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Chapter 1

Introduction

As the infrastructure of information improves to better handle incoming real-time

purchase data, the necessity for data-driven, automated assortment policies arises.

In general, a seller of products has to consider multiple aspects, e.g., inventory man-

agement, demand management, budget constraints, pricing strategy and assortment

planning. Proper management of these aspects can have a large impact on the success

of his/her undertaking. In particular, sales data can be used effectively in order to

maximize profit. This thesis considers assortment optimization, where an assortment

is a collection or subset of all products – from which a customer chooses a product

to purchase. The main question that we study is: how can a seller determine the

optimal assortment of products – the subset which yields the highest expected profit

– based on sales data.

To illustrate the potential benefits of adequate usage of sales data, we consider

the airline industry. Before the COVID-19 pandemic, worldwide airline ancillary

revenue – i.e., revenue made from non-ticket sources such as upgrades, baggage, seat

selection, change or cancellation fees, etc. – increased by a staggering 485% over

the course of nine years: from $22.6 billion in 2010 to $109.5 billion in 2019 (see

IdeaWorksCompany, 2019; Xu & Wang, 2021). This demonstrates that a substantial

amount of additional revenue can be gained by understanding customer’s purchasing

behavior. An airline designs combinations of travel class and booking options with

the objective of maximizing its expected revenue. An understanding of consumers’

preferences from real-world sales data can be exceedingly helpful in the design of such
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options.

Analyzing sales data can potentially bolster gains in revenue. However, this data

may not be available, e.g., due to a newly set up production line. Then, within a

finite time frame, the acquisition of insightful sales data overlaps with the exploita-

tion of those insights. These aspects are often described as learning and earning, or

exploration and exploitation. First, we would like to learn customers’ demand and

preferences. Second, we would like to utilize that knowledge to make informed deci-

sions. In this thesis, we focus on the decisions and strategies regarding assortment

selection.

We explore customers’ preference learning for adequate assortment planning in a

rigorous mathematical and sequential setting. In this framework, the seller starts a

selling period with no prior information regarding customers’ preferences. However,

as time goes on, more sales data becomes available and this data can be used by the

seller to adjust the offered assortment accordingly. Closely related to this formulation

is the multi-armed bandit (MAB) paradigm. In the MAB framework, we take on

the role of a gambler with K slot machines at our disposal. Each of the K slot

machines has a different expected pay-off, which is unknown to us, the gambler. We

are given T coins to play T rounds on the slot machines and we are free to choose

which machines and in which order we wish to play. The goal is to maximize our

accumulated profit, which means we have to delicately balance the two concepts:

learning and earning. With our T coins, we would like to learn which slot machine

yields the highest expected pay-off. In addition, we would like to use this knowledge to

earn as much as we can. By learning insufficiently, we are not sure which action is the

most profitable. By emphasizing learning too much, there are lesser coins available

to exploit our findings.

In our set-up, we consider the problem of assortment planning in which a seller

can frequently alter the offered assortment to his/her customers. Starting with no

prior knowledge regarding customers’ preferences, the seller’s intention is to offer

assortments sequentially over a finite selling period. In this venture, it is key to balance

the aforementioned concepts of learning and earning. To deal with this balance, we

view the problem of a seller of products as a MAB problem, where we decide which

assortment to offer instead of which slot machine to play. In this set-up, we are given

2



1.1 DISCRETE MODEL

a time horizon T and for simplicity, we associate each time t = 1, . . . , T with a visiting

customer. Before each visit, we can choose which assortment to offer to the visiting

customer. Subsequently, the customer chooses a product from the offered assortment

or does not purchase anything.

One can imagine that the seller’s choice of the size of the assortments to offer is

restricted. Such a constraint may arise due to limited shelf space in a physical store,

finite inventory capacity or various logistic restrictions. Therefore, we include the

possibility of a capacity constraint. The circumstance where we do consider a capacity

constraint is referred to as the capacitated variant of the optimization problem. We

refer to the setting where there is no capacity constraint as the uncapacitated variant.

We envision the total collection of products in two ways. First, we consider the

classical problem of discrete assortment planning. In this framework, there are N

distinct products and the seller selects an assortment S, which is a subset of the N

products. Then, the customer chooses either a product from S or does not purchase

anything. Second, we consider a continuous spectrum of products. Examples of such

a continuous spectrum are the duration or amount of a mortgage and the amount of

cellular data usage. Here, each product x lies on the continuous spectrum and the

seller selects an assortment S to offer, which is a subset of that spectrum. Again, the

customer either chooses a product from S or does not purchase anything.

1.1 Discrete Model

For discrete assortment optimization, there are N distinct products for the seller to

consider offering. The seller – subject to a potential capacity constraint – chooses

which assortment S, a subset of all products, to offer. The capacity constraint consti-

tutes an integer K ⩽ N , meaning that each offered assortment may consist of only K

products. A collection of at most K products is referred to as a feasible assortment.

Being offered an assortment S, a customer then chooses a product from S, or does

not purchase anything. For the seller, each product i yields a known marginal revenue

per sold unit of product i and a no-purchase yields no marginal revenue.

Without a choice model for customers’ behavior, the task of assortment optimiza-

tion is nearly intractable. Indeed, without a choice model we cannot easily predict the
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change of customers’ behavior caused by adjusting the offered assortment and we can

only observe the changing behavior by actually adjusting the assortment. Arguably

the most-studied choice model in the extensive literature on assortment optimization

with a finite number of products is the multinomial logit (MNL) model (see, e.g., Ben-

Akiva & Lerman, 1985; Mahajan & van Ryzin, 2001, and the references therein). The

MNL model arises as a special case of the random utility model (RUM). Within the

RUM, the customer, upon arrival, takes notice of the offered assortment S and knows

his/her utility for all products in S and the no-purchase option. Then, the customer

chooses the product with the highest utility. Under the RUM, it is assumed that the

utility value of each product follows some probability distribution. The MNL model is

the special case where the utility is the sum of a deterministic part (depending on the

product features and its overall appeal) and a random, probabilistic part (following

a specific probability distribution). This set-up has compelling properties. Given an

offered assortment, there exists a closed-form expression of the purchase probabilities

of a particular product that is proportional to the attractiveness expressed by the

utility parameter of that product. Consequently, we can explicitly consider the ex-

pected revenue of each assortment and measure the performance of a decision policy

that sequentially outputs a feasible assortment using observed past purchase behav-

ior. Regarding practical applications, various successful implementations of the MNL

model in retail have been reported (see, e.g., Guadagni & Little, 1983; Ratliff et al.,

2008; Newman et al., 2014; Feldman et al., 2019). For an excellent literature review

of choice models – including MNL – as well as caveats and industry applications to

assortment planning, we refer to Kök et al. (2015).

Recently, several authors have studied assortment optimization under the discrete

MNL choice model where the seller has no prior knowledge regarding customers’

preference (see, e.g., Rusmevichientong et al., 2010; Farias et al., 2013; Sauré & Zeevi,

2013; Agrawal et al., 2017; Cheung & Simchi-Levi, 2017; Chen & Wang, 2018; Ou

et al., 2018; Agrawal et al., 2019; Kallus & Udell, 2020; Chen et al., 2021). A first

step in assessing the profitability of a sequential decision policy is to analyze its regret.

This metric is the accumulated expected loss due to offering suboptimal assortments.

As it is not a straightforward task to directly assess how profitable a particular policy

is, policy creators assess performance by mathematically determining upper bounds
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1.2 CONTINUOUS MODEL

on the regret. By providing such an upper bound in terms of the time horizon,

the number of products and the capacity constraint, the asymptotic performance of

proposed policies can be rigorously evaluate. Furthermore, by showing a matching

lower bound on the regret that any policy must – in the worst case – endure, policy

creators are able to guarantee that their proposed policy performs asymptotically

optimal and gain insights regarding the learning problem.

Typically, regret rates for dynamic assortment optimization with capacity con-

straint grow as
√
NT (see, e.g., Agrawal et al., 2017; Chen & Wang, 2018; Agrawal

et al., 2019; Chen et al., 2021). In particular for constant revenue parameters and ca-

pacity constraint K ⩽ N/4, Chen & Wang (2018) show that the regret that any policy

endures, is of the order
√
NT in the worst case. This thesis builds upon this result

by extending the
√
NT lower bound to a more general setting. Interestingly, for the

uncapacitated variant, Chen et al. (2021) provide a Trisection policy that achieves a

regret of order
√
T , where the regret no longer depends on the number of products N .

This indicates that the Trisection policy performs robustly for an increasing value of

N . Moreover, Chen et al. (2021) show a regret lower bound of order
√
T for specific

values as revenue parameters. We continue the regret analysis by providing a
√
T

lower bound for arbitrary revenue parameters. In addition, we present a policy that

achieves a
√
T regret as well and we show its merits numerically.

Aside from contributing – see Section 1.3 – to dynamic assortment optimization

under the discrete MNL model, we also consider a continuous counterpart of the MNL

model.

1.2 Continuous Model

In the management science and operation research literature, assortments are tradi-

tionally thought of as being of a discrete nature. However, in several applications,

attributes of products or services are adjusted in a continuous manner, leading to a

spectrum of similar but distinct commodities, each with a possibly different selling

price. In these situations, customers can be offered highly personalized, custom-made

products – a phenomenon that the marketing literature refers to as mass customiza-

tion (see, e.g., Pine, 1993; Fogliatto et al., 2012).
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The idea of considering a continuous spectrum of products is a well-established

concept in several branches of the literature. Within the economics literature, for

example, this idea is studied in the context of vertical product differentiation (see,

e.g., Mussa & Rosen, 1978; Moorthy, 1984). More recently, the idea of examining

a continuum of products has been studied in the operations research literature (see,

e.g., Dewan et al., 2003; Gaur & Honhon, 2006; Pan & Honhon, 2012; Fisher &

Vaidyanathan, 2014; Keskin & Birge, 2019; den Boer et al., 2021). With the exception

of Keskin & Birge (2019) and den Boer et al. (2021), the literature mentioned above

assumes that the model primitives are known to the seller. Although the concept of

a continuous spectrum of products is not novel, a sequential decision framework and

learning the model primitives from sales data has – to the best of our knowledge –

not yet been studied in the context of assortment optimization.

The utility value of a product in the discrete MNL choice model depends on the

product’s features. We consider a setting where these features can be adjusted con-

tinuously prior to purchasing and we propose a novel model that forms a continuous

counterpart of the discrete MNL model. The novel continuous model arises from the

discrete MNL model by letting the number of products N go to infinity. Under this

continuous model, we consider a seller of a commodity or services with an attribute

that can be infinitesimally adjusted to any value in the unit interval [0, 1]. Each value

in [0, 1] is referred to as a product and the seller has to decide which assortment of

products, i.e., which subset of [0, 1], to offer to each potential customer. Being offered

an assortment S, a customer chooses a product from S or does not purchase anything.

For each product x in [0, 1], the marginal revenue obtained if x is purchased, is known

to the seller; no revenue is obtained from a no-purchase.

Similar to the discrete model, we assess the performance of a sequential decision

policy by its regret. As the continuous model that we propose has not been considered

before, no prior knowledge exists regarding the growth rate of the regret expressed in

terms of the time horizon T . Also alike the discrete setting, a seller may be restricted

in the assortments he/she can offer. Aside from the aspect that the continuous model

arises from the discrete model by taking the number of products N to infinity, one can

imagine that in a truly continuous setting the seller’s choice of the size of the offered

assortment is limited due to various logistic constraints. Therefore, we consider both
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1.3 OUTLINE AND SCIENTIFIC CONTRIBUTIONS

the capacitated variant and uncapacitated variant of the optimization problem under

the continuous model. The potential capacity constraint entails a constant c between

0 and 1 such that the seller may only offer assortments each with a combined length

of at most c.

1.3 Outline and Scientific Contributions

This thesis contributes to multiple settings regarding dynamic assortment optimiza-

tion. The state-of-the-art regret bounds – after this thesis – are summarized in Ta-

ble 1.1 presented below. Thereafter, the specific contributions are discussed in detail.

Uncapacitated Capacitated

Model Upper bound Lower bound Upper bound Lower bound

Continuous log T log T T 2/3 (∗) T 2/3

Discrete
√
T (a)

√
T (b) –

√
NT (c)

Table 1.1: Regret bounds (up to multiplicative constants) as provided in this thesis for
several combination of settings. The continuous model is discussed in Chapter 2 and the
discrete model in Chapter 3.
(∗) Up to logarithmic terms.
(a) Matching the regret rate of Chen et al. (2021).
(b) Slightly generalizing Chen et al. (2021).
(c) Slightly generalizing Chen & Wang (2018).

A policy and a corresponding upper bound on its regret in the discrete setting with

capacity constraint is not included in this thesis, as it has been covered extensively by

several authors (see, e.g., Rusmevichientong et al., 2010; Agrawal et al., 2017, 2019;

Chen et al., 2021).

The topics and contributions are presented in this thesis as follows. In Chapter

2, we consider assortment planning under the novel continuous model. Moreover, we

consider the seller’s problem under incomplete information. This topic is covered first

– before we study the discrete model in Chapter 3 – as it is the main contribution

of this thesis. In Chapter 2, we study the structure of the optimal assortment and

we provide an algorithm to compute the optimal assortment when the model prim-

itives are known. For the dynamic setting, where the model primitives are initially
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unknown, we consider two distinct cases, one without capacity constraint and one

with capacity constraint. For the setting without a capacity constraint, we propose a

stochastic-approximation type of policy and we show that its regret grows at most as

log T in the time horizon T . We complement this result by showing a matching lower

bound on the regret of any policy, implying that our policy is asymptotically optimal.

We then show that adding a capacity constraint significantly changes the structure

of the problem: we construct a discretization policy and show that its regret after T

time periods is bounded from above by a constant times T 2/3 (up to a logarithmic

term). In addition, we show that the regret of any policy is bounded from below by

a positive constant times T 2/3, so that also in the capacitated case we obtain asymp-

totic optimality. Additionally, we propose a kernel density estimation-based policy

and show that – under an additional assumption – its regret is also bounded from

above by a constant times T 2/3 (up to a logarithmic term). This chapter, with the

exception of Section 2.5.5 and 2.5.6, corresponds to the paper titled “Continuous As-

sortment Optimization with Logit Choice Probabilities and Incomplete Information”.

This paper, Peeters et al. (2021), is a joint endeavor with dr. A.V. den Boer and prof.

dr. M.R.H. Mandjes.

Chapter 3 is concerned with dynamic assortment optimization with incomplete

information under the discrete MNL model. To recognize the relevance of our contri-

bution, we briefly discuss some of the relevant literature. Chen et al. (2021) consider

uncapacitated assortment optimization under the MNL model. They provide a Trisec-

tion policy and show an upper bound at the rate of
√
T on its worst-case regret, which

is independent of the number of products N . Furthermore, they show a lower bound

at the rate of
√
T on the worst-case regret of any policy. This lower bound is shown

for a specific marginal revenue setting: the marginal revenue is 1 for odd-numbered

products and 1/2 for even-numbered products. For capacitated assortment optimiza-

tion under the MNL model, Agrawal et al. (2019) study an Upper Confidence Bound

(UCB) policy. They show that its worst-case regret grows at the rate of
√
NT log T .

Moreover, they show a lower bound at the rate of
√
NT/K for the worst-case regret

of any policy. In addition, Agrawal et al. (2017) present a Thompson Sampling policy

in the same setting and provide an constant times
√
NT log TK upper bound for its

worst-case regret. The rate of the lower bound of Agrawal et al. (2019) is improved by

8
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Chen & Wang (2018) to
√
NT , under the assumption that K ⩽ N/4. Both the lower

bound of Agrawal et al. (2019) and Chen & Wang (2018) consider constant revenue

parameters for all products.

Our contributions, as presented in Chapter 3, are the following. For no capacity

constraint, we propose a stochastic-approximation type policy, which is the discrete

counterpart of the policy provided in Chapter 2. Moreover, we show that its regret

after T time periods is at most a constant times
√
T , which is independent of the

number of products N . This matches the current theoretical standard up to a mul-

tiplicative constant. Numerical illustrations show the advantages of our policy over

alternatives, especially the improved performance for moderately large N (see Chap-

ter 4). This policy is horizon-free as it does not require T as input. Furthermore,

we show that for arbitrary revenue parameters the regret of any policy is bounded

from below by a constant times
√
T , generalizing the result from Chen et al. (2021)

to a broader setting. In the discrete model, we also find that introducing a capacity

constraint substantially alters the structure of the problem. We show for arbitrary

revenue parameters that for any policy satisfying a capacity constraint K < N/2,

the regret is bounded from below by a positive constant times
√
NT . This solidifies

the result from Chen & Wang (2018) to a more general setting. Chapter 3 of this

thesis consists of two papers. The first paper covers the stochastic-approximation

type policy, its regret upper bound and the regret lower bound for uncapacitated as-

sortment optimization. This paper, Peeters & den Boer (2021a), is titled “Stochastic

Approximation for Uncapacitated Assortment Optimization under the Multinomial

Logit Model ”. The second paper covers the regret lower bound for capacitated as-

sortment optimization. This paper, Peeters & den Boer (2021b), is titled “A Regret

Lower Bound for Assortment Optimization under the Capacitated MNL Model with

Arbitrary Revenue Parameters”.

Chapter 4 covers the numerical experiments supplementing Chapter 2 and 3. In

Chapter 4, we compare the policies that we provide numerically with established,

alternative policies. These experiments show that our policies outperform or are on

par with alternatives. Moreover, we include numerical experiments to compare the

predictive performance of the continuous model and the discrete model. Section 4.1

and 4.3 are contained in Peeters et al. (2021) and Section 4.2 is contained in Peeters
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& den Boer (2021a).

The mathematical proofs of results stated in Chapter 2 and 3 are collected in

Appendix A and B, respectively.

10



Chapter 2

Continuous Assortment
Optimization

2.1 Introduction

2.1.1 Background and Motivation

In the management science and operations research literature, assortments are tra-

ditionally thought of as being of a discrete nature. However, in several applications,

attributes of products or services are adjusted in a continuous manner, leading to a

spectrum of similar but distinct commodities, each with a possibly different selling

price. In these situations, customers can be offered highly personalized, custom-made

products – a phenomenon that the marketing literature refers to as mass customiza-

tion (see, e.g., Pine, 1993; Fogliatto et al., 2012). Examples of attributes that can

be customized in such a continuous manner include the duration of renting a com-

modity, the duration or amount of a mortgage, the amount of cellular data usage, or

the amount of (voluntary) deductible excess in insurances. A seller of such products

or services faces, in particular in the product design phase, the concrete problem of

having to decide which specific subset of the spectrum to offer to potential customers,

so as to maximize expected profit.

The seller’s problem can be translated into a mathematical optimization problem

over an uncountable space of subsets of an interval. This type of problem can only

be solved efficiently when some structure is imposed on how the consumers’ purchase

behavior and the seller’s revenue depend on the assortment that is offered. In the
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extensive literature on assortment optimization with a finite number of products, ar-

guably the most-studied choice model is the so-called multinomial logit (MNL) model

(see, e.g., Ben-Akiva & Lerman, 1985; Mahajan & van Ryzin, 2001, and the references

therein). In this model, a nonnegative preference value is associated with each prod-

uct (and also with the option of not purchasing a product), and the probability that a

customer selects a particular product from an assortment of products is proportional

to this preference value. To align our work with this rich strand of literature, we pro-

pose a choice model that is the continuous counterpart of the discrete MNL model,

with the preference values replaced by a preference function.

Importantly, we study the seller’s continuous assortment optimization problem in

an incomplete information setting, meaning that the preference function is a priori

unknown to the seller. To arrive at profitable assortment decisions, the seller thus has

to learn the unknown preference function from accumulating sales data. This requires

designing a policy that judiciously balances the two (sometimes conflicting) goals of

learning and earning : on the one hand, the seller needs to offer assortments that

support high-quality estimates of the unknown preference function; on the other hand,

assortments need to be offered that yield a high profit given an available estimate of

the preference function. This is an example of the well-known exploration-exploitation

trade-off in multi-armed bandit (MAB) problems: a paradigm for sequential decision

problems under uncertainty. Indeed, the problem studied in this chapter can be seen

as a continuous, combinatorial MAB problem, where the objective is to dynamically

learn which subset of the continuum maximizes the seller’s expected revenue function.

Designing and analyzing optimal decision policies for this novel and relevant question

is the topic of this chapter.

2.1.2 Contributions

The contributions of this chapter are as follows.

◦ First, we propose a probabilistic choice model for the setting where customers

select from assortments that are subsets of the unit interval. The choice model

is the continuous counterpart of the widely studied MNL model, in the sense

that the continuous model arises as a limit of discrete MNL models where the
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number of products grows large, and, conversely, that discretizing the product

space in the continuous model gives rise to a discrete MNL model.

◦ Next, assuming that products are labeled in increasing order of marginal

profit, we show that the optimal assortment is an interval of the form [y, 1],

for some y ∈ [0, 1], and that the corresponding optimal expected profit is

the unique solution to a fixed point equation. Leveraging this property, we

construct a stochastic-approximation type policy and show that its regret (the

cumulative expected revenue loss compared with the optimal policy) after T

time periods is O(log T ). In addition, relying on the Van Trees inequality

(which can be seen as a Bayesian version of the well-known Cramér-Rao lower

bound), we show that the worst-case regret for any policy grows as Ω(log T ),

implying that our policy is asymptotically optimal.

◦ Inspired by analogous problems in the discrete setting, we then consider

assortment optimization with a capacity constraint. We first show that the

optimal assortment is not necessarily an interval anymore, but can have a much

more complex structure. As a consequence it becomes necessary – in contrast

to the uncapacitated case – to explore the whole product space in order to

learn the optimal assortment. We propose a discretization policy and show

that, up to a logarithmic term, its regret after T time periods is bounded from

above by a constant times T 2/3. We then construct an instance in which the

regret of any policy grows as Ω(T 2/3), indicating that the capacitated setting

indeed exhibits intrinsically different behavior than the uncapacitated case in

which logarithmic regret is attainable. In addition, we propose a policy based

on kernel density estimation, and show that under an additional assumption

its regret after T time periods is bounded from above by a constant times T 2/3,

up to logarithmic terms.
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2.1.3 Outline

After providing an overview of relevant literature in Section 2.2, we introduce our

model for continuous assortment optimization in Section 2.3. In Section 2.4 we

study assortment optimization without capacity constraints: we propose a stochastic-

approximation type policy, provide an upper bound on its regret, and prove a match-

ing lower bound on the regret of any policy. The capacitated problem is discussed in

Section 2.5: we propose a discretization policy, prove an upper bound on its regret,

and prove a matching lower bound (up to a logarithmic term) on the regret of any

policy. In addition, in Section 2.5.5 we discuss a policy based on kernel density es-

timation and in Section 2.5.6 we provide an upper bound on its regret. This policy

and its regret analysis (relying on another assumption) are presented at the end of

Section 2.5. For our numerical study regarding the performance of these policies, we

refer to Section 4.1. The relation between the continuous and discrete logit choice

model is discussed in Section 2.6. In Section 2.7, we present a bisection algorithm

to compute the optimal continuous assortment. For our numerical study we refer

to Chapter 4. Mathematical proofs are collected in Appendix A and an additional

numerical study on the predictive performance of the continuous model is included in

Section 4.3.

2.2 Literature

To put our work into the right perspective, we proceed by providing an account of

the most relevant branches of the existing literature.

The idea of considering a continuous spectrum of products is a well-established

concept in several branches of the literature. Within the economics literature, for

example, this idea is studied in the context of vertical product differentiation and

customer self-selection. The seminal work by Mussa & Rosen (1978) assumes a linear

utility-based model in which a seller offers a continuous spectrum of quality levels and

tries to optimally match customers of different types to prices and quality levels. Their

model was generalized by Moorthy (1984) to include preferences that are nonlinear in

the customer’s type. More recently, Pan & Honhon (2012) considered vertical product

differentiation in the context of assortment optimization, focusing on determining the
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optimal positioning of products to offer and corresponding selling prices. Keskin

& Birge (2019) consider a continuum of quality levels in a customer self-selection

framework, and analyze dynamic learning of uncertain production costs. Den Boer

et al. (2021) study the problem of optimally pricing and positioning a finite number

of horizontally differentiated products represented by points on the unit interval,

and design asymptotically optimal learning policies. Assortment optimization with

product sets with a continuous structure have also been studied by Gaur & Honhon

(2006) and Fisher & Vaidyanathan (2014), who both view products as entities in an

attribute space and focus explicitly on modeling substitution for finding the optimal

assortment. Another example is Dewan et al. (2003), which studies optimal product

customization using the continuous, locational Salop model to determine an optimal

(sub)spectrum of products to offer. With the exception of den Boer et al. (2021)

and Keskin & Birge (2019), the literature mentioned above assumes that the model

primitives are known to the seller.

The continuous choice model studied in the present chapter aligns well with the

widely studied MNL choice model. Recently, several authors have studied assortment

optimization under this choice model while assuming incomplete information: that

is, the model parameters are unknown in advance and have to be learned from data.

Rusmevichientong et al. (2010) focus on assortment optimization with a capacity con-

straint, and provide a bi-section algorithm to compute the optimal assortment under

full information. Under incomplete information, they show under mild conditions

that the expected loss (regret) of an explore-then-exploit type of algorithm after T

time periods is bounded by a (instance-dependent) constant times N2 log T , where N

denotes the number of products. Sauré & Zeevi (2013) consider a similar framework

with a more general utility-based choice model, and implement procedures to quickly

detect sub-optimal products. Agrawal et al. (2019) study an Upper Confidence Bound

(UCB) algorithm for capacitated assortment optimization under the MNL model, and

provide both a O(
√
NT log T ) upper bound on the worst-case regret of their policy as

well as an Ω(
√
NT/K) lower bound for the regret of any policy, where N is the total

number of products and K is the maximum number of products in the assortment. In

addition, Agrawal et al. (2017) present a Thompson Sampling (TS) algorithm in the

same setting, and provide an O(
√
NT log TK) upper bound on the worst-case regret
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of the policy.

The lower bound of Agrawal et al. (2019) is improved by Chen & Wang (2018)

to Ω(
√
NT ), under the assumption that K ⩽ N/4. Without capacity constraint,

Chen et al. (2021) provide an O(
√
T ) upper bound for the regret of their policy and

an Ω(
√
T ) lower bound for the regret of any policy, under the assumption that only

the first two products have positive marginal profit. A combination of a spatially

structured product set and learning is studied by Ou et al. (2018). They present a

learning algorithm for the assortment planning problem under the MNL model when

the utility is a linear function of product attributes, as in the numerical study done

by Rusmevichientong et al. (2010), and derive regret bounds.

The problem of learning the optimal assortment from accumulating data relates

our work to multi-armed bandit (MAB) problems: a framework to study sequential

learning-and-optimization problems. A central theme in these problems is to deter-

mine the optimal balance between exploration (‘learning’) and exploitation (‘earn-

ing’). Classically, the number of arms is assumed to be finite (see, e.g., Robbins,

1952; Lai & Robbins, 1985; Agrawal, 1995; Auer et al., 2002). More recently, MAB

problems have been studied where the action set is a continuum (see, e.g., Agrawal,

1995; Agarwal et al., 2011; Kleinberg, 2005; Auer et al., 2007; Kleinberg et al., 2008;

Bubeck et al., 2009; Cope, 2009; Bubeck et al., 2011a,b; Flaxman et al., 2005; Shamir,

2013), or where the action set consists of a (typically large) number of combinatorial

structures (see, e.g., Cesa-Bianchi & Lugosi, 2012; Chen et al., 2013; Combes et al.,

2015). Our work is related to both these strands of literature: we study a MAB

problem where the action sets consist of subsets of the unit interval, comprising a

combinatorial MAB problem with uncountable action set. To the best of our knowl-

edge, such a continuous, combinatorial MAB problem has not been considered before

in the literature.

2.3 Model

We consider a seller of a commodity or service with an attribute that can be infinitesi-

mally adjusted to any value in the interval [0, 1]. Each value in [0, 1] is referred to as a

product, and the seller has to decide which assortment of products, i.e., which subset
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of [0, 1], to offer to each potential customer. Upon being offered an assortment, a

customer either purchases a product from the assortment, or decides not to purchase

– such a no-purchase is denoted by ∅. The total collection of products X is the union

of the unit interval and the no-purchase option:

X := [0, 1] ∪ {∅}.

The goal of the seller is to identify an assortment that maximizes her expected revenue;

as we shall see, this is not necessarily the entire interval [0, 1]. We consider both

capacitated and uncapacitated settings: in the former, the size of the assortment is

bounded by a known constant c < 1, whereas in the latter case, this maximum size is

c = 1. The set of feasible assortments is thus given by all (measurable) sets S ⊂ [0, 1]

with volume at most c:

S := {S ∈ B[0, 1] : vol(S) ⩽ c},

where B[0, 1] is the Borel sigma-algebra on [0, 1] and where

vol(S) :=

∫
x∈S

dx.

For each product x ∈ [0, 1], the marginal revenue that the retailer obtains if x is

purchased, is denoted by w(x); no revenue is obtained from a no-purchase. We assume

that w is a continuously differentiable function [0, 1] → [0, 1] with positive derivative

bounded away from zero. It is worth observing that, in case x is a measure of quality,

it is natural to assume that w is increasing.

For all S ∈ S, we let XS denote the random choice of an arbitrary customer who

is offered assortment S. We assume the following structure on the distribution of XS :

P(XS ∈ A) =

∫
x∈A

v(x)dx

1 +
∫
x∈S

v(x)dx
, (2.1)

for all (Borel measurable) A ⊆ S, and

P(XS = ∅) =
1

1 +
∫
x∈S

v(x)dx
,

where v : [0, 1] → R+ is an integrable function. The function v is referred to as the

preference function, and is unknown to the seller. The expected revenue earned by
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the seller after offering assortment S ∈ S to a customer is denoted by

r(S, v) :=

∫
x∈S

v(x)w(x)dx

1 +
∫
x∈S

v(x)dx
.

The aim of the seller is determining an assortment S ∈ S that maximizes r(S, v).

This is not directly possible, however, since the preference function is unknown. We,

therefore, consider a sequential version of the problem that enables the seller to learn

the optimal assortment from accumulating sales data. The seller offers assortments

during T ∈ N consecutive time periods, indexed by t = 1, . . . , T . Each time period

t corresponds to a visit of a single customer. The assortment offered at time t is

denoted by St, while Xt ∈ X denotes the (no-)purchase of the customer at time t.

Conditionally on St = S, the purchase Xt is distributed as XS , for all S ∈ S and all

t = 1, . . . , T .

The seller’s decisions which assortments to offer are described by her policy : a

sequence of mappings from available sales data (consisting of previously offered as-

sortments and corresponding (no-)purchases) to a new assortment. Formally, a policy

π = (π1, . . . , πT ) is a vector of mappings πt : (S × X )t−1 → S such that

St = πt(S1, X1, . . . , St−1, Xt−1), for all t = 1, . . . , T ; (2.2)

here, we write S1 = π1(∅) for the initial assortment. Thus, a policy describes for

each possible data-set of assortments and purchases how the seller selects the next

assortment. The performance of a policy is measured by its regret : the cumulative

expected loss caused by using sub-optimal assortments. Formally, the regret of a

policy π is defined as

∆π(T, v) :=

T∑
t=1

Eπ

[
max
S∈S

r(S, v)− r(St, v)

]
, (2.3)

where S1, . . . , ST satisfy (2.2), and where the subscript in the expectation operator

indicates the dependence on the policy π. In the next sections we show that the

maximum in (2.3) is attained. We also consider the worst-case regret over a class V

of preference functions:

∆π(T ) := sup
v∈V

∆π(T, v).
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The class of preference functions V under consideration consists of all functions v

defined on the unit interval that satisfy the following assumptions.

Assumption 2.1. (i) For all v ∈ V and y ∈ [0, 1],

v ⩽ v(y) ⩽ v,

for some v > v > 0 with v > w(0)/
∫ 1

0
(w(x)− w(0))dx.

(ii) All v ∈ V are differentiable on (0, 1) with uniformly bounded derivative, i.e.,

sup
y∈(0,1),v∈V

|v′(y)| <∞.

These assumptions are arguably mild, and allow us to obtain instance-independent

regret upper bounds. If one is only interested in an instance-dependent bound of the

form ∆π(T, v) ⩽ C log T , where C may depend on v, then Assumption 1(ii) can be

weakened; see Remark 2.4 for details. The assumption v > w(0)/
∫ 1

0
(w(x)− w(0))dx

is used in Section 2.4 to exclude trivialities; without this assumption, the unit interval

[0, 1] is an optimal assortment for all v ∈ V (in case c = 1), and there is nothing to

learn.

Remark 2.1. It is worth emphasizing that without assuming a particular structure

of the choice probabilities P(XS ∈ A), learning the optimal assortment from data

is hopeless since the action space is uncountable. Our proposed model is motivated

by its similarity to the well-known and frequently used discrete MNL choice model.

In this model, the probability that a customer’s choice lies in A ⊆ S when being

offered assortment S is equal to
∑

x∈A v(x)/
(
1+
∑

x∈S v(x)
)
, for a function v defined

on the product space and taking values in (0,∞). We essentially assume the same

probabilistic structure, but with sums replaced by integrals.

Remark 2.2. The discrete MNL model can be derived from an assumed underlying

random utility model in which a customer assigns utility u(x) = log(v(x)) + ε(x) to

each product x and utility ε(0) to the no-purchase option; here {ε(x)} and ε(0) are

i.i.d. standard Gumbel distributed random variables. If the customer selects the
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product (or no-purchase option) that maximizes her utility, then the probability that

her choice lies in A ⊆ S when being offered assortment S has a closed form and

is equal to the above mentioned expression
∑

x∈A v(x)/
(
1 +

∑
x∈S v(x)

)
(see Train,

2009, for a derivation). Whether a similar relation between choice probabilities and

an underlying choice model exists when the product space is the continuum is not

known. With uncountably many products, the arguments from the discrete case

do not carry over, as one, e.g., would need to take a maximum over uncountably

many random variables. Investigating the relation between choice probabilities and

random utility models in case of a continuum of products is an interesting problem

in its own right, but is outside the scope of this thesis. That said, our continuous

model is closely connected to the discrete variant: it arises as a limit of discrete MNL

models with the number of products N going to infinity, and, conversely, discretizing

the continuum product space generates choice probabilities that are described by a

discrete MNL model (see Section 2.6 for details). Furthermore, the policy that we

propose in Section 2.5 to learn the optimal assortment with capacity constraint is

effectively based on the fact that the continuous model can be approximated up to

arbitrary precision by a discrete model.

Throughout this chapter, we use [n] as a compact notation for the set {1, . . . , n}

(where n ∈ N).

2.4 Uncapacitated Assortment Optimization

In this section, we investigate the uncapacitated case c = 1, in which the assortment

can in principle cover the full interval [0, 1]. Our main finding is that the optimal

asymptotic growth rate of regret is logarithmic in the time horizon. In what follows,

we first show how to compute an optimal assortment. Next, we construct a policy and

show that its regret is bounded from above by C log T for some positive C independent

of T . Then, we show that for any policy π the regret majorizes C log T for some C > 0

independent of T . This implies that our constructed policy achieves the smallest

possible growth rate of regret, and is therefore asymptotically optimal.

The intuitive ideas underlying the mathematical statements in this section are

given in the main text; the full proofs are contained in Section A.1.
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2.4.1 Full Information Optimal Solution

It is known that the optimal assortment under the discrete MNL model without

capacity constraints is of the form ‘offer the k most profitable products’ for some

integer k (cf. Talluri & van Ryzin, 2004, Proposition 6). This result carries over to

our model of continuous assortment optimization. Since we assume that products are

labeled in such a way that w is increasing, the optimal assortment is of the form [y, 1],

for some y ∈ [0, 1]. The argument to show this is as follows (cf. Rusmevichientong

et al., 2010, Section 2.1):

max{r(S, v) : S ∈ S} = max {ϱ ∈ [0, 1] : ∃S ∈ S : r(S, v) ⩾ ϱ}

= max

{
ϱ ∈ [0, 1] : ∃S ∈ S :

∫
S

v(x)
(
w(x)− ϱ

)
dx ⩾ ϱ

}
= max

{
ϱ ∈ [0, 1] : max

S∈S

∫
S

v(x)
(
w(x)− ϱ

)
dx ⩾ ϱ

}
. (2.4)

The inner maximization problem in (2.4) is maximized by {x ∈ [0, 1] : w(x) ⩾ ϱ}.

Let w−1(·) denote the generalized inverse of w(·), i.e.,

w−1(ϱ) := min{x ∈ [0, 1] : w(x) ⩾ ϱ}, ϱ ∈ [0, 1].

Since w is strictly increasing and continuous, the set {x ∈ [0, 1] : w(x) ⩾ ϱ} is equal

to the interval [w−1(ϱ), 1], and it follows that

max{r(S, v) : S ∈ S} = max{r([w−1(ϱ), 1], v) : ϱ ∈ [0, 1]}.

The fact that the optimal assortment is an interval of the form [y, 1] has evident

attractive computational implications, most notably that it reduces the original opti-

mization problem over all subsets of the unit interval to an optimization problem in

one variable y ∈ [0, 1].

2.4.2 A Policy for Incomplete Information

We proceed by defining a data-driven policy that iteratively approximates the optimal

assortment. The policy is parameterized by α ⩾ 1 and β ⩾ α− 1.
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Stochastic Approximation Policy SAP(α, β)

1. Initialization. Let α ⩾ 1, β ⩾ α− 1 and ϱ1 ∈ [0, 1]. For all t ∈ N

let at := α/(t+ β). Put t := 1. Go to 2.

2. Assortment selection. Let

St := [w−1(ϱt), 1], Rt := w(Xt)1{Xt ∈ St},

and

ϱt+1 = ϱt + at
(
Rt − ϱt

)
.

Put t := t+ 1. If t ⩽ T, then go to 2, else to 3.

3. Terminate.

The policy SAP(α, β) is a classic stochastic approximation policy (Robbins &

Monro, 1951; Kushner & Yin, 1997) that aims at finding the value of ϱ ∈ [0, 1] such

that r([w−1(ϱ), 1], v) equals ϱ. This condition uniquely defines the optimal ϱ that

corresponds to the optimal assortment [w−1(ϱ), 1]. Since only noisy observations Rt

of the revenue function r([w−1(ϱ), 1], v) are available, the policy keeps changing ϱt

based on observations of Rt − ϱt. The step sizes at decay roughly as 1/t; this rate

ensures that, on the one hand, ϱt does not converge ‘too slowly’ to the optimal value,

while on the other hand, ϱt does not keep jumping ‘over’ the optimal ϱ which could

potentially lead to a slow convergence rate.

2.4.3 Regret Upper Bound

We proceed by showing that the worst-case regret of SAP(α, β) grows at most loga-

rithmically in T .

Theorem 2.1. Let π correspond to SAP(α, β) with α ⩾ v+1 and β ⩾ α−1. Then,

there is a C > 0 such that, for all T ⩾ 2,

∆π(T ) ⩽ C log T.

Write g(y) := r([y, 1], v) and h(ϱ) := g(w−1(ϱ)), for y, ϱ ∈ [0, 1]. The key idea
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underlying the algorithm and the regret upper bound is the observation that the

optimal expected revenue

ϱ∗ := max{r(S, v) : S ∈ S},

solves the fixed-point equation

h(ϱ) = ϱ.

Because the noisy observation Rt has conditional expected value h(ϱt), we can apply a

Robbins-Monro scheme to find ϱ∗ and the corresponding optimal assortment, without,

e.g., having to estimate the gradient of the revenue function. This explains why we

achieve a small regret rate of O(log T ) instead of, e.g., O(
√
T ) which is commonly

seen in continuous multi-armed bandit problems.

Remark 2.3. The logarithmic growth rate of the regret in Theorem 2.1 holds for

all choices of α ⩾ v+1 and β ⩾ α−1. As the constant in front of the log T term may

depend on these parameters, the finite-time performance of the policy may be fine-

tuned by carefully selecting these α and β, for example based on initial simulations.

Remark 2.4. Theorem 2.1 presents a worst-case bound: the constant C is indepen-

dent of v ∈ V. To obtain this result we need to impose assumptions on uniform bounds

on the derivative of v ∈ V. If we are only interested in an instance-dependent upper

bound ∆π(T, v) ⩽ Cv log T , for all v ∈ V and some v-dependent constant Cv > 0,

then Assumption 2.1.(ii) can be relaxed to v being continuously differentiable: this

ensures inequality (A.2) in the proof of Lemma A.1.

2.4.4 Regret Lower Bound

Now that we have proven an upper bound on the regret of the policy SAP(α, β), we

proceed by showing that this bound is, up to a multiplicative constant, asymptotically

tight as T grows large. This implies that our policy is asymptotically optimal.

Theorem 2.2. There is a C > 0 such that, for all policies π and all T ⩾ 2,

∆π(T ) ⩾ C log T.
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To prove Theorem 2.2 we first define a collection of preference functions vθ, in-

dexed by a parameter θ that takes values in a closed interval Θ. Next, we show that

the instantaneous regret incurred by offering assortment S instead of the optimal as-

sortment [y(θ), 1] corresponding to θ, is bounded from below by a constant times the

squared difference between the volumes of [y(θ), 1] and S, for any S ∈ S and θ ∈ Θ.

This result is obtained by exploiting local quadratic behavior of the instantaneous re-

gret for assortments close to the optimal one. Furthermore, this relation implies that

it suffices to prove a lower bound on the mean squared error of any estimate of the vol-

ume of the optimal assortment: a reduction from subsets of [0, 1] to one-dimensional

variables in [0, 1]. To mitigate difficulties with the atom of the purchase distributions

XS on ∅, we define new, absolutely continuous random variables Z1, Z2, . . . and show

that it suffices to prove a regret lower bound based on observations Z1, Z2, . . . instead

of the purchases X1, X2, . . .. Next, we bound the Fisher information corresponding to

Z1, . . . , Zt from above by a positive constant times t, and define a probability measure

λ on the support of θ. By the Van Trees inequality (Gill & Levit, 1995), we then con-

clude that the expected instantaneous regret in period t + 1, where the expectation

is with respect to λ, is bounded from below by a constant times 1/t, for all t. By

summing over all t = 1, . . . , T , the logarithmic lower bound follows.

2.5 Capacitated Assortment Optimization

In this section, we consider the setting in which the capacity c is strictly less than 1.

We first characterize the optimal assortment under full information, and show that

the optimal solutions in the capacitated case exhibit richer behavior than the intervals

[y, 1] observed in the uncapacitated case. Next, we show that this structural difference

translates into a different complexity of the dynamic learning problem, finding that

the optimal growth rate of the regret behaves as T 2/3 instead of log T as established

in the previous section.

The intuitive ideas underlying the mathematical statements in this section are

given in the main text; the full proofs are contained in Section A.2.
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2.5.1 Full Information Optimal Solution

As shown in Section 2.4.1, the assortment optimization problem under full information

can be written as

max{r(S, v) : S ∈ S} = max

{
ϱ ∈ [0, 1] : max

S∈S
I(S, ϱ) ⩾ ϱ

}
, (2.5)

where

I(S, ϱ) :=
∫
S

v(x)
(
w(x)− ϱ

)
dx,

for S ∈ S and ϱ ∈ [0, 1], and where S denotes the collection of all measurable subsets

of the unit interval with volume at most c. Without a capacity constraint, I(S, ϱ) is

maximized by the upper level set

Wϱ := {x ∈ [0, 1] : w(x) ⩾ ϱ},

for all ϱ ∈ [0, 1], since v(x)(w(x) − ϱ) is nonnegative if and only if x ∈ Wϱ. With

capacity constraint, however, the optimization becomes slightly more subtle, because

the set Wϱ may have volume larger than c. We discuss how to solve the inner max-

imization problem in (2.5), i.e., how to construct an Sϱ, for each ϱ ∈ [0, 1], such

that

I(Sϱ, ϱ) = max{I(S, ϱ) : S ∈ S}. (2.6)

Next, we utilize this result to obtain an optimal solution for (2.5). To this end, let

h(x, ϱ) := v(x)
(
w(x)− ϱ

)
, x ∈ [0, 1], ϱ ∈ [0, 1], (2.7)

be the function that I integrates, let

Lϱ(ℓ) := {x ∈ [0, 1] : h(x, ϱ) ⩾ ℓ}, ϱ ∈ [0, 1], ℓ ∈ [0,∞),

be the upper level sets of h( · , ϱ), and let

mϱ(ℓ) := vol(Lϱ(ℓ)), ϱ ∈ [0, 1], ℓ ∈ [0,∞),

denote their volume. We first give an explicit characterization of the optimal solu-

tion(s) of (2.6).
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Lemma 2.1. Let ϱ ∈ [0, 1].

(i) If vol(Wϱ) ⩽ c, then the maximum of I(S, ϱ) over sets in S is attained by

S =Wϱ.

(ii) If vol(Wϱ) > c, then the maximum

ℓϱ := max{ℓ ⩾ 0 : mϱ(ℓ) ⩾ c}

exists, and the maximum of I(S, ϱ) over sets in S is attained by S = L+
ϱ ∪ L⟲

ϱ ,

where

L+
ϱ := {x ∈ [0, 1] : h(x, ϱ) > ℓϱ},

L=
ϱ := {x ∈ [0, 1] : h(x, ϱ) = ℓϱ},

and L⟲
ϱ is a subset of L=

ϱ such that vol(S) = vol(L+
ϱ ) + vol(L⟲

ϱ ) = c.

As is intuitive, the upper level set Wϱ maximizes I(S, ϱ) with respect to S if this

does not result in a violation of the capacity constraint (case (i)). On the other hand,

if the volume of Wϱ exceeds the maximum capacity (case (ii)), then we construct an

optimal assortment as follows. First, we ‘fill’ the assortment by the upper level set

{x ∈ [0, 1] : h(x, ϱ) > ℓ}, where ℓ is as large as possible given the capacity constraint;

this largest value of ℓ is denoted by ℓϱ in Lemma 2.1. If the resulting assortment has

size c then we are done; if not, then the function h(x, ϱ) has ‘flat’ regions; that is, the

level set {x ∈ [0, 1] : h(x, ϱ) = ℓϱ} has positive measure, and adding this set to the

assortment would result in a violation of the capacity constraint. In that case, the

optimal assortment S constructed in Lemma 2.1 consists of {x ∈ [0, 1] : h(x, ϱ) > ℓϱ}

and a subset of {x ∈ [0, 1] : h(x, ϱ) = ℓϱ} such that the volume of the union of the

two parts is exactly equal to c.

Based on the explicit solution of the inner maximization problem (2.6) given in

Lemma 2.1, we now characterize an optimal solution to (2.5).

Proposition 2.1. For each ϱ ∈ [0, 1] let Sϱ ∈ S satisfy (2.6). Then, there is a

unique solution ϱ∗ ∈ [0, 1] to the fixed-point equation

I(Sϱ, ϱ) = ϱ, ϱ ∈ [0, 1],
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and Sϱ∗ is an optimal assortment:

r(Sϱ∗ , v) = max{r(S, v) : S ∈ S}.

We prove the proposition by showing that I(Sϱ, ϱ) is continuous and non-increasing

as function of ϱ, with I(S0, 0) ⩾ 0 and I(S1, 1) = 0. By equality (2.5) and the obser-

vation

I(Sϱ, ϱ) = ϱ ⇐⇒ r(Sϱ, v) = ϱ,

we conclude that if ϱ∗ solves the fixed-point equation, then Sϱ∗ is an optimal assort-

ment.

Remark 2.5. The optimal assortment can be efficiently computed up to any desired

accuracy via a bisection method. In Section 2.7. we present an implementation of

such a bisection algorithm.

Remark 2.6. In contrast to the setting discussed in Section 2.4, the optimal assort-

ment in the presence of a capacity constraint does not have to be a connected interval.

Consider, for example, the bi-modal preference function plotted in the left-hand panel

of Figure 2.1, and let c = 0.5 and w(x) = x for all x ∈ [0, 1]. The optimal assortment

S∗ in this instance consists of the union of two disjoint intervals:

S∗ = [0.33, 0.48] ∪ [0.63, 0.98],

with corresponding optimal expected profit r(S∗, v) = 0.19. In contrast, the largest

expected profit that can be obtained from a single closed interval in this instance is

equal to 0.13 (attained at the interval [0.5, 1]); a reduction in profit of more than

thirty percent. This shows that restricting to single intervals can leave a significant

amount of profit on the table.
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Figure 2.1: The left-hand panel shows the bi-modal preference function v(x) = 1
10

+ 1
5
(2 +

x)(1−x)+ 2
7
φ(x; 0.33, 0.1)+ 1

5
φ(x; 0.8, 0.1), x ∈ [0, 1], where φ( · ;µ, σ) is the normal probabil-

ity density function with parameters µ and σ. The right-hand panel shows the corresponding
function ϱ 7→ I(Sϱ, ϱ). The optimal ϱ∗ = 0.19 is the unique ϱ such that ϱ = I(Sϱ, ϱ).

The continuous model offers insight in the role of the capacity constraint in its

discrete counterpart. To illustrate this, consider the instance of the discrete MNL

assortment optimization problem discussed by Rusmevichientong et al. (2010) with

N = 4 products, and preference values vi and marginal revenues wi given by

v = (0.2, 0.6, 0.3, 5.2) and w = (9.5, 9.0, 7.0, 4.5).

Rusmevichientong et al. (2010) shows that the optimal assortment, as function of the

maximum assortment size C, is given by

C 1 2 3 4

Optimal assortment {4} {2, 4} {1, 2, 3} {1, 2, 3, 4}

By defining

v(x) = N

N∑
i=1

vi1

{
i− 1

N
⩽ x <

i

N

}
,

and

w(x) =

N∑
i=1

wi1

{
i− 1

N
⩽ x <

i

N

}
,

for all x ∈ [0, 1], we translate the problem into our continuous assortment optimization

setting. For each fixed ϱ, the function x 7→ h(x, ϱ) defined in (2.7) is a piece-wise

constant function that attains the values Nvi(wi − ϱ), for i ∈ [N ]. The ordering of
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the quantities {Nvi(wi − ϱ) : i ∈ [N ]} does not change when ϱ is slightly changed,

except possibly if ϱ is of the form

ϱi,j :=
viwi − vjwj

vi − vj
, for some 1 ⩽ i < j ⩽ N.

If we consider the optimal revenue ϱ∗(c) as function of the capacity constraint c, then

it follows that the fraction of a product that is included in the optimal assortment

might be discontinuous at points c such that ϱ∗(c) = ϱi,j , for some i, j. In our

example, this happens at c ≈ 0.32, c ≈ 0.61, and c ≈ 0.66. Figure 2.2 illustrates

this behavior. The fraction of a particular product that is included in the optimal

assortment is not monotone in c, and can in fact make jumps.
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Figure 2.2: The left-hand panel shows the optimal amount of each products, as function of
c. The right-hand panel shows the corresponding optimal expected profit ϱ∗(c).

2.5.2 A Discretization Policy for Incomplete Information

We proceed by presenting a discretization policy for the continuous assortment op-

timization problem with capacity constraint and incomplete information. We first

discuss the underlying intuition and the method of establishing upper confidence

bounds, after which we formally present our policy Discretized Upper Confidence

Bounds (DUCB).

The proposed policy is parameterized by an integer N ∈ N. The policy DUCB(N)

discretizes the set of products [0, 1] into N bins of equal size, after which the policy

exploits the similarity with the discrete MNL model. This is done by applying the
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UCB policy from (Agrawal et al., 2019, (Algorithm 1)) to the bin structure. We regard

a continuous purchase in the i-th bin as a purchase of product i in the discrete MNL

model. The policy establishes upper confidence bounds on the preference parameters

corresponding to the discrete MNL model. More specifically, define the bins as

Bi :=

[
i− 1

N
,
i

N

)
(2.8)

for i = 1, . . . , N − 1 and

BN :=

[
N − 1

N
, 1

]
, (2.9)

and define the parameters

vi :=

∫
Bi

v(x) dx and wi := N

∫
Bi

w(x) dx, i ∈ [N ].

Note that by our choice of vi and wi for i ∈ [N ], the expected profit of an assortment

consisting of a collection of bins is the same for the continuous and discrete MNL

model.

At each time t we observe a purchase Xt ∈ St ∪ {∅}, and translate this Xt to a

discrete purchase Yt by

Yt :=

N∑
i=1

i1{Xt ∈ Bi}.

Observe that Xt ∈ BYt if Xt ∈ St and Yt = 0 if Xt = ∅. The policy at time t

computes upper confidence parameters vUCB
1,t , . . . , vUCB

N,t of the parameters v1, . . . , vN

using observed discrete purchases Y1, . . . , Yt. In the next step, at time t+1, the chosen

assortment is the collection of bins St+1 =
⋃

i∈Dt+1
Bi where Dt+1 is a subset of [N ]

of size at most ⌊cN⌋, which maximizes

D 7→
∑

i∈D v
UCB
i,t wi

1 +
∑

i∈D v
UCB
i,t

.

If such an optimal assortment is not unique, ties are broken by applying an arbitrary,

fixed ordering of assortments.

The DUCB(N) policy starts by setting vUCB
i,0 = 1 for all i ∈ [N ]. To compute the

upper confidence parameters vUCB
1,t , . . . , vUCB

N,t for t = 1, . . . , T , the observed discrete

purchases Y1, . . . , Yt are used as follows. The time horizon is partitioned into epochs,

where each epoch corresponds to a sequence of consecutive actual purchases. An
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epoch ends when a no-purchase is observed, i.e., Xt = ∅ or, equivalently, Yt = 0.

Specifically, let t0 := 0 and recursively define

tℓ := min{t ∈ {tℓ−1 + 1, . . . , T} : Yt = 0}, ℓ ∈ N⩾1,

and tℓ := T if {t ∈ {tℓ−1 + 1, . . . , T} : Yt = 0} = ∅. Let L denote the first index such

that tL = T , that is,

L := min{ℓ ∈ N⩾1 : tℓ = T}.

Then, the ℓ-th epoch Eℓ is defined as

Eℓ := {tℓ−1 + 1, . . . , tℓ}, ℓ ∈ [L].

Within each epoch Eℓ the upper confidence parameters remain unchanged, that is,

vUCB
i,t = vUCB

i,s for all i ∈ [N ] when s, t ∈ {tℓ−1, . . . , tℓ−1}. As a result, and by the fixed

tie-breaking rule, Dt remains the same within each epoch. Define Dℓ := Dtℓ−1+1. At

the end of an epoch, the upper confidence parameters are updated. Then, the upper

confidence bounds vUCB
1,t , . . . , vUCB

N,t become

vUCB
i,t :=


v̄i,ℓ +

√
v̄i,ℓ

48 log(
√
Nℓ+ 1)

|Ti(ℓ)|
+

48 log(
√
Nℓ+ 1)

|Ti(ℓ)|
,

if t = tℓ for some
ℓ ∈ [L] and i ∈ Dℓ,

vUCB
i,t−1, otherwise.

(2.10)

Here, Ti(ℓ) is the set of epochs up to ℓ in which product i is offered, that is,

Ti(ℓ) := {τ ∈ [ℓ] : i ∈ Dτ}, i ∈ [N ],

and v̄i,ℓ is the average of the number of times product i is purchased in epoch τ for

epochs τ ∈ Ti(ℓ), that is,

v̄i,ℓ :=
1

|Ti(ℓ)|
∑

τ∈Ti(ℓ)

∑
t∈Eτ

1{Yt = i}.

For all i ∈ Dℓ, v̄i,ℓ is an unbiased estimator of the discrete preference parameters vi

(see Corollary A.1 by Agrawal et al., 2019). Note that in (2.10) there exists an ℓ ∈ [L]

such that t = tℓ if and only if Yt = 0.

After the verbal description, we now formally present our DUCB(N) policy.
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Discretized Upper Confidence Bounds DUCB(N)

1. Initialization. Let N ∈ N and put K := ⌊cN⌋. Let Bi for i ∈ [N ] be

as in (2.8) and (2.9). Let wi := N
∫
Bi
w(x)dx and vUCB

i,0 := 1 for i ∈ [N ]

and t := 1. Go to 2.

2. Assortment selection. Let

Dt ∈ argmax
D⊆[N ]:|D|⩽K

∑
i∈D v

UCB
i,t−1wi

1 +
∑

i∈D v
UCB
i,t−1

, (2.11)

and

St :=
⋃
i∈Dt

Bi.

Determine vUCB
1,t , . . . , vUCB

N,t as in (2.10), and let t := t+ 1. If t ⩽ T,

then go to 2, else to 3.

3. Terminate.

If the discrete assortment Dt as in (2.11) is not unique, ties are dealt with by

applying an arbitrary fixed ordering of assortments.

2.5.3 Regret Upper Bound for Discretization

We proceed by showing that the worst-case regret of DUCB(N), with appropriately

chosen N , grows at most as T 2/3 up to a logarithmic term.

Theorem 2.3. Let π correspond to DUCB(N) with N =
⌊
γT 1/3

⌋
where γ =

max{v, 1/c+ 1}. Then, there is a C > 0 such that, for all T ⩾ 2,

∆π(T ) ⩽ C T 2/3(log T )1/2.

To prove the theorem, we first establish a relation between the regret in our

model and that of the discrete regret in the context of Agrawal et al. (2019). There

is an obvious misalignment between those two notions: one deals with functions and

the other with discrete parameters. However, we are able to bound the regret of

DUCB(N) from above by the regret of UCB plus a discretization error of order T/N .
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Since the regret of UCB is of order
√
NT (up to a logarithmic term), the optimal

value of N is proportional to T 1/3 which results in a T 2/3 upper bound for the regret

of DUCB(N) (also up to a logarithmic term).

Then, it is observed that the discretization error consists of three sources. The first

source is due to the fact that the discrete model approximates the actual preference

function and marginal profit function by a piecewise constant function. The second

source is caused by the fact that the true optimal assortment is not necessarily exactly

equal to a collection of bins. The third source is the effect of the misalignment

between the regret within our model with that of the regret of UCB as analyzed by

Agrawal et al. (2019). When considering the regret of DUCB(N), we need to take

this translation error into account.

To facilitate the analysis of the performance of DUCB(N), we define

v̌(x) := N

N∑
i=1

1{x ∈ Bi}
∫
Bi

v(y) dy, x ∈ [0, 1], (2.12)

w̌(x) := N

N∑
i=1

1{x ∈ Bi}
∫
Bi

w(y) dy, x ∈ [0, 1]. (2.13)

In addition, we introduce an adjustment of the currently used notation of the expected

profit of an assortment S ∈ S. We will explicitly denote that this expected profit

depends on marginal profit function w(x), as well as preference function v(x):

r(S, v, w) :=

∫
S
v(x)w(x) dx

1 +
∫
S
v(x) dx

.

The effect of the first component of the discretization error is captured by Proposi-

tion 2.2 below.

Proposition 2.2. Let v̌ and w̌ be as in (2.12) and (2.13), respectively. Let S∗ and

Š in S be optimal assortments corresponding to v and w, and v̌ and w̌, respectively,

that is,

r(S∗, v, w) = max
S∈S

r(S, v, w) and r(Š, v̌, w̌) = max
S∈S

r(S, v̌, w̌). (2.14)

Then, the difference between the expected revenue of S∗ under v and w and the expected
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revenue of Š under v̌ and w̌ is bounded from above by

r(S∗, v, w)− r(Š, v̌, w̌) ⩽ ||v − v̌||1 + v ||w − w̌||1, (2.15)

where || · ||1 :=
∫ 1

0
| · | dx.

Note that the optimal assortment Š in the result stated above is the optimal

assortment within S. The UCB algorithm only considers discrete assortments, which

translates to a collection of bins within our model. The effect of this is stated in

Lemma 2.2 below.

Lemma 2.2. Let v̌ and w̌ be as in (2.12) and (2.13), respectively. Let AK be the

set of all collections of at most K = ⌊cN⌋ bins Bi, that is,

AK :=

{⋃
i∈D

Bi : D ⊂ [N ] and |D| ⩽ K

}
. (2.16)

In addition, let Š in S and Sd in AK be optimal assortments corresponding to v̌ and

w̌, that is,

r(Š, v̌, w̌) = max
S∈S

r(S, v̌, v̌) and r(Sd, v̌, w̌) = max
S∈AK

r(S, v̌, v̌). (2.17)

Then, the difference between the expected revenue under v̌ and w̌ of Š and Sd is

bounded from above by

r(Š, v̌, w̌)− r(Sd, v̌, w̌) ⩽
v

N
.

Recall that the first two components address the effect of the discretization error

regarding the specifics of the optimal assortment. The third and last component

concerns the translation error regarding the offered assortments S1, . . . , ST . Since all

these assortments lie in AK , as in (2.16), we present the result below for a general set

in AK .

Lemma 2.3. Let v̌ and w̌ be as in (2.12) and (2.13), respectively. Let AK be as in

(2.16) and let S ∈ AK . Then, the difference between the expected profit of S under v̌
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and w̌, and v and w is bounded from above by

r(S, v̌, w̌)− r(S, v, w) ⩽ ||v − v̌||1 + v ||w − w̌||1,

where || · ||1 :=
∫ 1

0
| · | dx.

The three components of the discretization error are combined as follows. Let S∗,

Š and Sd be as in (2.14) and (2.17) and let S1, . . . , ST be the offered assortments.

The instantaneous regret at time t ∈ [T ] can be split into four parts as

r(S∗, v, w)− r(St, v, w) = r(S∗, v, w)− r(Š, v̌, w̌) + (2.18)

r(Š, v̌, w̌)− r(Sd, v̌, w̌) + (2.19)

r(Sd, v̌, w̌)− r(St, v̌, w̌) + (2.20)

r(St, v̌, w̌)− r(St, v, w). (2.21)

The idea is to apply the triangle inequality. For the right-hand side of (2.18), (2.19),

and (2.21), we apply Proposition 2.2, Lemma 2.2 and Lemma 2.3, respectively. Note

that the term in (2.20) corresponds to the instantaneous regret of UCB. The remainder

of the proof of Theorem 2.3 consists of showing that both the L1-differences ||v − v̌||1
and ||w−w̌||1 are of the order 1/N and applying Theorem 1 from Agrawal et al. (2019).

Remark 2.7. The analysis of the upper bound on the regret of DUCB extends to

higher dimensional continuous assortment problems. In particular, if the dimension

is d ⩾ 2, then one can discretize the set of products [0, 1]d into Nd bins. Under a

smoothness assumption of the preference function and the marginal profit function,

the order of the L1-difference between the actual functions and the discretized func-

tions remains O(1/N) as the difference can be bounded from above by a sum of Nd

terms that each is of order N−(d+1), similar as in (A.12). As a result, the cumulative

discretization error is of order T/N and the total regret in higher dimensions is of the

order (up to a logarithmic factor)

T

N
+
√
NdT .

Hence, the optimal value of N is proportional to T
1

d+2 which results in a T
d+1
d+2 regret.
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This corresponds to the regret rate for continuum-armed bandit in higher dimensions

(see, e.g., Kleinberg et al., 2008; Bubeck et al., 2011a,b).

2.5.4 Regret Lower Bound

In this section, we construct an instance for the assortment optimization problem with

capacity constraint, and we show that the regret of any policy after T time periods

is at least a constant times T 2/3. This shows that the structural differences between

optimal assortments with or without a capacity constraint under full information –

Section 2.4.1 and 2.5.1 – translate into a different complexity of the corresponding

data-driven optimization problem, characterized by the growth rate of the regret.

We consider the following instance. Let v ∈ (0, 0.04) and v ⩾ 9. Moreover, let

c ∈ (0, 0.25], s = 0.05c and δ = 0.2, and consider the marginal profit function

w(x) = (1− s)
1− δ

1− δx
+ s, x ∈ [0, 1].

To obtain a lower bound on the regret, we construct ‘difficult instances’ of preference

functions that are hard to distinguish statistically, but that correspond to different

optimal assortments. To this end, we first define a ‘baseline’ preference function v0

by

v0(x) :=
s

c(w(x)− s)
=

s(1− δx)

c(1− s)(1− δ)
, x ∈ [0, 1].

This preference function has the property that ϱ∗0 := maxS∈S r(S, v0) is equal to s

(see Section A.2, Lemma A.5), and that v0(x)(w(x)− ϱ∗0) does not depend on x. As

a result, any assortment of volume c is optimal for this preference function.

The next step is to perturb the baseline preference function with small, positive

‘bumps’ at different locations such that the corresponding optimal assortment will

be a collection of intervals centered around these bumps. The perturbed preference

functions are, in a sense, close to each other (measured, e.g., by the L1 norm), but

correspond to different and possibly even disjoint optimal assortments. In particular,

let K ⩾ 2 be an integer and NK := ⌊K/c⌋, and define the i-th bin as the interval

Bi :=

[
c
i− 1

K
, c
i

K

)
, i ∈ [NK ].

Note that this definition differs from the bins presented in Section 2.5.2. The definition
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here is convenient as the union of anyK distinct bins has combined volume of precisely

c. Let DK denote the collection of all subsets of [NK ] of size K, i.e.,

DK :=
{
I ⊆ [NK ] : |I| = K

}
.

For each collection of bins I ∈ DK we now define a preference function vI that,

roughly speaking, consists of the baseline preference function with small, positive

bumps added at all bins Bi, i ∈ I. In particular, define the bump function b(x) as

the normal probability density function with parameters µ = 0 and σ = 0.3:

b(x) :=
1

σ
√
2π
e−x2/2σ2

, x ∈ R.

This function is shifted and re-scaled such that the probability mass on [−1, 1) is

mapped onto Bi, as follows. For i ∈ [NK ] and x ∈ R, let

φi(x) :=
2Kx

c
− 2i+ 1,

be a linear transformation that satisfies φi(Bi) = [−1, 1), and define

τi(x) :=
c

K
b
(
φi(x)

)
.

Finally, define the constant

β :=
c

K

1

σ
√
2π

∑
n∈Z

exp

(
− (2n− 1)2

2σ2

)
,

and, for each I ∈ DK , define the preference function

vI(x) := v0(x)

(
1 +

∑
i∈I

τi(x)− β

)
, x ∈ [0, 1].

The subtraction of the (small) constant β ensures that vI(x) ⩽ v0(x) for all x /∈⋃
i∈I Bi, i.e., the preference function dips just below the baseline function v0(x) for

x outside the collection of bins in I. This ensures that the optimal assortment corre-

sponding to vI is approximately equal to the collection of intervals
⋃

i∈I Bi at which

small bumps have been added.
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Figure 2.3: Left: bump function b(x). Right: preference function vI(x) for c = 0.25, K = 2
and I = {2, 5}.

Having defined a collection of preference functions, we now proceed in proving

a regret lower bound. First, for any policy and any I ∈ DK , we bound the regret

corresponding two preference function vI from below by an expression that counts

how often products from the approximately optimal assortment
⋃

i∈I Bi were not

offered. To state the result, let

εI(x) :=
vI(x)− v0(x)

v0(x)
=
∑
i∈I

τi(x)− β, I ∈ DK , x ∈ [0, 1],

and let

k(x) :=

T∑
t=1

1{x ∈ St}, x ∈ [0, 1],

count the number of times that x ∈ [0, 1] is offered to consumers. Throughout the

remainder of this section we fix an arbitrary policy π, and let PI and EI denote the

probability law and the expectation operator under policy π and preference function

vI .

Proposition 2.3. There are constants C1 > 0, C2 > 0, independent of π, such

that, for any T ∈ N and I ∈ DK ,

∆π(T, vI) ⩾ C1

∫
⋃

i∈I Bi

(
T − EI [k(x)]

)
εI(x)dx− C2

T

K
.
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The proposition is proven by exploiting the structure of the optimal assortment

as outlined in Section 2.5.1 and the fact that the definition of vI implies that the

corresponding optimal assortment is approximately equal to
⋃

i∈I Bi. The constants

C1, C2 are given explicitly in the proof of Proposition 2.3.

The second step in the proof of the regret lower bound is the following result,

which provides an upper bound on how the expected number of times that a product

x ∈ [0, 1] is offered changes when the preference function is changed from vI to vI\{i},

for some i ∈ I.

Proposition 2.4. Let x ∈ [0, 1], I ∈ DK , and J = I\{i} for some i ∈ I. Then,

there is a constant Cc > 0 independent of π, such that

∣∣∣EI [k(x)]− EJ [k(x)]
∣∣∣ ⩽ Cc

(
T

K

)3/2

. (2.22)

This bound is proven by relating the left-hand side of (2.22) to the Kullback-

Leibler (KL) divergence of PI and PJ , using Pinsker’s inequality, and subsequently

bounding this expression from above by carefully analyzing its dependence on vI and

vJ . The constant Cc is given explicitly in the proof of Proposition 2.4.

With Propositions 2.3 and 2.4 at hand, we finally arrive at our regret lower bound.

Theorem 2.4. There is a C > 0, independent of π, such that, for T ∈ N,

∆π(T ) ⩾ C T 2/3.

To prove the theorem, we first show that the preference functions {vI : I ∈

DK ,K ∈ N} satisfy Assumption 2.1. This implies that the worst-case regret is

bounded from below by the expected regret when the preference function is chosen

uniformly at random from {vI : I ∈ DK}, for any fixed K. The regret corresponding

to each vI is then bounded from below by an expression that involves the expected

number of times that products from the approximate optimal assortment
⋃

i∈I Bi are

not offered, using Proposition 2.3. Proceeding in a similar fashion as in the proof of

the regret lower bound obtained by Chen & Wang (2018) for discrete assortments,

while dealing with all the intricacies of having a continuum product space, we connect
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the expression in Proposition 2.3 to statement (2.22) of Proposition 2.4. By carefully

selecting K, we arrive at the stated lower bound.

2.5.5 A Density Estimation Policy for Incomplete Information

We proceed by defining a density estimation policy for the continuous assortment

optimization problem with capacity constraint and incomplete information. We first

formally present our Kernel Density Estimation Policy (KDEP), after which we dis-

cuss the underlying intuition and our method of estimating the unknown preference

function. The proposed policy is parameterized by an integer M ∈ N.

Kernel Density Estimation Policy KDEP(M)

1. Initialization. Let M ∈ N and J := ⌈1/c⌉. For i ∈ [J ], put

Si :=

[
i− 1

J − 1
(1− c),

i− 1

J − 1
(1− c) + c

]
. (2.23)

Put t := 1. Go to 2.

2. Exploration. Put St := S⌈t/M⌉ and t := t + 1. If t ⩽MJ, then go to

2, else to 3.

3. Estimation. Put v̂(x) as in (2.25) and let

Ŝ ∈ argmax
S∈S

r(S, v̂). (2.24)

Go to 4.

4. Exploitation. Let

St = Ŝ.

Put t := t+ 1. If t ⩽ T, then go to 4, else to 5.

5. Terminate.

For how to compute Ŝ as in (2.24), we refer to Section 2.7. The policy pre-

sented above consists of two phases. In the initial exploration phase, a number of

test assortments offered, each during M time periods. The observed purchases in

this exploration phase are used to determine an estimate v̂ of the true but unknown
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preference function v. Our estimation method is based on kernel density estimation

(KDE), and is explained in more detail below. Based on this estimate v̂, we compute

an optimal assortment Ŝ. In the second, exploitation phase, the statistical knowledge

obtained in the exploration phase is exploited by offering the estimated optimal as-

sortment Ŝ during the remainder of the time horizon. The number of times M that

each of the test assortments is offered during the exploration phase is a key tuning

parameter that captures the well-known exploration-exploitation trade-off: choosing

M large will improve the quality of the estimated optimal assortment Ŝ, but choosing

M small will decrease the total loss from the exploration phase. In Theorem 2.5 we

will carefully choose M and derive a regret upper bound on KDEP(M).

The estimate v̂ is established in the following manner. First, for all x ∈ [0, 1], let

k(x) denote the number of times that product x is contained in the test assortments

S1, . . . , SJ :

k(x) :=

J∑
i=1

1{x ∈ Si}, x ∈ [0, 1].

Observe that the test assortments are constructed in such a way that k(x) > 0 for all

x ∈ [0, 1]. For each test assortment Si we construct a corresponding estimate v̂i(x)

of v(x)1{x ∈ Si}, and then combine these into our estimate v̂, as follows:

v̂(x) :=
1

k(x)

J∑
i=1

v̂i(x), x ∈ [0, 1]. (2.25)

To define v̂i, define the Legendre polynomials

φ0(x) :=
1√
2
, φj(x) :=

√
2j + 1

2

1

2jj!

dj

dxj
[
(x2 − 1)j

]
,

for j ∈ N, which form an orthonormal basis in L2([−1, 1]). Write Si = [ai, bi] as in

(2.23), for all i ∈ [J ], let h ∈ (0, c/2] be a bandwidth parameter determined below

(see Proposition 2.6), and for all i ∈ [J ] and x ∈ R define two shift coefficients γix and

ζix as

(
γix , ζ

i
x

)
=


(

2h

h+x−ai

, −h−(x−ai)

h+x−ai

)
, for x ∈ [ai, ai + h),

(1, 0), for x ∈ [ai + h, bi − h],(
2h

h+bi−x
,

h−(bi−x)

h+bi−x

)
, for x ∈ (bi − h, bi].
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In addition, we define the shifted support Iix as

Iix =
[
−min

{
1,

x−ai

h

}
,min

{
1,

bi−x

h

}]
.

and define the Legendre kernel of order ℓ for Si by

Ki
x(u) := γx

ℓ∑
j=0

φj

(
ζx
)
φj

(
γxu+ ζx

)
, x ∈ Si, u ∈ Iix,

and Ki
x(u) := 0 for x ∈ Si and u /∈ Iix.

Since v(x)1{x ∈ Si} is not a proper density, we re-scale the kernel estimator based

on the number of (no)-purchases corresponding to test assortment Si, for all i ∈ [J ].

To this end, let Ei denote the no-purchases observed when assortment Si is offered:

Ei := {Xt : Xt = ∅ and (i− 1)M + 1 ⩽ t ⩽ iM},

and let

Ai := {Xt : Xt ̸= ∅ and (i− 1)M + 1 ⩽ t ⩽ iM}

denote the actual purchases observed when Si is offered. Then, v(x)1{x ∈ Si} is

estimated by

v̂i(x) :=
1

(|Ei|+ 1)h

∑
X∈Ai

Ki
x

(
X − x

h

)
, x ∈ Si,

and set v̂i(x) := 0 for x /∈ Si. These estimates are combined into one estimate v̂ of v,

as given by (2.25).

Remark 2.8. Because traditional KDE does not perform well near endpoints of

the support, we construct our estimate of v based on the so-called boundary kernel

method, that locally adjusts the kernels near the edges of the support (see Müller,

1991; Zhang et al., 1999, for other demonstrations of this method). Also contrary

to traditional KDE, we allow the order of the kernel to depend on the number of

observations. To construct such a kernel of arbitrarily high order, it is natural to

work with an orthonormal basis of polynomials. We specifically choose Legendre

polynomials since this choice allows us to bound the convergence rate explicitly for

kernels of flexible order.
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2.5.6 Regret Upper Bound for Density Estimation

In this section, we provide an upper bound on the regret of KDEP(M), with appro-

priately chosen M . We conduct our analysis under an additional assumption on the

derivatives of the unknown preference function:

Assumption 2.2. There is a C > 0 such that∣∣∣∣ v(ℓ)(y)(ℓ+ 1)!

∣∣∣∣ < C,

for all y ∈ (0, 1) and ℓ ∈ N.

We denote the class of functions that satisfy Assumption 2.2 as V1. It is worth

emphasizing that Assumption 2.2 is satisfied by many commonly used functions (such

as polynomials, sines, cosines and exponential functions, as well as sums, products

and compositions of these). In addition, in the operations research and statistics

literature such an assumption on the derivatives of the function of interest is often

imposed (see, e.g., Wang et al., 2021; Tsybakov, 2008). Weakening the smoothness

conditions on v leads to different convergence rates, as explained in more detail in

Remark 2.10.

Theorem 2.5. Let π correspond to KDEP(M) with M =
⌊
T 2/3/J

⌋
where J =

⌈1/c⌉. Then, there is a C > 0, for all v that satisfy Assumption 2.2, such that, for

all T ⩾ 2,

∆π(T, v) ⩽ C T 2/3(log T )1/2.

To prove the theorem, we first show that the instantaneous expected revenue loss

caused by using an estimated optimal assortment Ŝ, based on an estimate v̂ of v, is

bounded from above by the L1-difference between v and v̂. It is worth noting that

this result closely resembles Proposition 2.2. Although, here we consider the optimal

assortment under v and the optimal assortment under v̂, both with respect to the

same marginal profit function w, and we evaluate the difference in expected revenue

between both assortments under specifically the actual preference function v and the

marginal profit function w. We present the result below separately, as neither this

result nor Proposition 2.2 is a simple corollary of the other.
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Proposition 2.5. Let v, v̂ : [0, 1] → R+. Let S∗ and Ŝ in S be optimal assortments

corresponding to v and v̂, respectively, that is,

r(S∗, v) = max
S∈S

r(S, v) and r(Ŝ, v̂) = max
S∈S

r(S, v̂).

Then, the difference between the expected revenue under v of S∗ and Ŝ is bounded

from above by

r(S∗, v)− r(Ŝ, v) ⩽ 2 ||v − v̂||1,

where || · ||1 :=
∫ 1

0
| · | dx.

Now, let v̂ specifically be the estimate of v obtained after the exploration phase.

The next step is to bound the estimation error ||v − v̂||1 in terms of M , the length

of the exploration phase. Observe that we cannot directly use existing results on

convergence rates of kernel density estimators, since v̂ is not a conventional KDE:

it is composed of the estimates v̂i, i ∈ [J ], which also depend on the number of no-

purchases observed. In particular, each estimate v̂i, for i ∈ [J ], can be written as the

product of two separate estimates α̂i and f̂i, where

α̂i =
|Ai|

|Ei|+ 1
and f̂i(x) =

1

|Ai|h
∑

X∈Ai

Ki
x

(
X − x

h

)
(2.26)

are estimates of

αi :=

∫
Si

v(x)dx and fi(x) :=
v(x)∫

Si v(y)dy
,

respectively. To analyze their convergence rates, we denote the no-purchase probabil-

ity with respect to test assortment Si as pi := 1
1+αi

and we let εi := 1
2 min{pi, 1−pi},

for i ∈ [J ]. Morover, we define the clean event as

E :=

{
∀i ∈ [J ] :

|Ei|
M

∈ (pi − εi, pi + εi)

}
.

We show that the probability of the complement of E is O(M−1/2). On the event E ,

we determine convergence rates of α̂i, f̂i, and v̂, in the following proposition.

44



2.5 CAPACITATED ASSORTMENT OPTIMIZATION

Proposition 2.6. Let M ∈ N, J = ⌈1/c⌉ and let π correspond to KDEP(M).

In addition, let i ∈ [J ] and Mi = max{ 1
pi
, 7
1−pi

}, and let α̂i and f̂i be as in (2.26).

Furthermore, set the bandwidth h∗ and order ℓ∗ = [β∗] such that

h∗ := min

{
c

2
,
1

e

}
and β∗ :=

1

2
log
(
− 2|Ai| log h∗

)
− 1

2
.

Then, for M ⩾Mi,

Eπ

[
|αi − α̂i|

∣∣ E ] ⩽ C1
1√
M

(2.27)

and

Eπ

[∫
x∈Si

(
fi(x)− f̂i(x)

)2
dx

∣∣∣∣ E ] ⩽ C2
logM

M
, (2.28)

for universal constants C1 and C2. Moreover, let v̂ be as in (2.25). Then, the expected

L1-difference between v and v̂, conditioned on the clean event, can be bounded for

M ⩾ maxiMi as

Eπ

[
||v − v̂||1

∣∣∣ E ] ⩽ C3
(logM)1/2

M1/2
, (2.29)

where C3 is a universal constant.

Remark 2.9. Convergence rates on the (integrated) mean squared error of KDE

can, for example, be found in Devroye & Györfi (1985) and Tsybakov (2008). As

we are not aware of existing literature that provides convergence rates applicable to

our specific context, we have included a full derivation of the proof of the desired

convergence rates.

Putting everything together, we obtain that the regret on the complement of the

event E is O(TM−1/2), while the regret on the event E is O(M+TM−1/2(logM)1/2);

here, the first term corresponds to the duration of the exploration phase, while the

second term corresponds to the expected loss during the exploitation phase. Choosing

M proportional to T 2/3 yields a regret rate of T 2/3(log T )1/2.

Remark 2.10. If, instead of Assumption 2.2, we would only assume that v(·) is ℓ

times continuously differentiable, for some given ℓ ∈ N, then analogously to Proposi-
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tion 2.6 we can show that there exists a positive constant C such that

Eπ

[
||v − v̂||1

∣∣∣ E ] ⩽ CM− ℓ
2ℓ+1 .

By repeating our analysis it follows that choosing M proportionally to T
2ℓ+1
3ℓ+1 then

leads to an upper bound of the form

∆π(T, v) ⩽ C T
2ℓ+1
3ℓ+1 ,

for some constant C.

Remark 2.11. One could also try to use existing results for continuum-armed ban-

dits to approach the capacitated assortment problem. However, there is in principle no

upper bound on the number of (disjoint) subintervals of which the optimal assortment

is composed. If we neglect this and assume that the optimal assortment consists of at

most k disjoint subintervals, we essentially obtain a continuous multi-armed bandit

problem with dimension d = 2k (each subinterval contributing a beginning and an end

point) and linear constraints (which guarantee that subintervals do not overlap and

the capacity constraint is satisfied). A typical regret rate for continuum-armed bandit

problems with not necessarily concave reward functions is T
d+1
d+2 (see, e.g., Kleinberg

et al., 2008; Bubeck et al., 2011a,b). Thus, even if k = 1 and d = 2, this approach

would endure a regret rate strictly higher than T 2/3.

2.6 Relation to Discrete MNL Choice Probabilities

The choice probabilities in our continuous assortment optimization model are closely

connected to the discrete MNL model, in two regards.

First, our choice probabilities naturally arise as a limit of discrete models where

the number of products grow large. To see this, consider a sequence of discrete

MNL assortment optimization problems indexed by n ∈ N, where the n-th problem

corresponds to a setting with n products labeled i = 1, . . . , n, each with associated

location i/(n + 1) and valuation v
(n)
i = v(i/(n + 1))/(n + 1), for all i = 1, . . . , n

and some continuous function v : [0, 1] → R+. Under the discrete MNL model, the
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probability that a customer selects a product in a (measurable) set A ∈ [0, 1] when

being offered assortment S is equal to∑
i: i

n+1∈A v
(n)
i

1 +
∑

i: i
n+1∈S v

(n)
i

.

It follows from classical results in integration theory (see, e.g., Stroock, 1994) that

this expression converges to (2.1) as n→ ∞.

Second, when the product space is discretized into finitely many products, each

corresponding to a subinterval in [0, 1], then our model translates into choice probabil-

ities that are described by a discrete MNL model. To see this, suppose that I1, . . . , In

are mutually disjoint subsets of [0, 1], each corresponding to a ‘discrete product’ such

that
⋃n

i=1 Ii = [0, 1]. Let vi :=
∫
Ii
v(x)dx, for all i. Then, for each ‘discrete assort-

ment’ S̃ ⊆ {1, . . . , n} and for each i ∈ S̃, the probability P (i | S̃) that a customer

selects from Ii when being offered assortment
⋃

j∈S̃ Ij , is equal to

P( i | S̃ ) = P
(
XS ∈ Ii

)
=

∫
Ii
v(x)dx

1 +
∫⋃

j∈S̃ Ij
v(x)dx

=
vi

1 +
∑

j∈S̃ vj
.

This is precisely the structure of a discrete MNL choice model.

2.7 Bisection Algorithm for Section 2.5

According to Proposition 2.1, the optimal assortment can be computed up to any

desired accuracy ε > 0. The algorithm COA(n) below shows how this is done, where

n := − log ε. Recall that

I(S, ϱ) :=
∫
S

v(x)
(
w(x)− ϱ

)
dx. (2.30)

The algorithm COA(n) uses bisection to find the fixed-point solution ϱ∗ to the equa-

tion

I(Sϱ, ϱ) = ϱ.

The value of I(Sϱ, ϱ) is computed by relying on the level ℓϱ. This level value is cal-

culated by an additional inner bisection using the algorithm IB(n, ϱ). This algorithm

is also presented below.
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Remark 2.12. As mentioned, the calculation of the level ℓϱ for a single ϱ requires

a bisection on its own. This means that the run time of IB(n, ϱ) is O(− log ε), and

hence the run time of COA(n) is O((log ε)2).

Capacitated Optimal Assortment COA(n)

1. Initialization. Let n ⩾ 1. Put a := 0, b := 1, piv := (b− a)/2 and

i := 1. Go to 2.

2. Capacity check. Put

Wpiv := {x ∈ [0, 1] : w(x) ⩾ piv}.

(i) If vol(Wpiv) > c, then go to 3.

(ii) If vol(Wpiv) ⩽ c, then put Spiv := Wpiv and Ipiv := I(Spiv, piv) as in

(2.30) and go to 5.

3. Inner bisection. Compute ℓpiv according to IB(n, piv). Go to 4.

4. Level set. Put

L+
piv := {x ∈ [0, 1] : v(x)(w(x)− piv) > ℓpiv},

L=
piv := {x ∈ [0, 1] : v(x)(w(x)− piv) = ℓpiv}

and

xpiv := min{x ∈ [0, 1] : vol(L+
piv) + vol

(
L=
piv ∩ [0, x]

)
= c}

Put Spiv = L+
piv ∪

(
L=
piv ∪ [0, xpiv]

)
and Ipiv := I(Spiv, piv) as in (2.30). Go

to 5.

5. Pivot.

(i) If Ipiv > piv, then put a := piv.

(ii) If Ipiv ⩽ piv, then put b := piv.

Put i := i+ 1. If i ⩽ n, then put piv := (b− a)/2 and go to 2, else

go to 6.
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6. Optimization. Put S∗ := Spiv. Go to 7.

7. Terminate.

Recall that there is a possible degree of freedom for picking Sϱ if vol(Wϱ) > c. By

the definition of xpiv above, we explicitly choose the left-most version. The algorithm

IB(n, ϱ) computes the level ℓϱ for given ϱ. Recall by Lemma 2.1 that this level is

defined as

ℓϱ := max{ℓ ⩾ 0 : vol
(
L(ϱ, ℓ)

)
⩾ c}.

IB(n, ϱ) also uses the bisection method, which is facilitated by the fact that, as a

function of ℓ ⩾ 0, vol
(
L(ϱ, ℓ)

)
is left-continuous and non-increasing by Lemma A.3.

Inner Bisection IB(n, ϱ)

1. Initialization. Let n ⩾ 1 and ϱ ∈ [0, 1]. Put a := 0, b := vmax(wmax − ϱ)

+ 1, piv := (b− a)/2 and i := 1. Go to 2.

2. Level set. Put

Lpiv := {x ∈ [0, 1] : v(x)(w(x)− ϱ) ⩾ piv}.

Go to 3.

3. Pivot.

(i) If vol(Lpiv) > c, then put a := piv.

(ii) If vol(Lpiv) ⩽ c, then put b := piv.

Put i := i + 1. If i ⩽ n, then put piv := (b − a)/2 and go to 2, else

go to 4.

4. Optimization. Put ℓϱ := piv. Go to 5.

5. Terminate.

2.8 Concluding Remarks

In this chapter, we introduce the concept of continuous assortment optimization with

demand learning. We distinguish between the capacitated and uncapacitated cases,
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revealing intrinsically different regret behavior: we show that the asymptotically op-

timal regret rate in the absence of a capacity constraint grows logarithmically in

the time horizon, whereas imposing a capacity constraint leads to T 2/3 regret. To

our knowledge, this chapter is the first to extend discrete assortment optimization

problems to the continuous realm.

Our work points to various directions for future research. First, the customer-

purchase model used in this chapter is the natural continuous equivalent of the well-

studied discrete multinomial logit choice model. It remains an open question how

one constructs a random utility model that serves as a theoretical justification of the

continuous choice model. Second, in line with the majority of the assortment opti-

mization literature, our set-up assumes that product prices are exogenous. A question

of practical interest is to consider price and assortment decisions simultaneously in our

continuous model, potentially in a competitive setting. Third, we have constructed an

example in which the optimal assortment is not an uninterrupted interval. It would

be interesting to study under which conditions a single interval solution is optimal,

and whether one can bound the maximum loss when the decision-maker is restricted

to offering a single interval.
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Chapter 3

Discrete Assortment
Optimization

3.1 Introduction

Assortment optimization is vital for maximizing revenue. A seller of a large number of

substitute products faces the challenge of determining the most profitable subset, i.e.,

assortment, of products to offer to consumers. In most practical situations, the seller

does not know the specific demand distribution for all assortments, so that the optimal

assortment optimization has to be studied in a sequential optimization framework

with incomplete information. As the infrastructure of information improves to better

handle incoming real-time purchase data, the necessity for computationally efficient

and easily implementable data-driven algorithms arises.

Because the number of feasible assortments grows exponentially in the number of

products, the problem is often studied under a particular choice model that describes

how demand or choice probabilities depend on the offered assortment. Perhaps the

most widely studied choice model is the multinomial logit (MNL) choice model, con-

sidering either the uncapacitated or the capacitated variant. In the latter setting, the

seller is restricted in the size of the assortments that can be offered.

When the seller can offer assortments of any size, the optimal assortment under

the MNL model is of the form ‘offer the k most profitable products’ – see, e.g., Talluri

& van Ryzin (2004, Proposition 6). This structure greatly simplifies the problem as

the seller merely has to learn the optimal value of the one-dimensional quantity k
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instead of high-dimensional model parameters, suggesting that a conceptually simple

stochastic-approximation type of policy might work well. In this chapter, we construct

such a stochastic approximation policy for the dynamic assortment optimization prob-

lem without capacity constraint and with demand characterized by the MNL model

with unknown parameters, and show that it is both asymptotically optimal and has

excellent numerical performance.

Recently, for the dynamic assortment optimization problem with capacity con-

straint, Chen & Wang (2018) show that the regret – the cumulative expected revenue

loss caused by offering suboptimal assortments – that any decision policy endures is

bounded from below by a constant times
√
NT , where N denotes the number of prod-

ucts and T denotes the time horizon. This result is shown under the assumption that

the product revenues are constant, and thus leaves the question open whether a lower

regret rate can be achieved for non-constant revenue parameters. In this chapter, we

show that this is not the case: we show that, for any vector of product revenues there

is a positive constant such that the regret of any policy is bounded from below by this

constant times
√
NT . Our result implies that policies that achieve O(

√
NT ) regret

are asymptotically optimal for all product revenue parameters.

3.1.1 Literature

Within the management science and operations research community, the problem of

dynamic assortment planning has recently received much attention (see, e.g., Rus-

mevichientong et al., 2010; Farias et al., 2013; Sauré & Zeevi, 2013; Agrawal et al.,

2017; Cheung & Simchi-Levi, 2017; Chen & Wang, 2018; Ou et al., 2018; Agrawal

et al., 2019; Kallus & Udell, 2020; Chen et al., 2021). All these papers study assort-

ment optimization under the MNL model in a sequential decision framework. An

important recent contribution closely related to this chapter is Chen et al. (2021).

The authors construct a Trisection policy that exploits the structure of the optimal

assortment under the uncapacitated MNL assortment optimization problem (‘offer

the k most profitable products’), and prove that its regret after T time periods is

bounded by
√
T times a constant that does not depend on the number of products.

This improves earlier regret rates that do depend on the number of products – see,

e.g., the bounds derived in Rusmevichientong et al. (2010, Theorem 3.4), Sauré &
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Zeevi (2013, Theorem 4), Agrawal et al. (2017, Theorem 1) and Agrawal et al. (2019,

Theorem 1, 3 and 4), applied to a maximum capacity of K = N products. In ad-

dition, Chen et al. (2021) construct an instance where the marginal revenue is 1 for

odd-numbered products and 1/2 for even-numbered products, and prove that, for this

instance, the worst-case regret over a set of possible model parameters that any policy

must endure is bounded from below by a constant times
√
T . This implies that the

√
T regret rate can in general not be improved.

This chapter is also related to Chapter 2, where we study a stochastic approxi-

mation policy in the context of dynamic assortment optimization under a continuous

logit choice model. Here, the set of feasible products is the unit interval. The stochas-

tic approximation policy that we propose in Section 3.3 can been seen as a discrete

counterpart of the policy constructed and analyzed in Section 2.4 but with different

regret rates (and different proof techniques) caused by the structural differences be-

tween continuous and discrete assortment optimization. This is visible in the regret

rates that we derive: in the continuous setting studied in Chapter 2 a regret growth

rate of log T is optimal, whereas in the discrete setting studied in this chapter
√
T is

the best attainable rate.

Regarding capacitated assortment optimization, two notable contributions are

from Agrawal et al. (2017) and Agrawal et al. (2019), who construct decision poli-

cies based on Thompson Sampling and Upper Confidence Bounds, respectively. They

show that the regret of these policies is bounded by a constant times
√
NT (up to

logarithmic terms), where N denotes the number of products and T ⩾ N denotes

the length of the time horizon. These upper bounds are complemented by the recent

work from Chen & Wang (2018), who show that the regret of any policy is bounded

from below by a positive constant times
√
NT , implying that the policies by Agrawal

et al. (2017) and Agrawal et al. (2019) are (up to logarithmic terms) asymptotically

optimal.

The lower bound by Chen & Wang (2018) is proven under the assumption that the

product revenues are constant – that is, each product generates the same amount of

revenue when sold. In practice, it often happens that different products have different

marginal revenues, and it is a priori not completely clear whether the policies by

Agrawal et al. (2017) and Agrawal et al. (2019) are still asymptotically optimal or
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that a lower regret can be achieved. In addition, Chen & Wang (2018) assume that

K, the maximum number of products allowed in an assortment, is bounded by 1
4 ·N ,

but point out that this constant 1
4 can probably be increased.

3.1.2 Contributions and Outline

In this chapter, we propose an easily implementable and asymptotically optimal data-

driven policy for the uncapacitated assortment optimization problem under the MNL

model with unknown parameters. Our policy is based on stochastic approximation

and exploits structural properties of the optimal assortment so that not all unknown

model parameters have to be learned from data. The policy does not require the

time horizon as input. Under a mild positivity assumption on the no-purchase prob-

ability, we prove that the regret of our policy is bounded from above by
√
T times a

constant independent of the number of products. In addition, we prove a
√
T regret

lower bound that any policy must endure for any given vector of product revenues.

This slightly generalizes the lower bound proven by Chen et al. (2021), and implies

that policies with O(
√
T ) regret are asymptotically optimal for any product rev-

enue parameters. Moreover, we conduct numerical experiments (see Section 4.2) that

demonstrate that our policy has a robust performance in different instances, and can

outperform alternative algorithms by a significant margin when T and the number

of N are not too small. We emphasize that our policy is not the first to have been

shown to be asymptotically optimal (that is achieved by Chen et al., 2021); the value

of our policy lies in the fact that it is easy to understand and implement, and has

superior numerical performance when N and T are not too small.

For dynamic assortment optimization with capacity constraintK, we prove a
√
NT

regret lower bound for any given vector of product revenues. This implies that policies

with O(
√
NT ) regret are asymptotically optimal regardless of the product revenue

parameters. Furthermore, our result is valid for all K < 1
2N , thereby confirming the

intuition of Chen & Wang (2018) that the constraint K ⩽ 1
4N is not tight.

This chapter is organized as follows. We introduce the model in Section 3.2.

Section 3.3 regards uncapacitated assortment optimization. Here, we present our

policy and the upper bound on its regret, as well as the lower bound result of the regret

of any policy. In Section 3.4, we provide the regret lower bound and its mathematical
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proof for capacitated assortment optimization. For our numerical study we refer to

Section 4.2. Mathematical proofs from Section 3.3 are collected in the Appendix B.

3.2 Model

We consider a seller who has N ∈ N different products for sale during T ∈ N time

periods, and who has to determine at the beginning of each time period which subset

of products is available for purchase. We abbreviate the set of products {1 . . . , N}

as [N ] and the set of time instances {1, . . . , T} as [T ]. Each product i ∈ [N ] yields

a known marginal revenue of wi > 0. Without loss of generality due to scaling, we

can assume that wi ⩽ 1 for all i ∈ [N ]. Each product i ∈ [N ] is associated with a

preference parameter vi ⩾ 0, unknown to the seller. Each offered assortment S ⊆ [N ]

must satisfy a potential capacity constraint, i.e., |S| ⩽ K for capacity constraint

K ∈ N, K ⩽ N . Note that, for uncapacitated assortment optimization; K = N . For

notational convenience, we write

AK := {S ⊆ [N ] : |S| ⩽ K}

for the collection of all feasible assortments of size at most K.

At the beginning of each time period t ∈ [T ] the seller selects an assortment

St ∈ AK based on the purchase information available up to and including time t− 1.

Thereafter, the seller observes a purchase Yt ∈ St ∪{0}, where product 0 corresponds

to a no-purchase. Clearly, w0 = 0 and we set v0 – the preference parameter for

product 0 – equal to 1. The purchase probabilities under the MNL model are given

by

P(Yt = i |St = S) =
vi

1 +
∑

j∈S vj
, for all i ∈ S ∪ {0}.

The expected revenue earned by the seller from an assortment S ∈ AK is denoted by

r(S, v) :=

∑
i∈S viwi

1 +
∑

i∈S vi
.

The assortment decisions of the seller are described by his/her policy: a collection of

55



Yannik Peeters

probability distributions π = (π( · |h) : h ∈ H) on AK , where

H :=
⋃

t∈[T ]

{(S, Y ) : Y ∈ S ∪ {0}, S ∈ AK}t−1

is the set of possible histories, and where, conditionally on h = (S1, Y1, . . . , St−1, Yt−1),

assortment St has distribution π( · |h), for all h ∈ H and all t ∈ [T ]. Let Pπ
vj denote

the probability measure of {St, Yt : t ∈ N} under policy π and preference vector v,

and let Eπ
v be the corresponding expectation operator. The objective for the seller

is to find a policy π that maximizes the total accumulated revenue or, equivalently,

minimizes the accumulated regret:

∆π(T, v) :=

T∑
t=1

Eπ
v

[
max
S∈AK

r(S, v)− r(St, v)

]
.

In addition, we consider the worst-case regret over a class V of preference vectors:

∆π(T ) := sup
v∈V

∆π(T, v).

The class of preference vectors V under consideration consists of all vectors v that

either satisfy Assumption 3.1 for Section 3.3 or Assumption 3.2 for Section 3.4.

3.3 Uncapacitated Assortment Optimization

In this section, we consider dynamic assortment optimization under the MNL model

without capacity constraint. Here, we discuss the structure of the optimal assortment,

propose a policy for incomplete information and show that its regret is bounded by
√
T times a constant independent of N . Then, we show that, for arbitrary revenue

parameters, the regret of any policy is bounded from below by a constant times
√
T , implying that our policy is asymptotically optimal in a general setting. The

mathematical proofs of the results stated in this section are collected in the Appendix

B.

Within this section, we consider the class of preference vectors V that satisfy the

following assumption.

Assumption 3.1. The V is the set of all components-wise non-negative vectors
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(v1, . . . , vN ) such that
1

1 +
∑N

i=1 vi
⩾ p0,

for some p0 ∈ (0, 1) known to the seller.

This assumption is arguably mild as it simply puts a lower bound p0 on the no-

purchase probability that should be strictly positive but can otherwise be arbitrarily

small. In addition, we assume that the products are ordered in strictly increasing

order with respect to their marginal revenue: 0 < w1 < . . . < wN ⩽ 1. (Note that, in

the uncapacitated MNL model, products that yield the same marginal profit to the

seller can be considered as the same product.)

For uncapacitated assortment optimization under the MNL model, it is known

that the optimal assortment is of the form ‘offer the k most profitable products’ for

some integer k ∈ [N ], see, e.g., Talluri & van Ryzin (2004, Proposition 6).To facilitate

our analysis, we define

Sϱ := {i ∈ [N ] : wi ⩾ ϱ}, ϱ ∈ [0, 1].

Then, it is also known that the sequence P :=
(
r(Sw1

, v), . . . , r(SwN
, v)
)

is unimodal.

Consider the function ϱ 7→ r(Sϱ, v). This function is piecewise constant and attains

every value in P. Moreover, the assortment S∗ = Sϱ∗ with

ϱ∗ := max
S⊆[N ]

r(S, v)

is optimal under preference vector v, see, e.g., Chen et al. (2021, Section 4). This

structure has compelling computational implications, as we only need to approximate

ϱ∗ instead of the more straightforward approach of establishing estimates of r(Swi
, v)

for all i ∈ [N ].

3.3.1 A Policy for Incomplete Information

In this section, we propose a policy to iteratively establish a sequence of assortments

that converges to the optimal assortment. The policy follows the intuitive approach

of offering products with marginal revenue above a threshold value ϱt ∈ [0, 1] at each

time t ∈ [T ]. Based on the observed (no-)purchases, each next threshold value ϱt+1

is selected. The policy is parameterized by α ⩾ 1 and β ⩾ α− 1.
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Stochastic Approximation Policy SAP(α, β)

1. Initialization. Let ϱ1 ∈ [0, 1]. For all t ∈ N let at := α/(t+ β), for

some α ⩾ 1 and β ⩾ α− 1. Put t := 1. Go to 2.

2. Assortment selection. Let St := Sϱt and

ϱt+1 := ϱt + at(wYt
− ϱt)

Put t := t+ 1. If t ⩽ T, then go to 2, else to 3.

3. Terminate.

The policy SAP(α, β) is a classical stochastic approximation algorithm (Robbins

& Monro (1951); Kushner & Yin (1997)) that relies on the observation that ϱ∗ is the

unique solution to the fixed point equation

ϱ = r(Sϱ, v).

This is easily verified (see, e.g., Lemma 2 from Chen et al. (2021)). Note that we do

not directly observe the value of r(Sϱ, v). However, we do have the unbiased, noisy

observation wY given offered assortment Sϱ at our disposal. As a result, the sign of

wY − ϱ approximately indicates the direction in which ϱ∗ is situated in relation to ϱ.

The step sizes at decays approximately as 1/t, ensuring the correct convergence rate

of ϱt to ϱ∗, as ϱt does not ‘keep jumping over’ ϱ∗, and ϱt does not converge ‘too slow’.

3.3.2 Regret Upper Bound

We proceed by showing that the worst-case regret of SAP(α, β) is bounded from above

by
√
T times a constant independent of N .

Theorem 3.1. Let π correspond to SAP(α, β) with α ⩾ 1/p0 and β ⩾ α−1. Then,

there exists a C > 0 such that, for all T ⩾ 1,

∆π(T ) ⩽ C
√
T .
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The proof relies on two main steps. First, we show that the regret is bounded

from above by the following expression:

∆π(T ) ⩽ c1

(
T Eπ

v

[
|ϱ∗ − ϱT+1|

]
+

T∑
t=1

Eπ
v

[
|ϱ∗ − ϱt|

])
, (3.1)

for all v ∈ V and some instance-independent constant c1. Second, we show a recursive

relationship regarding the mean squared error of ϱt with respect to ϱ∗. Then, the

convergence rate of ϱt to ϱ∗ is a consequence of the recursive relation. This second

step is summarized in the following lemma.

Lemma 3.1. Let v ∈ V and let π correspond to SAP(α, β) with α ⩾ 1/p0 and

β ⩾ α− 1. For all t ∈ [T ] it holds that

Eπ
v

[
(ϱ∗ − ϱt+1)

2
]
⩽ Eπ

v

[
(ϱ∗ − ϱt)

2
]
(1− 2p0at) + a2t . (3.2)

As a result, there exists an instance-independent constant c2 such that, for all t =

1, . . . , T + 1,

Eπ
v

[
(ϱ∗ − ϱt)

2
]
⩽

c2
t+ β

. (3.3)

We then apply Jensen’s inequality to the concave function x 7→
√
x to conclude

that the mean absolute error of ϱt with respect to ϱ∗ converges as 1/
√
t, that is,

Eπ
v

[
|ϱ∗ − ϱt|

]
⩽

√
c2√

t+ β
,

for all t = 1, . . . , T + 1. With the convergence rate of the mean absolute error in

combination with (3.1), the proof of Theorem 3.1 follows.

Remark 3.1. The requirement of α ⩾ 1/p0 in Theorem 3.1 is caused by the constant

p0 in (3.2), and ensures an O(
√
T ) regret for all preference vectors v ∈ V, even with

small corresponding no-purchase probability. However, as the performance of SAP

depends on its parameters, a large value of α and β when p0 is small might not be

necessary in practice. The inequality (3.2) is also valid when p0 is replaced by the

instance-dependent constant γv ∈ (p0, 1], where

γv := inf
ϱ<ϱ∗

v

r(Sϱ, v)− ϱ

ϱ∗v − ϱ
, (3.4)
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and where ϱ∗v denotes the optimal revenue as function of the preference vector v. We

still obtain an O(
√
T ) regret bound as long as α ⩾ 1/γv, which is a weaker requirement

on α since γv might be substantially larger than p0.

To illustrate this possibility, consider the case where N = 2, r1 = 0.4, and r2 = 1.

In addition, fix p0 ∈ (0, 1/2) and let V be as in Assumption 3.1. For all v = (v1, 1)

such that 1/(1 + v1 + 1) ⩾ p0 the optimal assortment is {2} with ϱ∗v = 0.5. In this

example, it holds that the infimum in (3.4) is attained at ϱ = r1 = 0.4 and as a result

γv =
r
(
{1, 2}, v

)
− 0.4

0.1
=

2

2 + v1
.

If v1 = 0, then γv = 1 > p0, and if v1 = 2/p0 − 2, then γv = 2p0. This example shows

that there exists instances within V where γv is of the order p0 as well as instances

where γv ≫ p0. Hence, the requirement that α is of the order 1/p0, although necessary

for bounding the worst-case regret as done by Theorem 3.1, can for some preference

vectors be mitigated while maintaining good case-specific performance in practice.

For a numerical illustration we refer to Section 4.2.

3.3.3 Regret Lower Bound

Now that we have provided an upper bound on the regret of our SAP policy, we

proceed by showing that this bound is asymptotically tight – up to a multiplicative

constant – as T grows large. This implies that our policy performs asymptotically

optimal. We prove our regret lower bound for values p0 in Assumption 3.1 such that

p0 ⩽ max
1⩽k<ℓ⩽N

2wℓ − 2wk

5wℓ + wk
. (3.5)

Observe that this condition can always be ensured to hold by choosing p0 sufficiently

small.

The regret lower bound is presented below.

Theorem 3.2. There exists a C > 0 such that, for all policies π and all T ⩾ 1,

∆π(T ) ⩾ C
√
T .

The proof of Theorem 3.2 is established in three steps. First, we construct two
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preference vectors v0 and v1 which are statistically ‘difficult to distinguish’. Second,

we show that any estimator ψ that has the observed purchases Y1, . . . , YT as inputs

and outputs either 0 or 1 must satisfy

max
j=0,1

Pπ
vj (ψ ̸= j) ⩾

1

4
. (3.6)

Third, we define a specific estimator ψ and show that under the assumption that

∆π(T ) < C
√
T it follows that

Pπ
vj (ψ ̸= j) <

1

4
,

for both j = 0, 1. Having found a contradiction with (3.6), we thus conclude that the

statement in Theorem 3.2 must hold.

The novelty of this proof is concentrated in the first step, which allows us to prove

Theorem 3.2 for arbitrary revenue parameters. The second step and third step are

conceptually the same as in Chen et al. (2021). We include the last two steps because

of the slight deviation in our set-up as well as for the sake of completeness.

Starting with the first step, we define two quantities. Let k, ℓ ∈ [N ] such that

k < ℓ and

p0 ⩽
2wℓ − 2wk

5wℓ + wk
.

Note that such k, ℓ exist by equation (3.5). Furthermore, define

uk :=
wℓ

wℓ − wk
and uℓ :=

wk

wℓ − wk
.

The idea underlying this set-up is as follows. Let u denote the preference vector that

has uk as its k-th component, uℓ as its ℓ-th component and is zero everywhere else.

Then, it holds that

r
(
{k, ℓ}, u

)
= r
(
{ℓ}, u

)
= max

S⊆[N ]
r(S, u).

Then, by perturbing u in two ways we can construct two preference vectors v0 and

v1 which are very close to u, but result in different solutions to the assortment opti-

mization problem. Specifically, we define v0 and v1 as follows. Let ε ∈ (0, 1/2] denote

a small constant and let v0 = (v01 , . . . , v
0
N ) and v1 = (v11 , . . . , v

1
N ) denote the vectors
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of preference parameters such that, for i ∈ [N ],

v0i =


uk, if i = k,

(1− ε)uℓ, if i = ℓ,

0, otherwise,

and v1i =


uk, if i = k,

(1 + ε)uℓ, if i = ℓ,

0, otherwise.

(3.7)

From this set-up it follows that {k, ℓ} is the optimal assortment under v0 and {ℓ} is

the optimal assortment under v1 (up to inclusion of products with zero preference).

That is,

max
S⊆[N ]

r(S, v0) < wk and {k, ℓ} ∈ argmax
S⊆[N ]

r(S, v0),

and

max
S⊆[N ]

r(S, v1) > wk and {ℓ} ∈ argmax
S⊆[N ]

r(S, v1).

In what follows we abbreviate the expectation value and probability Eπ
vj [ · ] and

Pπ
vj ( · ) as Ej [ · ] and Pj( · ) for j = 0, 1. We suppress the notation that these two

notions depend on policy π, as Theorem 3.2 holds for any policy. Now, for the second

step we use the following lemma, where we first bound the Kullback-Leibler (KL)

divergence.

Lemma 3.2. Let S ⊆ [N ]. Then, there is constant c3 > 0 such that

KL
(
P0( · |S)

∣∣∣∣∣∣P1( · |S)
)
⩽ c3 ε

2.

In addition, let ψ ∈ {0, 1} denote an arbitrary estimator which has random purchases

Y1, . . . , YT as inputs. Then

max
j=0,1

Pj(ψ ̸= j) ⩾
1

2

(
1−

√
2c3 ε

√
T
)
.

The lemma above contains a similar statement as Lemma EC.1 and Lemma 12

from Chen et al. (2021). However, we look at different preference vectors than consid-

ered by Chen et al. (2021) because we allow arbitrary revenue parameters. The proof

of the lemma above makes use of Pinsker’s inequality as well as Le Cam’s method.
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From Lemma 3.2 and by setting ε equal to

ε := min

{
1

2
,
(
2
√
2c3T

)−1
}
,

it follows that (3.6) holds.

As first part of the third step, we provide a lower bound of the regret under v0

and v1 in terms of T , ε, ℘0 and ℘1, where ℘0 denotes how often k and ℓ are both

contained in St for t ∈ [T ] and ℘1 denotes how often k is excluded while ℓ is contained

in St for t ∈ [T ]. That is,

℘0 :=

T∑
t=1

1{k, ℓ ∈ St} and ℘1 :=

T∑
t=1

1{k /∈ St, ℓ ∈ St}.

This lower bound is stated in the lemma below.

Lemma 3.3. There is a constant c4 > 0 such that, for any policy π,

∆π(T, v
0) ⩾ c4 E0

[
ε℘1 + T − ℘0 − ℘1

]
, (3.8)

and

∆π(T, v
1) ⩾ c4 E1

[
ε℘0 + T − ℘0 − ℘1

]
. (3.9)

The lemma above covers similar statements shown by Chen et al. (2021) in the

proof of Lemma 13. Here as well, however, we look at different preference vectors than

considered by Chen et al. (2021), because we allow arbitrary revenue parameters.

The remainder of the third step is established by a contradiction. To this end,

assume that

∆π(T ) < C
√
T , (3.10)

where

C :=
c4

16
√
2c3

.

In addition, in view of (3.8) and (3.9) we define L0 and L1 as

L0 := c4

(
ε℘1 + T − ℘0 − ℘1

)
and L1 := c4

(
ε℘0 + T − ℘0 − ℘1

)
.

As a consequence of the assumption in (3.10), we conclude by Markov’s inequality
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and Lemma 3.3 that

P0

(
L0 > 4C

√
T
)
⩽

E0L0

4C
√
T

⩽
∆π(T, v

0)

4C
√
T

<
1

4
,

and likewise

P1

(
L1 > 4C

√
T
)
⩽

E1L1

4C
√
T

⩽
∆π(T, v

1)

4C
√
T

<
1

4
.

Next, we define the estimator ψ as

ψ :=

 0, if ℘0 > T/2,

1, if ℘0 ⩽ T/2.

The remainder of the proof is to show that ψ = 1 implies L0 > 4C
√
T and that ψ = 0

implies L1 > 4C
√
T . From this we conclude that

P0(ψ = 1) <
1

4
as well as P1(ψ = 0) <

1

4
.

This is a contradiction with the statement in (3.6), which holds by Lemma 3.2. There-

fore, statement (3.10) cannot be true and we have thus proven Theorem 3.2.

3.4 Capacitated Assortment Optimization

Here, we consider dynamic assortment optimization under the MNL model with ca-

pacity constraint. Within this section, we consider the class of preference vectors V

and capacity constraint K that satisfy the following assumption.

Assumption 3.2. The V is the set of all components-wise non-negative vectors. In

addition, the capacity constraint K is strictly less than N/2.

For notational convenience we write

SK := {S ⊆ [N ] : |S| = K}

for the collection of all assortments of exactly size K.

3.4.1 Regret Lower Bound and Mathematical Proof

The main result of this section – presented below – states that the regret of any policy

can uniformly be bounded from below by a constant times
√
NT .
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Theorem 3.3. There exists a constant C > 0 such that, for all T ⩾ N and for all

policies π,

∆π(T ) ⩾ C
√
NT.

The proof of Theorem 3.3 can be broken up into four steps. First, we define a

baseline preference vector v0 ∈ V and we show that under v0 any assortment S ∈ SK

is optimal. Second, for each S ∈ AK we define a preference vector vS ∈ V by

vSi :=

 v0i (1 + ε), if i ∈ S,

v0i , otherwise,

for some ε ∈ (0, 1]. For each such vS , we show that the instantaneous regret from

offering a sub-optimal assortment St is bounded from below by a constant times the

number of products |S \ St| not in S; cf. Lemma 3.4 below. This lower bound takes

into account how much the assortments S1, . . . , ST overlap with S when the preference

vector is vS . Third, let Ni denote the number of times product i ∈ [N ] is contained

S1, . . . , ST , i.e.,

Ni :=

T∑
t=1

1{i ∈ St}.

Then, we use the KL divergence and Pinsker’s inequality to upper bound the difference

between the expected value of Ni under vS and vS\{i}, see Lemma 3.5. Fourth, we

apply a randomization argument over {vS : S ∈ SK}, combine the previous steps,

and set ε accordingly to conclude the proof.

The novelty of this section is concentrated in the first two steps. The third and

fourth step closely follow the work of Chen & Wang (2018). These last steps are

included (1) because of slight deviations in our set-up, (2) for the sake of completeness,

and (3) since the proof techniques are extended to the case where K/N < 1/2. In

the work of Chen & Wang (2018), the lower bound is shown for K/N ⩽ 1/4, but

the authors already mention that this constraint can probably be relaxed. Our proof

confirms that this is indeed the case.
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Step 1: Construction of baseline preference vector

Let w := mini∈[N ] wi > 0 and define the constant

s :=
w2

3 + 2w
.

Note that s < w. The baseline preference vector is formally defined as

v0i :=
s

K(wi − s)
, for all i ∈ [N ].

Now, the expected revenue for any S ∈ AK under v0 can be rewritten as

r(S, v0) =

∑
i∈S v

0
iwi

1 +
∑

i∈S v
0
i

=
s
∑

i∈S
wi

wi−s

K +
∑

i∈S
s

wi−s

=
s
∑

i∈S
wi

wi−s

K − |S|+
∑

i∈S
wi

wi−s

.

The expression on the right-hand side is only maximized by assortments S with max-

imal size |S| = K, in which case

r(S, v0) = max
S′∈AK

r(S′, v0) = s.

It follows that all assortments S with size K are optimal.

Step 2: Lower bound on instantaneous regret of vS

For the second step, we bound the instantaneous regret under vS .

Lemma 3.4. Let S ∈ SK . Then, there exists a constant c1 > 0, only depending on

w and s, such that, for all t ∈ [T ] and St ∈ AK ,

max
S′∈AK

r(S′, vS)− r(St, v
S) ⩾ c1

ε
∣∣S\St

∣∣
K

.

As a consequence,

T∑
t=1

(
max

S′∈AK

r(S′, vS)− r(St, v
S)

)
⩾ c1 ε

(
T − 1

K

∑
i∈S

Ni

)
. (3.11)

Proof. Fix S ∈ SK . First, note that since ε ⩽ 1, for any S′ ∈ AK , it holds that∑
i∈S′

vSi ⩽
2s

w − s
. (3.12)
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Second, let S∗ ∈ argmaxS′∈AK
r(S′, vS) and ϱ∗ = r(S∗, vS). By rewriting the in-

equality ϱ∗ ⩾ r(S′, vS) for all S′ ∈ AK , we find that for all S′ ∈ AK

ϱ∗ ⩾
∑
i∈S′

vSi
(
wi − ϱ∗

)
. (3.13)

Let t ∈ [T ] and St ∈ AK . Then, it holds that

r(S∗, vS)− r(St, v
S) = ϱ∗ −

∑
i∈St

vSi wi

1 +
∑

i∈St
vSi

=
1

1 +
∑

i∈St
vSi

(
ϱ∗ +

∑
i∈St

vSi ϱ
∗ −

∑
i∈St

vSi wi

)

⩾
w − s

w + s

(
ϱ∗ −

∑
i∈St

vSi
(
wi − ϱ∗

))

⩾
w − s

w + s

(∑
i∈S

vSi
(
wi − ϱ∗

)
−
∑
i∈St

vSi
(
wi − ϱ∗

))

=
w − s

w + s

(∑
i∈S

vSi
(
wi − s

)
−
∑
i∈St

vSi
(
wi − s

)
︸ ︷︷ ︸

(a)

− (ϱ∗ − s)

(∑
i∈S

vSi −
∑
i∈St

vSi

)
︸ ︷︷ ︸

(b)

)
.

Here, the first inequality is due to (3.12) and the second inequality follows from (3.13)

with S′ = S. Next, note that since |St| ⩽ K and |S| = K, we find that

∣∣St\S
∣∣ ⩽ ∣∣S\St

∣∣. (3.14)

Now, term (a) can be bounded from below as

(a) =
∑

i∈S\St

vSi
(
wi − s

)
−
∑

i∈St\S

vSi
(
wi − s

)
=

s

K

(
(1 + ε)

∣∣S\St

∣∣− ∣∣St\S
∣∣)

⩾ s
ε
∣∣S\St

∣∣
K

. (3.15)

Here, at the final inequality, we used (3.14). Next, term (b) can be bounded from
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above as

(b) ⩽ |ϱ∗ − s|︸ ︷︷ ︸
(c)

∣∣∣∣∣∑
i∈S

vSi −
∑
i∈St

vSi

∣∣∣∣∣︸ ︷︷ ︸
(d)

.

Now, for term (c), we note that vSi ⩾ v0i for all i ∈ [N ]. In addition, since r(S∗, v0) ⩽ s,

ϱ∗ − s ⩽

∑
i∈S∗ vSi wi

1 +
∑

i∈S∗ vSi
−
∑

i∈S∗ v0iwi

1 +
∑

i∈S∗ v0i

⩽
1

1 +
∑

i∈S∗ v0i

∑
i∈S∗

(vSi − v0i )wi

⩽
N∑
i=1

(vSi − v0i ) = ε
∑
i∈S

v0i ⩽
s

w − s
ε.

This entails an upper bound for (c). Term (d) is bounded from above as

(d) ⩽
∑

i∈S\St

vSi +
∑

i∈St\S

vSi

⩽ (1 + ε)
∑

i∈S\St

v0i +
∑

i∈St\S

v0i

⩽ (1 + ε)
s

K(w − s)

∣∣S\St

∣∣+ s

K(w − s)

∣∣St\S
∣∣

⩽
3s

w − s

∣∣S\St

∣∣
K

.

Here, at the final inequality, we used (3.14) and the fact that ε ⩽ 1. Now, we combine

the upper bounds of (c) and (d) to find that

(b) ⩽
3s2

(w − s)2
·
ε
∣∣S\St

∣∣
K

. (3.16)

It follows from (3.15) and (3.16) that

r(S∗, vS)− r(St, v
S) ⩾

w − s

w + s

(
s− 3s2

(w − s)2

)
ε
∣∣S\St

∣∣
K

⩾ c1
ε
∣∣S\St

∣∣
K

,

where

c1 :=
w − s

w + s

(
s− 3s2

(w − s)2

)
.

Note that the constant c1 is positive if (w−s)2 > 3s. This follows from s = w2/(3+2w)
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3.4 CAPACITATED ASSORTMENT OPTIMIZATION

since

(w − s)2 − 3s > w2 − s(3 + 2w).

Statement (3.11) follows from the additional observation

T∑
t=1

∣∣S\St

∣∣ = TK −
T∑

t=1

∣∣S ∩ St

∣∣ = TK −
∑
i∈S

Ni.

Step 3: KL divergence and Pinsker’s inequality

We denote the dependence of the expected value and the probability on the preference

vector vS as ES [ · ] and PS( · ) for S ∈ AK . In addition, we write S\i instead of S\{i}.

The lemma below states an upper bound on the KL divergence of PS and PS\i and

uses Pinsker’s inequality to derive an upper bound on the absolute difference between

the expected value of Ni under vS and vS\i.

Lemma 3.5. Let S ∈ SK , S′ ∈ AK and i ∈ S. Then, there exists a constant c2,

only depending on w and s, such that

KL
(
PS( · |S′)

∣∣∣∣∣∣PS\i( · |S′)
)
⩽ c2

ε2

K
.

As a consequence, ∣∣∣ES [Ni]− ES\i[Ni]
∣∣∣ ⩽ √

2c2
ε T 3/2

√
K

. (3.17)

Proof. Let P and Q be arbitrary probability measures on S′ ∪ {0}. It can be shown

(see, e.g., Lemma 3 from Chen & Wang (2018)) that

KL(P ||Q) ⩽
∑

j∈S′∪{0}

(pj − qj)
2

qj
,

where pj and qj are the probabilities of outcome j under P and Q, respectively. We

apply this result for pj and qj defined as

pj :=
vSj

1 +
∑

ℓ∈S′ vSℓ
and qj :=

v
S\i
j

1 +
∑

ℓ∈S′ v
S\i
ℓ

,
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for j ∈ S′ ∪ {0}. First, note that by (3.12), for all j ∈ S′ ∪ {0},

qj ⩾
v0j

1 + 2 s
w−s

=
w − s

w + s
v0j .

Now, we bound |pj − qj | from above for j ∈ S′∪{0}. Note that for j = 0 it holds that

|p0 − q0| =

∣∣∣∑ℓ∈S′ vSℓ −
∑

ℓ∈S′ v
S\i
ℓ

∣∣∣(
1 +

∑
ℓ∈S′ vSℓ

) (
1 +

∑
ℓ∈S′ v

S\i
ℓ

)
⩽
∣∣(1 + ε)v0i − v0i

∣∣ = v0i ε.

For j ̸= i, since ε ⩽ 1, we find that

|pj − qj | = vSj |p0 − q0| ⩽ 2v0j v
0
i ε.

For j = i, we find that

|pi − qi| = v0i |p0 − q0 + εp0|

⩽ v0i
(
|p0 − q0|+ εp0

)
⩽ v0i

(
v0i + 1

)
ε

Therefore, we conclude that

KL
(
PS( · |S′)

∣∣∣∣∣∣PS\i( · |S′)
)
⩽

∑
j∈S′∪{0}

(pj − qj)
2

qj

⩽
(p0 − q0)

2

q0
+

∑
j∈S′:j ̸=i

(pj − qj)
2

qj
+

(pi − qi)
2

qi

⩽
w + s

w − s

(v0i ε)
2 + 4(v0i ε)

2
∑

j∈S′:j ̸=i

v0j + v0i (v
0
i + 1)2ε2


⩽
s(w + s)

(w − s)2

(
s

w − s
+

4s2

(w − s)2
+

(
w

w − s

)2
)
ε2

K

= c2
ε2

K
,

where

c2 :=
s(w + s)

(w − s)2

(
s

w − s
+

4s2 + w2

(w − s)2

)
.

Next, note that the entire probability measures PS and PS\i depend on T . Then, as
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a consequence of the chain rule of the KL divergence, we find that

KL
(
PS

∣∣∣∣PS\i
)
⩽ c2

ε2 T

K
.

Now, statement (3.17) follows from

∣∣∣ES [Ni]− ES\i[Ni]
∣∣ ⩽ T∑

n=0

n
∣∣PS(Ni = n)− PS\i(Ni = n)

∣∣
⩽ T

T∑
n=0

∣∣PS(Ni = n)− PS\i(Ni = n)
∣∣

= 2T max
n=0,...,T

∣∣PS(Ni = n)− PS\i(Ni = n)
∣∣ (3.18)

⩽ 2T sup
A

∣∣PS(A)− PS\i(A)
∣∣

⩽ T
√
2KL

(
PS

∣∣∣∣PS\i
)
,

where the step in (3.18) follows from e.g. Proposition 4.2 from Levin et al. (2017)

and we used Pinsker’s inequality at the final inequality.

Step 4: Proving the main result

With all the established ingredients, we can finalize the proof of the lower bound on

the regret.

Proof of Theorem 3.3. Since vS ∈ V for all S ∈ SK and by Lemma 3.4, we know

that

∆π(T ) ⩾
1

|SK |
∑

S∈SK

∆π(T, v
S)

⩾ c1 ε

(
T − 1

|SK |
∑

S∈SK

1

K

∑
i∈S

ES [Ni]︸ ︷︷ ︸
(a)

)
. (3.19)

We decompose (a) into two terms:

(a) =
1

|SK |
∑

S∈SK

1

K

∑
i∈S

ES\i[Ni]︸ ︷︷ ︸
(b)

+
1

|SK |
∑

S∈SK

1

K

∑
i∈S

(
ES [Ni]− ES\i[Ni]

)
︸ ︷︷ ︸

(c)

.

Let c := K/N ∈ (0, 1/2). By summing over S′ = S\i instead of over S, we bound (b)
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from above by

(b) =
1

|SK |
∑

S′∈SK−1

1

K

∑
i/∈S′

ES′ [Ni] ⩽
|SK−1|
|SK |

T ⩽
c

1− c
T,

where the first inequality follows from
∑

i∈[N ] ES′ [Ni] ⩽ TK, and the second inequal-

ity from
|SK−1|
|SK |

=

(
N

K−1

)(
N
K

) =
K

N −K + 1
⩽

K/N

1−K/N
.

Now, (c) can be bounded by applying Lemma 3.5:

(c) ⩽
√
2c2

ε T 3/2

√
K

=

√
2c2√
c

ε T 3/2

√
N

.

By plugging the upper bounds on (b) and (c) in (3.19), we obtain

∆π(T ) ⩾ c1 ε

(
T − c

1− c
T −

√
2c2√
c

ε T 3/2

√
N

)
= c1 ε

(
1− 2c

1− c
T −

√
2c2√
c

ε T 3/2

√
N

)
.

Now, we set ε as

ε = min

{
1,

(1− 2c)
√
c

2(1− c)
√
2c2

√
N/T

}
.

This yields, for all T ⩾ N ,

∆π(T ) ⩾ min

{
c1
√
2c2√
c

T,
c1(1− 2c)2c

8(1− c)
√
2c2

√
NT

}
.

Finally, note that for T ⩾ N it follows that T ⩾
√
NT and therefore

∆π(T ) ⩾ C
√
NT,

where

C := min

{
c1
√
2c2√
c

,
c1(1− 2c)2c

8(1− c)
√
2c2

}
> 0.

3.5 Concluding Remarks

In this chapter, we consider discrete assortment optimization with demand learning.

We distinguish between the capacitated and uncapacitated cases, revealing intrinsi-

cally different regret behavior. We show that the asymptotically optimal regret rate
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in the absence of a capacity constraint grows independently of the number of products

N , as
√
T in the time horizon T , whereas imposing a capacity constraint K leads to

√
NT regret when K < N/2.

Regarding uncapacitated assortment optimization, we present a stochastic-approximation

type policy that is easy to implement, and show its asymptotic optimality by provid-

ing an upper bound on the regret of our policy, as well as a matching lower bound on

the regret that only policy – in the worst case – must endure. The resulting regret

rate is
√
T , which interestingly differs from the log T rate as discussed in Section 2.4

due to structural differences in the continuous logit and the discrete MNL model.

Moreover, we prove an Ω(
√
NT ) regret lower bound for capacitated assortment

optimization, where we notice the phase transition in regret rates for capacity con-

straint K from K < N/2 to K = N . As of now, the question remains open on how

the regret behaves for capacity constraint K between N/2 and N .
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Chapter 4

Numerical Experiments

In this chapter we present all numerical experiments. In Section 4.1, we compare the

performance of the proposed policies for the continuous model from Chapter 2 – the

stochastic approximation policy, the discretization policy and the density estimation

policy – to alternative policies that are specifically designed for the discrete assortment

problem. We find that our algorithms outperform or are on par with these alternatives

In Section 4.2, we compare the stochastic approximation policy for the discrete

multinomial (MNL) model without capacity constraint – as presented in Chapter 3

– with established, alternative policies. We demonstrate that our policy has a robust

performance in different instances, and outperforms alternative algorithms when the

number of N is moderately large – sometimes by a substantial margin.

In Section 4.3, we compare the predictive performance of the continuous model

with that of the discrete MNL model and we show that our continuous assortment

model has good predictive properties compared to its discrete counterpart, even if the

true data-generating model is discrete.

4.1 Continuous Model

Under the continuous model, we consider both the uncapacitated and the capacitated

setting. In the uncapacitated case, we compare our algorithm SAP to (i) the Thomp-

son Sampling-based algorithm by Agrawal et al. (2017), and (ii) the Trisection-based

algorithm by Chen et al. (2021), both applied to discretized versions of the continuous

problem. To have a fair comparison, we use in all our numerical experiments the same
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discretization of the product space as in our DUCB algorithm. We refer to these two

policies from the literature, applied to discretized versions of the continuous assort-

ment problem, as Discretized Thompson Sampling (DTS) and Discretized Trisection

(DTR).

In the capacitated case, we compare our algorithms DUCB and KDEP to DTS

but not to DTR, since the Trisection-based algorithm of Chen et al. (2021) is not

designed to handle capacity constraints. In addition, in the capacitated case we also

evaluate the performance of an adjusted version of DUCB (called ADUCB) in which

we replace the constant 48 in (2.10) by 1; our numerical results indicate that changing

this constant significantly improves performance. Optimally tuning this constant is

an interesting direction for future research but is outside the scope of this thesis. In

this section, we report numerical results on the regret behavior for these different

algorithms; Section 4.3 contains additional numerical experiments on the predictive

performance of the continuous model.

We set the preference function v as the bi-modal function that is plotted in Fig-

ure 2.1. This function is defined as

v(x) =
1

10
+

1

5
(2 + x)(1− x) +

2

7
φ(x; 0.33, 0.1) +

1

5
φ(x; 0.8, 0.1), x ∈ [0, 1],

where φ( · ;µ, σ) denotes the normal probability density function with mean µ and

standard deviation σ. In addition, we set w(x) = x, x ∈ [0, 1], as the marginal

revenue function. We test our algorithms with c = 1 and c = 0.5, corresponding

to capacity constraints K = N and K = ⌊N/2⌋ in the discretized versions. In

line with Theorem 2.3, we set the discretization parameter N as
⌊
γT 1/3

⌋
with γ =

max{v, 1/c + 1} and v = 2. The parameters for KDEP are precisely in line with

Theorem 2.5 and Proposition 2.6 (these parameters do not depend on v or v). The

parameters of SAP are set to α = 3, β = 2, ϱ1 = 0. The algorithms’ average

regrets over 100 simulations after T time periods, for T ∈ {1 000, 2 000, . . . , 10 000},

are recorded in Table 4.1 and 4.2.

4.1.1 Results

Table 4.1 shows that our algorithm SAP outperforms the alternatives DTR and DTS

by a significant margin. The top row of Figure 4.1 plots the regret of SAP as function
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of T , both on a linear (left-hand panel) and a logarithmic scale (right-hand panel).

The linear growth rate of regret as function of log T in Figure 4.1 confirms our theo-

retical result on the regret behavior of SAP. Fitting the curve R(T ) = γ1 + γ2 log T

using linear regression, we find that γ1 = 0.00171 and γ2 = 0.0545.

Table 4.2 records the regret of DTS, DUCB, ADUCB and KDEP; the results are

visualized in the second, third and bottom row of Figure 4.1. The figure illustrates

that the regrets of both DUCB, ADUCB and KDEP grow sublinearly. The adjusted

policy ADUCB and KDEP perform comparably and on par with DTS, while ADUCB,

KDEP and DTS outperform DUCB. This suggests that fine-tuning the constants in

the updating formula for the upper confidence bounds can lead to less regret. Fitting

the curve logR(T ) = γ1 + γ2 log T using linear regression, we find that γ2 = 0.70 for

DUCB, γ2 = 0.67 for ADUCB and γ2 = 0.72 for KDEP. This confirms, particularly

for ADUCB, our theoretical regret bounds of T 2/3 (up to a logarithmic term). It is

worth observing and illustrated by Figure 4.1 that the regret for our policies is not

necessarily monotone in T ; this is a result of the discretization to an integer number

of products.

Time horizon T

Policy 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000
DTR 8.67 18.2 25.5 32.1 35.9 40.9 48.3 55.8 63.7 70.0
DTS 1.46 1.94 2.10 2.25 2.56 2.45 2.87 3.06 2.85 3.34
SAP 0.380 0.417 0.439 0.452 0.463 0.474 0.483 0.492 0.500 0.507
N 19 25 28 31 34 36 38 39 41 43

Table 4.1: Simulated average regret of the policies with c = 1 based on 100 simulations.

Time horizon T

Policy 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000
DTS 12.8 19.8 26.8 32.0 38.8 33.2 46.8 52.6 43.8 48.0
DUCB 89.6 153 206 252 295 334 371 403 440 470
ADUCB 9.81 16.9 23.6 29.8 35.3 32.6 46.7 52.1 45.8 50.1
KDEP 9.00 15.6 19.6 25.0 29.8 33.4 35.7 41.6 43.6 48.9
N 29 37 43 47 51 54 57 59 62 64

Table 4.2: Simulated average regret of the policies with c = 0.5 based on 100 simulations.
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Figure 4.1: The whiskers show the 99% confidence interval of the mean cumulative regret
for SAP (top row), DUCB (second row), ADUCB (third row) and KDEP (bottom row)
with regular axes (left panels) and a logarithmic axis for T (right panels), based on 100
simulations. The dashed line shows the fitted curves γ1 + γ2 log T with γ1 = 0.00171 and
γ2 = 0.0545 (top row), γ1T

γ2 with γ1 = 0.783 and γ2 = 0.700 (second row), γ1T
γ2 with

γ1 = 0.115 and γ2 = 0.666 (third row) and γ1T
γ2 with γ1 = 0.0628 and γ2 = 0.721 (bottom

row).
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4.2 Discrete Model

In this section, we compare the performance of our proposed policy from Chapter 3

with alternatives for dynamic assortment optimization under the discrete MNL model.

In particular, we compare our policy SAP with the Thompson sampling (TS) based

policy from Agrawal et al. (2017) and the Trisection (TR) policy from Chen et al.

(2021) using simulated data. It is worth observing that only for SAP and TR an

O(
√
T ) regret bound has been proven. We simulate purchase data in two scenarios.

Scenario 1: For different values of N and T we draw N values uniformly at

random from [0.4, 0.5], order the randomly drawn values in increasing order, and set

the ordered values as the revenue parameters w1, . . . , wN . We draw the preference

parameters v1, . . . , vN uniformly at random from [10/N, 20/N ].

Scenario 2: As in scenario 1, but now we draw the unsorted revenue parameters

uniformly at random from [0, 1], order the randomly drawn values in increasing order,

and set the ordered values as the revenue parameters w1, . . . , wN ; in addition, we

draw the preference parameters v1, . . . , vN uniformly at random from [1/N, 100/N ].

The experimental setup described by scenario 1 follows the set-up from Chen

et al. (2021). This setup ensures that finding the optimal solution is non-trivial as the

optimal assortment is equal to {i : wi ⩾ x} for some x that lies approximately within

[0.4, 0.5]. We include the simulated results from scenario 2 to investigate how the

policies perform for a broader range of parameters: the range of possible no-purchase

probabilities when offering the entire set of products is [1/101, 1/2] for scenario 2,

whereas for scenario 1 the range is [1/21, 1/11].

In both simulation scenarios we set N to values ranging from 25 to 5000, roughly

doubling each step, and we simulate the regret of the policies a total of 1000 times.

For each N , we draw the preference and revenue parameters and, for the Trisection

policy, let the policy run for T = 500, 1000, 2500, 5000. We let our policy SAP and

the Thompson Sampling policy run for T = 5000 and record the intermediate regret

at t = 500, 1000, 2500.

For the Trisection policy, we use the version with adaptive confidence levels, see,

e.g., Chen et al. (2021, Section 6). In addition, in line with the simulations of Chen

et al. (2021), we replace their
√

2 log(8/(δℓ))
ℓ confidence interval configuration with
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√
0.1 log(8/(δℓ))

ℓ . For our policy SAP, we notice that the preference parameters satisfy

Assumption 3.1 for p0 = 1/21 and p0 = 1/101 for scenario 1 and 2, respectively.

Theorem 3.1 indicates that we should set the parameter of SAP as α = 21 and

β = 20, and α = 101 and β = 100. Following Remark 3.1, we can obtain a better

performance with smaller parameters. Hence, we include the performance of SAP

with α = 1 and β = 0. This policy is referred to as Adjusted SAP (ASAP). In

addition, in all instances we start SAP with ϱ1 = w1.

4.2.1 Results

Table 4.3 reports the average regret of the policies in scenario 1 and 2 over 1000

simulation runs. All the standard errors are within 3%. From Table 4.3 we see that

in both scenarios, the regret of SAP and ASAP does not appear to grow in N , as

we would expect. In addition, we find that, in scenario 1, SAP performs on par with

TR for T = 500, 1000, and substantially outperforms TR for larger values of T . In

scenario 2, SAP outperforms TR significantly for all values of N and T . We also

find that the adjusted policy ASAP performs improves performance even further by

several magnitudes. When we compare SAP to TS, we see that TS performs well for

small values of N whereas SAP is better for large values of N . The fact that the

regret of TS appears to be growing in N suggests that TS is not an asymptotically

optimal policy (i.e. with regret bounded by a factor that is independent of N).

Overall, we find that SAP and ASAP perform well and robustly for increasing

values for N . In addition, we see that adequate parameter adjustment for SAP can

yield a significant benefit over established alternatives, especially for large values of

N . This suggests that designing an algorithm where α, β are adaptively tuned may

be an interesting direction for future research.

For illustrative purposes we include visual graphs in Figure 4.2 for the average

regret of the policies for N fixed at 5000.
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Scenario 1 Scenario 2
N T TS TR SAP ASAP TS TR SAP ASAP
25 500 0.447 3.10 3.09 0.457 0.683 101 22.0 1.14
50 500 0.660 2.82 3.22 0.407 1.15 95.0 20.6 2.07
100 500 1.43 2.52 2.99 0.426 0.758 122 25.6 1.50
250 500 2.72 3.18 3.13 0.492 1.64 134 25.1 1.76
500 500 4.74 3.22 3.11 0.493 3.27 121 24.6 1.88
1000 500 8.40 3.05 3.15 0.485 5.69 122 25.8 1.91
2500 500 15.2 3.13 3.16 0.495 13.0 123 26.1 1.76
5000 500 22.6 3.14 3.15 0.481 20.0 126 25.7 1.84
25 1000 0.496 3.78 3.77 0.499 0.758 175 27.5 1.12
50 1000 0.700 3.48 3.71 0.442 1.43 109 27.0 2.33
100 1000 1.56 4.83 3.58 0.499 0.867 157 31.6 1.58
250 1000 2.91 4.52 3.80 0.568 1.79 177 31.2 1.89
500 1000 5.20 4.66 3.78 0.573 3.61 145 30.8 2.05
1000 1000 9.80 4.81 3.83 0.554 6.05 157 32.5 2.05
2500 1000 19.0 4.68 3.84 0.569 14.4 153 32.8 1.88
5000 1000 29.9 4.64 3.82 0.554 23.5 161 32.3 1.96
25 2500 0.556 9.71 4.70 0.567 0.802 316 36.0 1.22
50 2500 0.756 8.87 4.29 0.495 1.90 161 37.2 2.79
100 2500 1.71 10.2 4.45 0.609 1.07 263 38.9 1.74
250 2500 3.11 11.2 4.77 0.666 1.97 288 38.6 2.07
500 2500 5.58 11.6 4.73 0.684 4.01 230 39.6 2.28
1000 2500 11.2 11.6 4.79 0.646 6.40 265 41.3 2.22
2500 2500 23.7 11.6 4.83 0.666 15.7 252 41.5 2.04
5000 2500 39.6 11.5 4.78 0.647 27.1 267 41.1 2.14
25 5000 0.618 15.8 5.31 0.634 0.807 354 42.8 1.22
50 5000 0.808 13.6 4.69 0.547 2.43 288 46.3 3.23
100 5000 1.81 13.5 5.23 0.689 1.27 386 44.0 1.91
250 5000 3.23 17.3 5.52 0.730 2.10 378 44.0 2.21
500 5000 5.80 17.8 5.48 0.768 4.29 369 46.7 2.46
1000 5000 11.8 17.1 5.54 0.717 6.64 399 47.8 2.32
2500 5000 26.1 17.3 5.58 0.742 16.3 398 47.8 2.16
5000 5000 46.1 17.3 5.52 0.713 28.8 395 47.5 2.28

Table 4.3: Average (mean) of the simulated regret in scenario 1 and 2 for the policies TS,
TR, SAP (with α = 1/p0 and β = α− 1) and ASAP (with α = 1 and β = 0) based on 1000
runs.
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Figure 4.2: The average (mean) of the simulated regret in scenario 1 and 2 with N = 5000
for the policies TS, TR, SAP (with α = 1/p0 and β = α − 1) and ASAP (with α = 1 and
β = 0) based on 1000 runs.

4.3 Continuous versus Discrete

In this section, we report the results of additional numerical experiments in which we

compare the predictive performance of the continuous logit model with that of the

discrete MNL model.

4.3.1 Experimental Set-up

The goal of these additional numerical experiments is to compare the predictive per-

formance of the continuous and the discrete logit choice model. To make such a

comparison, we need to define an estimator of the model parameters, for both the

continuous and the discrete choice model. For the discrete choice model we use the

well-known maximum-likelihood estimator (MLE) to estimate the model parameters.

To estimate the preference function of the continuous model, we use the kernel density

estimator (KDE) as discussed in Section 2.5.5. Throughout this section we use the

same notations and concepts as in Section 2.5.2 and 2.5.3.

We compare the predictive performance of the two models in different scenarios.

For each scenario we randomly generate transaction data according to a true ‘ground

truth model’, which is either the discrete or the continuous model. Based on this data

we estimate the preference values v1, . . . , vN of the discrete model and the preference
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function v of the continuous model, using the MLE and KDE, respectively. We

then evaluate the predictive performance of both models using three performance

measures: (1) the relative revenue loss of the estimated optimal assortment compared

to the true optimal revenue, (2) the L1-difference between the estimated and true

model parameters, and (3), following Berbeglia et al. (2021), the absolute error of the

estimated no-purchase probability.

In what follows, we describe in detail the different scenarios, the MLE and KDE,

and the three performance measures that we consider.

Scenarios. We consider three different scenarios. In the first scenario the

discrete model is the ground truth, with parameters v(1)1 , . . . , v
(1)
N drawn uniformly at

random from [ 1
10N ,

1
2N ], for N ∈ {10, 30, 50}. This grossly violates our assumption

imposed in the continuous model that the preference values are Lipschitz continuous.

In the second scenario the discrete model is again the ground truth; however, the

preference values v(2)1 , . . . , v
(2)
N are set to v

(2)
i := f(i/(N + 1))/N , for i = 1, . . . , N ,

where N ∈ {10, 30, 50},

f(x) =
1

10
+ φ(x;µ, σ), x ∈ [0, 1],

and where φ( · ;µ, σ) is the normal probability density function with µ drawn uni-

formly at random from [0, 1], and σ drawn uniformly at random from [0.1, 0.2]. Thus,

in this second scenario, the continuous model might provide a relatively accurate

description of the choice probabilities, despite being a misspecified model. Finally,

in the third and last scenario we assume that the continuous model is the ground

truth, and we test up to what extent the discrete model is able to produce accurate

predictions of consumer’s choice behavior. The preference function is set to

v(3)(x) =
1

10
+

1

5
(2 + x)(1− x) +

2

7
φ(x; 0.33, 0.1) +

1

5
φ(x; 0.8, 0.1), x ∈ [0, 1].

The discrete model is estimated for N ∈ {10, 30, 50} products. In all scenarios we

set w(x) := x for all x ∈ [0, 1]. For each scenario, for each c ∈ { 1
2 , 1}, and for

each N ∈ {10, 30, 50}, we randomly generate 1 000 transaction data sets of size T ∈

{50, 100, 200, 500, 1 000, 2 000, 5 000}. In these transaction data sets, the assortments

are set to the unit interval for c = 1. For c = 1/2 we let the assortments be [0, 0.5] in
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the first T/2 time periods, and [0.5, 1] in the second T/2 time periods. In the third

scenario, in which the continuous model is the ground truth, the observed purchases

for the discrete model are of the form Yt =
∑N

i=1 i1{Xt ∈ Bi}.

We refer to a specific vector of preference parameters as an instance of the discrete

model, and to a specific preference function as an instance of the continuous model.

Each instance v = (v1, . . . , vN ) of the discrete model corresponds to an instance of

the continuous model, by letting the discrete purchase Yt coincide with the continuous

purchase Xt ∈ BYt (and Xt = ∅ if Yt = 0) and by setting the preference function

v(x) equal to

v(x) := N

N∑
i=1

vi1{x ∈ Bi}.

Conversely, each instance of the continuous model with preference function v that

is constants on bins B1, . . . , BN corresponds to an instance of the discrete model by

setting vi =
∫
Bi
v(x)dx, for all i = 1, . . . , N . Concretely, we let v(1)(·) and v(2)(·)

be the preference functions of the continuous model that correspond to the (discrete)

instance in scenario 1 and 2, and we let (v
(3)
1 , . . . , v

(3)
N ) be the vector of preference

values that correspond to the (continuous) instance in scenario 3.

Estimators. For j = 1, 2, 3, let v̂(j),KDE(x) denote the kernel density estimator of

v(j)(x) as presented in Section 2.5.5 and let v̂(j),MLE(x) denote the stepwise constant

function

v̂(j),MLE(x) :=

N∑
i=1

v̂
(j),MLE
i 1{x ∈ Bi},

where v̂(j),MLE
i denotes the MLE of v(j)i for i ∈ [N ]. That is,

v̂
(j),MLE
i :=

∑T
t=1 1{Yt = i}∑T
t=1 1{Yt = 0}

,

for c = 1 and

v̂
(j),MLE
i :=

∑kT/2
t=(k−1)T/2+1 1{Yt = i}∑kT/2
t=(k−1)T/2+1 1{Yt = 0}

, i ∈ {(k − 1)N/2 + 1, . . . , kN/2}, k = 1, 2,

for c = 0.5, where Yt are simulated from scenario j. We set the assumed upper

bound of v(x) in all scenarios to v = 5. For c = 1, we let v̂(j),MLE
i be the fixed

constant v/N if
∑T

t=1 1{Yt = 0} = 0 and for c = 0.5, we let v̂(j),MLE
i,k = v/N if
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∑kT/2
t=(k−1)T/2+1 1{Yt = 0} = 0 with k = 1, 2. For the derivation of the MLE we refer

to Section 4.3.3.

Performance measures. Given a simulated data sample of size T , the predic-

tive performance is measured in three ways: (1) the instantaneous relative regret of

the estimated optimal assortment, (2) the L1 error of the estimated preference vec-

tor/function, and (3), in the same spirit as Berbeglia et al. (2021), the relative absolute

difference between the estimated no-purchase probability and the actual no-purchase

probability.

To ensure a fair comparison for the first performance measure, the optimal as-

sortment in the first two scenarios is computed over AK , the collection of all unions

of at most K = cN bins. This is because, if the discrete model is the ground truth,

then partial products can not be offered. In addition, in these first two scenarios,

the estimated optimal assortment under the continuous model is computed with the

function w replaced by w̌, in line with (2.13). The instantaneous relative regret (IRR)

is thus computed as

IRR(j),E :=
r(S(j), v(j), w)− r(Ŝ(j),E, v(j), w)

r(S(j), v(j), w)
, j = 1, 2, 3, E ∈ {KDE,MLE},

where S(j) is the optimal assortment in scenario j and Ŝ(j),E the estimated optimal

assortment, for both estimators E ∈ {KDE,MLE}. The second performance measure

is defined as

L
(j),E
1 :=

∫ 1

0

∣∣∣v(j)(x)− v̂(j),E(x)
∣∣∣dx, j = 1, 2, 3, E ∈ {KDE,MLE},

where v̂(j),MLE and v̂(j),KDE are the MLE and KDE estimator for scenario j, respec-

tively. Finally, our third performance measure is the relative absolute difference of

the actual no-purchase probability and the estimated no-purchase probability, where

for c = 1/2 we average the relative absolute difference of the no-purchase probabilities

for assortment [0, 0.5] and [0.5, 1]. Thus, defining

Q(j) :=
1

1 +
∫ 1

0
v(j)(x)dx

and Q
(j)
k :=

1

1 +
∫
Sk v(j)(x)dx

, j = 1, 2, 3, k = 1, 2,
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and

Q̂(j),E :=
1

1 +
∫ 1

0
v̂(j),E(x)dx

and Q̂
(j),E
k :=

1

1 +
∫
Sk v̂(j),E(x)dx

,
j = 1, 2, 3,

E ∈ {KDE,MLE},
k = 1, 2,

then our third performance measure is equal to

RAD(j),E :=

∣∣Q(j) − Q̂(j),E
∣∣

Q(j)
, j = 1, 2, 3, E ∈ {KDE,MLE}.

for c = 1, and

MRAD(j),E :=

∣∣Q(j)
1 − Q̂

(j),E
1

∣∣
2Q

(j)
1

+

∣∣Q(j)
2 − Q̂

(j),E
2

∣∣
2Q

(j)
2

j = 1, 2, 3, E ∈ {KDE,MLE},

for c = 0.5.

4.3.2 Results

A priori one would expect that, in scenario 1, the predictive performance of the

discrete model outperforms that of the continuous model, and that in scenario 3 it

is the other way around. What happens in scenario 2 might be less predictable.

The performance metrics in the three different scenarios are displayed in Figures 4.3

through 4.8.

Regarding the third performance measure, there is hardly any difference between

the continuous and discrete model. For the other two performance measures, however,

we observe marked differences. In scenario 1 the continuous model outperforms the

discrete model in several instances, especially for small values of T , both when c = 1

and when c = 0.5. Similar behavior is seen in scenario 2: the continuous model

outperforms the discrete model under the first two performance measures, except for

N = 10 and sufficiently large T . In scenario 3, the continuous model outperforms the

discrete model when measured by the first or second performance measure when c =

0.5; when c = 1, the first and second performance measure are either approximately

equal, or the continuous model outperforms the discrete model.

These observations demonstrate that there is value in using the continuous model

for predictive purposes, also in situations where this model is misspecified.
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Figure 4.3: The performance metrics comparing the predictive performance of the continuous
and the discrete logit choice model for scenario 1 with c = 0.5 and K = N/2 based on 1 000
simulations.
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Figure 4.4: The performance metrics comparing the predictive performance of the continuous
and the discrete logit choice model for scenario 1 with c = 1 and K = N based on 1 000
simulations.
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Figure 4.5: The performance metrics comparing the predictive performance of the continuous
and the discrete logit choice model for scenario 2 with c = 0.5 and K = N/2 based on 1 000
simulations.

89



Yannik Peeters

101 102 103
0

2

4

6

8
·10−3

N
=

1
0

Instantaneous relative regret

Continuous
Discrete

101 102 103
0

0.2

0.4

L1-difference

Continuous
Discrete

101 102 103
0

0.5

1

1.5
·10−1

RAD no-purchase probability

Continuous
Discrete

101 102 103
0

0.5

1

·10−2

N
=

3
0

Continuous
Discrete

101 102 103
0

0.2

0.4

0.6

0.8
Continuous
Discrete

101 102 103
0

0.5

1

1.5
·10−1

Continuous
Discrete

101 102 103
0

0.5

1

1.5

·10−2

T

N
=

5
0

Continuous
Discrete

101 102 103
0

0.2

0.4

0.6

0.8

1

T

Continuous
Discrete

101 102 103
0

0.5

1

1.5
·10−1

T

Continuous
Discrete

Figure 4.6: The performance metrics comparing the predictive performance of the continuous
and the discrete logit choice model for scenario 2 with c = 1 and K = N based on 1 000
simulations.
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Figure 4.7: The performance metrics comparing the predictive performance of the continuous
and the discrete logit choice model for scenario 3 with c = 0.5 and K = N/2 based on 1 000
simulations.
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Figure 4.8: The performance metrics comparing the predictive performance of the continuous
and the discrete logit choice model for scenario 3 with c = 1 and K = N based on 1 000
simulations.
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4.3.3 Derivation of the Maximum Likelihood Estimator

Here we derive the maximum likelihood estimator for the preference parameters in

the discrete MNL model. We denote as the estimators as v̂1, . . . , v̂N . Following

Section 4.3.1, we consider (i) K = N and offer the entire set of products [N ] at all

time instances, as well as (ii) K = N/2 and offer the assortments {1, . . . , N/2} and

{N/2 + 1, . . . , N} (each in half of all time instances, that is).

First we consider that K = N and Dt = [N ] for all t ∈ [T ]. Let Yt denote the

discrete purchase observed at time t when offering Dt ⊆ [N ]. Then, the log likelihood

is

L(v1, . . . , vN ) =

T∑
t=1

log

(
vYt

1 +
∑N

i=1 vi

)
=

T∑
t=1

log vYt
−

T∑
t=1

log

(
1 +

N∑
i=1

vi

)
.

Taking the derivative of the log likelihood with respect to vj for j ∈ [N ] yields

∂

∂vj
L(v1, . . . , vN ) =

1

vj

T∑
t=1

1{Yt = j} −
T∑

t=1

1

1 +
∑N

i=1 vi
.

These partial derivatives are equal to zero, so as to obtain v̂j for j ∈ [N ]; we obtain

T∑
t=1

1{Yt = j} =

T∑
t=1

v̂j

1 +
∑N

i=1 v̂i
. (4.1)

Summing all these equations for j ∈ [N ] yields

T∑
t=1

1{Yt ̸= 0} =

T∑
t=1

∑N
j=1 v̂j

1 +
∑N

i=1 v̂i
,

or, equivalently,
T∑

t=1

1{Yt = 0} =

T∑
t=1

1

1 +
∑N

i=1 v̂i
. (4.2)

Combining (4.1) and (4.2), we obtain

v̂j :=

∑T
t=1 1{Yt = j}∑T
t=1 1{Yt = 0}

, j ∈ D,

where we set v̂j := v/N if
∑T

t=1 1{Yt = 0} = 0.

Next, we consider that K = N/2. Denote D1 = {1, . . . , N/2} and D2 = {N/2 +

1, . . . , N}, as well as T 1 = {1, . . . , T/2} and T 2 = {T/2 + 1, . . . , T}. Then, Dt = D1
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for t ∈ T 1 and Dt = D2 for t ∈ T 2. Let i1, . . . , Yt denote the discrete purchases

observed at time t when offering Dt ⊆ [N ]. Then, the log likelihood is

L(v1, . . . , vN ) =

T∑
t=1

log

(
vYt

1 +
∑

i∈Dt
vi

)
=

T∑
t=1

log vYt −
T∑

t=1

log

(
1 +

∑
i∈Dt

vi

)
.

Taking the derivative of the log likelihood with respect to vj for j ∈ [N ] yields

∂

∂vj
L(v1, . . . , vN ) =


1

vj

∑
t∈T 1

1{Yt = j} −
∑
t∈T 1

1

1 +
∑

i∈D1 vi
, for j ∈ D1,

1

vj

∑
t∈T 2

1{Yt = j} −
∑
t∈T 2

1

1 +
∑

i∈D2 vi
, for j ∈ D2.

These partial derivatives are set equal to zero, to obtain v̂j for j ∈ Dk and k = 1, 2.

We thus obtain ∑
t∈T k

1{Yt = j} =
∑
t∈T k

v̂j
1 +

∑
i=Dk v̂i

. (4.3)

Summing all these equations over j ∈ Dk yields∑
t∈T k

1{Yt ̸= 0} =
∑
t∈T k

∑
j∈Dk v̂j

1 +
∑

i∈Dk v̂i
,

or, equivalently, ∑
t∈T k

1{Yt = 0} =
∑
t∈T k

1

1 +
∑

i∈Dk v̂i
. (4.4)

Combining (4.3) and (4.4), we obtain

v̂j :=

∑
t∈T k 1{Yt = j}∑
t∈T k 1{Yt = 0}

, j ∈ Dk, k = 1, 2,

where we set v̂j := v/N if
∑

t∈T k 1{Yt = 0} = 0.
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Appendix A

A.1 Mathematical Proofs for Section 2.4

A.1.1 Proofs of the Results in Section 2.4.3
Proof of Theorem 2.1.

Define g(y) := r([y, 1], v) for y ∈ [0, 1] and h(ϱ) := g(w−1(ϱ)) for ϱ ∈ [0, 1]. Also, let

ϱ∗ denote the optimal expected profit, i.e.,

ϱ∗ := max{r(S, v) : S ∈ S}.

The following auxiliary results turn out to be useful; the proof of Lemma A.1 follows

after the proof of Theorem 2.1.

Lemma A.1. It holds that h(ϱ∗) = ϱ∗. Moreover, for ϱ ∈ [0, 1], the following

properties hold:

(ϱ− ϱ∗)(h(ϱ)− ϱ) ⩽ − 1

1 + v
(ϱ− ϱ∗)2, (A.1)

h(ϱ∗)− h(ϱ) ⩽ C(ϱ− ϱ∗)2, (A.2)

for a universal constant C > 0.

Note that by our choice of α ⩾ 1 + v and β ⩾ α − 1 it follows that ϱt ∈ [0, 1]

for all t = 1, . . . , T . With these properties at our disposal, we continue the proof of

the worst-case bound for Case 1, which closely follows the analysis of Broadie et al.

(2011) on stochastic approximation schemes. For the policy π = SAP(α, β), it holds

for all t = 1, . . . , T that

Eπ[(ϱt+1 − ϱ∗)2 | ϱt]
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= Eπ

[
(ϱt + at(Rt − ϱ)− ϱ∗)

2 | ϱt
]

= Eπ

[
(ϱt − ϱ∗)2 + 2(ϱt − ϱ∗)at(Rt − ϱt) + a2t (Rt − ϱt)

2 | ϱt
]

⩽ (ϱt − ϱ∗)2 + 2(ϱt − ϱ∗)at(h(ϱt)− ϱt) + a2t

⩽ (ϱt − ϱ∗)2
(
1− 2at

1 + v

)
+ a2t

where the first inequality follows from Rt − ϱt ∈ [−1, 1] and the second inequality

from Lemma A.1, i.e., inequality (A.1). Recalling the definition of at, an immediate

consequence of the above bound is that we have, with δt := Eπ[(ϱt − ϱ∗)2], for any

t = 1, . . . , T ,

δt+1 ⩽ δt

(
1− 2

1 + v
· α

t+ β

)
+

α2

(t+ β)2
. (A.3)

From inequality (A.3) one can derive the following lemma in a relatively straight-

forward way. Its (inductive) proof follows after the proof of Theorem 2.1.

Lemma A.2. There exists a constant κ such that for all t = 1, . . . , T ,

δt ⩽
κ

t+ β
. (A.4)

We proceed by deriving an upper bound on the regret of the policy π = SAP(α, β),

relying on the upper bound on δt stated in Lemma A.2. Let C denote the constant

as in Lemma A.1. The regret can be majorized as follows:

∆π(T, v) =

T∑
t=1

Eπ[h(ϱ
∗)− h(ϱt)] ⩽ C

T∑
t=1

δt

⩽ C

T∑
t=1

κ

t+ β
⩽ 3Cκ log T,

for all T ⩾ 2, where the first inequality follows by (A.2), the second inequality by

(A.4), and the third inequality by
∑T

t=1(t + β)−1 ⩽ 3 log T for all T ⩾ 2. We have

proven the stated with C := 3Cκ.

Proof of Lemma A.1.

We prove the three claims separately.
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▷ Following the reasoning at (2.4), we find that

ϱ∗ = max

{
ϱ ∈ [0, 1] : max

S∈S

∫
S

v(x)
(
w(x)− ϱ

)
dx ⩾ ϱ

}
= max

{
ϱ ∈ [0, 1] :

∫ 1

w−1(ϱ)

v(x)
(
w(x)− ϱ

)
dx ⩾ ϱ

}
.

Since w−1(·) is continuous, we know that, with ϱ ∈ [0, 1],

I(ϱ) :=
∫ 1

w−1(ϱ)

v(x)
(
w(x)− ϱ

)
dx

is continuous. Also, since w−1(·) is non-decreasing and ϱ 7→ v(x)
(
w(x)−ϱ

)
is decreas-

ing, we know that I(·) is non-increasing. Moreover, note that I(0) > 0 and I(1) = 0.

As a result, there exists a unique solution to I(ϱ) = ϱ, and that this equation is pre-

cisely solved by ϱ∗. The proof is completed by observing that the equation I(ϱ) = ϱ

is equivalent to h(ϱ) = ϱ.

▷ For ϱ = ϱ∗, (A.1) immediately holds. Now, assume that ϱ ∈ [0, ϱ∗), then

h(ϱ)− ϱ =

∫ 1

w−1(ϱ)
v(x)w(x)dx

1 +
∫ 1

w−1(ϱ)
v(x)dx

− ϱ =
I(ϱ)− ϱ

1 +
∫ 1

w−1(ϱ)
v(x)dx

⩾
I(ϱ∗)− ϱ

1 +
∫ 1

w−1(ϱ)
v(x)dx

=
ϱ∗ − ϱ

1 +
∫ 1

w−1(ϱ)
v(x)dx

⩾ − 1

1 + v
(ϱ− ϱ∗).

where the first inequality holds by the non-increasingness of I(·). As a result,

(ϱ− ϱ∗)(h(ϱ)− ϱ) ⩽ − 1

1 + v
(ϱ− ϱ∗)2.

Next, assume that ϱ ∈ (ϱ∗, 1]. It holds that h(ϱ) ⩽ h(ϱ∗) = ϱ∗ which implies h(ϱ)−ϱ ⩽

−(ϱ− ϱ∗) and therefore

(ϱ− ϱ∗)(h(ϱ)− ϱ) ⩽ −(ϱ− ϱ∗)2 ⩽ − 1

1 + v
(ϱ− ϱ∗)2.

Hence, for all ϱ ∈ [0, 1] it holds that

(ϱ− ϱ∗)(h(ϱ)− ϱ) ⩽ − 1

1 + v
(ϱ− ϱ∗)2.
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▷ First, note that

g′(y) =
d

dy

∫ 1

y
v(x)w(x)dx

1 +
∫ 1

y
v(x)dx

=
(
r([y, 1], v)− w(y)

)
· v(y)

1 +
∫ 1

y
v(x)dx

=
(
g(y)− w(y)

)
· ξ(y),

where, for y ∈ [0, 1],

ξ(y) :=
v(y)

1 +
∫ 1

y
v(x)dx

.

Second, we show that there exists a universal constant C0 such that

sup
y∈(0,1)

{−g′′(y)} ⩽ C0. (A.5)

To prove (A.5) observe that g′′(y) =
(
g(y)− w(y)

)(
ξ′(y) + ξ(y)2

)
− w′(y)ξ(y), and

ξ′(y) =
v′(y)

1 +
∫ 1

y
v(x)dx

+ ξ(y)2.

Since g(y)− w(y) ∈ [−1, 1] for all y ∈ (0, 1), we obtain

−g′′(y) = −
(
g(y)− w(y)

)(
ξ′(y) + ξ(y)2

)
+ w′(y)ξ(y)

⩽ sup
y∈(0,1)

{|ξ′(y)|+ ξ(y)2}+ sup
y∈[0,1]

w′(y)v

⩽ sup
y∈(0,1),v∈V

{|v′(y)|+ 2v2}+ sup
y∈[0,1]

w′(y)v =: C0.

Now, let ϱ ∈ [0, 1] and denote y = w−1(ϱ) and y∗ = w−1(ϱ∗). We distinguish two

cases. First, assume that ϱ∗ ⩾ w(0) or, equivalently, g′(y∗) = 0. Then, there is a

ỹ ∈ (0, 1) such that g(y) = g(y∗) + 1
2g

′′(ỹ)(y− y∗)2. Therefore, we can apply (A.5) to

obtain, with

kw := inf
x∈(0,1)

w′(x)

that

h(ϱ∗)− h(ϱ) = g(y∗)− g(y) = − 1
2g

′′(ỹ)(y − y∗)2

⩽ 1
2C0(y − y∗)2 ⩽

C0

2(kw)2
(ϱ− ϱ∗)2,

98



A.1 MATHEMATICAL PROOFS FOR SECTION 2.4

where at the final inequality we used that w−1(·) is (kw)
−1-Lipschitz continuous on

[0, 1]; note that kw is strictly positive due to the assumptions imposed on w. Now

we consider the second case: assume that ϱ∗ < w(0) or, equivalently, g′(y∗) < 0. In

this case, ϱ∗ = g(0) and w−1(ϱ∗) = 0. For ϱ ∈ [0, w(0)), w−1(ϱ) = w−1(ϱ∗), and

statement (A.2) holds for any constant C ⩾ 0. Now, let ϱ ∈ [w(0), 1]. Then, note

that by (A.5)

g(0)− g(y) ⩽ −g′(0)y + 1
2C0y

2.

Next, note that since w−1(·) is non-decreasing and (kw)
−1-Lipschitz continuous

y = w−1(ϱ)− w−1(ϱ∗) ⩽
1

kw
(ϱ− ϱ∗)

and note that

0 ⩽ −g′(0) =
(
w(0)− g(0)

)
ξ(0) ⩽ ξ(0)(ϱ− ϱ∗).

We conclude that

h(ϱ∗)− h(ϱ) = g(0)− g(y)

⩽

(
ξ(0)

kw
+

C0

2(kw)2

)
(ϱ− ϱ∗)2 ⩽

(
v

kw
+

C0

2(kw)2

)
(ϱ− ϱ∗)2.

This proves (A.2) for all ϱ ∈ [0, 1] with

C =
v

kw
+

C0

2(kw)2
.

Proof of Lemma A.2.

We show, by induction, that inequality (A.3) implies that, for some κ > 0, for all

t = 1, . . . , T it holds that δt ⩽ κ/(t+ β). To this end, let K0 := (1 + v)−1 and

κ := max {1 + β, α(1 + v)} .

For t = 1, we note that

δ1 ⩽ 1 ⩽
κ

1 + β
.

Now, suppose δt ⩽ κ/(t+ β) for t ⩽ t0 for some t0. Then, for t > t0, it follows that

t+ β

t+ β + 1
− 2αK0 < 1− 2αK0 ⩽ −αK0,
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since α ⩾ K−1
0 and therefore

κ

(
t+ β

t+ β + 1
− 2αK0

)
+ α2 < −καK0 + α2 ⩽ 0,

by definition of κ. This implies that

κ

(
(t+ β)− 2αK0 −

(t+ β)2

t+ β + 1

)
+ α2 ⩽ 0,

and thus

κ

t+ β

(
1− 2

αK0

t+ β

)
+

α2

(t+ β)2
⩽

κ

t+ β + 1
.

This, by (A.3) in combination with the induction hypothesis, yields

δt+1 ⩽
κ

t+ 1 + β
,

so that we have proven the lemma.

A.1.2 Proofs of the Results in Section 2.4.4
Proof of Theorem 2.2.

This proof relies on the Van Trees inequality, which can be seen as a Bayesian coun-

terpart of the Cramér-Rao lower bound. Let Θ := [θmin, θmax], with θmax = v,

θmin = c0 + (v − c0)/2, and

c0 := max

{
v,

w(0)∫ 1

0
(w(x)− w(0))dx

}
.

Observe that v < θmin < θmax = v, because of the assumption

v >
w(0)∫ 1

0
(w(x)− w(0))dx

.

For later reference, we introduce the probability density function λ(·) on Θ by

λ(θ) :=
2

θmax − θmin
cos2

(
π

θ − θmin

θmax − θmin
− π/2

)
.

Observe that λ(·) is zero on the boundary of Θ. Later, when applying the Van Trees

inequality, we work with a random θ, sampled from a distribution with density λ(·).

We start the proof with a number of definitions and preliminary observations. Let
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vθ(x) := θ for all x ∈ [0, 1] and all θ ∈ Θ. Also, define g(y, θ) := r([y, 1], vθ), for

y ∈ [0, 1] and θ ∈ Θ. Let g′(y, θ) denote the partial derivative of g(y, θ) with respect

to y, for y ∈ (0, 1). As in the proof of Theorem 2.1,

g′(y, θ) = (g(y, θ)− w(y)) · ξ(y, θ), where ξ(y, θ) :=
vθ(y)

1 +
∫ 1

y
vθ(x)dx

.

In addition, all y ∈ (0, 1) such that g′(y, θ) = 0 satisfy g′′(y, θ) < 0, where g′′(y, θ) is

the second derivative of g(y, θ) to y. Observe that g(0, θ) − w(0) > 0 for all θ ∈ Θ,

since θmin > c0. It follows that for all θ ∈ Θ there is a unique maximizer y(θ) ∈ (0, 1)

of g(y, θ) with respect to y; this maximizer is the unique solution y ∈ [0, 1] to the

equation g(y, θ) = w(y). Moreover, observe that g(y, θ) is strictly increasing in θ, for

all y ∈ (0, 1), and therefore

0 = g(y(θ), θ)− w(y(θ)) < g(y(θ), θ′)− w(y(θ))

for all θmin ⩽ θ < θ′ ⩽ θmax, which implies that y(θ′) > y(θ). Thus, y(θ) is increasing

in θ, for θ ∈ Θ.

A complication in the proof is that in principle we can optimize over all sets S ∈ S,

which we would like to somehow convert into an optimization over intervals. This

explains the relevance of the following objects: for θ ∈ Θ and S ∈ S, we define

ψ(θ) := vol([y(θ), 1]) = 1− y(θ), ψS := vol(S).

▷ Step 1. We first show that r([y(θ), 1], vθ) and r(S, vθ) can only be close if [y(θ), 1]

and S are close (a necessary condition for which is that ψ(θ) and ψS are close). More

concretely, for all θ ∈ Θ and all S ∈ S,

r([y(θ), 1], vθ)− r(S, vθ) ⩾ κ0(ψ(θ)− ψS)2, where κ0 :=
θminkw/2

1 + θmax
.

To this end, for v ∈ V let ϱ∗v = maxS∈S r(S, v), and let S∗(v) be a corresponding

maximizer. From

ϱ∗v =

∫
S∗(v)

v(x)w(x)dx

1 +
∫
S∗(v)

v(x)dx
,
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it follows ϱ∗v =
∫
S∗(v)

v(x)(w(x)− ϱ∗v)dx, and thus, for all S ∈ S,

r(S∗(v), v)− r(S, v) = ϱ∗v
1 +

∫
S
v(x)dx

1 +
∫
S
v(x)dx

−
∫
S
v(x)w(x)dx

1 +
∫
S
v(x)

=
1

1 +
∫
S
v(x)dx

(
ϱ∗v +

∫
S

v(x)(ϱ∗v − w(x))dx

)
=

1

1 +
∫
S
v(x)dx

(∫
S∗(v)

v(x)(w(x)− ϱ∗v)dx−
∫
S

v(x)(w(x)− ϱ∗v)dx

)

=
1

1 +
∫
S
v(x)dx

(∫
S∗(v)\S

v(x)(w(x)− ϱ∗v)dx

+

∫
S\S∗(v)

v(x)(ϱ∗v − w(x))dx

)
.

Let θ ∈ Θ and S ∈ S. If x ∈ S∗(vθ)\S, then x ∈ S∗(vθ) = [y(θ), 1], which implies that

w(x)−ϱ∗vθ ⩾ w(y(θ))−ϱ∗vθ = w(y(θ))−g(y(θ), θ) = 0. Similarly, if x ∈ S\S∗(vθ), then

x ∈ [0, y(θ)) and consequently ϱ∗vθ −w(x) ⩾ ϱ∗vθ −w(y(θ)) = g(y(θ), θ)−w(y(θ)) = 0.

It follows that

r(S∗(vθ), vθ)− r(S, vθ) ⩾
θmin

1 + θmax

(∫
[y(θ),1]\S

(w(x)− ϱ∗vθ )dx

+

∫
S\[y(θ),1]

(ϱ∗vθ − w(x))dx

)
.

Recall that kw = infy∈(0,1) w
′(y) > 0. Since ϱ∗vθ = w(y(θ)), we have by the mean

value theorem

w(x)− ϱ∗vθ = w(x)− w(y(θ)) ⩾ kw(x− y(θ)),

for all x ∈ [y(θ), 1], and

ϱ∗vθ − w(x) = w(y(θ))− w(x) ⩾ kw(y(θ)− x),

for all x ∈ [0, y(θ)). Upon combining the above, we arrive at the lower bound

r(S∗(vθ), vθ)− r(S, vθ) ⩾
θminkw
1 + θmax

(∫
[y(θ),1]\S

(x− y(θ))dx

+

∫
S\[y(θ),1]

(y(θ)− x)dx

)
.
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Let m1 := vol([y(θ), 1] ∩ Sc) and m2 := vol([0, y(θ)) ∩ S). Observe that∫
[y(θ),1]\S

(x− y(θ))dx ⩾
∫ y(θ)+m1

y(θ)

(x− y(θ))dx = 1
2m

2
1,∫

S\[y(θ),1]
(y(θ)− x)dx ⩾

∫ y(θ)

y(θ)−m2

(y(θ)− x)dx = 1
2m

2
2.

In addition,

ψS − ψ(θ) = vol
(
S ∩ [0, y(θ))

)
+ vol

(
S ∩ [y(θ), 1]

)
− vol

(
S ∩ [y(θ), 1]

)
− vol

(
Sc ∩ [y(θ), 1]

)
= m2 −m1,

m2
1 +m2

2 ⩾ m2
1 +m2

2 − 2m1m2 = (m1 −m2)
2 = (ψS − ψ(θ))2.

From the above we conclude that our claim applies: for all θ ∈ Θ and S ∈ S,

r(S∗(vθ), vθ)− r(S, vθ) ⩾
θminkw/2

1 + θmax
(ψS − ψ(θ))2.

▷ Step 2. For S ∈ S and θ ∈ Θ, let ZS
θ be the random variable with support [0, 2]

and probability density function

fS( z | θ ) :=


vθ(z)

1 +
∫
S
vθ(ξ)dξ

, if z ∈ S,

∣∣[0, 2]\S∣∣−1

1 +
∫
S
vθ(ξ)dξ

, if z ∈ [0, 2]\S.

Observe that, when v = vθ, XS is in distribution equal to the random variable that

equals ZS
θ if ZS

θ ∈ S and equals ∅ if ZS
θ ∈ [0, 2]\S. Hence, for each t ∈ {1, . . . , T} there

is a function πt : [0, 2]t−1 → S such that St = πt(Z1, . . . , Zt) a.s., where Zt
d
= ZSt

θ

for all t = 1, . . . , T , and where we write π1(∅) := S1. In other words: to prove the

regret lower bound we may assume that assortments are a function of the observations

Z1, Z2, . . . instead of the purchase observations X1, X2, . . ..

Let t ∈ {1, . . . , T} and let Z := [0, 2]t. The probability density function of

(Z1, . . . , Zt) is equal to

f( zt | θ ) =
t∏

i=1

fπi(zi−1)( zi | θ ),
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for all zt = (z1, . . . , zt) ∈ Z, where we write zi−1 = (z1, . . . , zi−1) for the first i − 1

components of zt, for all i = 1, . . . , t, and z0 := ∅. We have

d

dθ
log f( zt | θ ) =

t∑
i=1

d

dθ
log fπi(zi−1)( zi | θ )

=

t∑
i=1

d

dθ

{
log θ · 1{zi ∈ πi(zi−1)} − log

(
1 + θ

∫
πi(zi−1)

dξ

)}

=

t∑
i=1

θ−11{zi ∈ πi(zi−1)} −
vol(πi(zi−1))

1 + θ vol(πi(zi−1))
,

and

− d2

dθ2
log f(zt | θ) =

t∑
i=1

θ−21{zi ∈ πi(zi−1)} −
vol(πi(zi−1))

2(
1 + θ vol(πi(zi−1))

)2 ⩽
t

v2
,

since θmin ⩾ v. By taking expectation, it follows that the Fisher information corre-

sponding to Zt = (Z1, . . . , Zt) satisfies

It(θ) = E
[
− d2

dθ2
log f(Zt | θ )

]
⩽

t

v2
.

The Fisher information I(λ) corresponding to the density λ(·) equals∫ θmax

θmin

(
d

dθ
log λ(θ)

)2

λ(θ)dθ =
4π2

(θmax − θmin)2
=

π2

(v − c0)2
.

For each θ ∈ Θ, y(θ) is the unique solution to g(y, θ) − w(y) = 0. By the Implicit

Function Theorem, the derivative ψ′(θ) of ψ(θ) exists and is equal to

ψ′(θ) = − d

dθ
y(θ) =

dg
dθ (y(θ), θ)

dg
dy (y(θ), θ)−

dw
dy (y(θ))

= − (1 + θ(1− y(θ)))−2

w′(y(θ))
⩽ − 1

max{w′(y) : y ∈ (0, 1)}
=: κ1;

for the last step, observe that w being continuously differentiable implies that max{w′(y) :

y ∈ (0, 1)} is finite. Now, let θ be a random variable with probability density function

λ(·); we denote by Eλ[ · ] expectation with respect to this density. Let ψt := ψSt+1 .

Now, we are in a position to apply the Van Trees inequality, in particular the form

featuring in Gill & Levit (1995). Using the notation used there, their Equation (4)
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directly yields (realizing that ψ′(θ) ⩽ κ1 < 0 uniformly in θ)

Eλ[(ψt − ψ(θ))2] ⩾
Eλ[ψ

′(θ)]2

Eλ[It(θ)] + I(λ)
⩾

κ21
t/v2 + π2/(v − c0)2

.

With this lower bound essentially behaving as t−1, the corresponding partial sums

(up to the T -th term) grow as log T , as desired. More formally, summing over all

t = 1, . . . , T − 1, we obtain, applying the lower bound established in Step 1,

∆π(T ) = sup
v∈V

∆π(T, v) ⩾ Eλ[∆π(T, vθ)]

⩾ κ0

T−1∑
t=1

Eλ[(ψt − ψ(θ))2] ⩾ κ0

T−1∑
t=1

κ21v
2

t+ π2v2/(v − c0)2
⩾ C log T,

where C := κ0κ
2
1v

2/(1 + π2v2/(v − c0)
2) > 0, and where we used that

T−1∑
t=1

(t+ a)−1 ⩾ (1 + a)−1
T−1∑
t=1

t−1 ⩾ (1 + a)−1 log T

for all T ⩾ 2 and a ⩾ 0.

A.2 Mathematical Proofs for Section 2.5

A.2.1 Proofs of the Results in Section 2.5.1
Proof of Lemma 2.1.

We start the proof by the general remark that it is clear that the optimizing S should

only contain x such that h(x, ϱ) ⩾ 0, i.e., x ∈Wϱ.

First consider case (i), i.e., vol(Wϱ) ⩽ c. Including in S all x ∈ Wϱ thus leads to

a set in S. Since h(x, ϱ) < 0 for x /∈ Wϱ, we conclude that the maximum of I(S, ϱ)

over sets in S is attained by S =Wϱ.

Now, we consider case (ii), i.e., vol(Wϱ) > c; this means that we should select the

subset of Wϱ that maximizes I(S, ϱ). Our construction makes use of the following

technical properties of mϱ(l); their proofs will be given below.

Lemma A.3. Let ϱ ∈ [0, 1]. Then, mϱ(ℓ) is non-increasing and left-continuous in

ℓ, as well as mϱ(ℓ) → 0 as ℓ→ ∞.

We first concentrate on claim (1). To this end, observe that mϱ(0) = vol(Lϱ(0)) =
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vol(Wϱ) ⩾ c > 0. In addition, by virtue of Lemma A.3, mϱ(ℓ) → 0 as ℓ→ ∞. Hence,

the set of ℓ ⩾ 0 such that mϱ(ℓ) ⩾ c is nonempty and bounded, so that its supremum

exists; because of the left-continuity that has been established in Lemma A.3 the

supremum is actually attained (and hence is a maximum). This proves the first claim

of (ii).

We now consider the second claim of (ii). The intuitive idea is that we start with

S = ∅, and that we keep adding x from Wϱ to S that have the highest value of

h(x, ϱ), until vol(S) = c; at that point S consists of x such that h(x, ϱ) ⩾ ℓϱ. Bearing

in mind, though, that the set of x ∈ [0, 1] such that h(x, ϱ) equals some given value

may have positive Lebesgue measure, there may be still a degree of freedom, which is

reflected in the way the set L⟲
ϱ has been defined.

The formal argumentation is as follows. First we prove that vol(L+
ϱ ) ⩽ c: as a

consequence of the continuity of the Lebesgue measure and the fact that mϱ(ℓ) is

non-increasing in ℓ,

vol(L+
ϱ ) = vol

( ∞⋃
k=1

Lϱ(ℓϱ + 1/k)

)
= vol

(
lim
n→∞

n⋃
k=1

Lϱ(ℓϱ + 1/k)

)

= lim
n→∞

vol

(
n⋃

k=1

Lϱ(ℓϱ + 1/k)

)
= lim

n→∞
vol (Lϱ(ℓϱ + 1/n))

= lim
n→∞

mϱ(ℓϱ + 1/n) ⩽ c.

Hence, there exists a set L⟲
ϱ that is a (possibly empty) subset of L=

ϱ and that is such

that vol(S) = vol(L+
ϱ ) + vol(L⟲

ϱ ) = c.

The next objective is to prove that S = L+
ϱ ∪ L⟲

ϱ maximizes I( · , ϱ) over sets in

S. Take an arbitrary R ∈ S. Since vol(S) = c, we know that

c = vol(S) = vol(S ∩R) + vol(S\R) = vol(R)− vol(R\S) + vol(S\R)

and since vol(R) ⩽ c, we obtain vol(S\R) ⩾ vol(R\S). Now, since x ∈ S implies

h(x, ϱ) ⩾ ℓϱ and x ∈ R\S implies h(x, ϱ) ⩽ ℓϱ we conclude

I(S, ϱ)− I(R, ϱ) = I(S\R, ϱ)− I(R\S, ϱ) ⩾ ℓϱ
(
vol(S\R)− vol(R\S)

)
⩾ 0.

This proves the second claim of (ii).
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Proof of Lemma A.3.

The set Lϱ(ℓ) is non-increasing in ℓ, hence so is the function mϱ(ℓ). The next step

is to prove that mϱ(ℓ) is left-continuous. To this end, let ℓn be a strictly increasing

sequence converging to ℓ < ∞ as n → ∞. As we have seen, Lϱ(ℓn) ⊇ Lϱ(ℓ), and

therefore

mϱ(ℓ)−mϱ(ℓn) = vol
(
{x ∈ [0, 1] : h(x, ϱ) ∈ [ℓn, ℓ)}

)
=

∞∑
k=n

vol
(
{x ∈ [0, 1] : h(x, ϱ) ∈ [ℓn, ℓn+1)}

)
.

From the fact that the left-hand side is finite, it follows that the right-hand side is

finite as well, implying left-continuity.

Along the same lines,

1 = vol
(
[0, 1]

)
=

∞∑
k=−∞

vol
(
{x ∈ [0, 1] : h(x, ϱ) ∈ [k, k + 1)}

)
.

This entails that, with n→ ∞ along the integers,

lim
n→∞

mϱ(n) = lim
n→∞

∞∑
k=n

vol({x ∈ [0, 1] : h(x, ϱ) ∈ [k, k + 1)}) = 0.

From the monotonicity of mϱ(ℓ), we also have that mϱ(ℓ) → 0 as ℓ → ∞ along the

reals.

Proof of Proposition 2.1.

First, we show that there exists a unique solution to the fixed-point equation

g(ϱ) = ϱ, (A.6)

where g(ϱ) := I(Sϱ, ϱ) for ϱ ∈ [0, 1]. As the right-hand side of (A.6) is strictly

increasing in ϱ, it suffices to prove that g(·) is continuous and non-increasing in ϱ,

and that g(0) ⩾ 0 and g(1) = 0. To this end, consider 0 ⩽ ϱ1 ⩽ ϱ2 ⩽ 1. Then, indeed,

as I(S, ϱ) is non-increasing in ϱ for any fixed S ∈ S, and recalling that Sϱ1 maximizes

I(S, ϱ1),

g(ϱ1) = I(Sϱ1
, ϱ1) ⩾ I(Sϱ2

, ϱ1) ⩾ I(Sϱ2
, ϱ2) = g(ϱ2).
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The next step is to prove that g(·) is continuous. Let ϱ1, ϱ2 ∈ [0, 1]. Then

I(Sϱ1 , ϱ1)− I(Sϱ2 , ϱ2) ⩽ I(Sϱ1 , ϱ1)− I(Sϱ1 , ϱ2)

= (ϱ2 − ϱ1)

∫
Sϱ1

v(x)dx

⩽ |ϱ1 − ϱ2|
∫
[0,1]

v(x)dx,

where the first inequality is due to the fact that Sϱ2
maximizes I( · , ϱ2). With the

same token, the same upper bound applies when the roles of the ϱ1 and ϱ2 in the

left-hand side are interchanged. It thus follows that g(·) is continuous; it is actually

even Lipschitz continuous.

Obviously, g(0) ⩾ 0. Using that supx∈[0,1] w(x) ⩽ 1, we also obtain

g(1) = max
S∈S

∫
S

v(x)(w(x)− 1)dx = 0.

Second, we show that Sϱ∗ has the maximum expected revenue over all sets in S.

Note that, since g(ϱ∗) = ϱ∗, it follows that r(Sϱ∗) = ϱ∗. Hence, as we proceed from

(2.4) by invoking Lemma 2.1, we obtain

max

{
ϱ ∈ [0, 1] : max

S∈S
I(Sϱ, ϱ) ⩾ ϱ

}
= max {ϱ ∈ [0, 1] : g(ϱ) ⩾ ϱ} = ϱ∗ = r(Sϱ∗).

A.2.2 Proofs of the Results in Section 2.5.3
Proof of Proposition 2.2.

In addition to optimal assortments S∗ and Š as in (2.14), we define Sp as the optimal

assortment under v̌ and w, that is,

r(Sp, v̌, w) = max
S∈S

r(S, v̌, w).

This assortment Sp plays a pivotal role as we break up the left-hand side of (2.15) as

follows:

r(S∗, v, w)− r(Š, v̌, w̌) = r(S∗, v, w)− r(Sp, v̌, w) + (A.7)

r(Sp, v̌, w)− r(Š, v̌, w̌). (A.8)
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We start by bounding the right-hand side of (A.7) from above. Define

I(S, ϱ) =
∫
S

v(x)(w(x)− ϱ)dx and Ip(S, ϱ) :=

∫
S

v̌(x)(w(x)− ϱ)dx

for S ∈ S and ϱ ∈ [−v, 1]. Note that these definitions allow for negative values of ϱ

(as opposed to (2.6)). Next, denote the L1-difference between v and v̌ as δ := ||v− v̌||1.

For ϱ ∈ [−v, 1], let Sϱ be the maximizer of I( · , ϱ) over S and let Sp
ϱ be the maximizer

of Ip( · , ϱ) over S, that is,

I(Sϱ, ϱ) = max
S∈S

I(S, ϱ) and Ip(Sp
ϱ , ϱ) = max

S∈S
Ip(S, ϱ).

Then, let ϱ∗ and ϱp solve the fixed-point equations

ϱ = I(Sϱ, ϱ) and ϱ = Ip(Sp
ϱ , ϱ),

respectively. Note that Sp
ϱp is an optimal assortment under v̌ and w by Proposition 2.1.

Hence, we may assume that Sp = Sp
ϱp . Also, we have 0 ⩽ w(x)−ϱ∗ ⩽ 1 for all x ∈ S∗

and therefore,

Ip(S∗, ϱ∗)− I(S∗, ϱ∗) =

∫
S∗
v̌(x)(w(x)− ϱ∗)dx−

∫
S∗
v(x)(w(x)− ϱ∗)dx

⩽
∫
S∗

|v(x)− v̌(x)|dx ⩽ δ.

Now, we find that

Ip(S∗, ϱ∗ − δ) ⩾ Ip(S∗, ϱ∗) ⩾ I(S∗, ϱ∗)− δ = ϱ∗ − δ.

Hence, there exists an S ∈ S such that Ip(S, ϱ∗ − δ) ⩾ ϱ∗ − δ, which by (2.4) entails

ϱp ⩾ ϱ∗ − δ. Thus, (A.7) is bounded from above as

r(S∗, v, w)− r(Sp, v̌, w) ⩽ ||v − v̌||1.

Bounding (A.8) from above follows in almost an identical manner, but instead of

0 ⩽ w(x)− ϱ∗ ⩽ 1 we now use 0 ⩽ v̌(x) ⩽ v. As a result, we conclude that

r(Sp, v̌, w)− r(Š, v̌, w̌) ⩽ v ||w − w̌||1.

Combining the above concludes the proof.
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Proof of Lemma 2.2.

First, let ϱd = r(Sd, v̌, w̌) and define the sets M̌ and Md as arguments of maxima as

M̌ := argmax
S∈S

∫
S

v̌(x)(w̌(x)− ϱd)dx and Md := argmax
S∈AK

∫
S

v̌(x)(w̌(x)− ϱd)dx.

Note that since AK ⊂ S, we know for any S1 ∈ M̌ and S2 ∈ Md that∫
S1

v̌(x)(w̌(x)− ϱd)dx ⩾
∫
S2

v̌(x)(w̌(x)− ϱd)dx ⩾ 0. (A.9)

Since ϱd ⩾ r(S, v̌, w̌) for any S ∈ AK , it also holds for S ∈ Md that

ϱd ⩾
∫
S

v̌(x)(w̌(x)− ϱd)dx. (A.10)

Then, for any S1 ∈ M̌ and S2 ∈ Md, it follows that

r(Š, v̌, w̌)− r(Sd, v̌, w̌) =

∫
Š
v̌(x)w̌(x)dx

1 +
∫
Š
v̌(x)w̌(x)dx

− ϱd

=
1

1 +
∫
Š
v̌(x)w̌(x)dx

(∫
Š

v̌(x)(w̌(x)− ϱd)dx− ϱd
)

⩽(∗) 1

1 +
∫
Š
v̌(x)w̌(x)dx

(∫
S1

v̌(x)(w̌(x)− ϱd)dx− ϱd
)

⩽(∗∗) 1

1 +
∫
Š
v̌(x)w̌(x)dx

(∫
S1

v̌(x)(w̌(x)− ϱd)dx−
∫
S2

v̌(x)(w̌(x)− ϱd)dx

)
⩽(∗∗∗)

∫
S1

v̌(x)(w̌(x)− ϱd)dx−
∫
S2

v̌(x)(w̌(x)− ϱd)dx. (A.11)

Here, at (∗) we use that S1 ∈ M̌, at (∗∗) we use (A.10) and (∗ ∗ ∗) holds because of

(A.9).

Now, we claim there exist assortments S1 ∈ M̌ and S2 ∈ Md such that S2 ⊆ S1

and vol(S1\S2) ⩽ 1/N . To this end, let yi ∈ Bi for i ∈ [N ] and define hi as

hi := v̌(yi)
(
w̌(yi)− ϱd

)
, i ∈ [N ].

In addition, let σ : [N ] → [N ] be an ordering, such that,

hσ(1) ⩾ . . . ⩾ hσ(N),

where we break ties arbitrarily. As in Lemma 2.1, we first consider the case that

vol(Wϱd) ⩽ c. Then, we know by Lemma 2.1 that Wϱd ∈ M̌. Since w̌ is constant
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on each bin, there exists an integer n such that vol(Wϱd) = n/N . If n/N ⩽ c, then

n ⩽ K and hence Wϱ ∈ Md as well. This concludes the claim for vol(Wϱd) ⩽ c. Next,

we consider the case that vol(Wϱd) > c ⩾ K/N . Then, hσ(K) ⩾ 0 and

S1 :=

K⋃
i=1

Bσ(i) ∈ Md.

In addition, note that hσ(K+1) ⩾ 0 as well as K < N since c < 1 and define

R :=

[
σ(K + 1)− 1

N
,
σ(K + 1)− 1

N
+ c− K

N

)
⊂ Bσ(K+1).

Recall the definitions from Lemma 2.1 and note that, as v̌ and w̌ are constant on each

bin,

mϱd(ℓ) =
i

N
, ℓ ∈

(
hσ(i+1), hσ(i)

]
∩ [0,∞), i = 1, . . . , N − 1.

As a result, c = K/N implies ℓϱd = hσ(K) and R = ∅, and c > K/N implies

ℓϱd = hσ(K+1). Either way, it follows that

L+
ϱd ⊆ S1 ⊆ S1 ∪R ⊆ L+

ϱd ∪ L=
ϱd .

Since vol(S1 ∪ R) = c, it follows from Lemma 2.1 that S2 := S1 ∪ R ∈ M̌. This

concludes the claim for vol(Wϱd) > c.

From (A.11), the shown claim and the fact that w̌(x)− ϱd ⩽ 1, it follows that

r(Š, v̌, w̌)− r(Sd, v̌, w̌) ⩽
v

N
.

Proof of Lemma 2.3.

Since S ∈ AK , we know that ∫
S

v(x)dx =

∫
S

v̌(x)dx.

Therefore,

r(S, v̌, w̌)− r(S, v, w) =
1

1 +
∫
S
v(x)dx

∫
S

(
v̌(x)w̌(x)− v(x)w(x)

)
dx

⩽ ||vw − v̌w̌||1 = ||vw − v̌w + v̌w − v̌w̌||1

⩽ ||v − v̌||1 + v ||w − w̌||1,
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where we have used that w(x) ⩽ 1 and v̌(x) ⩽ v for all x ∈ [0, 1].

Proof of Theorem 2.3.

We start by showing that ||v− v̌||1 and ||w− w̌||1 are of order 1/N . For i ∈ [N ], denote

the constant bi = v̌(x) for some x ∈ Bi. Note that bi = v̌(x) for all x ∈ Bi and that

||v − v̌||1 =

∫ 1

0

|v(x)− v̌(x)|dx =

N∑
i=1

∫
Bi

|v(x)− bi|dx.

By the Mean Value Theorem, for every i ∈ [N ], there exists a ci in the closure of Bi

such that v(ci) = bi. Hence,

||v− v̌||1 =

N∑
i=1

∫
Bi

|v(x)−v(ci)|dx ⩽ L

N∑
i=1

∫
Bi

|x−ci|dx ⩽ L

N∑
i=1

1

2N2
⩽

L

2N
, (A.12)

where L := supx∈[0,1] |v′(x)|. Likewise,

||w − w̌||1 ⩽
Q

2N
,

where Q := supx∈[0,1] |w′(x)|.

Now, let ∆UCB(T ) denote the cumulative regret of UCB within the discrete MNL

model. Recall that the preference parameters v1, . . . , vN satisfy

vi =

∫
Bi

v(x)dx, i ∈ [0, 1],

and the parameters w1, . . . , wN satisfy

wi = N

∫
Bi

v(x)dx, i ∈ [0, 1].

Let S =
⋃

i∈D Bi ∈ AK for some D ⊂ [N ]. Then, the probability under v, as well as

under v̌, that a purchase from assortment S lies in Bi is

P(XS ∈ Bi) =
vi

1 +
∑

i∈D vi
,

In addition, the expected profit of assortment S ∈ AK under v̌ and w̌ is

r(S, v̌, w̌) =

∑
i∈D viwi

1 +
∑

i∈D vi
.

As a result, if S1, . . . , ST denote the offered assortment under DUCB(N) and Sd as
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in (2.17), then
T∑

t=1

Eπ

[
r(Sd, v̌, w̌)− r(St, v̌, w̌)

]
= ∆UCB(T ).

Following the steps of (2.18)–(2.21), in combination with the above and Proposi-

tion 2.2, Lemma 2.2 and Lemma 2.3, we find that, with C1 := L+ v(Q+ 1),

∆π(T ) ⩽ C1
T

N
+∆UCB(T ).

By our choice of γ, we know that ⌊γ⌋ ⩾ 1/c. Hence, N ⩾ 1/c ⩾ 1 and K ⩾ 1.

Second, γ is chosen such that v ⩽ N and therefore vi ⩽ 1 for all i ∈ [N ]. By Theorem

1 from Agrawal et al. (2019), there exists constants C2 and C3 such that

∆UCB(T ) ⩽ C2

√
NT logNT + C3N log2NT.

Since N ⩽ γT 1/3, it follows that

logNT ⩽ log γT 4/3 =
4

3
log T + log γ ⩽ C4 log T,

where C4 := 4
3 + log γ/log 2. Hence,

∆UCB(T ) ⩽ C2

√
γC4

√
T 4/3 log T + γC3C

2
4 T

1/3 log2 T.

Now we note that

log T ⩽
9

2e
T 2/9

and therefore

T 1/3 log2 T ⩽

(
9

2e

)3/2

T 2/3(log T )1/2.

Thus we obtain that ∆UCB(T ) ⩽ C5 T
2/3(log T )1/2, where

C5 := C2

√
γC4 +

(
9

2e

)3/2

γC3C
2
4 .

Next, we point out that N ⩾ (γ − 1)T 1/3 with γ ⩾ 2. Thus,

T

N
⩽

1

γ − 1
T 2/3 ⩽

1

(γ − 1)(log 2)1/2
T 2/3(log T )1/2.

From this we conclude that

∆π(T ) ⩽ C1
T

N
+ C5 T

2/3(log T )1/2 ⩽ C T 2/3(log T )1/2,
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where

C :=
C1

(γ − 1)(log 2)1/2
+ C5.

A.2.3 Proofs of the Results in Section 2.5.4

Before stating the proofs of the results in Section 2.5.4, we recollect the notations and

concepts introduced in that section. Let c ∈ (0, 0.25], s = 0.05c, δ = 0.2 and σ = 0.3.

Let K ⩾ 2 be an integer, chosen at the end of the proof of Theorem 2.4. Furthermore,

for all x ∈ [0, 1], i ∈ {1, . . . , NK}, and I ⊆ {1, . . . , NK}, let

NK = ⌊K/c⌋ , [NK ] = {1, . . . , NK},

DK = {I ⊆ [NK ] : |I| = K}, Bi =

[
c
i− 1

K
, c
i

K

)
,

w(x) = (1− s)
1− δ

1− δx
+ s, v0(x) =

s

c(w(x)− s)
,

b(x) =
1

σ
√
2π
e−x2/2σ2

, φi(x) =
2Kx

c
− 2i+ 1,

τi(x) =
c

K
b
(
φi(x)

)
, β =

c

K

1

σ
√
2π

∑
n∈Z

e−(2n−1)2/2σ2

,

εI(x) =
∑
i∈I

τi(x)− β, vI(x) = v0(x)
(
1 + εI(x)

)
.

In addition, we use the following notation throughout this section. For I ∈ DK we

write

I† :=
⋃
i∈I

Bi.

Furthermore, we define the following quantities.

H :=
1

σ
√
2π

∑
n∈Z

e−2n2/σ2

,

L :=
1

σ
√
2π

∑
n∈Z

e−(2n−1)2/2σ2

and

P := P(−1/σ ⩽ Z ⩽ 1/σ),

where Z ∼ N(0, 1). Observe that β = Lc/K.

We proceed by stating two preliminary lemmas that will be used throughout the

proofs. Lemma A.4 contains a number of inequalities related to the quantities defined

above, and Lemma A.5 shows that the optimal expected profit under v0 is precisely
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equal to s. The proof of these lemmas is given below.

Lemma A.4. Let I ⊆ [NK ]. Then

(i) for any x ∈ [0, 1], it holds that
∑
i∈I

τi(x) ⩽ H
c

K
.

(ii) for any S ∈ S and β > 0, it holds that

1.
∫
S

vI(x)dx ⩽
s

(1− s)(1− δ)
(1 +H) and

2.
∫
S

(vI(x))
2dx ⩽

s2

c(1− s)2(1− δ)2
(1 +H)

2,

(iii) for x /∈ I†, it holds that
∑
i∈I

τi(x) ⩽ β,

(iv) if |I| = K and S ∈ S, it holds that vol(I†\S) ⩾ vol(S\I†),

(v) for all i ∈ [N ];

1.
c2

2K2
P =

∫
Bi

τi(x)dx ⩽
∫ 1

0

τi(x)dx ⩽
c2

2K2
and

2.
∫ 1

0

(τi(x))
2dx ⩽

c3

4σ
√
πK3

,

(vi) for any i ∈ I, x ∈ Bi and β′ ⩾ β, it holds that |εI(x;β′)| ⩽ τi(x) + β′.

Lemma A.5. The optimal expected revenue under preference function v0 equals s:

max
S∈S

r(S, v0) = s.

Proof of Proposition 2.3.

Let

C1 :=
s(1− s)(1− δ)

c(1− s)(1− δ) + cs
and C2 :=

s2(c+ 2L)(4 +Hc)

4
(
(1− s)(1− δ) + s

)
(1− s)(1− δ)

.

Let π be a policy, T ∈ N, and let I ∈ DK . Write v(x) := vI(x), and let S∗ denote an

optimal assortment under v. Recall that S∗ also maximizes the inner maximization

problem (2.6) for ϱ = ϱ∗ = maxS∈S r(S, v). Therefore,∫
S∗
v(x)

(
w(x)− ϱ∗

)
dx ⩾

∫
I†
v(x)

(
w(x)− ϱ∗

)
dx. (A.13)
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In addition, observe that for x ∈ [0, 1]

v0(x) ⩽
s

c(1− s)(1− δ)
. (A.14)

It now follows that, for all S ∈ S,

r(S∗, v)− r(S, v) = ϱ∗ −
∫
S
v(x)w(x)dx

1 +
∫
S
v(x)dx

=
1

1 +
∫
S
v(x)dx

(
ϱ∗ −

∫
S

v(x)
(
w(x)− ϱ∗

)
dx

)
=(∗) 1

1 +
∫
S
v(x)dx

(∫
S∗
v(x)

(
w(x)− ϱ∗

)
dx−

∫
S

v(x)
(
w(x)− ϱ∗

)
dx

)
⩾(∗∗) (1− s)(1− δ)

(1− s)(1− δ) + s

(∫
S∗
v(x)

(
w(x)− ϱ∗

)
dx−

∫
S

v(x)
(
w(x)− ϱ∗

)
dx

)
⩾(∗∗∗) (1− s)(1− δ)

(1− s)(1− δ) + s

(∫
I†
v(x)

(
w(x)− ϱ∗

)
dx−

∫
S

v(x)
(
w(x)− ϱ∗

)
dx

)
.

(A.15)

Here, (∗) follows from Proposition 2.1, (∗∗) follows by (A.14), and (∗ ∗ ∗) follows by

(A.13). The terms within the large parentheses in (A.15) can be bounded from below

as∫
I†
v(x)

(
w(x)− ϱ∗

)
dx−

∫
S

v(x)
(
w(x)− ϱ∗

)
dx

=

∫
I†
v(x)

(
w(x)− s

)
dx−

∫
S

v(x)
(
w(x)− s

)
dx

− (ϱ∗ − s)

(∫
I†
v(x)dx−

∫
S

v(x)dx

)
⩾(∗) s

c

∫
I†\S

(
1 + εI(x)

)
dx− s

c

∫
S\I†

(
1 + εI(x)

)
dx (A.16)

− |ϱ∗ − s|

(∫
I†\S

v(x)dx+

∫
S\I†

v(x)dx

)
, (A.17)

where at (∗) we use that by design v(x)
(
w(x) − s

)
= s

c (1 + εI(x)). We proceed by

bounding the two terms in (A.17) from above. The absolute difference between ϱ∗

and s can be bounded from above by the L1-difference between v and v0, denoted as

||v − v0||1, as follows. For S ∈ S and ϱ ∈ [0, 1], let

I0(S, ϱ) =
∫
S

v0
(
w(x)− ϱ

)
and I(S, ϱ) =

∫
S

v
(
w(x)− ϱ

)
.
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Since w(x)− ϱ∗ ∈ [0, 1] for all x ∈ S∗, we therefore know that

I(S∗, ϱ∗)− I0(S∗, s) ⩽
∫
S∗

∣∣v(x)− v0(x)
∣∣dx

⩽
∫ 1

0

∣∣v(x)− v0(x)
∣∣dx = ||v − v0||1.

Furthermore,

I0(S∗, ϱ∗ − ||v − v0||1) ⩾ I0(S∗, ϱ∗) ⩾ I(S∗, ϱ∗)− ||v − v0||1 = ϱ∗ − ||v − v0||1.

Hence, there exists an S ∈ S such that I(S, ϱ∗ − ||v − v0||1) ⩾ ϱ∗ − ||v − v0||1 and by

(2.4) this entails s ⩾ ϱ∗ − ||v − v0||1. Likewise, we derive ϱ∗ ⩾ s − ||v − v0||1 and so

|ϱ∗ − s| ⩽ ||v − v0||1. We proceed by developing an upper bound on the L1-difference

between v and v0:∫ 1

0

∣∣v(x)− v0(x)
∣∣dx =

∫ 1

0

v0(x)
∣∣εI(x)∣∣dx

⩽
s

c(1− s)(1− δ)

∫ 1

0

∣∣εI(x)∣∣dx
⩽

s

c(1− s)(1− δ)

(∑
i∈I

∫ 1

0

τi(x)dx+ β

)

⩽(∗) s(c+ 2L)

2(1− s)(1− δ)

1

K
.

Here, (∗) is justified by Lemma A.4.(v).1. The remaining term from (A.17) is bounded

from above as∫
I†\S

v(x)dx+

∫
S\I†

v(x)dx ⩽(∗) s

c(1− s)(1− δ)

(∫
I†\S

(1 + εI(x))dx+ vol(S\I†)

)

⩽(∗∗) s

c(1− s)(1− δ)

∫
I†\S

(2 + εI(x))dx

⩽
s

c(1− s)(1− δ)

∫
I†\S

(
2 +

∑
i∈I

τi(x)

)
dx

⩽(∗∗∗) s(4 +Hc)

2(1− s)(1− δ)

Here, at (∗) we apply (A.14), (∗∗) holds since vol(S\I†) ⩽ vol(I†\S) by Lemma A.4.(iv)

and (∗ ∗ ∗) follows from Lemma A.4.(i) and K ⩾ 2. Next, consider the expression in

(A.16). Since εI(x) ⩽ 0 for x /∈ I† by Lemma A.4.(iii) and vol(S\I†) ⩽ vol(I†\S) by
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Lemma A.4.(iv), we conclude that∫
I†\S

(1 + εI(x)) dx−
∫
S\I†

(1 + εI(x)) dx

⩾
∫
I†\S

(1 + εI(x)) dx− vol(S\I†)

⩾
∫
I†\S

(1 + εI(x)) dx− vol(I†\S) =
∫
I†\S

εI(x)dx.

Hence,

r(S∗, v)− r(S, v) ⩾
s(1− s)(1− δ)

c(1− s)(1− δ) + cs

∫
I†\S

εI(x)dx

− s2(c+ 2L)(4 +Hc)

4
(
(1− s)(1− δ) + s

)
(1− s)(1− δ)

1

K
.

Applying the latter inequality to S = St, for t = 1, . . . , T , and taking the expectation

of the sum of these terms yields the desired result, since

EI

[
T∑

t=1

∫
I†\St

εI(x)dx

]
=

∫
I†

EI

[
T∑

t=1

(
1− 1{x ∈ St}

)
εI(x)dx

]

=

∫
I†

(
T − EI [k(x)]

)
εI(x)dx.

Proof of Proposition 2.4.

Let x ∈ [0, 1], I ∈ DK , i ∈ I, and J = I\{i}. It suffices to show that there is a Cc > 0

such that ∣∣∣EI [k(x)]− EJ [k(x)]
∣∣∣ ⩽ T

√
2KL(PI ||PJ), (A.18)

and

KL(PI ||PJ) ⩽ 1
2C

2
c

T

K3
. (A.19)

We first prove (A.18), using Pinsker’s inequality that states that for any probability

measures P and Q defined on the same probability space (Ω,F),

2 sup
A∈F

(
P(A)−Q(A)

)2
⩽ KL(P||Q),

or, equivalently,

sup
A∈F

∣∣∣P(A)−Q(A)
∣∣∣ ⩽√ 1

2KL(P||Q). (A.20)
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Consider the probability measures p and q on {0, . . . , T}, defined by

p(n) := PI(k(x) = n) and q(n) := PJ(k(x) = n), n ∈ {0, . . . , T}.

From the equality

sup
n=0,...,T

|p(n)− q(n)| = 1

2

T∑
n=0

|p(n)− q(n)|. (A.21)

we obtain∣∣∣EI [k(x)]− EJ [k(x)]
∣∣∣ = ∣∣∣∣∣

T∑
n=0

n(p(n)− q(n))

∣∣∣∣∣
⩽

T∑
n=0

n |p(n)− q(n)| ⩽ T

T∑
n=0

|p(n)− q(n)|

=(∗) 2T sup
n=0,...,T

|p(n)− q(n)| ⩽(∗∗) T
√

2KL(PI ||PJ),

where (∗) follows by (A.21), and (∗∗) follows by (A.20). This proves (A.18).

We now prove (A.19). Write v(x) = vI(x) and u(x) = vJ(x), for x ∈ [0, 1]. We

denote the no-purchase probabilities at time t as

pt :=
1

1 +
∫
St
v(x)dx

and qt :=
1

1 +
∫
St
u(x)dx

.

Note by Lemma A.4.(ii).1 that pt, qt ∈ [p0, 1], where

p0 :=
(1− s)(1− δ)

(1− s)(1− δ) + s(1 +H)
.

The Kullback-Leibler (KL) divergence KL(PI ||PJ) can be written as

KL(PI ||PJ ) = EI

T∑
t=1

(
pt log

pt
qt

+

∫
St

log

(
ptv(x)

qtu(x)

)
ptv(x)dx

)

= EI

T∑
t=1

(
pt log

(
1 +

pt − qt
qt

)
+

∫
St

log

(
1 +

ptv(x)− qtu(x)

qtu(x)

)
ptv(x)dx

)
.

Since log(1 + x) ⩽ x for all x > −1, we find the following upper bound:

KL(PI ||PJ ) = EI

T∑
t=1

(
pt log

(
1 +

pt − qt
qt

)
+

∫
St

log

(
1 +

ptv(x)− qtu(x)

qtu(x)

)
ptv(x)dx

)

119



Yannik Peeters

⩽ EI

T∑
t=1

(
pt
pt − qt
qt

+

∫
St

ptv(x)− qtu(x)

qtu(x)
ptv(x)dx

)

= EI

T∑
t=1

(
(pt − qt)

2

qt
+

∫
St

(
ptv(x)− qtu(x)

)2
qtu(x)

dx

)

+ EI

T∑
t=1

(
pt − qt +

∫
St

(
ptv(x)− qtu(x)

)
dx

)

= EI

T∑
t=1

(
(pt − qt)

2

qt
+

∫
St

(
ptv(x)− qtu(x)

)2
qtu(x)

dx

)

+ EI

T∑
t=1

(
pt − qt + (1− pt)− (1− qt)

)
= EI

T∑
t=1

(
(pt − qt)

2

qt
+

∫
St

(
ptv(x)− qtu(x)

)2
qtu(x)

dx

)
.

Note that qt ⩾ p0 and u(x) ⩾ 1/Ca
c for all x ∈ [0, 1], where

Ca
c :=

c(1− s)

s(1− β)
> 0.

Hence, we can bound the KL divergence further as

KL(PI ||PJ ) ⩽ EI

T∑
t=1

(
(pt − qt)

2

qt
+

∫
St

(
ptv(x)− qtu(x)

)2
qtu(x)

dx

)

⩽
1

p0
EI

T∑
t=1

(pt − qt)
2︸ ︷︷ ︸

(a)

+Ca
c

∫
St

(
ptv(x)− qtu(x)

)2
dx︸ ︷︷ ︸

(b)

 . (A.22)

We bound both (a) and (b) in (A.22) from above. Let t ∈ {1, . . . , T}. For (a), observe

that

(pt − qt)
2 =(∗)

(∫
St
(v(x)− u(x))dx

)2
(
1 +

∫
St
v(x)dx

)2 (
1 +

∫
St
u(x)dx

)2
⩽

(∫
St

(v(x)− u(x))dx

)2

⩽

(
s

c(1− s)(1− δ)

∫
St

τi(x)dx

)2

⩽(∗∗) Cb
c

c2

4K4
, (A.23)
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where

Cb
c :=

s2

c2(1− s)2(1− δ)2
,

and where (∗) holds since the cross terms cancel out and (∗∗) follows by Lemma A.4.(v).1.

We now bound (b) in (A.22) from above. Observe that∫
St

(
ptv(x)− qtu(x)

)2
dx =

∫
St

(
ptv(x)− qtv(x) + qtv(x)− qtu(x)

)2
dx

= (pt − qt)
2

∫
St

v(x)2dx (A.24)

+ 2qt(pt − qt)

∫
St

v(x)τi(x)dx (A.25)

+ q2t

∫
St

(τi(x))
2
dx. (A.26)

The integral in (A.24) can be bounded by applying Lemma A.4.(v).2. Combining

that with the bound for (pt − qt)
2 from (A.23), gives

(pt − qt)
2

∫
St

v(x)2dx ⩽ (Cb
c)

2(1 +H)
c3

4K4
.

For the term (A.25), Lemma A.4.(i) shows that τi(x) ⩽ Hc/K. Together with (A.23)

and Lemma A.4.(ii).1 we find

2qt(pt − qt)

∫
St

v(x)τi(x)dx ⩽ 2|pt − qt|
∫
St

v(x)τi(x)dx

⩽ 2|pt − qt|
(

max
x∈[0,1]

τi(x)

)∫
S

v(x)dx

⩽ 2
√
Cb

c

c

2K2

(
H
c

K
· c
√
Cb

c(1 +H)

)
= Cb

cH(1 +H)
c3

K3

Finally, we bound the term (A.26). As a consequence of Lemma A.4.(v).2, we have

q2t

∫
St

(τi(y))
2
dy ⩽

∫
St

(τi(y))
2
dy ⩽

c3

4σ
√
πK3

.

Inserting the derived upper bounds on (A.24), (A.25), (A.26) in (A.22), we obtain

KL(PI ||PJ) ⩽
1

p0
EI

T∑
t=1

(
(pt − qt)

2 + Ca
c

∫
St

(
ptv(y)− qtu(y)

)2
dy

)
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⩽
1

p0
EI

T∑
t=1

(
Cb

c

c2

4K4
+ Ca

c

(
(Cb

c)
2(1 +H)

c3

4K4
+ Cb

cH(1 +H)
c3

K3

+
c3

4σ
√
πK3

))
⩽

1

4p0

(
c2Cb

c + Ca
c

(
c3(Cb

c)
2(1 +H) + 4c3Cb

cH(1 +H) +
c3

σ
√
π

))
T

K3
.

This implies (A.19).

Proof of Theorem 2.4.

We first show that the preference functions v0 and {vI : I ∈ DK ,K ⩾ 2} satisfy

Assumption 2.1. To see this observe that, for all x ∈ [0, 1] and all c ∈ (0, 0.25], the

choice s = 0.05c and δ = 0.2 implies

v0(x) ∈
[
0.05

1− s
,
0.0625

1− s

]
⊆ [0.05, 0.07] .

Moreover, for all K ⩾ 2 and I ∈ DK we have β ⩽ L/8 ⩽ 0.0013, and therefore

vI(x) ⩾ v0(x)(1− β) ⩾ 0.04,

and Lemma A.4.(i) implies

vI(x) ⩽ v0(x)

(
1 +

H

8

)
⩽ 0.09,

for all c ∈ (0, 0.25]. Moreover, we note that

w(0)∫ 1

0
(w(x)− w(0))dx

< 9,

for all c ∈ (0, 0.25]. This shows that Assumption 2.1.(i) is satisfied with v = 0.04 and

v = 9.

We now show that v′I(·) is uniformly bounded and hence Assumption 2.1.(ii) is

satisfied as well. To this end, observe that

|v′I(x)| = |v′0(x)|

∣∣∣∣∣1 +∑
i∈I

τi(x)

∣∣∣∣∣+ |v0(x)|

∣∣∣∣∣∑
i∈I

τ ′i(x)

∣∣∣∣∣ ,
for all x ∈ [0, 1]. Therefore, by Lemma A.4.(i) it suffices to show that

∑
i∈I τ

′
i(x) is
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uniformly bounded. Note that

τ ′i(x) = − 2

σ2
φi(x)b

(
φi(x)

)
.

For all x ∈ [0, 1], let ix := ⌊Kx/c⌋. Then, x ∈ Bix for all x ∈ [0, 1], where BNK+1 :=

[0, 1]\
⋃

i∈[NK ]Bi, and φi(Bix) =
[
2(ix−i)−1, 2(ix−i)+1

)
. Since |yb(y)| is decreasing

for y ⩾ 1 and increasing for y ⩽ −1, we obtain that, for all i < ix,

0 < φi(x)b
(
φi(x)

)
⩽
(
2(ix − i)− 1

)
b
(
2(ix − i)− 1

)
,

and for all i > ix,

0 < −φi(x)b
(
φi(x)

)
⩽
(
2(ix − i) + 1

)
b
(
2(ix − i) + 1

)
.

From this we conclude that∣∣∣∣∣∑
i∈I

τ ′i(x)

∣∣∣∣∣ =
∣∣∣∣∣∑
i∈I

2

σ2
φi(x)b

(
φi(x)

)∣∣∣∣∣
⩽

2

σ2

(∣∣φix(x)b
(
φix(x)

)∣∣+ ix−1∑
i=1

φi(x)b
(
φi(x)

)
−

NK∑
i=ix+1

φi(x)b
(
φi(x)

))

⩽
2

σ2

(∣∣φix(x)b
(
φix(x)

)∣∣+ ix−1∑
i=1

(
2(ix − i)− 1

)
b
(
2(ix − i)− 1

)
−

NK∑
i=ix+1

(
2(ix − i) + 1

)
b
(
2(ix − i) + 1

))

⩽
2

σ2

(
σ√
e
+ 2

∞∑
n=1

(2n− 1)b
(
2n− 1

))
<∞.

As a result, v0 and {vI : I ∈ DK ,K ⩾ 2} satisfy Assumption 2.1. This implies

∆π(T ) = sup
v∈V

∆π(T, v)

⩾
1

|DK |
∑

I∈DK

∆π(T, vI)

⩾
1

|DK |
∑

I∈DK

(
C1

∫
I†
(T − EI [k(x)])εI(x)dx− C2

T

K

)
, (A.27)

where C1 and C2 are as in Proposition 2.3.
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The integral
∫
I† εI(x)dx can be bounded from below as∫

I†
εI(x)dx =

∑
i∈I

∫
I†
τi(x)dx− βc =

∑
i∈I

∫
Bi

τi(x)dx− βc

⩾(∗) P
c2

2K
− L

c2

K
=
c2(P − 2L)

2K
,

where at (∗) we used Lemma A.4.(v).1. We use this lower bound to analyze (A.27).

To this end, let C3 := c2C1(P − 2L)/2. Then

∆π(T ) ⩾ (C3 − C2)
T

K
− C1

|DK |
∑

I∈DK

∫
I†

EI [k(x)]εI(x)dx︸ ︷︷ ︸
(a)

. (A.28)

We now bound the term (a) in (A.28) from above, using Proposition 2.4. Let Cc

denote the constant from Proposition 2.4, and let I ∈ DK and J = I\{i} for some

i ∈ I. Then, for x ∈ Bi,

EI [k(x)]εI(x) ⩽

(
EJ [k(x)] + Cc

(
T

K

)3/2
)
|εI(x)|. (A.29)

To apply (A.29) in order to bound (a) in (A.28), we change the order of summation

and integration and rewrite the summation itself. Let U =
⋃NK

i=1Bi denote the union

of all bins, and for all x ∈ U , let ix = ⌊Kx/c⌋ again denote the index of the bin Bix

such that x ∈ Bix , for all x ∈ [0, 1]. Note that for each x ∈ U that the mapping

I 7→ I\{ix} between

Ex
K := {I ∈ DK : x ∈ I†} and F x

K−1 := {J ∈ DK−1 : x /∈ J†}

is a bijection. Hence,∑
I∈DK

∫
I†

EI [k(x)]εI(x)dx =

∫
x∈U

∑
I∈Ex

K

EI [k(x)]εI(x)dx

=

∫
x∈U

∑
J∈Fx

K−1

EJ∪{ix}[k(x)]εJ∪{ix}(x)dx

⩽(∗)
∫
x∈U

∑
J∈Fx

K−1

EJ [k(x)]
∣∣εJ∪{ix}(x)

∣∣dx (A.30)

+ Cc

(
T

K

)3/2 ∫
x∈U

∑
J∈Fx

K−1

∣∣εJ∪{ix}(x)
∣∣dx, (A.31)
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where at (∗) we apply (A.29). We now bound (A.30) and (A.31) from above. For

(A.30), |εI(x)| is bounded uniformly in x by Lemma A.4.(i):∫
x∈U

∑
J∈Fx

K−1

EJ [k(x)]
∣∣εJ∪{ix}(x)

∣∣dx ⩽ (H + L)
c

K

∫
x∈U

∑
J∈Fx

K−1

EJ [k(x)]dx

= (H + L)
c

K

∑
J∈DK−1

∫
x∈U\J†

EJ [k(x)]dx

⩽ (H + L)
c

K

∑
J∈DK−1

∫ 1

0

EJ [k(x)]dx

⩽ (H + L)
c

K

∑
J∈DK−1

T∑
t=1

EJ [vol(St)]

⩽ (H + L)
c2

K
|DK−1|T.

We now consider (A.31). Observe that |εI(x)| is bounded locally on Bi:∫
x∈U

∑
J∈Fx

K−1

∣∣εJ∪{ix}(x)
∣∣dx =

∑
J∈DK−1

∫
x∈U\J†

∣∣εJ∪{ix}(x)
∣∣dx

=
∑

J∈DK−1

∑
i/∈J

∫
Bi

|εJ∪{i}(x)|dx ⩽(∗)
∑

J∈DK−1

∑
i/∈J

∫
Bi

(
τi(x) + β

)
dx

⩽(∗∗)
∑

J∈DK−1

∑
i/∈J

c2(1 + 2L)

2K2
=
c2(1 + 2L)

2K2
|DK−1|(NK −K + 1),

where we apply Lemma A.4.(vi) at (∗) and Lemma A.4.(v).1 at (∗∗). After inserting

these upper bounds for (A.30) and (A.31) into (A.28), we conclude

∆π(T ) ⩾ (C3 − C2)
T

K

− C1

|DK |

(
(H + L)

c2

K
|DK−1|T +

c2Cc(1 + 2L)

2
|DK−1|(N −K + 1)

T 3/2

K7/2

)
.

Rewriting the expression above yields

∆π(T ) ⩾

(
C3 − C2 −

c2C1 (H + L) |DK−1|
|DK |

)
T

K

− c2C1Cc(1 + 2L)|DK−1|
2|DK |

(N −K + 1)
T 3/2

K7/2
.

Next, note that
|DK−1|
|DK |

=
K

NK −K + 1
,
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and therefore

∆π(T ) ⩾

(
C3 − C2 −

(H + L) c2C1K

NK −K + 1

)
︸ ︷︷ ︸

(b)

T

K
− c2C1Cc(1 + 2L)

2

T 3/2

K5/2
. (A.32)

We abbreviate the constant C4 := c2C1Cc(1 + 2L)/2. The factor (b) in front of the

T/K term above can be bounded further from below. To this end, note that

NK −K + 1 ⩾

(
1

c
− 1

)
K,

and therefore (A.32) implies

∆π(T ) ⩾

(
C3 − C2 −

(H + L) c3C1

1− c

)
T

K
− C4

T 3/2

K5/2
.

Let

C6 :=
P − 2L

2
− (H + L)c

1− c
,

and

C5 := C3 − C2 −
(H + L)c3C1

1− c
= c2C1C6 − C2.

By computation and the assumption c ∈ (0, 0.25] we obtain C6 ⩾ (P − 2L)/2− (H +

L)/3 ⩾ 0.042 > 0. In addition, our choice of s = 0.05c implies

4c(1− s)2(1− δ)2C6 > s(c+ 2L)(4 +Hc),

for c ∈ (0, 0.25] and therefore C5 = c2C1C6 − C2 > 0. Now, choose

γ =

(
5C4

C5

)2/3

and K = max
{
2,
⌈
γT 1/3

⌉}
.

For T > 1/γ3, we know that K =
⌈
γT 1/3

⌉
as well as K < γT 1/3 + 1 < 2γT 1/3 and

K ⩾ γT 1/3. Therefore, for T > 1/γ3

∆π(T ) ⩾
C5

2γ
T 1/3 − C4

γ5/2
T 1/3

=
(

1
2

(
1
5

)2/3 − ( 15)5/3) C5/3
5

C
2/3
4

T 2/3.

For T such that 1 ⩽ T ⩽ 1/γ3, we know that K = 2 as well as
√
T ⩽ C5/5C4 and
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thus

∆π(T ) ⩾
C5

2
T −

√
2C4

8
T 3/2

=

(
C5

2
−

√
2C4

8

√
T

)
T

⩾
(

1
2 −

√
2

40

)
C5 T ⩾

(
1
2 −

√
2

40

)
C5 T

2/3.

Therefore, we have shown the desired result for

C = min

{(
1
2 −

√
2

40

)
C5,

(
1
2

(
1
5

)2/3 − ( 15)5/3) C5/3
5

C
2/3
4

}
> 0.

Proof of Lemma A.4.

For x ∈ [0, 1], let i0 ∈ [NK ] y = 2Kx/c− 2i0 + 1. Then, we find that (i) holds due to∑
i∈I

τi(x) =
c

K

1

σ
√
2π

∑
i∈I

exp
(
− 1

2σ2 (y + 2i0 − 2i)2
)

⩽
c

K

1

σ
√
2π

∑
n∈Z

exp
(
− 1

2σ2 (y − 2n)2
)

⩽
c

K

1

σ
√
2π

∑
n∈Z

exp

(
−2n2

σ2

)
= H

c

K
.

Observe that (ii) is a corollary of (i), since v0(x) ⩽ s
c(1−s)(1−δ) for all x ∈ [0, 1], and

therefore

vI(x) ⩽
s

c(1− s)(1− δ)

(
1 +

∑
i∈I

τi(x)

)
.

For (iii), let x /∈ I† and ix := ⌊Kx/c⌋ such that x ∈ Bix , where BNK+1 :=

[0, 1]\
⋃

i∈[NK ]Bi. Note that τi is either increasing or decreasing on Bix for i ̸= ix.

Then,

τi(x) ⩽ max

{
τi

(
c
ix − 1

K

)
, τi

(
c
ix
K

)}
=

c

K
max

ℓ∈{−1,1}

{
b
(
2(ix − i) + ℓ

)}
,

for i ̸= ix. From this, we derive for any x /∈ I†,∑
i∈I

τi(x) ⩽
c

K

1

σ
√
2π

∑
i∈I

max
ℓ∈{−1,1}

{
exp

(
− 1

2σ2
(2(ix − i) + ℓ)2

)}
⩽

c

K

1

σ
√
2π

∑
n∈Z

exp

(
− 1

2σ2
(2n− 1)2

)
,
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which implies (iii). For (iv), we observe that by vol(I†) = c,

c = vol(I†) = vol(I† ∩ St) + vol(I†\St) = vol(St)− vol(St\I†) + vol(I†\St),

Since vol(St) ⩽ c, (iv) follows. Item (v) is derived by straightforward computation:

for both results (v).1 and (v).2 we apply the variable substitution y = 2Kx/c− 2i+1

to obtain∫ 1

0

τi(x)dx =
c

K

∫ 1

0

b

(
2Kx

c
− 2i+ 1

)
dx

⩽
c

K

∫
R
b

(
2Kx

c
− 2i+ 1

)
dx =

c2

2K2

∫
R
b(y)dy =

c2

2K2
.

For the equality in (v).1, we find that∫
Bi

τi(x)dx =
c

K

∫
Bi

b

(
2Kx

c
− 2i+ 1

)
dx

=
c2

2K2

∫
[−1,1]

b(y)dy =
c2

2K2
P.

For the integral in (v).2, we derive∫
[0,1]

(τi(x))
2dx =

c2

K2

∫
Bi

(
b

(
2Kx

c
− 2i+ 1

))2

dx

⩽
c2

K2

∫
R

(
b

(
2Kx

c
− 2i+ 1

))2

dx

=
c3

2K3

∫
R
(b (y))

2
dx =

c3

4σ
√
πK3

.

Finally, for (vi) we point out that as a corollary of (iii), for i ∈ I, β′ ⩾ β, and x ∈ Bi,

−β′ ⩽ εI\{i}(x;β
′) ⩽ 0,

since x /∈ (I\{i})†. Hence,

|εI(x;β′)| =
∣∣τi(x) + εI\{i}(x;β

′)
∣∣ ⩽ τi(x) +

∣∣εI\{i}(x;β′)
∣∣ ⩽ τi(x) + β′.

Proof of Lemma A.5.

For any ϱ ∈ [0, 1− δ] and any x ∈ [0, 1] it holds that w(x) ⩾ 1− δ ⩾ ϱ and therefore

vol(Wϱ) = vol({x ∈ [0, 1] : w(x) ⩾ ϱ}) = 1. In particular this implies that vol(Sϱ) = c,

for all ϱ ∈ [0, 1 − δ], where Sϱ is a maximizer of (2.6). Now, let ϱ = s. Since

128



A.2 MATHEMATICAL PROOFS FOR SECTION 2.5

s ∈ [0, 1− δ], it follows that

I(Sϱ, ϱ) =

∫
Sϱ

v0(x)
(
w(x)− ϱ

)
dx =

s

c

∫
Sϱ

w(x)− ϱ

w(x)− s
dx = s

vol(Sϱ)

c
= ϱ,

and therefore ϱ∗ = s by Proposition 2.1.

A.2.4 Proofs of the Results in Section 2.5.6

In this section, abbreviate the expectation value and probability Eπ[ · ] and Pπ( · ) as

E[ · ] and P( · ), where we suppress the notation that these two notions depend on

policy π = KDEP(M).

Proof of Proposition 2.5.

Define

I(S, ϱ) =
∫
S

v(x)(w(x)− ϱ)dx and Î(S, ϱ) :=
∫
S

v̂(x)(w(x)− ϱ)dx

for S ∈ S and ϱ ∈ R. Note that these definitions allow for negative values of ϱ (as

opposed to (2.6)). Next, denote the L1-difference between v and v̂ as δ := ||v − ṽ||1.

For ϱ ∈ R, let Ŝϱ be the maximizer of Î(·, ϱ) over S, that is,

Î(Ŝϱ, ϱ) = max
S∈S

Î(S, ϱ),

Then, let ϱ∗ and ϱ̂ solve the fixed-point equations

ϱ = I(Sϱ, ϱ) and ϱ = Î(Ŝϱ, ϱ)

respectively. Note that Ŝϱ̂ is an optimal assortment under v̂ by Proposition 2.1.

Hence, we may assume that Ŝ = Ŝϱ̂. Also, we have 0 ⩽ w(x) − ϱ̂ ⩽ 1 for all x ∈ Ŝ

and therefore,

I(Ŝ, ϱ̂)− Î(Ŝ, ϱ̂) =
∫
Ŝ

v(x)(w(x)− ϱ̂)dx−
∫
Ŝ

v̂(x)(w(x)− ϱ̂)dx

⩽
∫
Ŝ

|v(x)− v̂(x)|dx ⩽ δ.

Now, we find that

I(Ŝ, ϱ̂− δ) ⩾ I(Ŝ, ϱ̂) ⩾ Î(Ŝ, ϱ̂)− δ = ϱ̂− δ. (A.33)
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Hence, there exists an S ∈ S such that I(S, ϱ̂ − δ) ⩾ ϱ̂ − δ, which by (2.4) entails

ϱ∗ ⩾ ϱ̂ − δ. Likewise, we derive ϱ̂ ⩾ ϱ∗ − δ = r(S∗, v) − δ. By rewriting (A.33) we

obtain ∫
Ŝ

v(x)w(x)dx ⩾ (ϱ̂− δ)

(
1 +

∫
Ŝ

v(x)dx

)
.

Hence, we may conclude

r(Ŝ, v) =

∫
Ŝ
v(x)w(x)dx

1 +
∫
Ŝ
v(x)dx

⩾ ϱ̂− δ ⩾ r(S∗, v)− 2δ.

Proof of Proposition 2.6.

We start by showing the rate of convergence of α̂i as in (2.27). Let p = pi and

p̂ = |Ei|/M . Define p− := p− 1−p
M and

g(x) :=
1− x

x+ 1/M
, x ∈ [0, 1].

Note that αi = g(p−) and α̂i = g(p̂). Let δ = 3
4 min{p, 1 − p}. Claim: g′(x) is

bounded for x such that |p−−x| < δ. Since g is differentiable, convex and decreasing

on Iδ := [p−− δ, p−+ δ], the maximum value of g′ is at attained at the left edge of Iδ;

|g′(x)| ⩽ |g′(p− − δ)| = 1 + 1/M

(p− δ)2
⩽

32

p2
.

Here in the final inequality above, we used that p−δ ⩾ 1
4p. Next, note that [p−ε, p+

ε] ⊂ Iδ if M ⩾ 1−p
δ−ε . This is guaranteed since

1− p

δ − ε
⩽

1

4p
⩽Mi ⩽M.

As a result, if the event E applies, then p̂ ∈ Iδ and

|αi − α̂i| = |g(p−)− g(p̂)| ⩽ 32

p2
|p− − p̂| ⩽ 32

p2

(
|p− p̂|+ 1

M

)
. (A.34)

The expected value of |p− p̂| can be bounded from above by Hoeffding’s inequality;

E
[
|p− p̂|

∣∣ E ] ⩽ E
[
|p− p̂|

]
=

∫ ∞

0

P(|p− p̂| ⩾ x)dx

⩽
∫ ∞

0

2e−2Mx2

dx =

√
π√
2M

,
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which concludes (2.27) for

C1 = 32(1 + cv)2
(√

π√
2
+ 1

)
since p ⩾ 1/(1 + cv).

Regarding the convergence rate of f̂i(·) as in (2.28), we will first verify the claim

that for some constant C4 and n ⩾ 4 it holds that

E
[∫

x∈Si

(
fi(x)− f̂i(x)

)2
dx

∣∣∣∣ |Ai| = n

]
⩽ C4

log(n)

n
. (A.35)

We introduce the compact notation Ei,n[ · ] = E
[

·
∣∣ |Ai| = n

]
. Note that the

(conditional) mean integrated squared error can be written as two components as

Ei,n

[∫
x∈S

(
fi(x)− f̂i(x)

)2
dx

]
=

∫
x∈S

b2(x)dx+

∫
x∈S

σ2(x)dx, (A.36)

where

bi(x) := Ei,n

[
f̂i(x)

]
− fi(x) and σ2

i (x) := Ei,n

[(
f̂i(x)− Ei,nf̂i(x)

)2]
.

Also x ∈ Si we define the following recurring constant

Cx :=
8

π
·


√

h
x−a , for x ∈ (a, a+ h),

1, for x ∈ [a+ h, b− h],√
h

b−x , for x ∈ (b− h, b),

Now, showing (A.35) relies on an auxiliary result, which is given in the lemma below.

Lemma A.6. Let h ∈ (0, c2 ] and β ⩾ 1
2 . Let Ki

x(·) be a Legendre kernel for Si

of order ℓ = [β]. Then, there exist uniform constants Cb and Cσ such that for all

x ∈ (ai, bi)

b2i (x) ⩽ CbCx h
2β and σ2

i (x) ⩽ CσCx
β

nh
.

Using the lemma above, note that Cx is integrable on (a, b) with respect to x:∫ b

a

Cxdx =
8

π

(
2h+ b− a− 2h+ 2h

)
⩽

16c

π
.
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Therefore, we can use that the local bounds from Lemma A.6:

Ei,n

[∫
x∈Si

(
fi(x)− f̂i(x)

)2
dx

]
=

∫
x∈Si

b2i (x)dx+

∫
x∈Si

σ2
i (x)dx

⩽

(
Cbh

2β + Cσ
β

nh

)∫ b

a

Cxdx

⩽
16c

π

(
Cbh

2β + Cσ
β

nh

)
⩽

16c

π
max{Cb, Cσ}

(
h2β +

β

nh

)
, (A.37)

Now, note that h∗ ∈
[

c
2e ,

1
e

]
and since n ⩾ 4

β∗ =
1

2
log(−2n log h∗)− 1

2
⩾

1

2
log 8− 1

2
= 0.54 >

1

2
.

Filling in h = h∗ and β = β∗ in the expression in (A.37) we find that

(h∗)2β
∗
+

β∗

nh∗
=

1

nh∗

(
log n+ log

(
− 2 log h∗

)
− 4 log h∗ − 1

)
⩽

2e

c

1

n

(
log n+ C5

)
⩽

2e

c
(1 + C5)

log n

n
,

where

C5 = log
(
−2 log

( c
2e

))
− 4 log

c

2e
− 1.

So, we have shown (A.35) with

C4 =
32e

π
(1 + C5)max{Cb, Cσ}.

Given (A.35), we note that the occurrence of the clean event implies the event

Bi :=
{
(1− pi − εi)M < |Ai| < (1− pi + εi)M

}
.

Let n0 := ⌈(1− pi − ε)M⌉ and n1 := ⌊(1− pi + ε)M⌋. Note that n0 ⩾ 4 since

(1− pi + ε)M ⩾
1

2
(1− pi)M ⩾

1

2
(1− pi)Mi ⩾

7

2
.

As a consequence,

E
[∫

x∈Si

(
fi(x)− f̂i(x)

)2
dx

∣∣∣∣ Bi

]
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=

n1∑
n=n0

E
[∫

x∈Si

(
fi(x)− f̂i(x)

)2
dx

∣∣∣∣ |Ai| = n

]
· P(|Ai| = n)

⩽ max
n=n0,...,n1

E
[∫

x∈Si

(
fi(x)− f̂i(x)

)2
dx

∣∣∣∣ |Ai| = n

]
⩽ C4

log n0
n0

⩽
2C4

1− pi
· logM

M
.

Thus, we conclude that (2.28) holds since

E
[∫

x∈Si

(
fi(x)− f̂i(x)

)2
dx

∣∣∣∣ E ] = E
[
E
[ ∫

x∈Si

(
fi(x)− f̂i(x)

)2
dx

∣∣∣∣ Bi

]∣∣∣∣ E s]
⩽ C2

logM

M
,

with

C2 := 2C4
1 + cv

cv
.

For showing (2.29), note that, for all x ∈ [0, 1], we can write v(x) as a weighted sum

over the test assortments, i.e.,

v(x) =
1

k(x)

J∑
i=1

αifi(x),

Then,

|v(x)− v̂(x)| ⩽ 1

k(x)

J∑
i=1

∣∣∣αifi(x)− α̂if̂i(x)
∣∣∣

=
1

k(x)

J∑
i=1

∣∣∣αifi(x)− α̂ifi(x) + α̂ifi(x)− α̂if̂i(x)
∣∣∣

⩽
J∑

i=1

|αi − α̂i| fi(x) +
J∑

i=1

α̂i

∣∣∣fi(x)− f̂i(x)
∣∣∣ . (A.38)

Note that by (A.34) we know that on E

α̂i ⩽ αi +
64

p2i
⩽ cv +

64

(1 + cv)2
=: C6.

Then, by integrating (A.38) and applying the Cauchy-Schwarz inequality, we find that

on E∫ 1

0

|v(x)− v̂(x)|dx ⩽
J∑

i=1

|αi − α̂i|+ C6

J∑
i=1

∫
x∈Si

∣∣∣fi(x)− f̂i(x)
∣∣∣dx
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⩽
J∑

i=1

|αi − α̂i|+
√
cC6

J∑
i=1

(∫
x∈Si

(
fi(x)− f̂i(x)

)2
dx

)1/2

.

(A.39)

Let Ecl[ · ] denote the conditional expectation given the clean event. By taking the ex-

pectation of (A.39), conditioned on the clean event, and applying Jensen’s inequality

for concave functions, we find the following upper bound:

Ecl

[
||v − v̂||1

]
⩽

J∑
i=1

Ecl

[
|αi − α̂i|

]
+
√
cC6

J∑
i=1

(
Ecl

[ ∫
x∈Si

(
fi(x)− f̂i(x)

)2
dx
])1/2

⩽ C1J
1√
M

+
√
cC2 C6J

(logM)1/2

M1/2

⩽ J
(
C1 +

√
cC2 C6

) (logM)1/2

M1/2
.

Since J ⩽ 1 + 1/c we conclude the proof for

C3 :=

(
1 +

1

c

)(
C1 +

√
cC2 C6

)
.

Proof of Theorem 2.5.

Let M0 := maxi{ 1
pi
, 7
1−pi

}. Note that M =
⌊
T 2/3/J

⌋
for the number test assortments

J , and that JM ⩽ T 2/3 ⩽ T . For now, assume that T ⩾ (J(M0 + 1))3/2. Then, it

holds that

M ⩾
T 2/3

J
− 1 ⩾

(
1− 1

M0 + 1

)
T 2/3

J
⩾M0.

Now, note that by Hoeffding’s inequality we know that for each i ∈ {1 . . . , J} that

P(Bi) ⩾ 1− 2e−2ε2iM .

From this the probability that the clean event does not occur can be bounded from

above by Boole’s inequality:

P(Ec) = P

(
J⋃

i=1

Bc
i

)
⩽

J∑
i=1

P (Bc
i ) ⩽ 2

J∑
i=1

e−2ε2iM ⩽
1√
M

J∑
i=1

1√
2εi

.

Next we note that

pi ⩾
1

1 + cv
1− pi ⩾

cv

1 + cv
. (A.40)
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Therefore, 1/εi ⩽ C7, where

C7 := 2(1 + cv)max

{
1,

1

cv

}
.

Hence,

P(Ec) ⩽
√
2JC7

1√
M
. (A.41)

Now, recall that r(S) ⩽ 1 for any S ∈ S. We split E
[
r(S∗)− r(Ŝ)

]
into the contribu-

tions due to two complementary events;

E
[
r(S∗)− r(Ŝ)

]
= E

[
r(S∗)− r(Ŝ)

∣∣∣ E] · P(E) + E
[
r(S∗)− r(Ŝ)

∣∣∣ Ec
]
· P(Ec)

⩽ E
[
r(S∗)− r(Ŝ)

∣∣∣ E]+ P(Ec).

Now, we can apply (A.41) and Propositions 2.5 and 2.6. Let C3 denote the constant

as in Proposition 2.6. Then,

E
[
r(S∗)− r(Ŝ)

]
⩽ E

[
r(S∗)− r(Ŝ)

∣∣∣ E]+√
2JC7

1√
M

⩽ 2E
[
||v − v̂||1

∣∣∣ E]+√
2JC7

1

M1/2

⩽
(
2C3 +

√
2JC7

) (logM)1/2

M1/2
,

Therefore, the exploitation regret can be bounded from above as

(T − JM)E
[
r(S∗)− r(Ŝ)

]
⩽ (2C3 +

√
2JC7)

T (logM)1/2

M1/2
.

Also, the exploration regret can be bounded as

M

J∑
i=1

E
[
r(S∗)− r(Si)

]
⩽ JM.

Hence, for T ⩾ (J(M0 + 1))3/2

∆π(T, v) ⩽ JM + (2C3 +
√
2JC7)

T (logM)1/2

M1/2

⩽ T 2/3 + (2C3 +
√
2JC7)J

1/2 T 2/3
(
2
3 log T − log J

)1/2
⩽
(
1 + 2

3 (2C3 +
√
2JC7)J

1/2
)
T 2/3(log T )1/2.
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On the other hand, if 2 ⩽ T < (J(M0 + 1))3/2 we conclude that

∆π(T, v) ⩽ T ⩽ (J(M0 + 1))3/2

⩽
(J(M0 + 1))3/2

22/3(log 2)1/2
T 2/3(log T )1/2.

Finally, note that J is bounded from above by 1 + 1/c and by (A.40)

M0 ⩽ (1 + cv)max

{
1,

7

cv

}
=: C8.

Therefore, we have shown the upper bound with

C = max

{
1 + 2

3

(
2C3 +

√
2(1 + 1

c )C7

)
(1 + 1

c )
1/2,

(
(1 + 1

c )(C8 + 1)
)3/2

22/3(log 2)1/2

}
.

Proof of Lemma A.6.

We start by showing that the first ℓ moments of Ki
x(·) disappear, that is,

∫
u∈Ii

x

ujKi
x(u)du =

 1 for j = 0,

0 for j = 1, . . . , ℓ.
(A.42)

Note that T i
x(u) := γixu + ζix maps Iix into [−1, 1]. Since φq

(
T i
x(·)
)

is a polynomial

of degree q, there exist coefficients bqj for j ⩽ ℓ and q = 0, . . . , j such that, for all

u ∈ Iix,

uj =

j∑
q=0

bqjφq

(
T i
x(u)

)
.

By setting v = T i
x(u), we obtain dv = γixdu and, since ζix = T i

x(0),∫
u∈Ii

x

ujKi
x(u)du =

j∑
q=0

ℓ∑
k=0

γix

∫
u∈Ii

x

bqjφq

(
T i
x(u)

)
φk(ζ

i
x)φk

(
T i
x(u)

)
du

=

j∑
q=0

ℓ∑
k=0

bqjφk(ζ
i
x)

∫
v∈[−1,1]

φq(v)φk(v)dv

=(∗)
j∑

q=0

bqjφq

(
T i
x(0)

)
= 0 j .

In (∗) we use the fact that the Legendre polynomials form an orthonormal basis in

L2([−1, 1]).

Next, we show two local upper bounds, which are used for bounding the bias and
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variance component as in (A.36). These upper bounds are∫
u∈Ii

x

Ki
x(u)

2du ⩽ Cxℓ, (A.43)

and ∫
u∈Ii

x

|u|β |Ki
x(u)|du ⩽

√
Cx. (A.44)

By the orthonormality of the Legendre polynomials {φj}j⩾0 we obtain∫
u∈Ii

x

Ki
x(u)

2du =

ℓ∑
j=0

γix
(
φj(ζ

i
x)
)2

for every x ∈ [ai, bi]. We can bound the γix
(
φj(ζ

i
x)
)2 term as follows. By Theorem

7.3.3 from Szegö (1939) we know that for all j ⩾ 1 and u ∈ (−1, 1)

(
1− u2

)1/4∣∣φj(u)
∣∣ ⩽√ 2

π
·

√
j + 1

j
,

and, as a consequence,

(
φj(u)

)2
⩽

2

π
√
1− u2

· j + 1

j
⩽

4

π
√
1− u2

.

Therefore, for all j ⩾ 0 and x ∈ (a, b),

γix
(
φj(ζ

i
x)
)2

⩽
1

2
Cx.

Now, we obtain (A.43) by∫
u∈Ii

x

Ki
x(u)

2du ⩽
ℓ+ 1

2
Cx ⩽ Cxℓ.

Now, (A.44) follows from (A.43) and the Cauchy-Schwarz inequality:(∫
u∈Ii

x

|u|β |Ki
x(u)|du

)2

⩽
∫
u∈Ii

x

|u|2βdu
∫
u∈Ii

x

Ki
x(u)

2du

⩽ 2

∫
u∈[0,1]

u2βduCxℓ =
2ℓ

2β + 1
Cx ⩽ Cx.

The upper bound for bias component is now obtained as follows. Denote J i
x :=
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[
−x−ai

h , bi−x
h

]
. Then, J i

x ⊇ Iix and by a change of variable u = z−x
h we find

bi(x) =
1

h

∫
z∈Si

Ki
x

(
z − x

h

)
fi(z)dz − fi(x)

=

∫
u∈Ji

x

Ki
x (u) fi(x+ uh)du−

∫
u∈Ii

x

Ki
x(u)fi(x)du

=

∫
u∈Ii

x

Ki
x (u) fi(x+ uh)du−

∫
u∈Ii

x

Ki
x(u)fi(x)du

=

∫
u∈Ii

x

Ki
x (u)

(
fi(x+ uh)− fi(x)

)
du.

Now, we point out that

fi(x+ uh) = fi(x) + uhf
(1)
i (x) + . . .+

(uh)ℓ

ℓ!
f
(ℓ)
i (x+ τuh)

for some τ ∈ [0, 1]. Since Ki
x(·) is of order ℓ, we obtain by (A.42)

bi(x) =

∫
u∈Ii

x

Ki
x(u)

(uh)ℓ

ℓ!
f
(ℓ)
i (x+ τuh)du

=

∫
u∈Ii

x

Ki
x(u)

(uh)ℓ

ℓ!
f
(ℓ)
i (x+ τuh)du− hℓf

(ℓ)
i (x)

ℓ!

∫
u∈Ii

x

uℓKi
x(u)du

=

∫
u∈Ii

x

Ki
x(u)

(uh)ℓ

ℓ!

(
f
(ℓ)
i (x+ τuh)− f

(ℓ)
i (x)

)
du.

Now, we denote

C9 := sup
v∈V1,ℓ∈N,y∈(0,1)

∣∣∣∣ v(ℓ)(y)(ℓ+ 1)!

∣∣∣∣ and Cb :=
C2

9

(cv)2
,

where we note that the constant C9 is the same constant as in Assumption 2.2.

Moreover, note that αi ⩾ cv and thus the ℓ-th derivative of fi is Lipschitz continuous

with constant
√
Cbℓ! by Assumption 2.2. Hence, by (A.44),

|bi(x)| ⩽
∫
u∈Ii

x

|Ki
x(u)|

|uh|ℓ

ℓ!

∣∣∣f (ℓ)i (x+ τuh)− f ℓi (x)
∣∣∣du

⩽
√
Cb

∫
u∈Ii

x

|Ki
x(u)||uh|ℓ|τuh|du

⩽
√
Cb

∫
u∈Ii

x

|Ki
x(u)||uh|ℓ|τuh|β−ℓdu ⩽

√
CbCxh

β .

Squaring both sides of this final inequality, we obtain the result. Now, we consider

the bound of the variance component. Let Z1, . . . , Zn be independent fi-distributed
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random variables. Then, for k = 1, . . . , n, we define

ηk(x) = Ki
x

(
Zk − x

h

)
− Ei,n

[
Ki

x

(
Zk − x

h

)]
and find that these random variables are iid with mean zero. Now, we denote the

constant

Cσ :=
2v

cv
.

Next, we apply the same change of variables as before; u = z−x
h . Then, since fi(x) ⩽

Cσ, we can bound the expected squared value of ηk, for k = 1, . . . , n, locally in

x ∈ (ai, bi) by (A.43) as

Ei,n

[
ηk(x)

2
]
= Ei,n

[
Ki

x

(
Z1 − x

h

)2
]
=

∫
z∈Si

Ki
x

(
z − x

h

)2

fi(z)dz

⩽
Cσh

2

∫
u∈Ii

x

Ki
x(u)

2du ⩽
Cσ Cx

2
h ℓ.

Hence,

σ2
i (x) = Ei,n

( 1

nh

n∑
k=1

ηk(x)

)2
 =

1

nh2
Ei,n

[
η1(x)

2
]
⩽
Cσ Cx

2
· ℓ

nh
,⩽ Cσ Cx

β

nh
,

since ℓ ⩽ β + 1
2 ⩽ 2β.
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Appendix B

B.1 Mathematical Proofs for Section 3.3

B.1.1 Proofs of the Results in Section 3.3.2

Throughout this section we abbreviate the expectation Eπ
v [ · ] depending on v ∈ V

and π = SAP(α, β) as E[ · ]. In addition, recall that Sϱ = {i ∈ [N ] : wi ⩾ ϱ} with

ϱ ∈ [0, 1].

Proof of Lemma 3.1

First, observe that

E
[
(ϱ∗ − ϱt+1)

2
∣∣ ϱt ]

= E
[
(ϱ∗ − ϱt − at(wYt − ϱt))

2 ∣∣ ϱt ]
= E

[
(ϱ∗ − ϱt)

2 − 2at(ϱ
∗ − ϱt)(wYt

− ϱt) + a2t (wYt
− ϱt)

2
∣∣ ϱt ]

⩽ (ϱ∗ − ϱt)
2 − 2at(ϱ

∗ − ϱt)(h(ϱt)− ϱt) + a2t . (B.1)

For bounding the cross term in (B.1), first suppose that ϱt < ϱ∗. Then, we define

I(ϱ) as

I(ϱ) =
∑
i∈Sϱ

vi(wi − ϱ), ϱ ∈ [0, 1].

Note that ϱ∗ = I(ϱ∗) since ϱ∗ = r(Sϱ∗ , v) and note that Sϱ∗ ⊆ Sϱt
. Therefore,

I(ϱt) =
∑
Sϱ∗

vi(wi − ϱt) +
∑

Sϱt\Sϱ∗

vi(wi − ϱt)

=
∑
Sϱ∗

vi(wi − ϱ∗) + (ϱ∗ − ϱt)
∑
Sϱ∗

vi +
∑

Sϱt\Sϱ∗

vi(wi − ϱt)
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= ϱ∗ + (ϱ∗ − ϱt)
∑
Sϱ∗

vi +
∑

Sϱt\Sϱ∗

vi(wi − ϱt)

⩾ ϱ∗ + (ϱ∗ − ϱt)
∑
Sϱ∗

vi.

Therefore,

h(ϱt)− ϱt =

∑
i∈Sϱt

viwi

1 +
∑

i∈Sϱt
vi

− ϱt =
I(ϱt)− ϱt

1 +
∑

i∈Sϱt
vi

⩾
1 +

∑
i∈Sϱ∗

vi

1 +
∑

i∈Sϱt
vi
(ϱ∗ − ϱt) ⩾

1

1 +
∑N

i=1 vi
(ϱ∗ − ϱt)

⩾ p0(ϱ
∗ − ϱt).

Next, consider the case that ϱt ⩾ ϱ∗. Then, it holds that h(ϱt) ⩽ h(ϱ∗) = ϱ∗ and

since p0 ⩽ 1

h(ϱt)− ϱt ⩽ ϱ∗ − ϱt ⩽ p0(ϱ
∗ − ϱt).

Either way, the cross term in (B.1) is bounded from above as

−2at(ϱ
∗ − ϱt)(h(ϱt)− ϱt) ⩽ −2p0at(ϱ

∗ − ϱt)
2.

As a result, we conclude that

E
[
(ϱ∗ − ϱt+1)

2
∣∣ ϱt ] ⩽ (ϱ∗ − ϱt)

2(1− 2p0at) + a2t .

Taking the expectation on both sides yields (3.2).

For t = 1, . . . , T + 1, denote the expected squared difference of ϱ∗ and ϱt as

δt := E
[
(ϱ∗ − ϱt)

2
]
.

By induction, we show that the inequality (3.2) implies δt ⩽ c2/(t + β), for all t =

1, . . . , T + 1 and some c2 > 0. We note that the arguments given to show this result

resemble the arguments in the proof of Lemma A.2. We include all arguments to

show (3.3) because the constant c2 is different from the constant κ as in (A.4) as well

as for the sake of completeness. Specifically, let c2 be the constant

c2 = max{1 + β, α2}.
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For t = 1, we note that

δ1 ⩽ 1 ⩽
c2

1 + β
.

Now, suppose δt ⩽ c2/(t+ β) for t ⩽ t0 for some t0. Then, for t > t0, it follows that

t+ β

t+ β + 1
− 2αp0 < 1− 2αp0 ⩽ −αp0 ⩽ −1,

since α ⩾ 1/p0 and therefore

c2

(
t+ β

t+ β + 1
− 2αp0

)
+ α2 < −c2 + α2 ⩽ 0,

by definition of c2. This implies that

c2

(
(t+ β)− 2αp0 −

(t+ β)2

t+ β + 1

)
+ α2 ⩽ 0,

and thus

c2
t+ β

(
1− 2

αp0
t+ β

)
+

α2

(t+ β)2
⩽

c2
(t+ β + 1)

.

This, by (3.2) in combination with the induction hypothesis, yields

δt+1 ⩽
c2

t+ β + 1
,

so that we have proven the lemma.

Proof of Theorem 3.1

First, define h(ϱ) := r(Sϱ, v) and

ϱ∗ = max
S⊆[N ]

r(S, v).

Recall that ϱ∗ = h(ϱ∗); see, e.g., Chen et al. (2021, Section 4). Next, note that

T =

T∑
t=1

1

at

(
1− (1− at)

)
. (B.2)

Also, note that, for t ∈ [T ], wYt
can be written in terms of at, ϱt and ϱt+1 as

wYt =
1

at

(
ϱt+1 − (1− at)ϱt

)
. (B.3)
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As a consequence of (B.2) and (B.3), it holds that

Tϱ∗−
T∑

t=1

wYt
=

T∑
t=1

1

at

(
(ϱ∗ − ϱt+1)− (1− at)(ϱ

∗ − ϱt)
)

=

T∑
t=1

1

at
(ϱ∗ − ϱt+1)−

T∑
t=1

1− at
at

(ϱ∗ − ϱt)

=
1

aT
(ϱ∗ − ϱT+1) +

T−1∑
t=1

1

at
(ϱ∗ − ϱt+1)

−
T∑

t=2

1− at
at

(ϱ∗ − ϱt)−
1− a1
a1

(ϱ∗ − ϱ1)

=
1

aT
(ϱ∗ − ϱT+1) +

T∑
t=2

1

at+1
(ϱ∗ − ϱt)

−
T∑

t=2

1− at
at

(ϱ∗ − ϱt)−
1− a1
a1

(ϱ∗ − ϱ1)

=
1

aT
(ϱ∗ − ϱT+1) +

T∑
t=2

(
1

at+1
− 1− at

at

)
(ϱ∗ − ϱt)−

1− a1
a1

(ϱ∗ − ϱ1).

Given that |ϱ∗ − ϱ1| ⩽ 1, it follows that

Tϱ∗ −
T∑

t=1

wYt
⩽
T + β

α
(ϱ∗ − ϱT+1) +

α+ 1

α

T∑
t=2

(ϱ∗ − ϱt) +
β + 1− α

α
.

From Lemma 3.1 and Jensen’s inequality for the concave function x 7→
√
x it follows

that

E[ϱ∗ − ϱt] ⩽ E
[
|ϱ∗ − ϱt|

]
⩽
(
E
[
(ϱ∗ − ϱt)

2
])1/2

⩽
√
c2√

t+ β
.

From this, we conclude that the regret is bounded from above as

∆π(T ) ⩽
T + β

α
E[ϱ∗ − ϱT+1] +

α+ 1

α

T∑
t=2

E[ϱ∗ − ϱt] +
β + 1− α

α

⩽
√
c2

T + β

α
√
T + β + 1

+
√
c2
α+ 1

α

T∑
t=2

1√
t+ β

+
β + 1− α

α

⩽
√
c2

√
β + 1

α

√
T +

√
c2

2α+ 2

α

√
T +

β + 1− α

α

⩽ C
√
T ,

144



B.1 MATHEMATICAL PROOFS FOR SECTION 3.3

where

C =
√
c2

√
β + 1 + 2α+ 2

α
+
β + 1− α

α
.

B.1.2 Proofs of the Results in Section 3.3.3

In this section, we abbreviate the expectation value and probability Eπ
vj [ · ] and Pπ

vj ( · )

as Ej [ · ] and Pj( · ) for j = 0, 1 with v0 and v1 as in (3.7).

Proof of Lemma 3.2

First, note that if ℓ /∈ S, then P0( · |S) = P1( · |S). Hence, we may assume that ℓ ∈ S.

In addition, note that Pj( · |S) = Pj( · |S ∩ {k, ℓ}) for j = 0, 1. Therefore, it suffices

to check S = {k, ℓ} and S = {ℓ}. To this end, define

pi = P0(Y = i |S) and qi = P1(Y = i |S), for i = 0, k, ℓ,

where Y denotes a random purchase from S. First, consider the case that S = {k, ℓ}.

Then, for i = 0, k, ℓ it holds that

qi =
v1i

1 + uk + (1 + ε)uℓ
>

min{1, uℓ}
4uk

,

since v1ℓ > uℓ and ε < 1 and uℓ < uk and 1 < uk. Next, note that

(
1 + uk + (1− ε)uℓ

)(
1 + uk + (1 + ε)uℓ

)
⩾ 2(1 + uk)uℓ,

and as a result

|p0 − q0| ⩽
2uℓε

2(1 + uk)uℓ
=

ε

1 + uk
< ε,

and

|pk − qk| = uk|p0 − q0| ⩽
ukε

1 + uk
< ε,

and

|pℓ − qℓ| =
2(1 + uk)ulε(

1 + uk + (1− ε)uℓ
)(
1 + uk + (1 + ε)uℓ

) ⩽ ε.

Consequently,

KL
(
P0( · |S)

∣∣∣∣∣∣P1( · |S)
)
⩽

∑
i=0,k,ℓ

(pi − qi)
2

qi
⩽

12uk
min{1, uℓ}

ε2 = c3 ε,
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where the first inequality is easily verified (see, e.g., Lemma 3 from Chen & Wang

(2018)) and

c3 :=
12uk

min{1, uℓ}
.

Now, consider the case that S = {ℓ}. Similarly, we derive for i = 0, ℓ that

qi =
v1i

1 + (1 + ε)uℓ
>

min{1, uℓ}
1 + 2uℓ

>
min{1, uℓ}

3uk
,

since v1ℓ > uℓ and ε < 1 and uℓ < uk and 1 < uk. Next, note that

(
1 + (1− ε)uℓ

)(
1 + (1 + ε)uℓ

)
⩾ 2uℓ

and as a result

|p0 − q0| ⩽
2uℓε

2uℓ
= ε,

and

|pℓ − qℓ| =
2ulε(

1 + (1− ε)uℓ
)(
1 + (1 + ε)uℓ

) ⩽ ε.

Consequently,

KL
(
P0( · |S)

∣∣∣∣∣∣P1( · |S)
)
⩽
∑
i=0,ℓ

(pi − qi)
2

qi
⩽

6uk
min{1, uℓ}

ε2 ⩽ c3 ε
2,

where the first inequality is again easily verified (see, e.g., Lemma 3 from Chen &

Wang (2018)). The final statement of the lemma follows by applying Pinsker’s inequal-

ity and Le Cam’s method as follows. First, consider the entire probability measures

P0 and P1. By the chain rule of the KL divergence it follows that

KL
(
P0

∣∣∣∣P1

)
⩽ c3 ε

2 T.

From Pinsker’s inequality it follows that the total variation (TV) norm between P0

and P1 is bounded from above as

∣∣∣∣P0 − P1

∣∣∣∣
TV

= sup
A

∣∣P0(A)− P1(A)
∣∣ ⩽√2KL

(
P0

∣∣∣∣P1

)
⩽

√
2c3 ε

√
T .

Next, Le Cam’s method entails to consider B := {ψ = 0}. Then, it follows that

max
j=0,1

Pj(ψ ̸= j) ⩾
1

2

(
P0(ψ = 1) + P1(ψ = 0)

)
⩾

1

2

(
1−

(
P0(B)− P1(B)

))
⩾

1

2

(
1−

∣∣∣∣P0 − P1

∣∣∣∣
TV

)
⩾

1

2

(
1−

√
2c3 ε

√
T
)
,
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which concludes our proof.

Proof of Lemma 3.3

First note that, for j = 0, 1, the expected profit under vj is independent of the

inclusion of products i /∈ {k, ℓ}. That is, for all S ⊆ [N ],

r(S, vj) = r(S ∩ {k, ℓ}, vj). (B.4)

We start with bounding the regret under v0 from below. By (B.4) we only need to

consider St = {k}, {ℓ},∅. Then, as ukwk = uℓwℓ and uk = uℓ + 1 and ε ∈ (0, 1/2], it

follows that

r
(
{k, ℓ}, v0

)
− r
(
{k}, v0

)
= uℓwℓ

2(1− ε)(
2 + (2− ε)uℓ

)
(2 + uℓ)

⩾
uℓwℓ

(2 + 3uℓ)2
,

as well as,

r
(
{k, ℓ}, v0

)
− r
(
{ℓ}, v0

)
= uℓwℓ

ε(
2 + (2− ε)uℓ

)(
1 + (1− ε)uℓ

) ⩾
uℓwℓ

(2 + 3uℓ)2
ε,

and, in addition,

r
(
{k, ℓ}, v0

)
− r(∅, v0) = uℓwℓ

2− ε

2 + (2− ε)uℓ
⩾

uℓwℓ

(2 + 3uℓ)2
.

In general, we know that

r
(
{k, ℓ}, v0

)
− r(St, v

0) ⩾

uℓwℓ

(2 + 3uℓ)2

(
ε1{k /∈ St, ℓ ∈ St}+ 1− 1{k, ℓ ∈ St} − 1{k /∈ St, ℓ ∈ St}

)
,

and by taking the expectation with respect to v0 and summing over t ∈ [T ] we have

shown (3.8) for

c4 =
uℓwℓ

(2 + 3uℓ)2
.

Next, we bound the regret under v1 from below. Again by (B.4) we only need to

consider St = {k}, {k, ℓ},∅. Then, as ukwk = uℓwℓ and uk = uℓ + 1 and ε ∈ (0, 1/2],

it follows that

r
(
{ℓ}, v1

)
− r
(
{k}, v1

)
= uℓwℓ

1 + 2ε(
1 + (1 + ε)uℓ

)
(2 + uℓ)

⩾
uℓwℓ

(2 + 3uℓ)2
,
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as well as,

r
(
{ℓ}, v1

)
− r
(
{k, ℓ}, v1

)
= uℓwℓ

ε(
1 + (1 + ε)uℓ

)(
2 + (2 + ε)uℓ

) ⩾
uℓwℓ

(2 + 3uℓ)2
ε,

and, in addition,

r
(
{ℓ}, v1

)
− r(∅, v1) = uℓwℓ

1 + ε

1 + (1 + ε)uℓ
⩾

uℓwℓ

(2 + 3uℓ)2
.

In general, we know that

r
(
{ℓ}, v1

)
− r(St, v

1) ⩾

uℓwℓ

(2 + 3uℓ)2

(
ε1{k, ℓ ∈ St}+ 1− 1{k, ℓ ∈ St} − 1{k /∈ St, ℓ ∈ St}

)
,

and by taking the expectation with respect to v1 and summing over t ∈ [T ] we have

shown (3.8) with

c4 =
uℓwℓ

(2 + 3uℓ)2

as well.

Proof of Theorem 3.2

As discussed in Section 3.3.3, we have established the first two steps: constructing

two preference vectors v0 and v1 and showing that – as a consequence of Lemma 3.2 –

for any estimator ψ that has as input the observed purchases Y1, . . . , YT and outputs

either 0 or 1 it holds that

max
j=0,1

Pπ
vj (ψ ̸= j) ⩾

1

4
. (B.5)

It remains to show that v0, v1 ∈ V and finish the third step by establishing a contra-

diction for a specific estimator ψ. First, note that for both j = 0, 1 we have that

N∑
i=1

vji ⩽
5

2
uk − 3

2

as uℓ = uk − 1 and ε ⩽ 1/2. Consequently, v0 and v1 lie in the class V since

p0 ⩽
2wℓ − 2wk

5wℓ + wk
=

2

5uk − 1
.
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We continue our proof by establishing a contradiction. To this end, recall that C =

c4/(16
√
2c3) and recall the definitions of ℘0, ℘1, L0 and L1:

℘0 :=

T∑
t=1

1{k, ℓ ∈ St} and ℘1 :=

T∑
t=1

1{k /∈ St, ℓ ∈ St},

L0 := c4

(
ε℘1 + T − ℘0 − ℘1

)
and L1 := c4

(
ε℘0 + T − ℘0 − ℘1

)
.

Now, we assume that

∆π(T ) < C
√
T . (B.6)

As a consequence of the assumption above, we conclude by Markov’s inequality and

Lemma 3.3 that

P0

(
L0 > 4C

√
T
)
⩽

E0L0

4C
√
T

⩽
∆π(T, v

0)

4C
√
T

<
1

4
,

and likewise

P1

(
L1 > 4C

√
T
)
⩽

E1L1

4C
√
T

⩽
∆π(T, v

1)

4C
√
T

<
1

4
.

Next, define the estimator ψ as

ψ :=

 0 if ℘0 > T/2,

1 if ℘0 ⩽ T/2.

From ψ = 1 it follows that

ε℘1 + T − ℘0 − ℘1 > ε(T − ℘0) ⩾
εT

2
,

as ℘0 + ℘1 ⩽ T and ε < 1. Now note that if ε = 1/2, then

εT

2
=
T

4
>

T

4
√
2c3

⩾

√
T

4
√
2c3

,

since c3 > 1. Also, if ε = (2
√
2c3T )

−1, then

εT

2
=

√
T

4
√
2c3

.

From this we conclude that ψ = 1 implies L0 > 4C
√
T and therefore

P0(ψ = 1) ⩽ P0

(
L0 > 4C

√
T
)
<

1

4
. (B.7)
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Now consider ψ = 0. This implies

ε℘0 + T − ℘0 − ℘1 ⩾ ε℘0 >
εT

2
⩾

√
T

4
√
2c3

,

as ℘0 + ℘1 ⩽ T and where the last inequality is established as before. From this we

conclude that ψ = 0 implies L1 > 4C
√
T and therefore

P1(ψ = 0) ⩽ P1

(
L1 > 4C

√
T
)
<

1

4
. (B.8)

We conclude that (B.7) and (B.8) contradict (B.5). Hence, the assumption in (B.6)

cannot be true.
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Summary

This thesis considers assortment optimization – where an assortment is a collection

or subset of products offered to customers. The main question that we study is: how

can a seller determine the optimal assortment of products – the subset which yields

the highest expected profit – based on sales data. In particular, we consider dynamic

assortment optimization over a finite time horizon in which we can adjust the offered

assortment. To focus on the aspect of learning customers’ preferences we consider a

sequential decision framework. Then, the sequential decisions in a finite time window

are based on past purchase behavior and are described by a policy.

We envision the total collection of products in two ways. In Chapter 2, we con-

sider a continuous spectrum of products. Here, each product lies on the continuous

spectrum and the seller selects an assortment to offer, which is a subset of that spec-

trum. Additionally, Chapter 3 regards the classical problem of discrete assortment

optimization. In this framework, there are N distinct products and the seller selects

an assortment to offer, which is a subset the N products.

For both continuous and discrete assortment optimization, we provide sequential

decision policies and analyze their performance. In this analysis, the performance

metric of interest is the regret, i.e., the accumulated expected loss due to offering

suboptimal assortments. In general, however, it is not a straightforward task to

directly determine the regret of a particular policy. As a result, when designing a

policy, the performance is initially assessed by mathematically determining an upper

bound on the regret. By providing such an upper bound in terms of the time horizon

(and, if applicable, the finite number of products), we can rigorously evaluate the

asymptotic performance of the policy that we provide. In addition, by showing a

matching lower bound on the regret that any policy must endure, we are able to show
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the asymptotic optimality of our proposed policies. Moreover, the classification of

regret rate serves as an indication of how difficult the learning problem in different

settings is. For example, given a finite time horizon T , a log T regret in one setting

indicates that the learning problem is easier than the learning problem in another

setting with a T 2/3 regret rate.

In Chapter 2 of this thesis, we consider dynamic assortment optimization over a

continuous spectrum of products represented by the unit interval, where the seller’s

problem consists of determining the optimal subset of products to offer to potential

customers. To describe the relation between assortment and customer choice, we

propose a probabilistic choice model that forms the continuous counterpart of the

widely studied discrete multinomial logit (MNL) model. We consider the seller’s

problem under incomplete information, propose a stochastic-approximation type of

policy and show that its regret is only logarithmic in the time horizon. We complement

this result by showing a matching lower bound on the regret of any policy, implying

that our policy is asymptotically optimal. We then show that adding a capacity

constraint significantly changes the structure of the problem. Here, the capacity

constraint refers to the maximum size of the offered assortments. We construct a

discretization policy and show that its regret after T time periods is bounded above

by a constant times T 2/3 (up to a logarithmic term); in addition, we show that the

regret of any policy is bounded from below by a positive constant times T 2/3, so that

also in the capacitated case we obtain asymptotic optimality. Moreover, we provide

a density estimation policy and we show that – under an additional assumption – its

regret is also bounded above by a constant times T 2/3 (up to a logarithmic term).

Chapter 3 concerns dynamic assortment optimization under the discrete MNL

choice model. For the setting without capacity constraint on the offered assortments,

we propose a stochastic approximation policy – a discrete version of the stochastic

approximation policy from Chapter 2 – and prove that the regret after T time periods

is bounded by
√
T times a constant that is independent of the number of products N .

In addition, we prove a matching lower bound on the regret that is valid for arbitrary

model parameters – slightly generalizing a similar recent regret lower bound derived

for specific revenue parameters. Note that the regret rate of
√
T differs from the

logarithmical regret rate as discussed in Section 2.4. This is caused by the structural
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difference between continuous and discrete assortment optimization. We continue

Chapter 3 by considering the setting with capacity constraint K < N/2. In this

setting we show that, for any vector of product revenues, there is a positive constant

such that the regret of any policy is bounded from below by this constant times
√
NT . This result implies that policies that achieve a regret rate of

√
NT here are

asymptotically optimal for all product revenue parameters.

We present numerical experiments in Chapter 4, where we compare the perfor-

mance of our policies with the performance of alternative policies. These numerical

experiments show that our policies from Chapter 2 outperform or are on par with

alternatives. Moreover, the experiments suggest that our policy from Chapter 3 out-

performs alternatives by a significant margin when the number of products N is

moderately large. In addition, in Chapter 4, we provide a numerical experiment to

compare the predictive performance of the continuous logit model with that of the

discrete MNL model. This experiment shows that our continuous assortment model

has good predictive properties compared to its discrete counterpart, even if the true

data-generating model is discrete.
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Samenvatting

Deze dissertatie behandelt assortimentsoptimalisatie, waarbij een assortiment een col-

lectie of deelverzameling van producten is die aan klanten worden aangeboden. De

belangrijkste vraag die we onderzoeken is: hoe kan een verkoper het optimale assor-

timent van producten bepalen – de deelverzameling die de hoogste verwachte winst

oplevert – op basis van verkoopgegevens. In het bijzonder beschouwen we dynamische

assortimentsoptimalisatie over een eindige tijdshorizon waarin we het aangeboden as-

sortiment kunnen aanpassen. Om ons voornamelijk te richten op het aspect van het

leren van de voorkeuren van klanten, beschouwen we een sequentieel beslissingskader.

Vervolgens zijn de sequentiële beslissingen gebaseerd op geobserveerd aankoopgedrag

en worden beschreven door een algoritme.

De totale collectie van producten beschouwen we op twee verschillende manieren.

In Hoofdstuk 2 beschouwen we een continu spectrum van producten. Hier ligt elk

product op het continue spectrum en selecteert de verkoper een assortiment om aan

te bieden. Het assortiment is op deze manier een deelverzameling van dat spectrum.

Daarnaast behandelt Hoofdstuk 3 het klassieke probleem van discrete assortimentsop-

timalisatie. In dit kader zijn er N verschillende producten en selecteert de verkoper

een assortiment om aan te bieden, wat een deelverzameling is van de N producten.

Voor zowel continue als discrete assortimentsoptimalisatie presenteren we sequen-

tiële algoritmes en analyseren we hun prestaties. De prestatiemaatstaf van belang in

deze analyse is de regret, dit is het geaccumuleerde verwachte verlies als gevolg van

het aanbieden van suboptimale assortimenten. In het algemeen is het echter geen

eenvoudige taak om direct de regret van een bepaald algoritme vast te stellen. Als

gevolg hiervan wordt bij het ontwerpen van een algoritme de prestatie in eerste in-

stantie beoordeeld door wiskundig een bovengrens voor de regret te bepalen. Door
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een zodanige bovengrens af te leiden in termen van de tijdshorizon (en, indien van

toepassing, het eindig aantal producten), kunnen we de asymptotische prestaties van

het algoritme dat we voorstellen, rigoureus evalueren. Daarnaast kunnen we, door

een bijpassende ondergrens te tonen voor de regret die elk algoritme moet ondergaan,

de asymptotische optimaliteit van onze voorgestelde algoritmes aantonen. Bovendien

dient de classificatie van de regret rate (op welke manier de regret verandert ten op-

zichte van de tijdshorizon en eventueel het aantal producten) als een indicatie van

hoe moeilijk het leerprobleem in verschillende situaties is. Bijvoorbeeld, gegeven een

eindige tijdshorizon T , geeft een regret van log T in de ene setting aan dat het leer-

probleem gemakkelijker is dan het leerprobleem in een andere setting met een regret

rate van T 2/3.

In Hoofdstuk 2 van deze dissertatie beschouwen we dynamische assortimentsopti-

malisatie over een continu spectrum van producten vertegenwoordigd door het een-

heidsinterval. Hierbij bestaat het probleem van de verkoper uit het bepalen van de

optimale deelverzamaling van producten die aan potentiële klanten kan worden aan-

geboden. Om de relatie tussen assortiment en klantkeuze te beschrijven, stellen we

een stochastisch keuzemodel voor dat de continue tegenhanger vormt van het veel

bestudeerde discrete multinomiale logit (MNL) model. We beschouwen het probleem

van de verkoper onder onvolledige informatie, stellen een algoritme gebasseerd op

stochastische benadering voor en laten zien dat zijn regret slechts logaritmisch is in

de tijdshorizon. We vullen dit resultaat aan door een bijpassende ondergrens te to-

nen voor de regret van welk algoritme dan ook, wat impliceert dat ons algoritme

asymptotisch optimaal is. Vervolgens laten we zien dat het toevoegen van een capa-

citeitsbeperking de structuur van het probleem aanzienlijk verandert. De capaciteits-

beperking verwijst hier naar de maximale grootte van de aangeboden assortimenten.

We construeren een algoritme gebaseerd op discretisatie en laten zien dat zijn regret

na T tijdsperioden van boven wordt begrensd door een constante maal T 2/3 (op een

logaritmische term na); bovendien laten we zien dat de regret van elk algoritme van

onderaf wordt begrensd door een positieve constante maal T 2/3, zodat we ook in het

geval met capaciteitsbeperking asymptotische optimaliteit verkrijgen. Daarnaast pre-

senteren we een algoritme voor het schatten van de dichtheid en laten we zien dat –

onder een additionele aanname – zijn regret ook van boven wordt begrensd door een
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constante maal T 2/3 (op een logaritmische term na).

Hoofdstuk 3 betreft dynamische assortimentsoptimalisatie onder het discrete MNL-

keuzemodel. Voor de setting zonder capaciteitsbeperking op de aangeboden assorti-

menten, stellen we een algoritme gebaseerd op stochastische benadering voor – een

discrete versie van het algoritme gebaseerd op stochastische benadering uit Hoofd-

stuk 2 – en bewijzen we dat de regret na T tijdsperioden wordt begrensd door
√
T

maal een constante die onafhankelijk is van het aantal producten N . Bovendien

bewijzen we een overeenkomende ondergrens voor de regret die geldig is voor wille-

keurige modelparameters – een lichte generalisatie van een vergelijkbare recente regret

ondergrens die is afgeleid voor specifieke winstparameters voor productopbrengsten.

Opvallend is dat de regret rate van
√
T verschilt met de logaritmische regret rate zoals

besproken in Sectie 2.4. Dit wordt veroorzaakt door het structurele verschil tussen

continue en discrete assortimentsoptimalisatie. We vervolgen Hoofdstuk 3 door het

geval te beschouwen met capaciteitsbeperking K < N/2. In deze setting laten we

zien dat er voor elke vector van winstparameters voor productopbrengsten een po-

sitieve constante is, zodat de regret van elk algoritme van onderaf wordt begrensd

door deze constante maal
√
NT . Dit resultaat houdt in dat algoritmes die een regret

rate van
√
NT behalen, asymptotisch optimaal zijn voor alle winstparameters voor

productopbrengsten.

We presenteren onze numerieke experimenten in Hoofdstuk 4, waarin we de pres-

taties van onze algoritmes vergelijken met de prestaties van alternatieve algoritmes.

Deze numerieke experimenten laten zien dat onze algoritmes uit Hoofdstuk 2 beter

of vergelijkbaar presteren ten opzichte van alternatieven. Bovendien suggereren de

experimenten dat ons algoritme uit Hoofdstuk 3 met een aanzienlijke marge beter

presteert dan alternatieven wanneer het aantal producten N tamelijk hoog is. Daar-

naast presenteren we in Hoofdstuk 4 een numeriek experiment om de voorspellende

prestaties van het continue keuzemodel te vergelijken met die van het discrete MNL-

model. Dit experiment laat zien dat ons continue assortimentsmodel goede voorspel-

lende eigenschappen heeft in vergelijking met zijn discrete tegenhanger, zelfs als het

daadwerkelijke datagenererende model discreet is.
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