
s ds, (2.4) 
3 Applications of delay differential equations to characterize cyclical economic behavior have a long history; see, e.g., Haldane (1932) and Mackey (1989) . 

This development has further led to studies on the effect of policy lags on macroeconomic stability in Phillips (1957) , Asada and Yoshida (2001) , and 

Yoshida and Asada (2007) , asset pricing models in Di Guilmi et al. (2014) and Guo et al. (2020) , and portfolio management in Li and Liu (2018, 2021) and 

Li (2019) . 
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where the decay parameter η > 0 represents the “memory strength”. As η increases, the weights on the latest realized 

profits increase. In particular, U 

i 
t = π i 

t when η → ∞ . We will show in Section 3.3.3 that the memory strength η governs the

relative speed of price dynamics and population evolution. It follows from (2.4) that 

˙ U 

i 
t = η(π i 

t − U 

i 
t ) . (2.5) 

Therefore, the population evolution is characterized by (2.2) –(2.5) . 4 

As in most heterogenous agent models in which agents are allowed to switch among predictors, the discrete choice 

model (2.2) assumes that the firms are boundedly rational and make their decisions according to certain heuristic statistics. 

More specifically, the firms do not have perfect knowledge about the accuracy of the predictors. They evaluate the predictors 

based only on their past performance as measured by (2.3) –(2.4) , and each time period they use one predictor chosen from

the N-predictor set. As a result, the firms do not base their choice of predictors on other factors, such as price persistence

or reusage of recent costly information. 5 

The producers sell their product not on an open market but to a retail firm. This firm posts daily prices and buys all

output at that price. It adjusts the prices based on excess demand (e.g., Mackey, 1989 ): 6 

˙ P t = α
[ 

D (P t ) −
N ∑ 

i =1 

n 

i 
t−τ S(H 

i 
t−τ ) 

] 
, (2.6) 

where α > 0 is the price adjustment coefficient. The price adjustment rule (2.6) is similar to the market-maker scenario

widely studied in the context of financial markets, e.g., Beja and Goldman (1980) and Day and Huang (1990) . To focus

on production delays, we do not model the retailer’s storage or the inventory of a “market maker”. We refer readers

to Mitra and Boussard (2012) for the effect of storage on price dynamics in a nonlinear cobweb model and Franke and

Asada (2008) and Zhu et al. (2009) for the effect of market inventories. 

To complete the model, we need to specify the demand and supply functions. In this paper, we base our main analysis

on linear demand and supply curves, that is, 

D (P t ) = A − dP t , A > 0 , d > 0 , 

S(H 

i 
t−τ ) = sH 

i 
t−τ , s > 0 , 

where the supply curve is derived from a quadratic cost function c(q t ) = q 2 t / 2 s . We discuss nonlinear demand and supply

in Appendix C . We find that the main findings in the linear case still hold with nonlinear supply curves, although nonlinear

supply generates more involved comovements between price and population. 

In all, the price is determined by the following cobweb-type predictive system with adaptively heterogeneous beliefs in 

continuous time: ⎧ ⎨ 

⎩ 

˙ P t = α
[ 

D (P t ) −
N ∑ 

i =1 

n 

i 
t−τ S(H 

i 
t−τ ) 

] 
, 

˙ U 

i 
t = η(π i 

t − U 

i 
t ) , i = 1 , · · · , N, 

(2.7) 

where n i t is governed by (2.2) and π i 
t is given by (2.3) . System (2.7) is a nonlinear differential system with time delays and

N + 1 state variables. 

3. The impacts of production delays and population evolution 

In this section, we study the impacts of both production delays and population evolution on the price dynamics. We start

with two special cases to provide a first glance at the roles of different predictors and production delays in Sections 3.1 –3.2 .

We then examine the interaction of production delays and population evolution by considering two types of beliefs used by 

the producers in Section 3.3 . A general model with an infinite number of beliefs is studied in Section 3.4 to examine the

impact of belief distributions. 

3.1. Perfect-foresight predictor 

We first discuss a special case in which all producers use a perfect-foresight predictor: 7 

H t−τ = P t , 
4 He and Li (2012) show that the above discrete choice model (2.2) –(2.5) in continuous time is consistent with replicator dynamics ( Hofbauer and 

Sigmund, 1998 ). 
5 The non-reusage of recently purchased information can be also consistent with an economy in which in different time periods different sets of firms 

enter the market, like overlapping generations, and choose their predictors without sharing information across firms. 
6 The alternative assumption, that the relative variation in market price ˙ P /P is proportional to excess demand, leads to a more unstable steady state 

P ∗ = 0 , which we are not interested in. In this paper, we consider that the impact of excess demand is at the price level in (2.6) . 
7 This case is equivalent to the case without a production delay. 
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that is, the producers have perfect knowledge of the future price. In this case, the supply curve satisfies S(H t−τ ) = sP t , and

(2.7) reduces to 

˙ P t = α
(
A − dP t − sP t 

)
. (3.1) 

Brock and Hommes (1997) show that the equilibrium price is stable in discrete time. The following proposition confirms the 

stabilizing role of the perfect-foresight predictor in continuous time. 

Proposition 3.1. System (3.1) has a unique steady-state price P ∗ = A/ (d + s ) , which is globally stable. 

Appendix A.1 contains the proof for this proposition. 8 Proposition 3.1 shows that when there is no time delay, the steady

state is globally stable. The price with any initial values converges monotonically and quickly to the steady state. We provide

further discussions about the adjustment path in Section 3.3.2 . 

3.2. Naive predictors 

To examine the time-delay effect, we study another special case in which all agents use the same naive predictor, 

H t−τ = P t−τ . (3.2) 

That is, they predict the future price and make production decisions based on only the current price. Note that predictor

(3.2) coincides with the perfect-foresight predictor when τ = 0 . The price dynamics are given by 

˙ P t = α
(
A − dP t − sP t−τ

)
. (3.3) 

Classical discrete-time cobweb models suggest that naive predictors based on past prices may destabilize the market, and 

the following proposition verifies this. 

Proposition 3.2. 

(1) System (3.3) has a unique steady-state price P ∗ = A/ (d + s ) . 

(2) If s ≤ d, then P ∗ is locally asymptotically stable for all τ ≥ 0 . 

(3) If s > d, then P ∗ is locally asymptotically stable for 0 ≤ τ < τ ∗∗
0 

and unstable for τ > τ ∗∗
0 

. 

Proposition 3.2 shows that when s/d < 1 , the steady-state price is stable for any production delay. If the relative supply

strength is, however, high, the steady-state price is stable only for small production delays, and it is destabilized if the delay

grows sufficiently large. Interestingly, unlike discrete-time models, Proposition 3.2 states that a small time delay can play 

stabilizing role. Intuitively, when the time delay is small enough, the predictor is very close to achieving perfect foresight, 

and hence, the system is stable. The destabilizing role of a large production delay is also found in Mackey (1989) , Gori et al.

(2014, 2015) , Matsumoto and Nakajama (2015) , and Matsumoto and Szidarovszky (2015) . In addition, d plays a stabilizing

role, while s and α play destabilizing roles in the market, in the sense that an increase in d increases τ ∗∗
0 

and hence tends to

stabilize the market while an increase in s or α decreases τ ∗∗
0 

and hence destabilizes the market, as shown in Appendix A.2 . 9 

3.3. Adaptive behavior with perfect-foresight and naive predictors 

This section studies the joint impact of heterogeneous beliefs and adaptive behavior. For simplicity, we consider only two 

predictor types: perfect-foresight and naive predictors: that is, 

H 

R 
t−τ = P t and H 

N 
t−τ = P t−τ . 

Naive predictors are assumed to be freely available, whereas perfect-foresight predictors can be obtained at an information 

cost C R ≥ 0 . In accordance with (2.3) , realized net profits are then given by 

πR 
t = P t S 

R 
t − c(S R t ) − C R = sP 2 t − s 

2 

P 2 t − C R = 

s 

2 

P 2 t − C R , (3.4) 

πN 
t = P t S 

N 
t − c(S N t ) = sP t P t−τ − s 

2 

P 2 t−τ = 

s 

2 

P t−τ (2 P t − P t−τ ) . (3.5) 

This leads to the model: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ P t = α
[ 

A − dP t − sn 

R 
t−τ P t − s (1 − n 

R 
t−τ ) P t−τ

] 
, 

˙ U 

R 
t = η

(
s 
2 

P 2 t − C R − U 

R 
t 

)
, 

˙ U 

N 
t = η

[ 
s 
2 

P t−τ (2 P t − P t−τ ) − U 

N 
t 

] 
, 

(3.6) 
8 In this paper, all proofs are included in the appendix. 
9 Technically speaking, the steady state does not undergo a Hopf bifurcation at τ = τ ∗∗

0 since the genericity condition for Hopf bifurcation is not satisfied 

in the linear system (3.3) . 
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where the market fraction of perfect-foresight agents n R t is given by 

n 

R 
t = 

e βU R t 

e βU R t + e βU N t 

= 

1 

1 + e β(U N t −U R t ) 
. (3.7) 

This states that the market fraction of perfect-foresight agents increases in the performance difference U 

R − U 

N . 

3.3.1. The destabilizing effect of a large production delay 

The price dynamics of (3.6) with respect to τ is described by the following proposition. 

Proposition 3.3. 

(1) System (3.6) has a unique steady state (P ∗, U 

R ∗, U 

N∗) = ( A 
d+ s , 

sA 2 

2(d+ s ) 2 − C R , sA 2 

2(d+ s ) 2 ) . 

(2) If s ≤ d/ (1 − 2 n R ∗) , then (P ∗, U 

R ∗, U 

N∗) is locally asymptotically stable for all τ ≥ 0 . 

(3) If s > d/ (1 − 2 n R ∗) , then (P ∗, U 

R ∗, U 

N∗) is locally asymptotically stable for 0 < τ < τ ∗
0 , is unstable for τ > τ ∗

0 , and under-

goes a Hopf bifurcation at τ = τ ∗
0 

, where the Hopf bifurcation value τ ∗
0 

is governed by (A.8) . 

Proposition 3.3 shows that system (3.6) has the same steady-state price P ∗, which is yielded in the homogeneous be-

lief cases since both predictors deliver identical forecasts in the fundamental steady state. The steady-state fitness for the 

perfect-foresight predictor U 

R ∗ is its realized profit in the steady state less the cost C R . The steady-state fitness of the naive

predictor U 

N∗ is its realized profit in the steady state, which is the same as that of the perfect-foresight predictor due to

the fact that they share the same steady-state price. The market fraction of perfect-foresight agents in the steady state is

n R ∗ = (e βC R + 1) −1 ≤ 0 . 5 . 

Consistent with Propositions 3.1 –3.2, Proposition 3.3 again shows the stabilizing role of the perfect-foresight predictor 

and the destabilizing role of naive predictors even in the presence of population evolution. When s ≤ d/ (1 − 2 n R ∗) , the

steady state is always stable, and the time delay τ and switching intensity β do not qualitatively affect the local stability of

the market. When s > d/ (1 − 2 n R ∗) , the steady state is stable for a small time delay but becomes unstable for a large time

delay. This is consistent with the results shown in Chiarella and He (2003) , who examine several cases with short delays and

find that price dynamics become more complex as the delay increases. Proposition 3.3 provides a systematic analysis on the 

delay effect. Note that the condition s ≤ d/ (1 − 2 n R ∗) is weaker than the one in Proposition 3.2 and that Proposition 3.3 has

a relatively larger stable interval with respect to the time delay than that in Proposition 3.2 ( τ ∗
0 > τ ∗∗

0 ). Thus, the adaptive

system (3.6) with a population evolution between perfect-foresight and naive predictors is more stable than system (3.3) , in

which the market is full of naive traders. Intuitively, the total supply in (3.6) is a weighted average of perfect-foresight and

naive expectations. The destabilizing role of naive expectations is partially offset by perfect-foresight expectations; hence, 

the system is more stable. 

Furthermore, system (3.6) can be stabilized by increasing the parameter d or decreasing the parameters s, α, τ, β , 

and C R ( Appendix A.3 ). Especially when β = 0 or C R = 0 , the steady-state market fraction n R ∗ = 0 . 5 , and the condition

s ≤ d/ (1 − 2 n R ∗) always holds, implying that the system is always stable. This result further highlights the importance of

decreasing information costs and is consistent with Schmitt and Westerhoff (2015) , who show that policy-makers can re- 

duce the (steady-state) disadvantage of the stabilizing perfect-foresight predictor by imposing profit taxes, thereby managing 

(reversing) the model’s rational route to randomness. 

Interestingly, Proposition 3.3 shows that the decay parameter η does not affect local stability. However, it is in the higher- 

order terms of the system and hence can affect the global dynamics via the population-evolution process ( He and Li, 2012 ).

Figure 3.1 illustrates the bifurcation diagram of prices with respect to τ for the case s ≤ d/ (1 − 2 n R ∗) . It confirms that

the system is stable at small τ but becomes unstable at large τ . The left panel of Fig. 3.2 illustrates the time series of the

fitness functions U 

R and U 

N when τ is chosen in the unstable region ( τ = 10 ), and the middle panel illustrates the market

fraction of perfect-foresight traders and the price. Both panels show the periodic fluctuations in the price, associated with 

the fluctuations of the fitness functions of both perfect-foresight and naive expectations and hence their market fractions. 

The market fraction of perfect-foresight traders n R increases with the fitness difference U 

R − U 

N . The phase plot in the right

panel illustrates the opposite movements between the price and the market fraction of perfect-foresight traders, implying a 

stabilizing role of these traders. 

Figure 3.2 illustrates the comovements of the price and market fractions. When the price increases to the steady-state 

value, associated with increases in the fraction of agents who choose the naive predictor, the price keeps increasing due to

an overshooting effect, which is discussed shortly. The prices then diverge from the steady state, which leads to an increase

in the prediction error from the naive predictor (or a decrease in the net profits of the naive predictor). When the net

profit associated with the naive predictor becomes lower than that associated with the perfect-foresight predictor, agents 

are willing to pay some information cost to obtain the perfect-foresight predictor. Prices are then pushed back toward 

their steady-state level. With prices close to their steady-state value, the prediction error of the naive predictor becomes 

small again, and agents then switch their beliefs to the naive expectation without cost. As a result, agents switch between

perfect-foresight and naive predictors over time, leading to price fluctuations. This observation verifies the adaptive rational 

equilibrium dynamics proposed in Brock and Hommes (1997) , who observe this phenomenon with the premise of a high

intensity of choice. However, for a given level of intensity of choice, our economy can always produce such price dynamics

as long as there is a large production delay. 
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Fig. 3.1. The bifurcation diagram of the price with respect to τ . Here, β = 1 . 3 , α = 1 , A = 10 , d = 1 , s = 3 , η = 0 . 5 , and C R = 0 . 6 . The steady state is 

(P ∗, U R ∗, U N∗) = (2 . 5 , 8 . 8 , 9 . 4) , and the market fraction of perfect-foresight traders in the steady state is n R ∗ = 0 . 31 . This parameter set corresponds to the 

case b > d/ (1 − 2 n R ∗) . 

Fig. 3.2. The time series of the fitness functions of perfect-foresight and naive predictors (left panel) and of the price and market fraction of perfect- 

foresight traders (middle panel) and the phase plot (right panel). Here, β = 1 . 3 , τ = 10 , α = 1 , A = 10 , d = 1 , s = 3 , η = 0 . 5 , and C R = 0 . 6 . 
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Fig. 3.3. Time series of price for τ = 0 (left panel), τ = 1 (middle panel), and τ = 10 (right panel). Here, β = 1 . 3 , α = 1 , A = 10 , d = 1 , s = 3 , η = 0 . 5 , and 

C R = 0 . 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. An overshooting effect of production delays 

To provide more insight into how production delays lead to price fluctuations, we examine the price dynamics for dif- 

ferent levels of τ . Figure 3.3 illustrates the price series for different levels of production delay when the initial state of the

price is not in its steady state. When τ = 0 , there is no production delay, and demand and supply decisions are made at the

same time. In this case, system (3.6) is “self-regulating” in the sense that the future dynamics are completely determined by 

the current price, and the left panel shows that the system is globally stable and that the price converges to its steady-state

level monotonically. 

When τ = 1 , although Proposition 3.3 shows that the system is still stable, the middle panel of Fig. 3.3 shows that the

production delay gives rise to an overshooting effect. 10 More specifically, the initial price starts below its steady state, and

initial demand is greater than initial supply, implying that the price will increase in following periods. However, when the 

price increases beyond its steady-state level at t = 0 . 5 , demand is still greater than supply, and the price keeps increasing

even if it is already greater than the steady state. Hence, the mismatch between demand and supply (or the time incon-

sistency between demand and supply decisions) generates an overshooting in price dynamics, which is followed by inter- 

changes between periods of demand being greater than supply and periods of demand being less than supply. With a small

time inconsistency, agents can easily adjust their demand and supply accordingly, and eventually, the system digests this 

inconsistency, leading to consistency between demand and supply and hence a stable price. 

However, when τ = 10 , the time inconsistency is too large to be absorbed by the system, and the overshooting effect

leads to long-lasting constant price fluctuations, as shown on the right panel of Fig. 3.3 . In untabulated results, we also find

that when the production delay increases, both the magnitude and the minimal period of the price fluctuations increase 

and that it hence becomes more difficult to harmonize demand and supply. 

In all, we show that the overshooting effect is inherent to production delays. Without production delays, the system is 

linear, and hence there is no overshooting. With production delays, the system becomes nonlinear, and there is overshoot- 

ing on price regardless of whether the system is stable. However, a change in other parameters cannot change the over-

shooting effect unless it alters the nonlinearity of the system. In the equilibrium models of Brock and Hommes (1997) and

Gori et al. (2015) , the price cycles resulting from the usage of naive predictors also reflect the overshooting effect. 

3.3.3. The effect of switching intensity—the rational route to randomness 

In this subsection, we study the role of the intensity of choice β . The following corollary shows that the steady state is

stable at a low intensity of choice and becomes unstable when agents adjust their strategies quickly. 

Corollary 3.4. If s > d/ (1 − 2 n R ∗) , then the steady state (P ∗, U 

R ∗, U 

N∗) is locally asymptotically stable for 0 < β < β∗
0 

, is unstable

for β > β∗
0 

, and undergoes a Hopf bifurcation at β = β∗
0 

, where β∗
0 

is given by (A.9) . 
10 We use the term “overshooting” to highlight the nonmonotonic price-adjustment path, as illustrated in the middle and right panels of Fig. 3.3 . 
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Fig. 3.4. The bifurcation diagram of the price with respect to β . Here τ = 10 , α = 1 , A = 10 , d = 1 , s = 3 , η = 0 . 5 , and C R = 0 . 6 . The steady state is 

(P ∗, U R ∗, U N∗) = (2 . 5 , 8 . 8 , 9 . 4) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brock and Hommes (1997) find that when the switching intensity is high, chaotic price behavior arises in their discrete- 

time cobweb model with perfect foresight versus naive expectations due to homoclinic bifurcations associated with sad- 

dle points. In the following analysis, we numerically verify that chaotic price behavior also arises in our continuous-time 

cobweb-type model with population evolutions. 

Figure 3.4 illustrates the bifurcation diagram of the market prices with respect to β . The steady state is stable for a low

intensity of choice β < β∗
0 (= 1 . 2) and becomes unstable as β increases. The price regularly fluctuates around its steady-state

level for a low β > β∗
0 

. However, a further increase in β leads to secondary and even tertiary bifurcations of the periodic

solutions, associated with more complex price behavior. 

Figure 3.5 examines the price dynamics for large β ( β = 1 × 10 6 ). In this case, the price builds up slowly but crashes

suddenly. However, most of the time (during the buildup of prices), most agents choose the naive predictor, leading the price

to cyclically depart from the steady-state value. When the deviation of the price from the fair value is sufficiently large, the

net profit associated with the naive predictor becomes lower than that associated with the perfect-foresight predictor, and 

with the high switching intensity, agents suddenly switch to the perfect-foresight predictor. This in turn leads to the sudden 

price crash. Figure 3.6 further illustrates the phase plot. It clearly shows that the price builds up slowly in association with

increases in U 

R − U 

N and then suddenly crashes when U 

R − U 

N is sufficiently large. 

The phenomena of slow buildup and sudden crash illustrated in Figs. 3.5 - 3.6 are driven mainly by the memory strength

η. When η → 0 , the fitness measures U 

i 
t have a tendency to weight all past profits from a strategy equally; hence, we

call this case the long-memory limit. In this limit, system (3.6) can be cast in the mold of a fast–slow system, with the

price dynamics of the fast subsystem and the performance difference U 

R − U 

N of the slow subsystem. Therefore, the per-

formance difference and the market fraction move slowly even if the price fluctuates widely, as illustrated in Figs. 3.5 - 3.6 .

Appendix D shows that in the limit η → 0 , the price subsystem undergoes a Hopf bifurcation for a certain value D 

∗ of

the performance difference. For small η, the system dynamics are then close to the stable attractors of the price subsys-

tem. Figure 3.6 can now be interpreted as follows: the bifurcating value of the performance difference D 

∗ is close to the

lower bound of the value of U 

R 
t − U 

N 
t . There, the central equilibrium (P t , P t−τ ) = (P ∗, P ∗) destabilizes and the price dynamics

start to follow the Hopf invariant circle. Along the resultant periodic dynamics, the perfect-foresight predictor has a per- 

formance advantage, which increases U 

R 
t − U 

N 
t and lets the dynamics tend along the ever-increasing Hopf circles. When the 

performance difference is approximately 0, the perfect-foresight predictor takes over and forces the dynamics back to the 

(P t , P t−τ ) = (P ∗, P ∗) axis. However, the naive predictor, being cheaper, takes over again, and the cycle repeats. 
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Fig. 3.5. The time series of the price (upper panel) and the market fraction of perfect-foresight traders (lower panel). Here, τ = 10 , α = 1 , A = 10 , d = 1 , 

s = 3 , η = 0 . 5 , C R = 0 . 6 , and β = 1 × 10 6 . 

Fig. 3.6. The phase plots of (P t , P t−τ , U R t − U N t ) . Here, τ = 10 , α = 1 , A = 10 , d = 1 , s = 3 , η = 0 . 5 , C R = 0 . 6 , and β = 1 × 10 6 . 
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Moreover, Figs. 3.5 - 3.6 show that the price series is erratic. Although the price experiences booms and crashes repeatedly,

the attractor is not regular, and the period of each “price cycle” is different, suggesting chaotic price behavior. This chaotic 

behavior is the outcome of a high intensity of choice β . In fact, Corollary 3.4 shows that the steady state becomes unstable

for a high β . However, since every point in the segment S = 

{
(P, U 

R , U 

N ) | P = P ∗, −∞ ≤ U 

R , U 

N ≤ ∞ 

}
is mapped onto the

steady state, there always exists a stable manifold of the steady state that contains S, implying that the unique steady state

(P ∗, U 

R ∗, U 

N∗) is a saddle point. Let us consider a limiting case β → ∞ such that agents switch infinitely fast between the

two predictors. All firms use the naive (perfect-foresight) predictor whenever U 

N > U 

R ( U 

R > U 

N ). For an initial state with

all firms using the naive predictor, since the initial state lies in the unstable manifold of the steady state, the price cyclically

departs from the steady-state price. As long as the deviation of the price from its steady state is large enough that U 

R > U 

N ,

all firms immediately switch to the perfect-foresight predictor, and the price suddenly converges to its steady state. After 

this, once the orbit lies in the stable manifold of the steady state, the system converges to the saddle-point steady state.

Adding a small amount of noise to the system with β → ∞ would lead to very irregular price fluctuations, which in fact

are very similar to the fluctuations with large but finite values of β . Hence, when the intensity of choice is high, the system

is close to having homoclinic orbits. This phenomenon is illustrated by the price time series in Fig. 3.5 : once the price

deviation from its steady state is large, all firms switch to the perfect-foresight predictor, leading to a sudden price drop

to its steady state. This verifies the rational route to randomness of Brock and Hommes (1997) in our infinite-dimensional

economy. 

Technically, Brock and Hommes (1997) demonstrate, by showing the existence of “horseshoes,” that for their finite- 

dimensional discrete-time cobweb model, there can be no homoclinic intersection between the stable and unstable mani- 

folds of the steady state for low values of β while there must be homoclinic bifurcations associated with the saddle points

for high values of β . However, the proof for our delay differential system (3.6) is much more involved because the time delay

leads to infinite dimensions. 11 In this paper, we numerically examine chaotic price dynamics. To the best of our knowledge, 

this is the first numerical example of chaotic dynamics in an infinite-dimensional economy. 

Numerical simulations (not reported here) show that the chaotic behavior is driven mainly by a high switching inten- 

sity rather than a large production delay in the sense that the price dynamics still exhibit regular cycles even for a large

production delay as long as β is small. Increases in τ only enlarge the periods of price fluctuations. 

3.4. Belief distributions 

In the previous subsections, we focused on the delay impact by considering two beliefs. In this section, we extend the

model to a case with a large belief set to examine the impact of belief distributions on price dynamics. 

There are an infinite number of predictors over [0 , τ ] , and the predictor indexed by i is given by 

H 

i 
t−τ = P t−i , i ∈ [0 , τ ] . (3.8) 

Therefore, in each time period, agents’ beliefs follow a distribution over the predictor set, and (3.8) reflects the belief dis-

tribution at time t − τ . One can also interpret this distribution as a (delay-dependent) technology distribution; in this case, 

different technologies require that firms using the naive predictors form their predictions at different points in time. 12 

Then the total supply at time t is given by 

∑ 

nS = 

∫ τ

0 

n 

i 
t−τ S(H 

i 
t−τ ) di = s 

∫ τ

0 

n 

i 
t−τ P t−i di, (3.9) 

where n i t−τ di is the fraction of agents who use predictor H 

i at time t − τ , satisfying
∫ τ

0 n i t−τ di = 1 , and the price process is

given by 

˙ P t = α
(

A − dP t − s 

∫ τ

0 

n 

i 
t−τ P t−i di 

)
. (3.10) 

System (3.10) is governed by a differential system with distributed delays. At any time t , n i t can be regarded as the density

of the delay distribution because 
∫ τ

0 n i t di = 1 . When τ = 0 , all agents have perfect-foresight beliefs (atomic distribution), and

the system becomes the ordinary differential equation (3.1) . When τ = ∞ , beliefs are distributed over all historical prices.

For the general continuous-time cobweb-type model (3.10) with an infinite number of beliefs, stability can be analyzed 

once the density of the delay distribution is specified. In the following analysis, we first show that the price dynamics can

be significantly affected by the belief distributions via some simple examples, and then, we demonstrate that different price 

dynamics in turn can also lead to different belief distributions. 
11 Lani-Wayda and Walther (1995, 1996) show that delay differential systems have chaotic trajectories close to the homoclinic orbit when the set of the 

homoclinic orbit is rich enough. The idea is as follows. It can be shown that the homoclinic orbit is a hyperbolic set ( Steinlein and Walther, 1990 ). Then, 

shadowing theorem (pp.18–19 Ott, 1993 ) implies that chaotic trajectories close to the homoclinic orbit exist. 
12 We are greatly indebted to an anonymous referee who emphasized this point and provided us with many other very helpful comments. 
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3.4.1. Examples of static belief distributions 

Before studying dynamic populations, we first examine some static distributions in which n i t is given exogenously to 

provide a better understanding of the impact of belief distributions. The first example is a system with uniformly distributed 

agents. In this case, the total supply reduces to 1 
τ

∫ τ
0 (sH 

i 
t−τ ) d i = 

s 
τ

∫ t 
t−τ P u d u , and the price is given by 

˙ P t = α
(

A − d P t − s 

τ

∫ t 

t−τ
P u d u 

)
. (3.11) 

The local stability of system (3.11) is characterized by the following proposition. 

Proposition 3.5. System (3.11) has a unique steady-state price P ∗ = A/ (d + s ) , which is locally asymptotically stable under 

( C ) = { s < d/x ∗} ⋃ { τ ∗∗∗
0 ≥ (s − d) / (αd 2 ) } ⋃ { 0 ≤ τ < τ ∗∗∗

0 } ⋃ { τ > ˜ τ ∗∗∗} (3.12)

(where x ∗ = max {− sin x/x ; x > 0 } (≈ 0 . 2172) and τ ∗∗∗
0 and ˜ τ ∗∗∗ are defined in Appendix A.5 ) and unstable under 

( C ) = { s ≥ d/x ∗} ⋂ { τ ∗∗∗
0 < (s − d) / (αd 2 ) } ⋂ { τ ∗∗∗

0 < τ < ˜ τ ∗∗∗} , (3.13)

which is the complementary set of ( C ) . 

The stable condition ( C ) in (3.12) shows that system (3.11) is stable for both a small τ and a large τ while the results for

a medium τ are mixed depending on the other parameters. However, unlike in the discrete-delay case in Sections 3.2 –3.3 , a

large delay in the distributed-delay system plays a stabilizing role. This is because moving average processes, such as (3.11) ,

generally have positive (negative) feedback for small (large) values of τ ( He et al., 2009 ). In addition, (3.12) shows that the

system is stable for small values of s or large values of d. For example, the system is always stable when d > 0 . 2172 s . This

is consistent with Proposition 3.3 , which shows the destabilizing role of s and stabilizing role of d. 

The unstable condition ( C ) in (3.13) is unlikely to be satisfied, implying that P ∗ is stable for most (if not all) cases. This

is inconsistent with the first general local instability theorem proposed in Brock and Hommes (1997) , which shows that

the system is unstable when beliefs are uniformly distributed over a finite expectation set. In fact, the infinite predictor set

in the continuous-time setup includes almost-perfect-foresight expectations, which are inherently excluded by the discrete- 

time models. The price movements become predictable under these expectations, and countercyclical production responses 

can smooth out market fluctuations, causing the cycle to disappear. 13 As a result, the steady-state price P ∗ becomes locally

stable by violating Brock and Hommes (1997) ’s assumption (Assumption A2 on pp. 1064) that the steady-state price is locally

unstable when agents are uniformly distributed over the predictor space. 

Appendix B studies two more examples of static distributions, including a linear fitness function case and a gamma 

distribution. The linear fitness function case features multiple stability switchings in the sense that an increase in τ can 

destabilize the price while a further increase may stabilize an otherwise unstable price. 14 When beliefs follow a gamma dis-

tribution, the system is always stable. To sum up, we show that agents’ belief distributions significantly affect market stabil- 

ity. Different distributions lead to very different price dynamics, and nonlinear distributions can give rise to complex price 

behavior. This is similar to the notion of a high limit introduced by Brock et al. (2005) and Hommes and Wagener (2010) to

study evolutionary heterogeneous market systems with many different strategy types. They show that the initial distribution 

of strategies plays a decisive role in market stability. See also Diks and van der Weide (2005) for a related approach. 

3.4.2. Population evolution 

Now, we study dynamic belief distributions when agents update their beliefs based on the relative net benefits. It follows 

from (2.2) that the market fraction of agents with belief i at time t is given by n i t di = 

e 
βU i t di ∫ τ

0 e 
βU i 

t di 
, where U 

i 
t , the fitness function

associated with belief i at time t , is governed by ˙ U 

i 
t = η[ s 2 P t (2 P t − P t−i ) − C i − U 

i 
t ] . The constant information cost C i is assumed

to decrease in i ; that is, agents have to pay more to obtain predictors closer to the one with perfect foresight. The fitness

function can be rewritten as 

U 

i 
t = 

sη

2 

∫ t 

0 

e η(u −t) P u (2 P u − P u −i ) du + U 

i 
0 e 

−ηt − C i (1 − e −ηt ) . (3.14) 

Then, the total supply is given by 
∑ 

nS = s 
∫ τ

0 e 
βU i t−τ P t−i di ∫ τ

0 e 
βU i 

t−τ di 

, and hence, the price process is given by 

˙ P t = α
(

A − dP t − s 

∫ τ
0 e βU i t−τ P t−i di ∫ τ

0 e βU i t−τ di 

)
, (3.15) 
13 In other words, the inconsistency between the results in the continuous-time model and discrete-time models is due to the difference between con- 

tinuous distributions and discrete distributions. 
14 Similarly, the asset-pricing system with the same characteristic equation form developed in He et al. (2009) also undergoes multiple stability switchings 

within [ τ0 , ̃  τ ] , while it becomes stable outside this interval. 
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Fig. 3.7. The left panel illustrates the price time series, and the right panel illustrates the dynamic belief distributions. Here, β = 1 , τ = 10 , α = 1 , A = 10 , 

d = 1 , s = 3 , η = 0 . 5 , c 1 = 1 , and c 2 = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where U 

i 
t is given by (3.14) . The general model (3.15) is governed by a nonautonomous delay differential equation, and

currently there is no stability and bifurcation theory for this type of system. However, we can discuss the stability in several

limiting cases, which provide more insight into the effect of belief distributions. 

Proposition 3.6. 

(1) System (3.15) has a unique steady-state price P ∗ = A/ (d + s ) . 

(2) If C i = 0 or β = 0 , then P ∗ is locally asymptotically stable under ( C ) and unstable under ( C ) , where conditions ( C ) and

( C ) are defined in (3.12) and (3.13) , respectively. 

(3) The steady-state price P ∗ is unstable when τ > τ ∗∗
0 

and β is sufficiently large, where τ ∗∗
0 

is defined in Proposition 3.2 . 

Note that we do not specify the function of the information cost C i but only assume that it decreases in index i in

Proposition 3.6 . The conditions ( C ) and ( C ) have been discussed in Section 3.4.1 . There are several observations from

Proposition 3.6 . First, although agents adjust their predictors based on an infinite set of beliefs over time, (3.15) shares

the same unique steady-state price P ∗ = A/ (d + s ) as systems (3.1), (3.3) and (3.6) . The condition ( C ) is unlikely to be satis-

fied (see Section 3.4.1 or Appendix A.5 ). Hence, part (2) of Proposition 3.6 shows that when there is no information cost, the

tension between stabilizing and destabilizing forces causes the dynamics to almost surely settle into the steady-state price 

for most (if not all) values of the time delay τ . Intuitively, the market without information costs is dominated by beliefs

close to perfect foresight with small delays, which play stabilizing roles. As a result, the system tends to be stable even in

the presence of population evolution and an infinite number of beliefs. 

Second, when the intensity of choice β = 0 , there is no belief switching, and heterogeneous agents are equally distributed

over the space of predictors. The price dynamics are the same as in system (3.11) . 

Finally, because agents have to pay more to obtain predictors closer to perfect foresight, part (3) of Proposition 3.6 shows

that for large values of τ , the steady-state price P ∗ is stable for small values of β but becomes unstable when the in-

tensity of choice β is sufficiently high. This is consistent with the second general local instability theorem in Brock and

Hommes (1997) . 

Now, we numerically examine price behavior and dynamic belief distributions. We consider a linear cost function C i = 

c 1 − c 2 i ( c 1 , c 2 ≥ 0 ). In the left panel of Fig. 3.7 , the price is stable when the intensity of choice β is low. The right panel

of Fig. 3.7 shows that as time t increases, the corresponding belief distribution becomes “stationary” in the sense that it 

eventually converges to a fixed distribution and does not change over time. Equation (3.14) implies that U 

i in the steady

state increases in i . Thus, in the steady state, the market fraction of agents with i -belief increases with i , as illustrated in

the right panel of Fig. 3.7 . 

The upper left panel of Fig. 3.8 illustrates that when β is large, the system becomes unstable, and the price (the solid

blue line) fluctuates around the steady-state level (the dashed red line) in a cyclic way. We plot the fitness functions for two

extreme beliefs, i = 0 and i = τ , as well as their steady-state levels, in the upper right panel of Fig. 3.8 . It shows that the

fitness functions periodically fluctuate in association with the price fluctuation; however, the steady-state fitness of belief 
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Fig. 3.8. The upper panel illustrates the price time series (left panel) and fitness functions for beliefs i = 0 and i = τ (right panel). The lower left panel 

illustrates the dynamic belief distributions, and the lower right panel illustrates the average belief distribution over time. Here, β = 5 , τ = 10 , α = 1 , A = 10 , 

d = 1 , s = 3 , η = 0 . 5 , c 1 = 1 , and c 2 = 0 . 1 . 

 

 

 

 

 

 

 

 

i = τ is greater than that of i = 0 . The lower left panel plots the dynamic belief distributions over time. It shows that when

the system is unstable, the belief distribution becomes “nonstationary” and fluctuates as the price fluctuates. The dynamic 

population fractions seesaw over time. The lower right panel of Fig. 3.8 plots the average distribution over time. It clearly

shows that the population fraction increases with i on average. Therefore, more agents use the beliefs with lower costs, 

consistent with the case in the right panel of Fig. 3.7 . In addition, under the same set of parameters, system (3.6) with two

beliefs is stable. Therefore, when producers use more beliefs, the market tends to become less stable. 

In all, we show that consistent with the main findings in Section 3.3 , when agents are allowed to update their beliefs

based on a large belief set, both production delays and the intensity of choice play destabilizing roles in a more general

setup. 

4. Conclusion 

Most of the cobweb models developed in the literature are in a discrete-time setup. In this setup, the impacts of non-

linear demand/supply curves and adaptive behavior on market stability have been widely studied, while the impacts of 

production delays and belief distributions on market stability have not been well understood due to the problem of high- 

dimensional systems. This paper develops a continuous-time framework to study the joint impact of lagged prices and 

adaptive behavior of producers. The resultant delay differential equations provide a unified approach to systematically study 

the impact of lagged prices and belief distributions through a time-delay parameter. 

We find that the time inconsistency between demand and supply due to production delays inherently generates an over- 

shooting effect in prices. Large production delays give rise to price fluctuations, even with a low intensity of choice. We

provide results consistent with the rational route to randomness of Brock and Hommes (1997) in an infinite-dimensional 

economy. We also show that different belief distributions may result in very different price dynamics and that stable (un- 

stable) prices are typically associated with stationary (nonstationary) belief distributions. 

Many heterogeneous agent models, including our model, assume that agents switch among predictors, which are het- 

erogenous in terms of both cost and “quality”, based mainly on their past performance. This setup helps understand the 

different roles played by different predictors in the market. However, in this setup, if agents who recently purchased costly 

information decide to switch their predictors, they will completely discard the recent information that could be still useful 

in predicting prices in the near future. To account for this, one could allow the agents to strategically choose the predictors

by minimizing costs and optimally reusing recently purchased information. We leave this for future research. 
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Appendix A. Proofs 

A1. Proof of Proposition 3.1 

It is easy to verify that (3.1) has a unique steady state P ∗ = A/ (d + s ) . It follows from (3.1) that 

P t = (P 0 − P ∗) e −α(d+ s ) t + P ∗, 

which converges to P ∗ as t → ∞ . 

A2. Proof of Proposition 3.2 

The characteristic equation of system (3.3) in its unique steady state P ∗ = A/ (d + s ) is given by 

λ + αd + αse −λτ = 0 , (A.1) 

which has no zero eigenvalue. 

For τ = 0 , Appendix A.1 has shown that the steady state P ∗ is asymptotically stable and therefore the root of (A.1) has a

negative real part. Let λ = iω(ω > 0) be a root of (A.1) . Substituting it into (A.1) and separating the real and imaginary parts

yield 

αd + αs cos ωτ = 0 , ω − αs sin ωτ = 0 , (A.2) 

which lead to 

ω 

2 + α2 d 2 = α2 s 2 . (A.3) 

If s ≤ d, then (A.3) has no solution. It is known that as τ varies, the sum of the multiplicities of roots of (A.1) in the open

right half-plane can change only if a root appears on or crosses the imaginary axis (see Li and Wei, 2009 ). Therefore, all

roots of (A.1) have negative real parts for all τ ≥ 0 when s ≤ d. This implies the local stability of system (3.3) . If s > d, then

ω 

∗∗ = α
√ 

s 2 − d 2 . Substitute it into the first equation of (A.2) , and we have 

τ ∗∗
n = [ cos −1 (−d/s ) + 2 nπ ] /ω 

∗∗, n = 0 , 1 , 2 , · · · . (A.4)

We can verify the transversal condition 

∂ Re { λ} 
∂τ

∣∣∣
λ= iω ∗∗

= ω 

∗∗2 + αd 2 > 0 , implying that all roots that cross the imaginary axis

at iω 

∗∗ do so from left to right as τ increases. Thus, stability is lost at τ = τ ∗∗
0 

and cannot be regained as τ increases. 

Furthermore, after substituting ω 

∗∗ into τ ∗∗
0 

, we can verify that 

∂τ ∗∗
0 

∂d 
= 

√ 

s 2 −d 2 
[

s 2 −d 2 + s 
√ 

s 2 −d 2 cos −1 (−d/s ) 

]
αA (s −d)(s 2 −d 2 ) 

√ 

s 2 −d 2 
> 0 , 

∂τ ∗∗
0 

∂s 
= − d 

s 

∂τ ∗∗
0 

∂d 
< 0 , 

∂τ ∗∗
0 

∂α
= − cos −1 (−d/s ) 

α2 P ∗
√ 

s 2 −d 2 
< 0 . 

They show that τ ∗∗
0 

increases with d but decreases with s and α. In this sense, b plays a stabilizing role but s and α play

destabilizing roles in the market. 

A3. Proofs of Proposition 3.3 and Corollary 3.4 

The characteristic equation of system (2.7) in the unique steady state (P ∗, U 

R ∗, U 

N∗) = ( A 
d+ s , 

sA 2 

2(d+ s ) 2 − C R , sA 2 

2(d+ s ) 2 ) is given

by 

(λ + η) 2 
[
λ + α(d + sn 

R ∗) + αs (1 − n 

R ∗) e −λτ
]

= 0 , (A.5) 

which has no zero eigenvalue. 

The first term on the left-hand side of (A.5) implies two negative eigenvalues λ1 , 2 = −η < 0 . Thus, we need to consider

only the term in the square brackets 

λ + α(d + sn 

R ∗) + αs (1 − n 

R ∗) e −λτ = 0 . (A.6) 
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We have the following equations by substituting λ = iω into (A.6) , 

α(d + sn 

R ∗) + αs (1 − n 

R ∗) cos ωτ = 0 , 

ω − αs (1 − n 

R ∗) sin ωτ = 0 , 

leading to 

ω 

2 = α2 [ s 2 (1 − n 

R ∗) 2 − (d + sn 

R ∗) 2 ] . (A.7) 

Equation (A.7) cannot hold if s ≤ d/ (1 − 2 n R ∗) . 
When s > d/ (1 − 2 n R ∗) , following the same method as in Appendix A.2 , the Hopf bifurcation values are given by 

τ ∗
n = 

1 

ω 

∗

[ 
cos −1 

(
− d + sn 

R ∗

s (1 − n 

R ∗) 

)
+ 2 nπ

] 
, n = 0 , 1 , 2 , · · · , (A.8) 

where ω 

∗ = α
√ 

s 2 (1 − n R ∗) 2 − (d + sn R ∗) 2 and the transversal condition satisfies ∂ Re { λ} 
∂τ

∣∣∣
λ= iω ∗

> 0 . 

Furthermore, the Hopf bifurcation values with respect to β are governed by { 

b[1 −tanh (−βC R / 2)] 

d+ s tanh (−βC R / 2) 
cos 

[ 
α
√ 

s 2 (1 − tanh (−βC R / 2)) 2 − (d + s tanh (−βC R / 2)) 2 τ
] } 

2 = 1 . (A.9) 

Equation (A.9) cannot be explicitly solved, but the existence of solutions β∗
n (τ ) can be guaranteed by (A.8) . The transversal

condition satisfies ∂ Re { λ} 
∂β

∣∣∣
λ= iω ∗

> 0 , implying that the system becomes unstable for β > β∗
0 
(τ ) . 

A4. Proof of Proposition 3.5 

See Appendix A.5 for the proof of a general case. 

A5. Proof of Proposition 3.6 

It is easy to verify that (3.15) has a unique steady-state price P ∗ = A/ (d + s ) . The proof of Proposition 3.6 follows two

steps—without/with an information cost. 

First, we consider no information cost, C i = 0 . In this case, U 

i 
t shares the same form as (3.14) for all i . If we consider that

they start from the same initial value, then U 

i 
t has the same value at time t for all i . Therefore, U 

i 
t = U t is independent of i ,

and hence, system (3.15) reduces to 

˙ P t = α
[ 

A − dP t − s 

∫ t 
t−τ exp { βU t−τ } P u du ∫ t 

t−τ exp { βU t−τ } du 

] 
= α

[ 
A − dP t − s 

τ

∫ t 

t−τ
P u du 

] 
. (A.10) 

To find the stability condition of system (3.15) when C i = 0 , it suffices to derive the stability condition for (A.10) . The char-

acteristic equation of system (A.10) in the steady state P ∗ is given by 

λ + αd + 

αs 

λτ
(1 − e −λτ ) = 0 , (A.11) 

which has no zero eigenvalue. 

Substituting λ = iω(ω > 0) into (A.11) and separating the real and imaginary parts yield 

−ω 

2 + 

αs 
τ (1 − cos ωτ ) = 0 , 

αdω + 

αs 
τ sin ωτ = 0 . 

(A.12) 

Let x ∗ = max {− sin x/x ; x > 0 } (≈ 0 . 2172) . When s < d/x ∗, the two functions y 1 = −d/sx and y 2 = sin x have no intersection

for x > 0 ; hence, the second equation of (A.12) cannot be true, and (A.11) has no pure imaginary root. Correspondingly,

(A.11) has no root appearing on the imaginary axis. In addition, (A.11) has a unique negative eigenvalue λ = −α(d + s ) < 0

for τ = 0 . Therefore, all roots of (A.11) have negative real parts for all τ ≥ 0 when s < d/x ∗, which leads to the local stability

of system (3.15) . 

Now, we consider the case of s ≥ d/x ∗. It follows from (A.12) that 

ω 

2 = α
(2 s 

τ
− αd 2 

)
. (A.13) 

When τ ≥ 2 s/ (αd 2 ) , (A.13) has no solution, implying that λ = iω is not an eigenvalue. Hence, there is no stability switching

for τ ≥ 2 s/ (αd 2 ) . Substituting λ = Re { λ} + i Im { λ} into (A.11) and separating the real and imaginary parts yield 

Re 2 { λ} − Im 

2 { λ} + αd Re { λ} + 

αs 
τ

(
1 − e − Re { λ} τ ) cos Im { λ} τ = 0 , 

2 Re { λ} Im { λ} + αd Im { λ} + 

αs 
τ e − Re { λ} τ sin Im { λ} τ = 0 . 

(A.14) 

When τ → ∞ , if there exists a root λ with Re { λ} > 0 , then (A.14) reduces to 

Re 2 { λ} − Im 

2 { λ} + αd Re { λ} = 0 , 

2 Re { λ} Im { λ} + αd Im { λ} = 0 , 
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which cannot hold. Thus, (A.11) has all roots with negative real parts when τ → ∞ , implying that the steady state P ∗ is

asymptotically stable for τ ≥ 2 s/ (αd 2 ) when s ≥ d /x ∗. However, if τ < 2 s/ (αd 2 ) , by substituting (A.13) into the first equation

of (A.12) , we have 

αd 2 τ

s 
− cos 

√ 

2 αsτ − α2 d 2 τ 2 − 1 = 0 . (A.15) 

(A.15) can have multiple solutions, as shown in He and Li (2015) , and the number of solutions (A.15) increases as αd → 0 . 15 

Let τ ∗∗∗
0 

be the minimum positive root of (A.15) . Then, all the eigenvalues of (A.11) have negative real parts when 0 ≤ τ <

τ ∗∗∗
0 . It can be easily verified that 

∂ Re { λ} 
∂τ

∣∣∣
τ= τ ∗∗∗

n 

= 

Im 

2 { λ} (αs − αd − α2 d 2 τ ∗∗∗
n ) 

τ ∗∗∗
n { [ αd + αs cos ( Im { λ} τ ∗∗∗

n )] 2 + [2 Im { λ} − αs sin ( Im { λ} τ ∗∗∗
n )] 2 } , 

which is positive for τ ∗∗∗
n < (s − d ) / (αd 2 ) and negative for τ ∗∗∗

n > (s − d ) / (αd 2 ) . As a result, a stable system cannot become

unstable as τ increases in 

[
(s − d ) / (αd 2 ) , + ∞ 

)
. In all, when τ ∗∗∗

0 ≥ (s − d ) / (αd 2 ) , system (3.15) is stable for all τ ≥ 0 ; when

τ ∗∗∗
0 

< (s − d ) / (αd 2 ) , then there exists a ˜ τ ∗∗∗, which is a solution of (A.15) and satisfies (s − d ) / (αd 2 ) < ˜ τ ∗∗∗ < 2 s/ (αd 2 ) ,

such that the steady state P ∗ is asymptotically stable for 0 ≤ τ ∗∗∗
0 

or τ > ˜ τ ∗∗∗, is unstable for τ ∗∗∗
0 

< τ < ˜ τ ∗∗∗, and undergoes

Hopf bifurcations at τ = τ ∗∗∗
0 and τ = ˜ τ ∗∗∗. 

Notice that system (3.15) has the same characteristic Eq. (A.11) when β = 0 and hence has the same stability as in the

case without an information cost. In all, we show that for C i = 0 or β = 0 , the steady-state price P ∗ is locally asymptotically

stable under the condition 

( C ) := { s < d/x ∗} ⋃ { τ ∗∗∗
0 ≥ (s − d) / (αd 2 ) } ⋃ { 0 ≤ τ < τ ∗∗∗

0 } ⋃ { τ > ˜ τ ∗∗∗} 
and unstable under the condition 

( C ) = { s ≥ d/x ∗} ⋂ { τ ∗∗∗
0 < (s − d) / (αd 2 ) } ⋂ { τ ∗∗∗

0 < τ < ˜ τ ∗∗∗} , 
which is the complementary set of ( C ) . 

Second, we study the stability for sufficiently large values of β . 16 Applying variation of constants to (3.15) , we have 

P t = e −αdt 
[ 

P 0 + 

∫ t 

0 

(
αA − αs 

∫ τ
0 e βU i u −τ P u −i di ∫ τ

0 e βU i u −τ di 

)
e αdu du 

] 
. 

Suppose that P ∗ is stable for big β . As t → ∞ , we have 

P t → e −αdt 
[ 

P 0 + 

∫ t 

0 

(
αA − αs 

∫ τ
0 e βU i ∗ P u −i di ∫ τ

0 e βU i ∗ di 

)
e αdu du 

] 
, (A.16) 

where U 

i ∗ is the steady-state fitness when P t = P ∗. Notice that 
( ∫ τ

0 e βU i ∗ P u −i di 
)
/ 
( ∫ τ

0 e βU i ∗ di 
)

is a weighted average of historical

prices over [ u − τ, u ] . Because C i is a decreasing function of i , U 

i ∗ = sP ∗2 / 2 − C i increases in i . When β → ∞ , all the weights

go to time u − τ , and hence the weighted average of historical prices tends toward P u −τ . In this case, the price process

reduces to (3.3) , and Appendix A.2 has demonstrated that P t cannot converge to P ∗ when τ > τ ∗∗
0 

. There is a contradiction.

Therefore, the steady state P ∗ cannot be stable for sufficiently large values of β when τ > τ ∗∗
0 

. 

Appendix B. Some examples of expectation distributions 

B1. A linear fitness function 

The second example is a linear fitness function U 

i 
t − C i = g − ci , where g and c ( ≥ 0 ) are constants. The net fitness in this

case is inversely proportional to the production delay, implying that the farther the predictor is from perfect foresight, the 

less net fitness it gains. Then, the total supply becomes 

∑ 

nS = 

s 

a 

∫ t 

t−τ
e −βc(t−u ) P u du, a = 

1 − e −βcτ

βc 
, 

and hence the price process is given by 

˙ P t = α
(

A − d P t − s 

a 

∫ t 

t−τ
e −βc(t−u ) P u d u 

)
. (B.1) 
15 We refer readers to Appendix B.4 in He and Li (2015) for more properties on (A.15) , including the number of bifurcations, stability switching and the 

dependence of the bifurcation values on the parameters. 
16 In general, (3.15) is a nonautonomous equation due to the information cost, and we cannot apply standard stability and bifurcation theory. Here, we 

discuss the stability for a special case when β is sufficiently large. 
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The price dynamics of system (B.1) are described by the following proposition. 

Proposition B.1. System (B.1) has a unique steady-state price P ∗ = A/ (d + s ) , which is locally asymptotically stable for τ < τ0 or

τ > ˜ τ , where τ0 is the smallest Hopf bifurcation value determined by (B.2) and ˜ τ is defined in (B.5) . 

Proof. The characteristic equation of (B.1) is given by 

p(λ, τ ) + q (λ, τ ) e −λτ = 0 , (B.2) 

where 

p(λ, τ ) = λ2 + (βc + αd) λ + αdβc + 

αsβc 

1 −e −βcτ , 

q (λ, τ ) = − αsβc 

1 −e −βcτ e −βcτ . 

It is easy to verify that (B.2) has two negative roots, λ1 = −βc < 0 and λ2 = −α(d + s ) < 0 , when τ = 0 . Hence, system

(B.1) is stable for τ < τ0 , where τ0 is the smallest Hopf bifurcation value. 

Denote 

Q t := 

1 

a 

∫ t 

t−τ
e −βc(t−u ) P u du. 

Then, 

˙ P t = α(A − dP t − bQ t ) . (B.3) 

When τ → ∞ , we have 

˙ Q t = βc(P t − Q t ) . (B.4) 

The characteristic equation of (B.3) and (B.4) is given by 

λ2 + (βc + αd) λ + βcα(d + s ) = 0 , 

which has two negative roots. In addition, the geometric stability switch criteria shows that the system cannot undergo 

Hopf bifurcation when τ > ˜ τ ( He et al., 2009 ), where 

˜ τ = ln 

[ 
1 + 

2 βcαs 

(βc + αd) 2 + 2(βc + αd) 
√ 

βc(αd + αs ) 

] 
1 / (βc) . (B.5) 

Therefore, system (B.1) is stable for τ > ˜ τ . �

Proposition Appendix B.1 shows that the system can be stable for either small or large values of τ but may become

unstable over [ τ0 , ̃  τ ] . With a certain set of parameters, the system can have multiple stability switchings in the sense that

an increase in τ can destabilize the price while a further increase may stabilize an otherwise unstable price. 

B2. Gamma-distributed expectations 

We provide another example in which agents’ beliefs follow a gamma distribution. The gamma-distributed delay was 

initially proposed by MacDonald (1978) and has been widely used in the mathematical biology literature (see Zuo and 

Song, 2015 for a recent survey). In this case, the system becomes 

˙ P t = α
[ 

A − dP t − s 

∫ ∞ 

0 

n u P t−u du 

] 
, (B.6) 

where the market fraction n t follows the gamma distribution 

n t = 

t m e −t/τ

τ m +1 m ! 
, (B.7) 

where m is a nonnegative integer and τ > 0 is a scale parameter. 

System (B.6) has a unique steady-state price P ∗ = A/ (d + s ) . The characteristic equation of system (B.6) in the steady state

P ∗ is given by 

(λ + αd)(τλ + 1) m +1 + αs = 0 . (B.8) 

In particular, when m = 0 , the population distribution becomes n t = 

1 
τ e −t/τ , the so-called weak kernel, which is frequently

used in the literature. Then, the characteristic equation reduces to 

τλ2 + (1 + αdτ ) λ + α(s + d) = 0 . (B.9) 

It is easy to verify that the two eigenvalues of (B.9) have negative real parts and hence that system (B.6) in this case is

always locally stable. 
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Appendix C. Model extension: nonlinear demand and supply curves 

Nonlinear demand and supply curves have been found to generate complex price dynamics and chaotic behavior in 

discrete-time cobweb models ( Goeree and Hommes, 20 0 0 and Chiarella et al., 2006 ). This section investigates the global dy-

namics with nonlinear supply curves and linear demand. To analytically derive the corresponding cost function, we assume 

an S-shaped supply curve 

S(H) = arsinh (sH) , (C.1) 

but other choices for the S-shaped supplies yield similar results ( Hommes, 1994 ). Equation (C.1) implies a cost function of

c(q ) = 

1 

s 
[ cosh (q ) − 1] . (C.2) 

Thus, the realized net profits are given by 

πR 
t = P t S(P t ) − c(S(P t )) − C = P t arsinh (sP t ) −

√ 

1 /s 2 + P 2 t + 1 /s − C, 

πN 
t = P t S(P t−τ ) − c(S(P t−τ )) = P t arsinh (sP t−τ ) −

√ 

1 /s 2 + P 2 t−τ + 1 /s, 
(C.3) 

and the complete cobweb-type model with nonlinear supply is given by ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ P t = α
[ 

A − dP t − n 

R 
t−τ arsinh (sP t ) − (1 − n 

R 
t−τ ) arsinh (sP t−τ ) 

] 
, 

˙ U 

R 
t = η

[
P t arsinh (sP t ) −

√ 

1 /s 2 + P 2 t + 1 /s − C − U 

R 
t 

]
, 

˙ U 

N 
t = η

[
P t arsinh (sP t−τ ) −

√ 

1 /s 2 + P 2 t−τ + 1 /s − U 

N 
t 

]
. 

(C.4) 

Intuitively, given the monotonically increasing supply curves arsinh (·) , there should be a unique positive steady-state price, 

while the S-shaped supply curves should enlarge the steady-state price. It follows from the first equation of (C.4) that the

steady-state price is governed by arsinh (sP ∗) = A − dP ∗ and 0 < P ∗ < A/d. Hence, the nonlinear supply does shift the steady-

state price and the realized profits, while the market fraction in the steady state n R ∗ = tanh ( −βC/ 2 ) is still the same as that

in system (3.6) with linear supply curves. The local dynamics of system (C.4) are given by the following proposition. 

Proposition C.1. 

(1) System (C.4) has a unique steady state (P ∗, U 

R ∗, U 

N∗) . 
(2) If s ≤ d 

√ 

1 + s 2 (P ∗) 2 / (1 − 2 n R ∗) , then (P ∗, U 

R ∗, U 

N∗) is locally asymptotically stable for all τ ≥ 0 . 

(3) If s > d 
√ 

1 + s 2 (P ∗) 2 / (1 − 2 n R ∗) , then (P ∗, U 

R ∗, U 

N∗) is locally asymptotically stable for 0 < τ < ˜ τ ∗
0 , is unstable for τ > ˜ τ ∗

0 ,

and undergoes a Hopf bifurcation at τ = ˜ τ ∗
0 

, where ˜ τ ∗
0 

is governed by (C.5) . 

Proof. There is a unique steady state (P ∗, U 

R ∗, U 

N∗) of system (C.4) where P ∗ is governed by arsinh (sP ∗) = A − dP ∗ and 

U 

R ∗ = P ∗arsinh (sP ∗) −
√ 

1 
s 2 

+ (P ∗) 2 + 

1 
s 

− C, 

U 

N∗ = P ∗arsinh (sP ∗) −
√ 

1 
s 2 

+ (P ∗) 2 + 

1 
s 
. 

The characteristic equation of system (C.4) in the steady state (P ∗, U 

R ∗, U 

N∗) is given by 

(λ + η) 2 
{ 

λ + α
[ 

d + 

sn 

R ∗√ 

1 + s 2 (P ∗) 2 

] 
+ 

αs (1 − n 

R ∗) √ 

1 + s 2 (P ∗) 2 
e −λτ

} 

= 0 , 

where n R ∗ = tanh ( −βC/ 2 ) . Following the same analysis of Appendices A .2 - A .3 , we obtain Proposition Appendix C.1 , where

˜ τ ∗
n is given by 

˜ τ ∗
n = 

1 

˜ ω 

∗

[ 
cos −1 

(
− d 

√ 

1 + s 2 (P ∗) 2 + sn 

R ∗

s (1 − n 

R ∗) 

)
+ 2 nπ

] 
, n = 0 , 1 , 2 , · · · , (C.5) 

and 

˜ ω 

∗ = α

√ 

s 2 (1 − n 

R ∗) 2 

1 + s 2 (P ∗) 2 
−

[ 
d + 

sn 

R ∗√ 

1 + s 2 (P ∗) 2 

] 
2 . 

�

The S-shaped supply curves limit the destabilizing effect of naive predictors and hence stabilize system (C.4) with 

nonlinear supply by enlarging the corresponding stability ranges in the linear-supply case (3.6) in the sense that 

d 
√ 

1 + s 2 (P ∗) 2 / (1 − 2 n R ∗) > d/ (1 − 2 n R ∗) and ˜ τ ∗
0 > τ ∗

0 . 

Despite the different supply curves, Proposition Appendix C.1 shares the same message as Proposition 3.3 on local stabil- 

ity with respect to the role of the intensity of choice and perfect-foresight and naive expectations (except for a shift in the
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Fig. C1. The left panel illustrates the price time series and market fraction of perfect-foresight traders, and the right panel illustrates the phase plot. Here, 

τ = 5 , β = 3 , α = 0 . 5 , A = 1 , d = 1 , s = 2 , η = 0 . 5 , and C = 1 . 

 

 

 

 

 

 

steady state). In fact, all the analyses in Propositions 3.1 –3.6 can be extended to the nonlinear demand and supply cases.

The local stability is still the same, except that the bifurcation values and steady states may be changed, and the dynamics

become more involved. 

Figure C.1 illustrates the dynamics of (C.4) with nonlinear supply. Under this set of parameters, the steady state is 

(P ∗, U 

R ∗, U 

N∗) = (0 . 35 , −0 . 88 , 0 . 12) , and the market fraction of perfect-foresight traders in the steady state is n R ∗ = 0 . 05 .

Numerical simulations (not reported here) show that the price bifurcations with respect to τ and β are similar to those in 

Fig. 3.1 . Interestingly, the right panel shows that the price and fraction converge to a figure-eight-shaped attractor, a phe-

nomenon also observed in He and Li (2012) . During one price cycle, the market fraction fluctuates up and down twice. The

market prices are close to the steady-state price ( P ∗ = 0 . 35 ) whenever the market fractions of naive traders are high. 

Brock and Hommes (1997) and Goeree and Hommes (20 0 0) show that nonlinear cobweb models with population evolu-

tions exhibit complex behavior of coexistence of attractors. However, we do not find this coexistence for our continuous-time 

models via numerical simulations even with nonlinear supply. With both nonlinear demand and supply curves, the system 

may generate richer global dynamics, such as the coexistence of attractors. We leave these investigations to future research. 

Appendix D. The long-memory limit 

System (3.6) can be simplified by introducing new variables 

p t = P t /A, u t = βU 

R 
t − βU 

N 
t , γ = 

βsA 

2 

2 

, C = βC R , n t = n 

R 
t . 

Additionally, after setting the time scale appropriately, we can assume that α = 1 . The model then takes the simpler form { 

˙ p t = 1 − dp t − sn t−τ p t − s (1 − n t−τ ) p t−τ , 

˙ u t = η
[ 
γ (p t − p t−τ ) 2 − C − u t 

] 
. 

(D.1) 

System (D.1) has a unique steady state (p ∗, u ∗) = ( 1 
d+ s , C) . This motivates a final variable change 

p t = p ∗ + x t , 

which results in the system 

˙ x t = −dx t − sn t−1 x t − s (1 − n t−1 ) x t−1 , (D.2) 

˙ u t = η
[ 
γ (x t − x t−1 ) 

2 − C − u t 

] 
, (D.3) 

where without loss of generality we use τ = 1 by setting the time scale. 
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We introduce new variables R t and φt by setting x t = Re R t e 
iφt , by which the system (D.2) –(D.3) is transformed to 

˙ R t = −(d + sn t−1 ) R t − s (1 − n t−1 ) R t−1 cos (φt − φt−1 ) , (D.4) 

˙ φt = −s (1 − n t−1 ) 
R t−1 

R t 
sin (φt − φt−1 ) , (D.5) 

˙ u t = η
[ 
γ (R t cos φt − R t−1 cos φt−1 ) 

2 − C − u t 

] 
. (D.6) 

If η → 0 , the fitness measures U 

i 
t have a tendency to weight all past profits from a strategy equally; hence, we call this

case the long-memory limit. In this limit, system (3.6) can be cast in the mold of a fast–slow system, with the price dynam-

ics of the fast subsystem and the performance difference u t of the slow subsystem. 17 If η = 0 , the performance difference

and hence the fractions n t−1 reduce to constants n in the fast subsystem. It can be shown that (R t , φt ) then converges to an

expression of the form (re μt , ϕ + ωt) , where (μ, ω) satisfies 

μ = −(d + sn ) − s (1 − n )e −μ cos (−ω) , (D.7) 

ω = −s (1 − n )e −μ sin (−ω) . (D.8) 

Of course, μ + iω is the eigenvalue of the linearized delay system. Replacing n with n (u ) , let ( ̄μ(u ) , ω̄ (u )) be that solution

of (D.7) –(D.8) for which the value of μ is largest, and set μt = μ̄(u t ) , ω t = ω̄ (u t ) . Note that these are slow-moving variables,

with ˙ μt = O (η) , etc. However, then r t := R t e 
−μt t and ϕ t = φt − ω t t are slow-moving as well, and, neglecting O (η) terms, we

obtain the following three-dimensional approximative dynamical system: 

˙ φt = ω t , (D.9) 

˙ R t = μt R t , (D.10) 

˙ u t /η = γ R 

2 
t 

[
cos φt − e −μt cos (φt − ω t ) 

]2 − 1 − u t . (D.11) 

This is a system on the phase space T × R 

2 , for which the set T × { R = 0 } × R is invariant. On this set, there is the relative

equilibrium T × { (R, u ) = (0 , −1) } , which corresponds to the fundamental equilibrium x t = 0 , u t = −1 . As the eigenvalues are

−η and μ̄(−1) , the stability of the equilibrium is controlled by the latter eigenvalue. It changes the stability if μ̄ = 0 . From

equation (D.7) , we obtain first 

cos ω = − d + sn 

s (1 − n ) 
. 

Equation (D.8) then yields 

ω = s (1 − n ) 
√ 

1 − cos 2 ω = 

√ 

s 2 (1 − n ) 2 − (d + sn ) . (D.12) 

Using cos 2 (−ω) + sin 

2 (−ω) = 1 , with the values of the cosine and the sine solved from equations (D.7) and (D.8) , 

s 2 (1 − n ) 2 = (d + sn ) 2 + ω 

2 . 

Substituting (D.12) , this reduces to 

(d + sn )(d + sn − 1) = 0 . 

As d > 0 , this equation obtains only if 

n = 

1 − d 

s 
or 

1 − d 

s 
= 

1 

1 + e β
. 

Recall that at u = −1 , we have n = 1 / (1 + e β ) . Hence a Hopf bifurcation can take place only if 0 ≤ n ≤ 1 
2 , the extreme values

corresponding to C = ∞ and C = 0 , respectively. 
17 If η → ∞ , the fitness measures U i t are driven by the most recent profits; hence, we call this case the short-memory limit. In this limit, system (3.6) can 

also be cast in the mold of a fast–slow system, with price dynamics now being the slow subsystem and the performance difference u t the fast subsystem. 
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