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Climate change is one of the main risks that the economy will face in the 
upcoming decades. Climate scientists have improved our knowledge about 
climate change, but future impacts of climate change remain uncertain. 
This thesis focuses on estimating the social cost of carbon, which is the 
discounted value of all future damages caused by emitting one unit of 
carbon today, taking into account this uncertainty. Adding uncertainty 
increases the social cost of carbon, and thus the optimal carbon price, 
by a substantial amount. The policy implication is that the large amount 
of uncertainty around future climate damages should lead to more stringent 
carbon abatement policy. The focus should not only be on the expected 
impacts of climate change, but also on limiting the probability of a large 
irreversible impact. 
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1 Introduction

“Global warming is the most significant of all environmental externalities. It
menaces our planet and looms over our future like a Colossus (see Figure 1
from Goya). It is particularly pernicious because it involves so many activities
of daily life, affects the entire planet, does so for decades and even centuries,
and, most of all, because none of us acting individually can do anything to
slow the changes.”

W.D. Nordhaus (2019)
Climate change:
the ultimate challenge for economics

Nowadays, there is vast evidence of climate change and the threats to our planet
(IPCC, 2013, 2021). But there is still much uncertainty about how the climate system
will evolve over time and what the effects of climate change will be on the economy. This
thesis puts the uncertainty around future climate damages at the center of the analysis.
We develop integrated assessment models to estimate the social cost of carbon, which
is the welfare loss of carbon emissions. We emphasize the effects of uncertainty and
preferences towards risk and uncertainty.

Global warming is caused by anthropogenic carbon emissions and limiting warming
requires substantial reductions in these emissions. Global warming will have serious con-
sequences for economic growth, human live and the environment. A higher global mean
temperature will affect food security and ecosystems, with the risk of triggering tipping
points that will lead to irreversible changes in the ecosystem. It furthermore leads to
higher sea levels with additional threats of flooding and more frequent extreme weather
events such as natural disasters. Some areas will become unlivable which forces people
to migrate to other areas. Figure 1.1 gives an overview of several projected impacts of
climate change.

From an economic perspective, global warming is a typical example of a negative
externality. Stern et al. (2006) even call it the biggest market failure the world has
ever seen. Firms and households produce carbon emissions, but they do not pay for the
negative consequences of these emissions. In the presence of a negative externality, some
kind of regulation must be imposed to tackle the externality. One way to internalize the
externality is to levy a tax on carbon emissions equal to the welfare loss of one unit of
emissions. This is called the Pigouvian approach (Pigou, 1920). An alternative solution
is to set up a trading system of carbon emission permits as proposed by Coase (1960).
In this setting, firms also have an incentive to lower emissions because they can sell their
permits on a market. The European Union for example adopted the Coasian approach
with the EU Emissions Trading System.

One specific feature of the climate change externality is its global nature. Carbon
emissions spread very fast and it does not matter where emissions take place. It is therefore
a global problem that also needs a global policy response. No country or individual can
solve the problem alone, collective action is necessary. The global nature of the problem
makes the implementation of climate policy more complex. Local negative externalities



Figure 1.1: Projected impacts of climate change.

Source: Stern et al. (2006).

such as pollution can be solved on a national level, but the climate change externality
requires international coordination.

In 2018, William Nordhaus was awarded the Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel for his work on climate change economics. Nordhaus
already started with climate change modeling in 1975, way before climate change became a
mainstream topic. He started the literature on the so called integrated assessment models
(IAMs): combined economic and climate models that are used to analyze climate change
in an economic context. Nordhaus (2019)1 started with a partial equilibrium setup with
an energy model in which interest rates and discount rates were taken as given. Nordhaus
(2019) then added a detailed model for the carbon concentration (as a function of carbon
emissions) and looked at the costs of different constraints on the carbon concentration.
Given a specific constraint, shadow prices for carbon emissions could be calculated. This
type of analysis gives information about how costly it is to keep the carbon concentration
below a certain level.

Almost two decades later, Nordhaus came up with a much improved version of his
climate change model. Nordhaus (1992) was the first version of the nowadays well known
DICE model: Dynamic Integrated model of Climate and the Economy. One of the main
shortcomings of the initial model was that it did not say much about the benefits of carbon
reduction, it was focused on the cost of carbon reduction. It was therefore not possible
to look at optimal policy in such a framework. Another shortcoming of the initial model
was that the model was a partial equilibrium model. Since climate change is analyzed at
a global scale, a general equilibrium model is preferred. Additionally, discount rates are
very important in climate economy models since the analysis takes place over a long time
horizon. This is another reason to consider a general equilibrium model.

1This article was originally written in 1975 and came out as a working paper. In 2019 the American
Economic Review published it.
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The DICE model fixes these two issues. The base of the DICE model is a Ramsey-
type optimal growth model. To keep the model tractable and solvable, Nordhaus (1992)
scales down the carbon dioxide model to three equations and he adds two equations to
model the global temperature anomaly in response to carbon dioxide concentrations. One
key conceptual difference is that Nordhaus (1992) adds a damage function to the model:
the global temperature anomaly is mapped into economic losses via a damage function.
The model is therefore suitable to compare the costs and the benefits of reducing carbon
emissions. The DICE model is updated frequently, the last iteration is the DICE-2016
model (Nordhaus, 2017). The model is still very similar to the earliest version, but the
calibration is often updated due to new insights. Nordhaus (2018) gives an overview of
the changes in the DICE model over the years.

One key concept that Nordhaus introduced is the social cost of carbon (SCC). The
social cost of carbon is the present value of all damages caused by emitting one unit of
carbon today. The social cost of carbon is a rich concept that incorporates the economic
setup, the climate module, the damage function and the preference specification of a
model. The SCC is also an important number for policymakers, since it represents the
benefit of carbon abatement and can therefore be used in cost-benefit analysis. The DICE
model is one of the three integrated assessment models that the US government uses for
its estimate of the social cost of carbon.

This thesis builds upon Nordhaus’s work and focuses on improving the integrated
assessment models in two main areas. The main research question of this thesis is: what
is the social cost of carbon?

First, the DICE model does not explicitly take into account uncertainty. Uncertainty
is however a very important issue in climate change economics. It remains hard to predict
how much warming a given amount of carbon emissions will exactly generate and it is
even harder to predict how much damages there will be for a given temperature increase.
The fact that we cannot exactly predict the impact of climate change is no reason to
wait with policy. On the contrary, the uncertainty gives even more reason to stay on
the safe side (the precautionary principle). This thesis formally introduces several types
of uncertainty within IAMs. It is shown that uncertainty leads to a substantially larger
estimate of the social cost of carbon.

Second, more realistic preference specifications are introduced within integrated as-
sessment models. Next to the climate model and the damage specification, the SCC is
also very sensitive to preferences about risk and consumption smoothing over time. The
type of utility functions that are standard in the literature (logarithmic utility or power
utility) are very tractable, but also have serious limitations. There is only one parameter
that controls both the preferences for risk aversion and consumption smoothing over time.
Mehra and Prescott (1985) show using financial data that the power utility specification
is strongly rejected. This thesis explores the implications of more realistic preference
specifications in an IAM.2

Chapter 2 of this thesis analyzes an IAM with both climate disaster risk and a more
realistic preference specification. The purpose of the model is to estimate the ‘nega-
tive value’ of carbon emissions. We thus take an asset pricing perspective and opt for

2Several authors worked on more realistic preference specifications and uncertainty within integrated
assessment models. The related literature in this thesis is discussed within each chapter.
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an endowment economy (Lucas Jr, 1978). Furthermore, we analyze the problem under
the business-as-usual scenario (BAU), in which no additional climate policies are imple-
mented. The variable of interest is the social cost of carbon, which should be interpreted
as the benefit of reducing one unit of carbon emissions today (given current climate pol-
icy). In this chapter we do not yet look at optimal climate policy, but we focus on the
benefit side of the the cost-benefit analysis. This chapter makes several contributions.
First, we consider a utility function that separates prefences for risk and consumption
smoothing, in line with empirical evidence (Epstein & Zin, 1991). Second, we assume
that both the size and timing of climate disasters are stochastic. Third, we differentiate
between different layers of uncertainty. More specific, we distinguish between risk (known
probabilities) and ambiguity (unknown probabilities). As in Ellsberg (1961), we assume
that the representative agent is ambiguity averse. And fourth, we are able to derive closed
form solutions up to solving an integral and the model is therefore very transparent. We
show that taking into account risk and ambiguity leads to a substantially higher social
cost of carbon. The fact that there is much uncertainty around climate change impacts
gives the incentive to stay on the safe side and to pursue ambitious climate policies.

With some specific assumptions, we were able to solve the model in chapter 2 using
numerical integration, which took only a couple of seconds to solve. However, when con-
sidering a richer model with optimal climate policy this is not possible anymore. Instead,
more complex numerical methods are necessary to solve the models. In chapter 3 we
develop and compare two types of solution methods. Climate economy models consist of
both economic and climate variables. These type of models therefore often have several
state variables. The time it takes to solve a model grows exponentially with the number
of state variables, this is also known as the curse of dimensionality. The two methods that
are discussed in chapter 3 (finite difference method on sparse grids and stochastic grid
method) are especially suited to solve high dimensional problems. The finite difference
method relies on sparse grids to alleviate the curse of dimensionality. The stochastic grid
method is based on random grid points, which gives a similar level of accuracy with less
grid points. Both methods are applied to an example climate economy model and the
advantages and disadvantages of both methods are discussed. However, both methods
outperform traditional standard solution methods in a high-dimensional setting.

We then apply the stochastic grid method to a fully stochastic integrated assessment
model with a detailed climate model in chapter 4. The social cost of carbon is forward
looking in the sense that it incorporates (expected) future damages caused by one unit of
additional emissions today. The SCC is therefore also a function of future climate policy.
Chapter 4 investigates how sensitive the SCC is to the climate policy scenario. Two often
used scenarios are the business-as-usual (BAU) scenario and the optimal policy scenario.
In the business-as-usual scenario the SCC can be interpreted as the benefit of reducing
carbon emissions by one unit given the current situation. The SCC in the optimal scenario
is the optimal Pigouvian tax that, when globally implemented, will achieve the socially
optimal outcome. Both scenarios are used in the literature to calculate the SCC. We show
that when damages are a convex function of temperature, the SCC in the BAU scenario
is much larger compared to the optimal policy scenario. In this chapter we also illustrate
the effects of uncertainty on optimal policy, the social cost of carbon and the climate state
variables. Lastly, the implications of delay of climate policy are investigated.
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In chapter 5 the focus is shifted to the time path of the social cost of carbon and
optimal abatement policies. Most studies focus on the social cost of carbon today and
sometimes the path of future carbon prices is delivered as a byproduct. This is also true
for chapters 2 and 4. The path of carbon prices is however as important as the initial level,
since firms that invest in carbon reduction make the trade-off between current costs and
future prices. The focus in this chapter is thus on the time path of optimal carbon taxes
and we therefore calculate the social cost of carbon using the optimal policy scenario.
The SCC is thus equal to the optimal Pigouvian tax in this setting. We start with a very
simple setting in which temperature is a linear function of cumulative carbon emissions,
damages are proportional to the size of the economy and damages are a linear function of
temperature. In this benchmark setting, we show that the social cost of carbon grows in
expectation at the same rate as the economy. We then look at the following extensions:
convex damages, resolution of uncertainty, learning-by-doing in abatement, two types of
tipping points and a temperature cap. For each of these extensions we look at the effect
on the growth rate of the SCC. We conclude that the optimal social cost of carbon should
grow in expectation faster than the growth rate of the economy.
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2 Discounting the future: On climate change, ambi-

guity aversion and Epstein-Zin preferences

2.1 Introduction

Climate change is one of the main risks the economy will face in the upcoming decades
or possibly even centuries. However, there is still much uncertainty about climate change
impacts. While (almost) all scientists agree on the fact that climate change will have
possibly dramatic negative consequences for the environment and economic growth, we
are still not able to accurately estimate the extent and timing of future damages induced
by climate change. But one thing we do know is that such consequences will take place far
in the future, while if they are to be avoided policies need to be implemented today. This
has made the issue of discounting future uncertain costs of climate change back towards
today arguably the most important element of the climate change debate and that is the
subject of this paper.

Rather than arguing about specific numerical values for parameters such as time pref-
erence, we challenge the structure of preferences commonly assumed to derive the appro-
priate discounting procedures and discount rates.3 Specifically, in this paper we model
climate damages as disaster risk and assume that there is ambiguity about the arrival rate
and size of future climate disasters. We show that implementing these extensions leads to
estimates of the social cost of carbon that are substantially larger than have been derived
so far using conventional approaches to time and risk discounting.

The impact of climate change on the economy is often modeled using combined climate
economy models called Integrated Assessment Models (IAMs). IAMs integrate the knowl-
edge of different domains into one model. In the case of climate change, IAMs combine
an economic model with a climate model. Three well-known IAMs are DICE (Nordhaus,
2014a), PAGE (Hope, 2006) and FUND (Tol, 2002).4 These models are, among others,
used as policy tools for cost-benefit analyses. They provide a conceptual framework to
better understand the complex problem of climate change by combining different fields
and allowing for feedback effects between those fields.

But IAMs also have drawbacks. To quote Pindyck (2017): “IAM-based analyses of
climate policy create a perception of knowledge and precision that is illusory ... .”(p.53).
His critique is that the models are (1) sensitive to the choices of parameters and func-
tional forms, especially the discount rate. Besides, we know very little about (2) climate
sensitivity and (3) damage functions. Finally, (4) IAMs don’t incorporate tail risk. He
recommends simplifying the problem by focusing on the catastrophic outcomes of climate
change, instead of modeling the underlying causes. In line with that view we focus on
disaster risks and the associated ambiguities and risks.

The three main IAMs are deterministic, largely because stochastic models with many
state variables are more difficult to solve than deterministic models. To nevertheless cap-

3For a very different (and strongly worded) view focusing on the social welfare aspects of the rate of
time preference rather than on individual preferences, see Stern (2015) and Chichilnisky, Hammond, and
Stern (2018) who look at a positive rate of time preference as discrimination between generations that
happen to have been born at different moments in time.

4The references do not contain the most recent versions of the IAMs.



ture uncertainty, some authors perform a Monte Carlo-like approach by analyzing several
deterministic runs with different parameter values and then taking a weighted average of
all runs (Dietz, 2011; Nordhaus, 2014b). Such an analysis is useful if we are interested
in the sensitivity of the models to different parameter values. However, it is conceptually
different from explicitly using stochastic variables, since for each run all uncertainty is
resolved at time 0. Crost and Traeger (2013) compare the Monte Carlo approach to a
model that actually uses random variables and find that the Monte Carlo approach un-
derestimates the impact of uncertainty. And as we will discuss below, particularly under
the structure of preferences we are analyzing, the timing of the resolution of uncertainty
matters a great deal.

We propose an analytically solvable IAM that addresses both the critiques of Pindyck
(2017) and of Crost and Traeger (2013) on the use of deterministic IAMs. Since there is
so little known about the damage functions, we investigate the impact of both attitudes
towards well defined measurable risks and ambiguity aversion towards unmeasurable un-
certainty on the willingness to pay for avoiding climate risk. Furthermore we model
climate risk as disaster risk instead of assuming that temperature increases generate a
known amount of damage every year. The model is transparent due to the closed form
solutions for the social cost of carbon. Where stochastic numerical IAMs commonly take
hours or more to be solved, solving this model only requires numerical integration and is
therefore solved within seconds.

The economy is modeled as a pure exchange economy with exogenous but stochas-
tic endowments. We extend the general equilibrium Consumption-based Capital Asset
Pricing Model (CCAPM), also known as Lucas-tree model, developed in Lucas Jr (1978)
in several directions. In the literature, this model is widely used in conjunction with a
lognormal distribution.5 The diffusion component of the endowment captures fluctuations
in consumption. But we take into account that the nature of climate risk is different from
‘normal’ economic risk as captured by a diffusion term. Climate disasters are events that
occur rarely and take place abruptly (Goosse, 2015). To model this feature, we add a
jump process to the endowment consumption stream to capture the climate disaster risk.

The intensity of the disasters is temperature-dependent. We model emissions, atmo-
spheric carbon concentration and the temperature anomaly. The arrival rate of climate
disasters is increasing in temperature. Furthermore we explicitly take into account that
it is hard to estimate the probability that a disaster occurs and its expected impact by
assuming that the agent does not know the exact probability distributions of the arrival
rate of climate disasters and the size of the disasters: there is so called ambiguity about
the characteristics of the jump risk component. And the agent is assumed to be averse
to this ambiguity or Knightian uncertainty. Finally we use the continuous time version
of Epstein-Zin utility, also called stochastic differential utility (SDU), which allows us to
separate the intertemporal elasticity of substitution from the degree of risk aversion. In
the widely used power utility specification risk aversion and elasticity of intertemporal
substitution (EIS) are captured by one parameter, they are equal to each other’s inverse.
There is strong empirical evidence placing the relative degree of risk aversion in the range
of 5 - 10 (Cochrane, 2009). Using such estimates in combination with power utility then

5Although Lucas Jr (1978) doesn’t assume a specific distribution for the endowment stream.
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results in implied estimates for the EIS much lower than direct empirical estimates of the
EIS suggest. But especially for long term problems such as climate change intertemporal
choices play an important role and restricting parameters such as the EIS is a severe
limitation. SDU preferences make it possible to separate risk aversion and the elasticity
of intertemporal substitution. We can therefore disentangle risk aversion effects (known
probabilities), ambiguity aversion effects (unknown probabilities) and substitution effects.
The Epstein-Zin preferences also allow for the possibility that the agent has a preference
for early resolution of risk, clearly of relevance in a discussion on climate risks. We show
that the specification of the agent’s preferences in combination with stochastic disaster
risk has large effects on how much one is willing to pay to reduce climate risk.

In this chapter, we explicitly focus on the valuation of climate risk in the business-
as-usual (BAU) scenario and we do not analyse optimal abatement policies. Optimal
abatement policy is studied in later chapters. The idea is that an analysis of the envi-
ronmental costs of current policies (not current plans...) is useful in the climate policy
debate. A commonly used measure for the cost of carbon emissions is the social cost of
carbon (SCC), the long term discounted damage in dollar terms of emitting one ton of
carbon today. The BAU scenario is also the default scenario to calculate the social cost
of carbon in Nordhaus (2014a). Note that the social cost of carbon in our model is not
equal to the globally optimal Pigouvian carbon tax, since we do not consider abatement
policy in this model. The social cost of carbon using a baseline scenario can be interpreted
as the monetized welfare loss of emitting one additional unit of carbon today, given the
current global carbon abatement policy scenario under the assumption that no measures
will be taken in the future either. This seems to us an important first step to take for as
long as effective international policies are not yet agreed upon and future agreement is
not yet certain. The cost of doing nothing surely is an important input in the debate, but
we elaborate on the differences between the SCC under the BAU scenario and the SCC
assuming optimal abatement policies in chapter 4.

Our base calibration yields a sizable social cost of carbon. Similar to the numerical
IAMs, the SCC in our model is very sensitive to the choice of the input parameters. But
in addition we can easily explore the implications of ambiguity aversion, preferences for
early resolution of uncertainty and (related to that) a higher EIS than implied by com-
monly accepted values for the degree of risk aversion. In spite of incorporating all these
generalizations we can still derive analytic expressions for the SCC, up to an integral,
in our core model setup, making it transparent how ambiguity aversion and Epstein-Zin
preferences influence the SCC. Our numerical example using best estimates of the various
parameters indicates that introducing ambiguity aversion yields a SCC that is between
28% and 36% higher depending on the structure of climate risk. Moreover we highlight
that the social cost of carbon is also sensitive to choices about time discounting, either
via the pure rate of time preference, risk aversion or the elasticity of intertemporal sub-
stitution, and that all these parameters interact with the cost of ambiguity aversion. But
the overall conclusion remains: insufficient attention to risk pricing leads to substantial
underestimation of the SCC.
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2.2 Related literature

This paper is related to two strands of literature. First, our methodology is related to
consumption based asset pricing models with disaster risk and/or non-expected utility.
And second, the paper is related to research on the impact of climate change on the
economy.

The model we develop is an extension of the Consumption based Capital Asset Pricing
Model (CCAPM) by Lucas Jr (1978). Mehra and Prescott (1985) point out that for
plausible parameter values, the CCAPM produces a way too low equity premium and
correspondingly a too high risk-free rate. These puzzles are called respectively the Equity
Premium Puzzle and the Risk-Free Rate Puzzle. Jump risk or disaster risk has been
proposed as a possible solution of these puzzles (Barro, 2006; Rietz, 1988). Extensions to
the early disaster/jump risk models are the use of Stochastic Differential Utility (SDU)
instead of power utility, and the introduction of time-varying disaster probabilities and
multi-period (i.e. persistent) disasters (Barro, 2009; Tsai & Wachter, 2015; Wachter,
2013). Climate change induced disasters fit in the rare disaster literature since climate
change is increasingly thought to give rise to abrupt destructive changes in the Earth’s
environment (Goosse, 2015). We define disaster shocks as shocks whose occurrence has
a small probability at any given moment of time but with possibly large and persistent
negative effects on the economy once they do take place.

Ambiguity aversion, aversion of unmeasurable or Knightian uncertainty, is the second
extension of the CCAPM we introduce to our climate model. Liu, Pan, and Wang (2004)
consider a general equilibrium model with rare disasters and ambiguity aversion in their
analysis of option pricing ‘smirks’. Their agent is only concerned about misspecification
of the jump process, a logical choice that we follow, since the probability distribution of
rare events is by their very nature much harder to estimate than the diffusion component.

Risk aversion and ambiguity aversion are obviously important in a climate change
setting, but since abrupt climate change is anticipated to take place far into the future,
intertemporal choices play an important role as well. Power utility is therefore an un-
satisfactory framework since with that structure of preferences, risk aversion and EIS
cannot be varied independently. This is why we adopt the Stochastic Differential Utility
framework introduced by Duffie and Epstein (1992b) since with SDU the risk aversion
parameter and the elasticity of intertemporal substitution (EIS) are no longer restricted
to be each other’s inverse. We go beyond the setting of Tsai and Wachter (2015) who
also use SDU to analyze the consequences of disaster risk for asset prices by in addition
introducing ambiguity aversion. This extension is especially relevant in a climate disaster
model since there is no clear history of events on which we can base our estimates of the
damages.

The second strand in the literature our paper is obviously related to is the literature
on climate change economics and especially to the part of that literature that considers
climate disaster risk, non-expected utility and analytic approaches to solve their models.
This paper is to the best of our knowledge the first paper to consider ambiguity aversion
in a framework with climate disaster risk.

Barro (2015) extends his disaster risk model with environmental disasters and focuses
on discount rates and optimal environmental investment. He does not incorporate a
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climate model but rather assumes that the disaster probability is constant and that it
can be reduced by environmental investment. Bansal, Kiku, and Ochoa (2016) propose a
climate model based on the Long-Run-Risk (LRR) model of Bansal and Yaron (2004). In
the LRR-model, the agent has Epstein-Zin preferences and consumption growth contains
persistent shocks. Bansal et al. (2016) model climate disasters as a jump process that
affects both consumption itself and the growth rate of consumption. They show that the
outcomes of their model are very sensitive to choices of the EIS. Karydas and Xepapadeas
(2019) consider a dynamic asset pricing framework with both macroeconomic disasters
and climate change related disasters and analyze the implications for portfolio allocation.
Our approach differs from these papers by including ambiguity aversion.

Furthermore, our paper is related to the literature on climate change economics that
considers risk and non-expected utility. The most well-known integrated assessment model
is the DICE model (Nordhaus, 2017). This model is deterministic and the representative
agent is assumed to have power utility. Several papers have recently studied the impact of
risk and more complex preference structures on the social cost of carbon. For instance Cai
and Lontzek (2019), Hambel, Kraft, and Schwartz (2021) and Jensen and Traeger (2014)
study integrated assessment models with Epstein-Zin preferences and different types of
economic and climate risk. Epstein-Zin preferences can have a substantial effect on the
discount rate, for obvious reasons a very important parameter in climate models.

Traeger (2014) studies the effect of ambiguity aversion on discount rates. Millner,
Dietz, and Heal (2013) look at the effect of ambiguity about the climate sensitivity on
optimal policy, where Lemoine and Traeger (2016) focus on ambiguity about tipping
points that affect the climate dynamics. All three papers use the smooth ambiguity
approach proposed by Klibanoff, Marinacci, and Mukerji (2005). In contrast, we consider
the multiple priors approach to model ambiguity aversion, in which the worst case within
a specified set of priors is chosen following Gilboa and Schmeidler (1989). Lastly, Barnett,
Brock, and Hansen (2020) introduce ambiguity aversion into a climate-economy model,
also based on the smooth ambiguity approach of Klibanoff et al. (2005). Barnett et
al. (2020) consider even three different types of uncertainty: they distinguish between
risk, ambiguity and model misspecification. Our key contribution to this literature is
that (1) we study ambiguity aversion in a climate disaster risk framework, (2) we use a
different ambiguity approach (the multiple priors approach), and (3) we provide a closed
form expression for the social cost of carbon (up to solving an integral) which facilitates
conceptual understanding of the results particularly where non-linear effects are at play.

The three IAMs that were mentioned in the introduction are all solved using numerical
methods. However, since it has become clear that the choice of the input parameters has
a large influence on the results, we think it is useful to know how these parameters ex-
actly influence the outcomes and therefore opt for models allowing for analytical solutions.
There are a few recent papers that also focused on obtaining analytic solutions. Golosov,
Hassler, Krusell, and Tsyvinski (2014) were the first to obtain closed form solutions in
an IAM. However, this required quite strict assumptions such as logarithmic utility and
full depreciation of capital every decade. Bretscher and Vinogradova (2018) develop a
stylized production-based model where the current carbon concentration directly enters
the damage function and obtain closed form solutions for the optimal abatement policy.
Van den Bremer and Van der Ploeg (2021) consider a rich stochastic production-based
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model with Epstein-Zin preferences, convex damages, uncertainty in state variables, cor-
related risks and skewed distributions to capture climate feedbacks. Since the model is
too complex to obtain exact analytic solutions, they obtain closed form approximate so-
lutions using perturbation methods. Lastly, Traeger (2021) extends the model of Golosov
et al. (2014). Where in other analytic other models the atmospheric carbon concentration
often directly enters the damage function (Bretscher & Vinogradova, 2018; Golosov et al.,
2014), Traeger (2021) explicitly models the carbon cycle and the temperature anomaly
while damages are induced by an increasing temperature. Additionally Traeger (2021)
considers the effect of stochastic state variables.

2.3 Model

In this section we first outline the setup for the economy, then extend that setup to
incorporate a climate model and finally discuss the utility specification.

Since we do not consider mitigation policies in this paper, we opt for assuming a
pure exchange economy, where agents are endowed with an exogenous stochastic income
stream. Agents can buy risky stocks, which give a claim on the endowment. Consumption
goods are perishable, transferring wealth to the future is only possible by buying stocks.
The income stream can intuitively be seen as a tree that produces an uncertain amount of
fruit every time period. All agents can buy stocks, which are shares in the tree. The fruit
is non-storable, so it must be consumed at the period of the endowment. This implies
that aggregate endowment equals aggregate consumption at every moment in time. It is
assumed that all agents have identical preferences and endowments, so the separate agents
can be replaced by one representative agent. We extend the standard pure exchange model
by assuming that the stochastic endowment stream is subject to climate disasters, where
the probability of a climate disaster depends on the temperature level.

2.3.1 Economy

The aggregate endowment process follows a geometric Brownian motion with an additional
jump component that represents climate disasters. Suppose we have a probability space
(Ω,F ,P) on which a standard Brownian motion Zt, a Poisson process Nt with arrival rate
λt and a random variable Jt are defined. The arrival rate of climate disasters is a function
of the temperature level. The distribution of the size of disasters is assumed to be the
same for any t. The three types of shocks, namely Brownian motions, Poisson arrivals and
disaster sizes, are assumed to be independent. Assume there is a filtration F = {Ft : t ≥
0}. We will use the following notation throughout this chapter: Et[.] = E[.|Ft]. Consider
the following process for aggregate endowments:

dCt = µCtdt+ σCtdZt + JtCt−dNt. (2.1)

The endowment follows the usual geometric Brownian motion dynamics, with an ad-
ditional jump process. Ct− denotes aggregate endowment just before a jump (Ct− =
limh↓0Ct−h). In equilibrium aggregate consumption must equal aggregate endowment
and therefore the process is also referred to as the aggregate consumption process. The
growth rate µ ≥ 0 and the volatility σ > 0 are constant. When a climate disaster arrives
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at time t, the size of the disaster is controlled by the random variable Jt. We assume that
Jt has the following density: f(x) = η(1 + x)η−1 where −1 < x < 0. Jt can thus be seen
as the percentage loss of aggregate consumption after a disaster. The expected disaster

size equals Et[Jt] = −1
η+1

and the moments Et

[
(1 + Jt)

n
]

= η
η+n

can be easily calculated.

In line with the subject of climate disasters, jumps can only be negative.

2.3.2 Climate model

The arrival rate of disasters is assumed to be temperature dependent. We assume that
damages are linearly increasing in temperature: λt = λTTt. However, our derivations
remain valid for non-linear specifications of the arrival rate. We discuss this assumption
in the calibration section. We make some simplifying assumptions to allow for an analytic
solution of the model. The main requirement is that the state variables of the climate
submodel are deterministic, an assumption we have relaxed in chapter 4.

Industrial emissions (from fossil fuel burning) are usually modeled as the product of the
carbon intensity of aggregate output and aggregate output (or aggregate consumption)
itself. In addition to industrial emissions, land-use change such as deforestation also
causes carbon emissions.6 We simplify the problem by modeling emissions as exogenous,
which in the current setting is not all that important because output growth itself is not
yet endogenized. Thus we directly model total emissions, which are the sum of industrial
emissions and emissions caused by for example land-use change. This simplification is
necessary to keep the state variables deterministic, which in turn is necessary for analytical
solvability. If we would not make this assumption, emissions are stochastic and this would
make it impossible to solve the model analytically. We therefore assume that emissions
are growing at a rate gE,t. The growth rate itself moves towards the long-run equilibrium
gE,∞ at a rate δE. By assuming that gE,∞ < 0, this specification allows us to have growing
emissions today, but in the long run the growth rate will become negative and emissions
will go to zero. This is a logical assumption since there is a point where the stock of fossil
fuels will be depleted. This gives us the following process for emissions:

dEt = gE,tEtdt,

dgE,t = δE(gE,∞ − gE,t)dt.
(2.2)

We calibrate exogenous emissions to match the baseline scenario in Nordhaus (2017). In
our setup, it is not a great loss to lose the direct connection between the economy and
the carbon emissions since we use a Lucas-tree model where the economy already has an
exogenous growth rate. We do not analyse optimal policy and therefore the causes of
economic growth and emissions are not of first order importance. What is important for
the valuation of the risk is that the climate model is in line with reality.

Since we focus on disaster risks which through our climate model depend on cumulative
emissions, not incorporating any short term correlation between economic growth and
emissions has no major consequences for the answers to the questions addressed in this
paper. In reality, emissions are low when the economy is in a recession and vice-versa, there

6For an extensive report on the relation between land-use change and emissions we refer to the special
IPCC report (Noble, Bolin, Ravindranath, Verardo, & Dokken, 2000).
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is a substantial correlation between economic growth and worldwide carbon emissions.
However, due to thermal inertia it takes some time for temperature to react on emissions
and the contemporaneous correlation between consumption and temperature will be lower.
When climate risk is high in good states, one would be willing to pay less to reduce the
risk. So the correlation between temperature and the consumption process does play a
role in the valuation of damages. However, since the contemporaneous correlation between
aggregate consumption and temperature is smaller compared to the correlation between
aggregate consumption and emissions we expect that this does not play a large role given
our focus on disaster risks.

We use the climate model (carbon cycle and temperature model) discussed in Mat-
tauch et al. (2019), which they call the IPCC AR5 impulse-response model. This model
is in line with recent insights from the climate literature and is also used in IPCC (2013).
Specifically, this climate model incorporates the fact that thermal inertia play a smaller
role than commonly assumed in the climate modules in economic models. Climate mod-
ules commonly used in economic models tend to overstate the time it takes for the earth
to warm in response to carbon emissions (Dietz, Van der Ploeg, Rezai, & Venmans, 2020).

The first step is to model how the carbon concentration evolves over time given a path
of carbon emissions. Define by Mt the atmospheric carbon concentration compared to
the pre-industrial level Mpre. We then assume that the carbon concentration is the sum
of four artificial carbon boxes: Mt =

∑3
i=0 Mi,t. This specification can capture that the

decay of carbon has multiple time scales and that a fraction of emissions will stay in the
atmosphere forever. The dynamics of carbon box i are given by:

dMi,t = νi

(
Et − δM,iMi,t

)
dt. (2.3)

νi is the fraction of emissions that ends up in carbon box i, which implies that
∑3

i=0 νi = 1.
δM,i controls the decay rate of carbon in box i. We assume that all carbon that ends up
in box 0 will permanently stay in the atmosphere, such that δM,0 = 0. The other three
boxes have a positive decay rate: δM,i > 0, i ∈ {1, 2, 3}.

The next step is to model the impact of carbon concentration on temperature. This
requires modeling what is called radiative forcing: radiative forcing is the difference be-
tween energy absorbed by the earth from sunlight and the energy that is radiated back to
space. A higher atmospheric carbon concentration strengthens the greenhouse effect and
therefore leads to higher radiative forcing. We propose a logarithmic relation between
atmospheric carbon concentration and radiative forcing:

FM,t = α
υ

log(2)
log
(Mt +Mpre

Mpre

)
. (2.4)

α equals the climate sensitivity: the long-run change in temperature due to a doubling of
the carbon concentration compared to the pre-industrial level. υ is a parameter that is
also part of the temperature module and this parameter will be discussed later. We also
include non-carbon related (exogenous) forcing FE,t, which follows:

dFE,t = δF (FE,∞ − FE,t)dt. (2.5)
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Total radiative forcing is the sum of carbon-related radiative forcing and exogenous forc-
ing: Ft = FM,t + FE,t.

The final step moves from Ft to the actual surface temperature Tt. Tt is the difference
between the actual temperature compared to the pre-industrial temperature level. The
change in surface temperature is a delayed response to radiative forcing. Call the heat ca-
pacity of the surface and the upper layers of the ocean τ while τoc equals the heat capacity
of the deeper layers of the ocean. The parameter κ captures the speed of temperature
transfer between the upper layers and the deep layers of the ocean. The dynamics of
temperature are then given by:

dTt =
1

τ

(
Ft − υTt − κ(Tt − T oct )

)
dt,

dT oct =
κ

τoc
(Tt − T oct )dt.

(2.6)

From this equation, one can verify that the long run equilibrium temperature for a given
level of radiative forcing equals: T eqt = Ft

υ
. The parameter υ therefore controls the

equilibrium temperature response to a given level of forcing. Note that when Mt = 2Mpre,

we obtain that Ft = αυ + FE
t and T eqt = α +

FEt
υ

. Therefore the parameter α can
indeed be interpreted as the equilibrium temperature response to a doubling of the carbon
concentration. We can rewrite the first equation to:

dTt =
1

τ

(
υ(T eqt − Tt)− κ(Tt − T oct )

)
. (2.7)

This equation is more intuitive, since it captures the fact that the temperature moves
towards its equilibrium level at a rate proportional to T eqt − Tt. The second part shows
that the oceans are delaying this convergence. It takes time for T oct to adjust towards
Tt and this will also delay the convergence of Tt towards the equilibrium level T eqt . As
specified earlier, the arrival rate of climate disasters is a linear function of temperature
Tt.

2.3.3 Utility specification

The representative agent maximizes his utility of consumption over an infinite planning
horizon. We consider the continuous time version of Epstein-Zin preferences (Epstein &
Zin, 1989), called stochastic differential utility (SDU) (Duffie & Epstein, 1992b). Epstein
and Zin (1989) consider the following class of preferences in discrete time: Vt = [(1 −
β)C

1−1/ε
t + βcet(Vt+1)1−1/ε]

1
1−1/ε where ε = EIS, β is the time preference parameter and

cet(.) is a certainty equivalent function. When considering a deterministic consumption
program, Vt is a constant elasticity of substitution (CES) utility function. In the other
limiting case where only a static gamble is considered, there are no intertemporal choices
and the utility is entirely determined by the certainty equivalent function cet(.). The
certainty equivalent function (or risk aggregator) that is widely used throughout the

literature is cet(Vt+1) = Et(V
1−γ
t+1 )

1
1−γ where γ is the coefficient of relative risk-aversion,

which we assume to be constant. This specification of cet(.) yields a special case of
the preferences studied by Kreps and Porteus (1978) and is therefore also called Kreps-
Porteus utility. Static gambles are evaluated as if the agent has power utility, but in a
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dynamic stochastic setting EIS and risk aversion are decoupled: this specification allows to
separate risk aversion γ from the elasticity of intertemporal substitution ε. An important
property of this utility specification is that the agent has preferences for early resolution
of uncertainty if ε > 1

γ
and for late resolution if ε < 1

γ
.

We consider a special case of SDU, the continuous time equivalent of Kreps-Porteus
utility, or rather an ordinally equivalent utility process. Similar to the discrete time case,
SDU can be represented by a combination of an aggregator f that determines the degree
of intertemporal substitution and a certainty equivalent operator ce. In the case of Kreps-

Porteus utility, f(C, V ) = β
1−1/ε

C1−1/ε−V 1−1/ε

V −1/ε and ce(∼ V ) = [E(V 1−γ)]
1

1−γ . In this case

the drift of the value function consists of the aggregator f(C, V ) and a variance multiplier
A that belongs to ce. Duffie and Epstein (1992b) show that there exists an ordinally
equivalent utility process with aggregator f as in (2.8). In this case ce(∼ V ) = E(V ) and
the variance multiplier A that belongs to c is zero. The agent’s utility or value function
then becomes:

Vt = Et

[ ∫ ∞
t

f(Cs, Vs)ds
]

where

f(C, V ) =
β

1− 1/ε

C1−1/ε −
(
(1− γ)V

) 1
ζ(

(1− γ)V
) 1
ζ
−1

for ε 6= 1

with ζ =
1− γ

1− 1/ε
.

(2.8)

Throughout this paper, we refer to this utility specification as stochastic differential utility
(SDU) although Duffie and Epstein (1992b) actually consider a more general class of
utilities under that label. Similar to the discrete time counterpart, γ denotes risk-aversion,
ε is the elasticity of intertemporal substitution and β equals the time preference parameter.
We will focus on the case where ε 6= 1 and therefore will derive our results only for this
case. For the case ε = 1 we can take the limit ε → 1 or follow the same derivation but
with f(C, V ) = β(1− γ)V

(
logC− 1

1−γ log
(
(1− γ)V

))
. If γ = 1

ε
, the utility specification

reduces to standard power utility.

2.3.4 Ambiguity

There is much uncertainty regarding the arrival rate and magnitude of climate disasters.
And, as stressed by Pindyck (2017), we know very little about the damage functions.
Where consumption growth and volatility can be estimated more accurately from histor-
ical data, the estimation of the climate disaster parameters will be much harder since
climate disasters do not happen that often. It is fair to state that we simply do not know
the exact distribution of climate damages. We consider it therefore desirable to account
for the possibility that the ‘best estimate’ model is not the true model: there is ambiguity.
We assume that the representative agent is ambiguity averse.

It is important to stress the difference between risk and ambiguity. When we are
talking about risk, an agent knows the probabilities and possible outcomes of all events.
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When the agent has to deal with ambiguity, the probabilities attached to particular events
are unknown. The distinction between risk and ambiguity is already extensively discussed
in Knight (1921), which is why ambiguity is often referred to as Knightian uncertainty.
Ellsberg (1961) shows using the Ellsberg Paradox that people are ambiguity averse, i.e.
they prefer known probabilities over unknown probabilities.

We use the recursive multiple priors utility developed in continuous time by Chen
and Epstein (2002) to model ambiguity. For an overview of different methods to model
ambiguity we refer to appendix 2.A. An advantage of this method compared to other
methods is that it preserves the homotheticity of the value function.

To apply the approach of Chen and Epstein (2002) to model ambiguity, we begin by
defining the ‘best estimate’ model or reference model as the agent’s most reliable model
with probability measure P. But the agent also takes into account other, alternative
models. The alternative models have measure Qa,b; the jump arrival rate becomes λQt =
atλt and the jump size parameter becomes ηQt = btη. Remember that the expected jump
size equals −1

η+1
, which implies that a low bt leads to a more negative jump size. The agent

takes into account that his reference model is not the true model and he therefore specifies
a set of models that he considers possible. Given the set of models, he then considers the
worst case (Chen & Epstein, 2002; Gilboa & Schmeidler, 1989).

The size of the set of models is assumed to depend on the ambiguity aversion pa-
rameter θ. All models with a distance smaller than θ are allowed in the set of admissible
models. The distance between the reference model P and an alternative model Qa,b is mea-
sured using the concept of relative entropy, a common metric for the distance between
two probability measure (see for example Hansen and Sargent (2008)). The distance or
relative entropy between the reference and alternative model depends on the parameters
at and bt and can therefore be written as RE(at, bt). The relative entropy metric satisfies
RE(at, bt) ≥ 0 ∀(at, bt) and RE(1, 1) = 0: the distance of the reference model to itself is
by definition equal to 0. If θ is large, the agent is very ambiguity averse and thus considers
a large set of models. The preferences of the agent then become:

Vt = min
Q∈Pθ

V Q
t

where V Q
t = EQ

t

[ ∫ ∞
t

f(Cs, V
Q
s )ds

]
and Pθ = {Qa,b : RE(at, bt) ≤ θ ∀t}.

(2.9)

Here V Q
t is the SDU utility process given the measure Q. θ = 0 implies that Pθ = {P}

and the agent only considers one measure, namely the reference measure. Thus there is
no ambiguity aversion when θ = 0. Where the risk aversion parameter γ can be seen a
parameter that is relevant for any risky bet, the parameter θ captures intrinsic ambiguity
aversion (one person might be more ambiguity averse than another), but it is also source
dependent. If there is a lot of information and data available about a process, the set of
admissible priors will be smaller compared to a process about which not much is known.

It is not necessary to have a constant θ, one could for example incorporate learning
by assuming that θt is a decreasing function over time as the actual stochastic processes
unfold. The agent then obtains more information about a process over time and therefore
one could argue it is plausible that the set of priors will be shrinking over time. However,
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Figure 2.1: Relative entropy for different values of at and bt. Results are given for λt = 0.1.
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there does not (yet) seem to exist a generally accepted framework to determine how the
set of priors should shrink over time based on new observations. In particular the multiple
prior approach does not lend itself to Bayesian updating since we do not define model
probabilities in this approach. Similar to Chen and Epstein (2002) we will therefore focus
on the case with a constant θ.

In appendix 2.B we derive that relative entropy equals:

RE(at, bt) = (1− at)λt + atλt

(
log(atbt) +

1

bt
− 1
)
. (2.10)

If we take a look at this expression for the relative entropy, it is clear that for (at, bt) =
(1, 1), the relative entropy equals zero. When one or both of the two variables deviate
from the reference model, the relative entropy increases. Every contour in figure 2.1 gives
a set of combinations (at, bt) that yields the same relative entropy. If for example θ = 0.01,
then all (at, bt) combinations within that contour line are included in the set of admissible
priors. The worst case probability measure will be the probability measure for which
either at is large (high arrival rate) and/or bt is small, since the expectation of the jump
size under the alternative measure is inversely related to bt: E

Q
t [Jt] = −1

btη+1
.

From the current setup, it is hard to argue what a reasonable value for ambiguity
aversion θ would be. In order to give more guidance about reasonable values for θ, we use
the concept of detection error probabilities introduced by Anderson, Hansen, and Sargent
(2003).7 Consider the following thought experiment. Assume that the representative
agent would be able to observe the process of consumption over the next N years, and

7See for example Maenhout (2006) for another application of detection error probabilities.
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after observing the process the agent has to choose which of the two models (the reference
model or the worst-case model) is most likely. There are two types of errors in this case.
The agent could choose the reference model while the process was actually generated by
the worst-case model and he could also make the opposite error. The detection error
probability is defined as the average of the probability of the two errors. Appendix 2.C
describes how the detection error probability is calculated.

The detection error probability depends on N , since when the agent observes the
process for a longer period, the probability of a mistake will be smaller. The detection
error probability also depends on the ambiguity aversion parameter. When θ is small, the
reference and worst-case model are similar to each other and the probability of a mistake is
large. On the other hand, when the agent is extremely ambiguity averse the reference and
worst-case models are very different and the detection error probability becomes small.
The representative agent wants to make the set of models sufficiently large to make a
robust decision, but on the other hand does not want to take into account implausible
models. Since the detection error also depends on the other parameters of the model, we
come back to the issue of calibrating the ambiguity aversion parameter in the calibration
section.

2.4 Solving the model

We first derive for each alternative probability measure Qa,b the corresponding Hamilton-
Jacobi-Bellman (HJB) equation and find an expression for the value function V Q

t . Then
we derive the HJB-equation for Vt = minQ∈Pθ V

Q
t . At the end of the section we discuss

our solution method.

2.4.1 HJB-equation

The value function is a function of aggregate consumption and all the climate state vari-
ables. Let V Q

C denote the first derivative of the value function with respect to aggregate
consumption, similar notation is used for the second derivative. For notational purposes,
define the vector of climate state variables:

Xt = [gE,t Et M0,t M1,t M2,t M3,t FE,t Tt T
oc
t ]′. (2.11)

The vector of state variables then follows: dXt = µX(Xt)dt. Denote by V Q
X the row vector

of partial derivatives of the value function V Q
t with respect to the vector of state variables

Xt: V
Q
X =

[
∂V Q(Ct,Xt)

∂gE,t
... ∂V Q(Ct,Xt)

∂T oct

]
.

We show in appendix 2.D that under the measure Qa,b, the value function V Q
t satisfies

the following Hamilton-Jacobi-Bellman equation:

0 = f(Ct, V
Q
t ) + V Q

C µCtdt+
1

2
V Q
CCσ

2C2
t + V Q

X µX(Xt)

+ λQt E
Q
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

]
.

(2.12)

The HJB-equation is a partial differential equation. We conjecture and verify that the
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value function under the measure Qa,b is of the following form:

V Q(Ct) = gQ(Xt)
C1−γ
t

1− γ
, (2.13)

where gQ(Xt) is some function of Xt. Substituting this form of the value function into the
HJB-equation and calculating the expectation gives the following reduced HJB-equation
(see appendix 2.E):

0 =
β

1− 1/ε

(
gQ(Xt)

− 1
ζ − 1

)
+ µ− γ

2
σ2 +

gQX(Xt)

gQ(Xt)(1− γ)
µX(Xt)

+ atλt
−1

btη + 1− γ
.

(2.14)

Given a probability measure Qa,b, we could solve this equation to find gQ(Xt) . Now let us
return to the problem with ambiguity. We are not interested in the solution for every single
measure Qa,b, but we want to find the solution to Vt = minQ∈Pθ V

Q
t . We can replace the

global minimization problem of equation (2.9) by an instantaneous optimization problem
at every time period t, since relative entropy is a function of at, bt and λt, which are all
three known at time t. The HJB-equation of the problem with ambiguity then becomes:

0 = min
(at,bt) s.t. RE(at,bt)≤θ

{ β

1− 1/ε

(
gQ(Xt)

− 1
ζ − 1

)
+ µ− γ

2
σ2

+
gQX(Xt)

gQ(Xt)(1− γ)
µX(Xt) + atλt

−1

btη + 1− γ

}
.

(2.15)

2.4.2 Optimal control variables

From the HJB-equation we can then calculate the optimal control variables a∗t and b∗t .
This is a constrained optimization problem with Lagrangian:

L(at, bt, lt) = atλt
−1

btη + 1− γ
− lt

(
RE(at, bt)− θ

)
. (2.16)

Here lt is the Lagrange multiplier. a∗t and b∗t and the Lagrange-multiplier lt are the
solutions to the following first order conditions:

∂

∂at
L(at, bt, lt) = λt

−1

btη + 1− γ
− ltλt

(
log(atbt) +

1

bt
− 1
)

= 0,

∂

∂bt
L(at, bt, lt) = atλt

η

(btη + 1− γ)2
− ltatλt

b− 1

b2
= 0,

∂

∂lt
L(at, bt, lt) = θ − (1− at)λt − atλt

(
log(atbt) +

1

bt
− 1
)

= 0.

(2.17)

Figure 2.2 illustrates the optimization problem. Given an entropy budget θ and the
arrival rate λt, one can determine the feasible set of (at, bt). Figure 2.1 shows the feasible
sets for several budgets. A contour plot of the objective function for several (at, bt)
combinations is given in subfigure 2.2a. Clearly combinations in the bottom right corner
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Figure 2.2: Selection of the optimal a and b.
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(a) Contour plot of the objective function of the con-
strained minimization problem for different values of at
and bt.
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(b) Illustration of selection of optimal (at, bt). The oval
area shows all admissible values for at and bt that are
within the relative entropy budget of 0.01. The straight
line is the objective function.

(high at, low bt) give the lowest objective function. The goal is to minimize this function,
given the relative entropy constraint. Subfigure 2.2b shows how the optimal combination
(a∗t , b

∗
t ) is determined. The point where objective function touches the feasible region is

the optimal solution. From now on we use the following notation for the optimal arrival
rate and jump size: λ∗t = a∗tλt and η∗t = b∗tη. Since a∗t and b∗t are a function of λt, they
are implicitly a function of temperature Tt as well. Furthermore we define by g(Xt) the
function that solves that HJB-equation with parameters a∗t and b∗t .

Figure 2.3 shows the optimal a∗t and b∗t as a function of λt. For each λt one finds the
corresponding a∗t and b∗t by solving the first order conditions. A constant relative entropy
budget implies that at is decreasing in λt and bt is increasing in λt. The idea behind the
time-varying parameters is illustrated in the following example. Assume θ = 0.01. At
time t, the arrival rate equals 0.05 and at time t′ the arrival rate equals 0.1. At every time
point the following equality must hold at the optimum: RE(at, bt, λt) = θ. For λt = 0.05
the optimal parameters are (a∗t , b

∗
t ) = (1.41, 0.68) and RE(1.41, 0.68, 0.05) = 0.01. Now

consider time t′ with arrival rate 0.1. If we would use the same optimal parameters
as at time t, the relative entropy exceeds the budget: RE(1.41, 0.68, 0.1) > 0.01. The
distance or relative entropy between the reference model and the worst-case model is
increasing in the arrival rate λt. For a larger arrival rate, an x% increase in the arrival rate
generates a larger ‘distance’ between the two measures. Intuitively, when the arrival rate is
larger, more disasters are observed. With the same a∗t and b∗t , detecting which probability
distribution is the true distribution is easier when disasters occur frequently. Therefore
the optimal at and bt must adjust to make sure that the relative entropy remains within
the constant budget. At time t′, the optimal parameters become: (a∗t , b

∗
t ) = (1.30, 0.75).

2.4.3 Solution method

It is typically not possible to solve the partial differential equation of the problem with
climate state variables (except when the highly restrictive assumption of a unit EIS is
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Figure 2.3: Optimal parameters at and bt as a function of the arrival rate λt with constant
ambiguity aversion parameter θ. Input parameters: θ = 0.01, η = 61.5, γ = 5.
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made). However we are able to obtain exact solutions for the value function and the
consumption-to-wealth ratio without making restrictive assumptions like EIS = 1, and
the consumption-to-wealth ratio is what we need for assessing the SCC. We will now
sketch our approach.

Duffie and Epstein (1992a) derive that the stochastic discount factor (or pricing kernel)

with stochastic differential utility equals πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt). However,

the stochastic discount factor has to be adjusted for the ambiguity aversion preferences.
Chen and Epstein (2002) show that the stochastic discount factor in the ambiguity setting
should be multiplied by the Radon-Nikodym derivative ξa

∗,b∗

t of the measure corresponding
to the optimal a∗ and b∗. ξa,bt is defined in (2.36). When calculating the stochastic discount
factor, we obtain an expression that depends on the unknown function g(Xt). But by
substituting the HJB-equation into the stochastic discount factor we obtain an expression
that only depends on known parameters.

As an intermediate step it is helpful to introduce the concept of consumption strips.
A consumption strip is an asset that pays a unit of aggregate consumption Cs at time
time s > t. Call its price at time t: H(Ct, Xt, u), where u denotes the time to maturity;
u = s− t. The price of a consumption strip paying out at time s > t equals:

Ht = H(Ct, Xt, u)

= Et

[πs
πt
Cs

]
= exp

{
−
∫ t+u

t

CDRsds
}
Ct.

(2.18)

We will refer to CDRt as the consumption discount rate. We can use the fact that every
asset multiplied by the stochastic discount factor must be a martingale to calculate the
value of such an asset.

Furthermore, we can define a stock St that gives a claim to the Lucas-tree and therefore
it pays a continuous stream of dividends Ct. The value of such a stock then obviously
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becomes:

St =

∫ ∞
0

H(Ct, Xt, u)du. (2.19)

In equilibrium aggregate wealth must be equal to the value of the stock. The state-
dependent consumption-wealth ratio therefore equals:

k(Xt) =
Ct
St

=
Ct∫∞

0
H(Ct, Xt, u)du

=

(∫ ∞
0

exp
{
−
∫ t+u

t

CDRsds
}
du

)−1

. (2.20)

Using the expression for the consumption-wealth ratio, we can calculate the value
function. At the optimum (see for example Munk (2015), Ch. 17), we have the envelope

condition that fC = VS. Furthermore, we derived that V (Ct, Xt) =
g(Xt)C

1−γ
t

1−γ . Using the
chain rule we get:

VS = VC
∂C

∂S
= VCk(Xt) = g(Xt)C

−γ
t k(Xt). (2.21)

Also we have for the intertemporal aggregator:

fC = βg(Xt)
1/ε−γ
1−γ C−γt . (2.22)

Together this gives us:

g(Xt) =
(k(Xt)

β

)− 1−γ
1−1/ε

. (2.23)

We can now derive an expression for the stochastic discount factor in terms of known
parameters and using this stochastic discount factor, we can calculate the price of a
consumption strip. We will analyse the consumption strips in detail in the next section.
Integrating over the maturities of consumption strips with different maturities gives us
the value of the stock, which in turn enables us to calculate the consumption-wealth ratio.
Lastly, we can link g(Xt) to the consumption-wealth ratio, which then allows us to derive
an expression for the value function.

2.5 Asset prices and discounting

2.5.1 Asset market

Before going to the main part of this paper, the analysis of the social cost of carbon,
we first calculate the risk-free rate and the risk premium as an input in the analysis
of the SCC. Assume that the representative agent has the possibility to invest in two
assets, namely a risk-free asset and a risky stock. The risk-free asset with price Bt pays a
continuously compounded interest rate rt. The stock pays continuous dividends at a rate
Ct and has ex-dividend price St. We denote the cum-dividend stock price by Sdt . Using
equation (2.20) we can write St = Ct

k(Xt)
. The assets have the following processes:

dBt = rtdt, (2.24)
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dSdt = dSt + Ctdt =
1

k(Xt)
dCt −

Ct
k(Xt)2

dk(Xt) + k(Xt)Stdt

=
(
µ− kX(Xt)

k(Xt)
µX(Xt) + k(Xt)

)
Stdt+ σStdZt + JtSt−dNt.

(2.25)

Chen and Epstein (2002) show that the stochastic discount factor with ambiguity

and stochastic differential utility equals πt = ξa
∗,b∗

t exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt). This

allows us to derive an explicit stochastic differential equation for the stochastic discount
factor. Using this stochastic discount factor, we can calculate the endogenous risk-free
rate and the endogenous risk premium of the stock.8 The interest rate rt equals:

rt = β +
µ

ε
−
(

1 +
1

ε

)γ
2
σ2 −

(
γ − 1

ε

)
a∗tλt

−1

b∗tη + 1− γ

− a∗tλt
( b∗tη

b∗tη − γ
− 1
)
.

(2.26)

The risk premium of the dividend paying stock (the expected excess return of that asset
compared to investing in the risk-free asset) then equals:

rpt = γσ2 + a∗tλt

( −1

b∗tη + 1
− b∗tη

b∗tη + 1− γ
+

b∗tη

b∗tη − γ

)
. (2.27)

2.5.2 Consumption discount rate

As shown in appendix 2.F, the price of a consumption strip at time t that pays aggregate
consumption Cs and has time to maturity u = s− t equals:

Ht = exp
{
−
∫ t+u

t

CDRsds
}
Ct, where

CDRt = rt︸︷︷︸
A

+ rpt︸︷︷︸
B

−
(
µ+ a∗tλt

−1

b∗tη + 1

)
︸ ︷︷ ︸

C

= β + (1/ε− 1)
(
µ− γ

2
σ2 + a∗tλt

−1

b∗tη + 1− γ

)
.

(2.28)

We discuss the consumption discount rate CDRt in detail, since it is also an essential
component of the social cost of carbon. The effective discount rate on a consumption strip
consists of three terms, labeled A, B and C. Part A is the risk-free rate, which is used
to discount a risk-free cashflow. The consumption strip is a risky asset and therefore the
risk-free rate is increased with a risk-premium, part B. Lastly, the discount rate should be
corrected for the growth of the aggregate consumption process. On average, consumption
grows at a rate µ+ a∗tλt

−1
b∗t η+1

. Note that the average growth rate is smaller than µ since

climate disasters have a negative impact on consumption.
Consider first the most simple case without climate disasters and risk, i.e. the case

with (σ, λT ) = (0, 0); then consumption strips are not risky anymore so the risk premium

8The derivations are given in appendix 2.F.
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is zero. The interest rate reduces to the well-known Ramsey rule for the interest rate
(Ramsey, 1928):

rt = β +
µ

ε
, (2.28a)

which implies a growth corrected discount rate rn,t for the case of (σ, λT ) = (0, 0) equal
to:

rn,t = β + (1/ε− 1)µ. (2.28b)

Now add just diffusion risk: σ > 0, λT = 0. In a general equilibrium setting this will both
affect the interest rate (due to a flight to safety) and the risk premium, in this case γσ2:

rt = β +
µ

ε
− (1 + 1/ε)

γ

2
σ2, (2.28c)

rpt = γσ2. (2.28d)

Adding the risk premium to the risk-free rate but correcting for the growth rate once
again gives the growth-adjusted discount rate, now for σ > 0, λT = 0:

rn,t = β + (1/ε− 1)
(
µ− γ

2
σ2
)
. (2.28e)

One would intuitively expect that adding risk to the consumption stream and the asso-
ciated risk premium γσ2 to the interest rate would lead to a higher risk-adjusted discount
rate. However, due to the flight to safety effect the risk-free rate decreases which in itself
lowers the discount rate. Which of the two effects dominates depends on the elasticity of
intertemporal substitution.

- When ε = 1, both the interest rate and risk premium effect cancel out and the
discount rate simply becomes β.

- When ε < 1, the discount rate in the presence of risk (σ > 0) is actually smaller than
the discount rate in the absence of risk (σ = 0). This implies that for ε < 1 adding risk
to the consumption stream increases the value of the consumption strip.

- When ε > 1 we get the more intuitive outcome. In that case the risk premium effect
dominates and the discount rate in the presence of risk is larger than the discount rate in
the absence of risk.

Taking the impact of growth and risk both into account, and reasonably assuming
µ − γ

2
σ2 > 0, it becomes clear from (2.28) that the overall effect of a higher value for ε

implies a lower growth adjusted discount rate.
Where ε determines the relative importance of the interest rate and risk premium

effects, risk aversion γ determines the magnitude. A large risk aversion amplifies the
effect of risk on the discount rate. When the agent is risk neutral (γ = 0), risk has no
effect on the discount rate. The preceding discussion makes abundantly clear that using a
General Equilibrium framework endogenizing the risk-free rate is essential in this context.
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Assume now that additionally climate disasters also play a role: σ > 0, λT > 0; the
discount rate of the consumption strip then becomes state dependent.

First assume that there is no ambiguity aversion (θ = 0). Once again, adding climate
disaster risk has an effect on both the interest rate and the risk premium. And similarly
to the changes in the σ case, when ε < 1 the interest rate effect dominates so that in that
case adding disasters leads to a lower discount rate. But when ε > 1, the risk premium
effect dominates and adding climate disasters actually leads to higher discount rates.

Equation (2.28) indicates that the climate-risk related term in the discount rate for
the reference case a∗t = 1, b∗t = 1 equals λt

−1
η+1−γ . The term scales with the arrival rate

λt: more frequent disasters have a larger effect on discount rates. The term −1
η+1−γ can be

interpreted as the certainty equivalent of the climate shock. When γ = 0, the certainty
equivalent is equal to Et[Jt] = −1

η+1
.

Including ambiguity aversion leads to a larger worst case arrival rate: a∗t > 1 =>
a∗tλt > λt and a more negative certainty equivalent term since b∗t < bt. Therefore we can
unambiguously conclude that ambiguity aversion amplifies the effect of climate risk on
discounting. And once again assuming a reasonable parameterization,9 increasing ε still
leads to a lower discount rate.

2.6 Social cost of carbon

Given the value function, we can calculate the Social cost of carbon (SCC), which we define
as the marginal cost (in terms of reduced welfare) of increasing carbon emissions by one
ton carbon scaled by the marginal welfare effect of one additional unit of consumption
to obtain the social cost of carbon in terms of the price of time t consumption units (to
which we refer as ‘in dollar terms’, for brevity’s sake). With a single carbon box, the
marginal cost of increasing carbon emissions by one unit is the derivative of the value
function with respect to the carbon concentration Mt:

∂Vt
∂Mt

. However, with multiple
carbon boxes, emitting one unit of carbon leads to an increase of νi units in box i,
i ∈ {0, 1, 2, 3}. We slightly abuse notation and define ∂

∂Mt
≡ ν0

∂
∂M0,t

+ ν1
∂

∂M1,t
+ ν2

∂
∂M2,t

+

ν3
∂

∂M3,t
. Differentiation of the value function gives:

SCCt = − ∂Vt/∂Mt
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(
a∗sλs︸︷︷︸
B
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C

)
dsdu.

(2.29)

We will first discuss the general formula and then the implications of different preferences.
Equation (2.29) shows that the social cost of carbon is proportional to Ct, the aggre-

gate consumption level: when the current aggregate consumption level doubles, the SCC

9Specifically, we assume throughout the rest of the analysis that µ− γ
2σ

2 + a∗tλt
−1

b∗t η+1−γ > 0 ∀t.
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doubles as well. For a given consumption level, the SCC depends on three terms, labeled
A, B and C respectively. The social cost of carbon measures the marginal welfare loss of
emitting an additional unit of carbon today. It is, in discrete time terms, the discounted
sum of all future damages done by emitting one ton of carbon today. The outer integral
indicates that all future marginal damages are included in the SCC. Future damages are
discounted with the consumption discount rate (term A). The integral over the terms
B and C captures the marginal damage for a given maturity u. What matters is the
cumulative effect of a unit of carbon emissions at time t on the terms B and C over the
time period t to t+u. Not only the impact of Mt on Tt+u plays a role, but the whole path
of the temperature between t and t+u, since any climate damages that occur within this
period have an effect on consumption at time t+ u.

Without ambiguity aversion (θ = 0) the marginal effect of Mt on terms B and C
has a simple expression. Term C is independent of Mt and ∂

∂Mt
λs = λT

∂
∂Mt

Ts. If we
now consider the marginal damages, λT captures the increase in the arrival rate when
temperature increases by one degree. ∂

∂Mt
Ts gives the marginal increase of temperature

at time s due to an increase of atmospheric carbon concentration at time t. In the case
without ambiguity, term C equals 1

η+1−γ . Without risk aversion, this is equal to the
expected value of a climate disaster.

Consider first the impact of γ and ε. When the agent is risk averse, term C can be
interpreted as the certainty equivalent of the loss after a disaster. The certainty equivalent
is clearly increasing in risk aversion. But risk aversion also has an effect on the discount
rate CDRt. As discussed before, increasing risk aversion increases the discount rate when
ε > 1. In this case the discounting effect works in opposite direction of the effect on the
certainty equivalent: for ε > 1 the impact of γ on the SCC is therefore ambiguous. But
for ε < 1 the two effects reinforce each other and the SCC is then an increasing function
of γ. Consider next the impact of ε. The elasticity of intertemporal substitution ε only
plays a role in the discount rate. When ε increases, the willingness to substitute over
time increases which leads to lower discount rates. So a higher ε unambiguously leads to
a higher SCC.

When ambiguity aversion is present, i.e. θ > 0, we obtain that a∗s > 1 (higher worst-
case arrival rate) and b∗s < 1 (higher worst-case jump size). The ambiguity aversion
parameter θ does not directly show up in the formula, but its effect works via a∗s and
b∗s. With θ > 0 both the arrival rate of disasters in the expression is higher (so term B
is larger) and the certainty equivalent, which with ambiguity aversion becomes 1

b∗sη+1−γ ,
is also higher. Through these two channels ambiguity aversion leads to a higher social
cost of carbon. But similar to risk aversion, ambiguity aversion also affects discount rates
and the sign again depends on the elasticity of intertemporal subtitution ε. When ε < 1,
ambiguity aversion additionally leads to a lower discount rate and thus an even higher
SCC. When ε = 1, the discount rate is simply β and ambiguity has no effect on the
discount rate. Lastly, when ε > 1, increasing θ leads to higher discount rates. Therefore
increasing ambiguity aversion has two offsetting effects in this case. We will focus in the
numerical section on the empirically supported case where ε > 1.

Summarizing, when considering the effect of ambiguity aversion on the social cost of
carbon we can identify two effects. First, including ambiguity aversion leads to a higher
arrival rate and a larger certainty equivalent, which pushes the social cost of carbon up.
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Table 2.1: Parameters for the economic model.

Par. Description Value

Ct Initial consumption level (PPP, in trillion 2015 $) 83.07
λT Arrival rate parameter 0.02 / 0.04
η Disaster size parameter 30.25 / 61.5
E[J ] Expected disaster size -0.032 / -0.016
γ Risk aversion 5
θ Ambiguity aversion 0.01
ε Elasticity of substitution 1.5
CDR0 Consumption discount rate 1.5%

We call this effect the direct effect of ambiguity aversion. Second, there is a more indirect
general equilibrium effect through the impact of ambiguity aversion on discount rates.
We call this the discounting effect. The discount rate that should be used to discount
future climate disasters is the consumption discount rate, and when the elasticity of
substitution is larger than 1, ambiguity aversion leads to a higher consumption discount
rate. This is an intuitive result: if the representative agent is very ambiguity averse about
climate disasters, he would rather like to consume today than to postpone consumption
since the future consumption level is uncertain. Ambiguity aversion therefore increases
the consumption discount rate and decreases the price of a future consumption strip.
Thus for ε > 1 it is ultimately a numerical issue which of the two effects will dominate.
We will highlight both effects separately in the numerical section and show that for our
calibration, the first effect dominates. In our numerical analysis the net impact is positive:
more ambiguity aversion leads to a higher SCC. We turn to that numerical analysis in
the next section.

2.7 Climate change and the social cost of carbon: numerical
results

2.7.1 Calibration

Appendix 2.G gives the full details of the calibration of the climate model. Parameters
for the growth rate of emissions and the initial level are chosen to match the baseline
scenario of the DICE-2016 calibration (Nordhaus, 2017). The parameters of the carbon
cycle and temperature model are taken from Mattauch et al. (2019). In addition, and
different from Mattauch et al. (2019), we also include a base level of non-carbon related
radiative forcing and calibrate it to match exogenous forcing in DICE-2016. Figure 2.4
shows the future path of the climate state variables using our emissions path and climate
model. Under the business-as-usual scenario, emissions are projected to peak at the end
of the century, and decline from then on. The surface temperature will then rise by almost
4 degrees in 2100.

The calibration of the economic parameters is given in table 2.1. Since we consider an
exogenous endowment economy, output and consumption are the same thing in our model.
That leaves the question open whether we should calibrate the endowment to output or
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Figure 2.4: Future path of climate variables.
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to consumption data. The focus of the paper is on the social cost of carbon. What
ultimately matters for the social cost of carbon is consumption, since utility depends on
consumption and not on output. To make our results more comparable to other models,
we therefore calibrate endowment to consumption data. The next choice to be made is
whether one should aggregate output or consumption data using market exchange rates
or using purchasing power parities (PPP). In line with the DICE-2016 model we use
purchasing power parity exchange rates. Consumption data is not directly available in
PPP. To obtain a proxy for world consumption in PPP we first obtain output data in PPP.
Then we determine the world consumption ratio using market exchange rates. Our proxy
for world consumption in PPP is then output in PPP multiplied by the world consumption
ratio. Real world GDP (PPP) in 2015 equals 114.137 trillion 2015 $ (IMF World Economic
Outlook October 2016). World consumption in 2015 using market exchange rates equals
55.167 (in trillion 2010 $), while world GDP using market exchange rates equals 75.803
(in trillion 2010 $) (Worldbank Database). This yields a consumption-output ratio of
72.78%. Applying this ratio to World GDP (PPP) then gives 83.065 (in trillion 2015 $)
for aggregate consumption in PPP terms.
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The next step is to calibrate the climate disaster distribution, and in particular the
parameters λT and η. Our setup does allow for an arrival rate that is convex in temper-
ature, but we do not consider this extension since it would give another free parameter
to calibrate. Karydas and Xepapadeas (2019) also consider climate disasters and assume,
based on natural disaster data, that for every degree warming the arrival rate increases
by 6%. The disaster size is calibrated to 1.6%. This implies that the expected growth
loss due to climate change would be 6% × 1.6% = 0.096% per degree global warming.
Nordhaus (2017) models the economic impact of climate change as the percentage loss of
output as a function of temperature (level impact). Hambel et al. (2021) consider both a
level and a growth impact of climate damages. They find that a loss of 0.026% per degree
warming gives the same GDP loss in the year 2100 as the level impact of Nordhaus (2017).
Setting the disaster size to 1.6% and calibrating λT such that on average climate disasters
lead to a loss of 0.026% gives λT = 1.63%, much lower than the arrival rate assumed
in Karydas and Xepapadeas (2019). The calibration of Karydas and Xepapadeas (2019)
obviously gets much higher expected damages than the calibration of Nordhaus (2014a)
yields.

We decide to choose λT = 4%, which is in between these two calibrations and set
η = 61.5 which yields Et[Jt] = −1.6%, in line with Karydas and Xepapadeas (2019).
Additionally, we consider a variant with less frequent but on average larger disasters:
λT = 2%, and a disaster size parameter η = 30.25 which gives Et[Jt] = −3.2%. While
both calibrations have on average the same impact, their impact on risk premia is very
different.

We now turn to the calibration of risk aversion and ambiguity aversion. We set risk
aversion equal to 5. This level of risk aversion can be seen as conservative if we compare
it to common values in the asset pricing literature.10

The level of ambiguity aversion is harder to calibrate. To get a feeling for reasonable
values of ambiguity aversion, we use the concept of detection error probabilities. The
ambiguity aversion parameter θ pins down the arrival rate and the expected jump size in
the worst-case scenario. A higher θ leads to a higher worst-case arrival rate and a more
negative worst-case expected jump size. The detection error probability is the probability
of choosing the wrong model (so choosing the reference model P when the worst-case Q
is true and vice-versa). When θ is higher, the two models are more different and the
probability of making a mistake is therefore lower. When the detection error probability
is close to 50%, the two models are very similar. This is an indication of a low ambiguity
aversion parameter. On the other hand, when the detection error probability is close to
0, it is easy to distinguish the worst-case model from the reference model. This indicates
that the worst-case model is extreme and the ambiguity aversion parameter very high.

We calculate the detection error probability assuming that the consumption process
can be observed over a period of 100 years. The ambiguity aversion parameter θ is varied
between 0 and 0.02. The results are given in figure 2.5. Detection error probabilities are
decreasing in θ and are higher for a lower λT . This is intuitive, since a lower λT implies
that there are less disasters over the observed time period and the probability of choosing
the wrong model is therefore larger. We choose to set θ = 0.01 in the base calibration,

10A coefficient of relative risk aversion between 5 and 10 is common in the asset pricing literature
according to Cochrane (2009).
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Figure 2.5: Detection error probabilities as a function of θ.
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which gives a detection error probability of 26.7% for (λT , η) = (0.02, 30.25) and 25.8%
for (λT , η) = (0.04, 61.5) (cf figure 2.5). This level of ambiguity aversion balances the
trade-off between wanting to make a robust decision, but not taking into account too
extreme models. The detection error probabilities for θ = 0.01 are sufficiently far away
from 50%, which implies the two models are not too close to each other. On the other
hand, the detection error probabilities are also not close to 0, which would indicate an
extreme amount of ambiguity aversion. However, since this parameter remains hard to
calibrate we do vary θ in robustness checks. Figure 2.6 shows the resulting arrival rate
and expected disaster size with ambiguity aversion (θ = 0.01) and without ambiguity
aversion (θ = 0) in both cases.

The parameters that still have to be calibrated affect the social cost of carbon only
indirectly, via the discount rate. Equation (2.28) shows that one can separate the expres-
sion for the consumption discount rate (the relevant discount rate for the social cost of
carbon) CDRt in a time-independent part CDR0 and a part that does depend on time:

CDRt = CDR0 + (1/ε− 1)a∗tλt
−1

b∗tη + 1− γ
,

CDR0 = β + (1/ε− 1)
(
µ− γ

2
σ2
)
.

(2.30)

CDR0 is the consumption discount rate in the absence of climate disasters. First, the
value of the elasticity of intertemporal substitution ε determines whether additional risk
increases or decreases the discount rate. Generally, there is strong empirical evidence of
an EIS larger than one (Van Binsbergen, Fernández-Villaverde, Koijen, & Rubio-Ramı́rez,
2012; Vissing-Jørgensen & Attanasio, 2003). When ε > 1, we are in the realistic situation
that additional risk decreases asset prices. We choose ε = 1.5, which is a common value in
the literature on Epstein-Zin preferences. The growth rate µ, the volatility σ and the pure
rate of time preference β only affect the social cost of carbon via CDR0. The calibration
of β has been widely discussed in the climate change literature. Additionally, we could
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Figure 2.6: Arrival rate and expected disaster size over time with and without ambiguity
aversion.
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calibrate σ from observed consumption volatility. However, as Mehra and Prescott (1985)
point out, the model in that case would generate a way too low risk premium (the equity
premium puzzle). A way to circumvent this is to calibrate σ to the volatility of stock prices,
but this solution is also not very satisfactory. There have been several (partial) solutions
proposed to the equity premium puzzle, for example including economic disaster risk.
Solving the equity premium puzzle goes beyond the scope of this paper. Since both β and
σ only affect the SCC via CDR0, we choose to directly calibrate the consumption discount
rate in the absence of climate risk. In our base calibration, we choose CDR0 = 1.5%,
but we show our results for values of CDR0 between 0.5% and 2.5%. The parameter
combinations (β, µ, σ) = (2.25%, 2.5%, 3%) and (β, µ, σ) = (1.5%, 2.5%, 10%) for example
yield a consumption discount rate CDR0 = 1.5%. Note that the actual consumption
discount rate CDRt is higher because of the impact of climate disasters on discounting.

2.7.2 Social cost of carbon

Ambiguity aversion and the SCC
Figure 2.7 shows for each of the two sets of assumptions on the disaster risk parameters

the social cost of carbon for different values of θ. Ambiguity aversion clearly leads to a
substantially higher social cost of carbon. For the (λT , η) = (0.04, 61.5) case, the SCC is
28% higher with θ = 0.01 compared to the case without ambiguity aversion. The relative
increase is even larger when we consider the (λT , η) = (0.02, 30.25) case: the SCC is
then 36% higher with ambiguity aversion. The intuition behind this difference is that the
relative entropy between the reference model and the worst-case model is increasing in λt.
When the arrival rate is smaller, disasters happen less frequently and the two probability
distributions are harder to distinguish. With the same ambiguity aversion level θ, this
then implies that a∗t is larger for λT = 0.02 compared to the a∗t for λT = 0.04 and also
that b∗t is lower for λT = 0.02 compared to λT = 0.04. Therefore the relative increase in
the SCC due to ambiguity aversion is larger with λT = 0.02 than it is with λT = 0.04.
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Figure 2.7: Social cost of carbon as a function of θ.
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This figure shows the social cost of carbon as a function of the ambiguity aversion parameter θ. The total effect of
ambiguity aversion on the SCC is given by the solid line (base). We additionally distinguish two special cases. In the

discounting effect only case (dashed line) we assume that increasing θ does lead to an increase in the discount rate, but
does not change the arrival rate and the certainty equivalent in the SCC formula. In the direct effect only case (dotted
line) we look at the opposite case, where increasing θ is assumed to have an effect on the arrival rate and the certainty

equivalent, but not on the consumption discount rate CDRt.

From equation (2.30) it is clear that ambiguity aversion does not only affect the ar-
rival rate and certainty equivalent of climate disasters, but also the discount rate: in our
calibration with ε = 1.5, more ambiguity aversion leads to a higher discount rate. We
disentangle the two effects on the SCC by first considering the discounting only effect, in
which we assume ambiguity aversion only affects the discount rate CDRt, but we leave
the arrival rate and the certainty equivalent in the SCC formula unaffected by ambiguity
aversion (the line with label discounting only in figure 2.7). And second we consider the
opposite case, where we leave the consumption discount rate CDRt unchanged, but we
do take into account the direct effect of ambiguity aversion on the arrival rate and cer-
tainty equivalent of the climate disasters, with the label direct only in figure 2.7. The two
effects are combined in the base case where both the direct effect and the impact via the
discount rate are incorporated (labeled base in figure 2.7). Figure 2.7 clearly indicates
that ambiguity aversion increases the discount rate and therefore the SCC is decreasing in
θ when only the discounting effect of ambiguity aversion is considered. This also implies
that when we look at the direct only effect, the SCC is above the base case SCC since
the negative impact of discounting is left out. Overall we can conclude that ambiguity
aversion does indeed lead to a higher discount rate, but that the direct effect on the SCC
dominates and that ambiguity aversion therefore leads to a higher social cost of carbon,
and in our calibration substantially so.

The elasticity of intertemporal substitution ε and the SCC
The sign of the discounting effect depends on the choice of ε. When ε < 1, additional

risk, more risk aversion or more ambiguity aversion would lower discount rates and both
the discounting effect and the direct effect of ambiguity aversion would have the same sign.
However, this would lead to counter-intuitive effects. For example ε < 1 implies that the
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Table 2.2: Social cost of carbon as function of risk aversion and ambiguity aversion.

Social Cost of Carbon (λT , η) = (0.04, 61.5) (λT , η) = (0.02, 30.25)

γ = 0, θ = 0 363 363
γ = 5, θ = 0 360 392
γ = 5, θ = 0.01 461 533

price of a consumption strip increases when the volatility of consumption increases. For
ε = 1, the consumption discount rate CDRt simply equals β and risk, risk aversion and
ambiguity aversion do not affect discount rates.

Risk aversion, ambiguity aversion and the SCC
In table 2.2 we compare the effect of risk aversion and of ambiguity aversion. By

definition, the SCC is the same for both calibrations when risk aversion γ and ambiguity
aversion θ are both 0. In that case the expected value of both calibrations is the same
and since risk is then not priced, the SCC is the same for both calibrations. Introducing
risk aversion has a negligible effect on the SCC for the frequent disasters with low disaster
size: for (λT , η) = (0.04, 62.5) the direct impact of risk aversion on the certainty equiva-
lent is small and is canceled out by the discounting effect: for this configuration the SCC
is even slightly lower than what it is without risk aversion. This changes when damages
are more infrequent but larger. In the alternative calibration with (λT , η) = (0.02, 30.25),
risk aversion does increase the social cost of carbon from 363$ to 392$. This increase
is still modest compared to the effect of ambiguity aversion. In both cases, introducing
ambiguity aversion leads to a significantly higher value of the social cost of carbon. The
table shows the very different implications that risk aversion and ambiguity aversion have
for the valuation of climate risk.

Discount rates and the SCC
Figure 2.8 shows the dependence of the SCC on the time-independent part of the

consumption discount rate CDR0, the core discount rate. Note that the actual discount
rate that is used to discount future damages (CDRt) is higher than CDR0 due to the
effect of climate disasters itself on discounting. When core discount rates are close to
zero, the social cost of carbon becomes very high. With CDR0 = 0.5%, the SCC is even
above 2000$ in both cases, around four times higher than in the base calibration. On the
other hand, setting CDR0 = 2.5% gives a social cost of carbon that is less than half the
value in the base calibration. This figure highlights the importance of the discount rate
when analyzing climate change and in particular its impact on the social cost of carbon.

2.8 Conclusion

Climate change will beyond reasonable doubt have a large impact on economic growth
in the future. However, because of the complex nature of the problem and the lack of
data, it is not possible to accurately estimate the timing and extent of its impact. But
one thing we do know is that potentially large and irreversible consequences are likely
to take place unless mitigating policies are implemented. But these changes will happen
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Figure 2.8: Social cost of carbon as a function of CDR0.
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far into the future, while mitigating policies are (or should be) under consideration right
now. That discrepancy puts the discussion on discounting at the center of the debate
about the social cost of carbon and what we should do about climate change: to compare
uncertain future damages with costs today, those future damages need to be discounted
back towards today. The debate in the literature has largely zeroed in on the rate of time
preference; the problem there is that to be consistent with capital market data, discount
rates must be relatively high which in turn does not leave much once climate change
consequences a century out are discounted back towards today (cf Weitzman (2007) for
a very lucid overview of this debate). In this paper we squarely focus on the discounting
question, but we take a different approach. Rather than discussing numerical values
of certain parameters, we explore alternative specifications of preferences, and show the
implications for the social cost of carbon.

We focus on the effect of Epstein-Zin recursive preferences on outcomes of the model,
on the impact of unmeasurable risk (ambiguity) and the interaction between those two.
Both breaking the link between γ and the EIS (by introducing stochastic differential
utility, the continuous time implementation of Epstein-Zin preferences) and introducing
ambiguity aversion are conceptually relevant in the climate change setting. The first ex-
tension is relevant because climate change problems have a very long horizon and therefore
the elasticity of intertemporal substitution (EIS) unavoidably plays an important role. Ar-
bitrarily restricting its value to 1/γ is then surely unsatisfactory. Second, conceptually
ambiguity aversion is a logical extension, since we have no accurate estimation of climate
damages nor in particular of their probability density function in the future. The assump-
tion of unmeasurable risk (‘Knightian uncertainty’) then is a natural framework to use.
Finally we highlight the sometimes complicated interactions between ambiguity aversion
and intertemporal substitution elasticities for the value of the social cost of carbon.

To do all this we set up an analytic IAM by extending a disaster risk model with a
climate change model and a temperature dependent arrival rate. Furthermore, we model
climate risk as tail risk instead of assuming that temperature increases generate a certain
amount of damage every year. The model is transparent because we manage to derive
closed form solutions for the social cost of carbon. Where stochastic numerical IAMs
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can take hours to be solved, solving our model only requires numerical integration and is
therefore solved within seconds.

Our base calibration generates a substantial social cost of carbon which is between
461$ and 533$ per ton of carbon. This is both much higher than for example the esti-
mate of 114$ that is obtained using the DICE-2016R model (Nordhaus, 2017), and also
much higher than current market prices in for example the European Emissions Trading
System.11 Moreover we use our model to highlight how ambiguity aversion changes the
social cost of carbon.

Analysing the effect of ambiguity aversion on the SCC is a complicated exercise since
multiple potentially offsetting effects play a role: ambiguity aversion has both an effect on
the arrival rate and certainty equivalent of disasters for given discount rates (more ambi-
guity aversion leads to a higher certainty equivalent) and on the discounting component.
The effect of ambiguity aversion on discounting depends on the EIS. When EIS < 1, in-
creasing ambiguity aversion leads to a smaller effective discount rate on climate damages.
For the more interesting (because empirically supported) case EIS > 1, the opposite is
true, in which case increasing ambiguity aversion has two offsetting effects on the SCC.
However, we show that the direct effect dominates and therefore that the presence of
ambiguity aversion leads to a (substantially) higher social cost of carbon.

Lastly, we also show the importance of the consumption discount rate on the social
cost of carbon. It is of course well known that the social cost of carbon is very sensitive to
changes in the discount rate. However, we stress that analyzing the discount rate impact
of climate change involves more than a discussion of the pure rate of time preference on
the discount rate; a low discount rate can also be caused by a high elasticity of intertem-
poral substitution, and additionally the discount rate depends in elaborate ways on the
growth rate of the economy, volatility, risk aversion, climate disaster risk and ambiguity
aversion. Disentangling these various effects and their interactions is the key contribution
of this paper. One major theme emerges: proper risk pricing and incorporating ambiguity
aversion leads to much higher estimates of the social cost of carbon. These findings are
surely of more than just academic interest.

11These prices are usually quoted per ton of carbon dioxide, which involves a conversion factor of 3.67.
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2.A Overview of methods to model ambiguity

There are several different approaches that are commonly used in the literature to model
ambiguity about parameters. A widely used approach in the static setting is the max-
min approach of Gilboa and Schmeidler (1989). Assume the agent does not know the
distribution of a random variable. The idea is to first specify a set of reasonable probability
measures Q. The agent is ambiguity averse and given this set of measures he considers the
worst case measure. Utility is then of the form Vt = minQ∈P EQ[U(Ct)] for some utility
specification U(.).

It is not straightforward to extend the Gilboa-Schmeidler maxmin preferences to a
dynamic setting. We will discuss two approaches that have been proposed by Chen and
Epstein (2002) and by Hansen, Sargent, Turmuhambetova, and Williams (2001) in the
setting of our model.

Consider the agent’s problem. In the setting without ambiguity, the value function is
given by:

Vt = Et

[ ∫ ∞
t

f(Cs, Vs)ds
]
. (2.31)

However, in the model with ambiguity the agent takes into account the fact that he is not
certain about the true value of the arrival rate λt and the jump size parameter η.

Hansen et al. (2001) propose two approaches to model ambiguity: the multiplier ap-
proach and the constraint approach. We first consider the multiplier approach. The ‘best
estimate’ model or reference model is the agent’s most reliable model with measure P,
but he also takes into account other, alternative models. The alternative models have
measure Qa,b, the jump arrival rate becomes λQt = atλt and the jump size parameter
becomes ηQt = btη. Deviating from the reference model is penalized since the agent does
not choose the ‘best estimate’ model. The size of the penalty is proportional to d(at, bt),
which represents the distance between the alternative model and the reference model. An
alternative model that has a large distance to the reference model is considered less likely
to be true and therefore using it receives a larger penalty. The distance function should
satisfy d(at, bt) ≥ 0 ∀(at, bt) and d(1, 1) = 0. Therefore using the reference model carries
a zero penalty. The penalty is scaled by θ, which is the ambiguity aversion parameter.
This parameter controls the importance of the penalty term. Then the agent solves the
following problem:

Vt = min
{as,bs}s≥t

EQ
t

[ ∫ ∞
t

(
f(Cs, Vs) + e−β(s−t)θd(as, bs)

)
ds
]
. (2.32)

EQ
t denotes the expectation under the alternative model with parameters λQt and ηQt . The

expected utility of consumption is lower for high at and low bt. We see that the agent
faces a trade-off between how likely a combination of (as, bs) is in terms of distance to the
reference model and how bad it is in terms of expected utility. This trade-off results in
optimal values of as and bs.

The constraint approach is closely related to the multiplier approach. Instead of
adding a penalty function, the agent can put a constraint on the distance function d(at, bt).
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Then the problem becomes:

Vt = min
{as,bs}s≥t

EQ
t

[ ∫ ∞
t

f(Cs, Vs)ds
]
,

s.t.

∫ ∞
t

e−β(s−t)d(as, bs)ds ≤ φ.

(2.33)

So in this approach, φ to controls the size of the set of alternative models that seem
reasonable to him. φ can again be seen as an ambiguity aversion parameter. A high φ
implies a large set of priors and therefore corresponds to high ambiguity aversion. Given
the constraint the worst-case model is chosen. This approach is very similar to the penalty
approach and the two problems are related via Lagrangian optimization where θ can be
seen as the Lagrange multiplier.

Hansen and Sargent (2001) consider how the penalty and constraint approaches are
related. They show that when the consumption process follows a pure geometric Brown-
ian motion (i.e. no jumps), there exists a φ for the constraint approach and a θ for the
multiplier approach such that both problems yield the same optimal outcome. The con-
straint approach is directly motivated from the Gilboa-Schmeidler maxmin utility. Since
the multiplier approach is weakly related to the constraint approach, these approaches
are indirectly also motivated by the static maxmin utility specification. Furthermore, the
multiplier utility is axiomatized by Strzalecki (2011).

A disadvantage of both these approaches is that utility is not homothetic. Maenhout
(2004) proposes to use a state-dependent Lagrange-multiplier θ(Vt) in the framework of
the multiplier approach to obtain homothetic utility. This approach is also adopted by
Liu et al. (2004). However, by assuming that the ambiguity aversion parameter θ can
be state dependent, the relation with the constraint preferences is lost. Pathak (2002)
extensively discusses this issue. He argues that the main motivation of the multiplier
approach by Hansen et al. (2001) is through the constraint approach. But with the
state-dependent ambiguity aversion parameter this new utility specification cannot be
seen anymore as a dynamic extension of the Gilboa-Schmeidler utility. Furthermore,
the axiomatic foundation is not valid anymore. Pathak (2002) proposes an alternative
method to model ambiguity: recursive multiple priors utility developed in continuous time
by Chen and Epstein (2002).

We follow the advise of Pathak (2002) and in contrast to Liu et al. (2004) we choose
to use the approach of Chen and Epstein (2002). The approach is closely related to the
constraint approach of Hansen et al. (2001), but does preserve the homotheticity of the
preferences. Consider the following problem:

Vt = min
{as,bs}s≥t

EQ
t

[ ∫ ∞
t

f(Cs, Vs)ds
]
,

s.t. d(at, bt) ≤ θ ∀t.
(2.34)

The main difference with the constraint approach of Hansen et al. (2001) is that not the
lifetime distance between the reference measure and the alternative measure is bounded,
but at every time period t the distance between the measures is bounded. This approach
leads to more tractable solutions. The recursive multiple priors utility is axiomatized by
Epstein and Schneider (2003).
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Lastly we will briefly discuss the smooth ambiguity model, since it is often used in the
literature as well. Assume that the agent does not know the true values of λ and η. In
this approach the agent first constructs a probability distribution that reflects his beliefs
on λ and η. Define p(x, y) = P (λ = x, η = y). To incorporate ambiguity aversion, he then
transforms this distribution to put more weight on the events that give him low utility
and less weight on the events that give high utility. This results in the following problem:

Vt =

∫ ∞
0

∫ ∞
0

(
p(x, y)φ

(
Et

[ ∫ ∞
t

f(Cs, Vs)ds
∣∣∣λ = x, η = y

]))
dxdy. (2.35)

Here the function φ controls the ambiguity aversion of the agent. When φ is a concave
function, the agent is ambiguity averse. This approach was introduced by Klibanoff et al.
(2005). This may be a matter of taste, but we think that the assumption of probabilities
attached to the different priors is in fact at variance with the basic assumption that
ambiguity is about unmeasurable processes, i.e. we cannot map events to probability
densities, or in this case priors to model probabilities. And since the recursive multiple
priors utility is intuitive and leads to tractable results, we chose not to move in the
direction of the smooth ambiguity model.

2.B Derivation of relative entropy

For each a = (as)s≥t and b = (bs)s≥t we define the measure Qa,b which is equivalent to P
and has Radon-Nikodym derivative dQa,b

dP |Ft = ξa,bt where ξa,bt follows:

dξa,bt = (λt − λQt )ξa,bt dt+
(λQt fQ(Jt)

λtf(Jt)
− 1
)
ξa,bt− dNt. (2.36)

and ξa,b0 = 1. ξa,bt is chosen such that the jump distribution under Qa,b has arrival rate
λQt and such that the probability density function of the jump distribution equals fQ(x).
Specifically we assume that λQt = atλt and ηQt = btη. We can calculate in this case

the fraction of the two probability distributions: fQ(x)
f(x)

=
ηQt (1+x)η

Q
t −1

η(1+x)η−1 = bt(1 + x)(bt−1)η.

Substituting this into (2.36) gives:

dξa,bt = (1− at)λtξa,bt dt+
(
atbt(1 + Jt)

(bt−1)η − 1
)
ξa,bt− dNt. (2.37)

The Radon-Nikodym derivative ξa,bt that we have specified is the ratio between the alter-
native measure Qa,b and the reference measure P. We can use it to determine the relative
entropy between the two measures. The relative entropy between Qa,b and P over time

unit ∆ is defined as EQ
t

[
log(

ξa,bt+∆

ξa,bt
)
]
. Here EQ

t denotes the expectation with respect to the

alternative measure Qa,b. Then divide by ∆ and let ∆ → 0 to obtain the instantaneous

relative entropy: RE(at, bt) = lim∆→0
1
∆
EQ
t

[
log
(
ξa,bt+∆

ξa,bt

)]
.

Applying Itô’s lemma for jump processes to ξa,bt , we obtain the following dynamics for
log(ξa,bt ):

d log(ξa,bt ) = (1− at)λtdt+
(

log(atbt) + (bt − 1)η log(1 + Jt)
)
dNt. (2.38)
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Using integration by parts we can calculate that EQ
t [log(1 + Jt)] = − 1

ηQt
. Therefore the

(instantaneous) relative entropy at time t equals:

RE(at, bt) = lim
∆→0

1

∆
EQ
t

[
log
(ξa,bt+∆

ξa,bt

)]
=

(1− at)λt + atλt

(
log(atbt) +

1

bt
− 1
)
.

(2.39)

2.C Calculating the detection error probability

After observing the process of consumption over a period N years, what is the probability
of choosing the wrong model? Let us start with the case that the reference model P is
the true model and the agent considers the alternative model Qa,b. Note that the Radon-
Nikodym derivative informs us about the likelihood ratio of both models. When this
derivative is larger than one after N years, the worst-case model Qa,b is the most likely
and the agent will choose the wrong model. The probability of making this error is equal
to (see for example Maenhout (2006)):

P
(
ξa,bN > 1|P

)
= P

(
log(ξa,bN ) > 0|P

)
. (2.40)

We calculate this probability by simulating the process of log(ξa,bt ) forward. Simulation is
done via a standard Euler method. Similarly, we can define the opposite mistake where
the alternative model is actually true and the agent chooses the reference model. We now

define the inverse Radon-Nikodym derivative: dP
dQa,b |Ft = ξ̃t

a,b
where ξ̃t

a,b
follows:

dξ̃t
a,b

= (at − 1)λtξ̃t
a,b
dt+

( 1

atbt
(1 + Jt)

(1−bt)η − 1
)
ξ̃t
a,b

− dNt. (2.41)

Applying Itô’s lemma gives:

d log(ξ̃a,bt ) = (at − 1)λtdt+
(
− log(atbt) + (1− bt)η log(1 + Jt)

)
dNt. (2.42)

The probability of choosing the wrong model when actually the alternative model Qa,b is
true equals:

P
(
ξ̃N

a,b
> 1|Q

)
= P

(
log(ξ̃N

a,b
) > 0|Q

)
. (2.43)

Again this probability can be calculated by simulating the process log(ξ̃t) forward. The
detection error probability is then defined as:

1

2
P
(

log(ξa,bN ) > 0|P
)

+
1

2
P
(

log(ξ̃N
a,b

) > 0|Q
)
. (2.44)

2.D Hamilton-Jacobi-Bellman equation

We will first derive the Hamilton-Jacobi-Bellman equation for every measure Qa,b. Duffie
and Epstein (1992b) show that the HJB-equation for stochastic differential utility equals:

0 = f(Ct, V
Q
t ) +DVQ. (2.45)

40



Here DVQ is the drift of the value function. In order to calculate the drift of the value
function, we will apply Itô’s lemma. By Itô’s lemma for jump processes we have:

dV Q
t = V Q

C

(
µCtdt+ σCtdZ

Q
t

)
+ V Q

X µX(Xt)dt+
1

2
V Q
CCσ

2C2
t dt

+
(
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

)
dNt.

(2.46)

Then the drift under Qa,b equals:

DVQ = V Q
C µCt + V Q

X µX(Xt) +
1

2
V Q
CCσ

2C2
t

+ λQt E
Q
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

]
.

(2.47)

This gives the following Hamilton-Jacobi-Bellman equation:

0 = f(Ct, V
Q
t ) + V Q

C µCt + V Q
X µX(Xt) +

1

2
V Q
CCσ

2C2
t

+ λQt E
Q
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

]
.

(2.48)

2.E Reduced HJB-equation

Substituting our conjecture V Q(Ct, Xt) =
gQ(Xt)C

1−γ
t

1−γ into f(Ct, Vt) gives:

f(Ct, V
Q(Ct, Xt)) =

β

1− 1/ε

C
1−1/ε
t −

(
gQ(Xt)C

1−γ
t

) 1
ζ

(
gQ(Xt)C

1−γ
t

) 1
ζ
−1

=
β

1− 1/ε

(
gQ(Xt)

1− 1
ζC1−γ

t − gQ(Xt)C
1−γ
t

)
= βζ

(
gQ(Xt)

− 1
ζ − 1

)
V Q(Ct, Xt).

(2.49)

The partial derivatives of V are given by:

V Q
C = gQ(Xt)C

−γ
t , V Q

CC = −γgQ(Xt)C
−γ−1
t ,

V Q
X =

gQX(Xt)C
1−γ
t

1− γ
.

(2.50)

Here gQX denotes the row vector with partial derivatives to each of the state variables,
similar to V Q

X . Additionally we can calculate the expectation:

EQ
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

]
=
EQ
t

[
(1 + Jt)

1−γ]− 1

1− γ
gQ(Xt)C

1−γ
t

=

btη
btη+1−γ − 1

1− γ
gQ(Xt)C

1−γ
t =

−1

btη + 1− γ
gQ(Xt)C

1−γ
t .

(2.51)
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Substituting f(Ct, V
Q(Ct, Xt)) together with the partial derivatives of V Q

t and the expec-
tation into (2.12) yields the following equation:

0 =
β

1− 1/ε

(
gQ(Xt)

− 1
ζ − 1

)
gQ(Xt)C

1−γ
t + µgQ(Xt)C

1−γ
t

− γ

2
σ2gQ(Xt)C

1−γ
t +

gQX(Xt)C
1−γ
t

1− γ
µX(Xt) + atλt

−1

btη + 1− γ
gQ(Xt)C

1−γ
t .

(2.52)

Dividing by gQ(Xt)C
1−γ
t gives:

0 =
β

1− 1/ε

(
gQ(Xt)

− 1
ζ − 1

)
+ µ− γ

2
σ2 +

gQX(Xt)

gQ(Xt)(1− γ)
µX(Xt)

+ atλt
−1

btη + 1− γ
.

(2.53)

2.F Asset prices

2.F.1 Stochastic discount factor

Duffie and Epstein (1992a) derive that the stochastic discount factor with stochastic

differential utility equals πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt). However, the stochastic

discount factor has to be adjusted for the ambiguity aversion preferences. Chen and
Epstein (2002) show that the stochastic discount factor in the ambiguity setting should
be multiplied by the Radon-Nikodym derivative ξa

∗,b∗

t of the measure corresponding to
the optimal a∗ and b∗. ξa,bt is defined in (2.36).

We will start with deriving the explicit stochastic differential equation of the stochastic
discount factor. First we calculate the derivatives of f(Ct, Vt) with respect to Ct and Vt:

fC(C, V ) =
βC−1/ε(

(1− γ)V
) 1
ζ
−1
,

fV (C, V ) = βζ
((

1− 1

ζ

)(
(1− γ)V

)− 1
ζ
C1−1/ε − 1

)
.

(2.54)

Substituting Vt = g(Xt)
C1−γ
t

1−γ into fC(Ct, Vt) and fV (Ct, Vt) we obtain:

fC(Ct, Vt) = βg(Xt)
1− 1

ζC−γt ,

fV (Ct, Vt) = βζ
{
g(Xt)

− 1
ζ

(
1− 1

ζ

)
− 1
}
.

(2.55)

This gives:

πt = ξa
∗,b∗

t exp

(∫ t

0

βζ
(
g(Xs)

− 1
ζ
(
1− 1

ζ

)
− 1
)
ds

)
βg(Xt)

1− 1
ζC−γt . (2.56)
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Take the logarithm and write as a differential equation:

d log(πt) = βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
dt− γd log(Ct) + d log(ξa

∗,b∗

t )

+ (1− 1

ζ
)d log

(
g(Xt)

)
.

(2.57)

Apply Itô’s lemma to log(Ct), log(ξa
∗,b∗

t ) and log
(
g(Xt)

)
and substitute the results; this

leads to the following differential equation:

d log(πt) =
{
βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
− γ
(
µ− σ2

2

)
+ λt(1− a∗t )

+ (1/ε− γ)
gX(Xt)

g(Xt)(1− γ)
µX(Xt)

}
dt

− γσdZt +
(

log(a∗t b
∗
t ) +

(
(b∗t − 1)η − γ

)
log(1 + Jt)

)
dNt.

(2.58)

After applying Itô’s lemma to log(πt) we find:

dπt =
{
βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
− γ
(
µ− (γ + 1)

σ2

2

)
+ λt(1− a∗t )

+ (1/ε− γ)
gX(Xt)

g(Xt)(1− γ)
µX(Xt)

}
πtdt− γσπtdZt

+
(
a∗t b
∗
t (1 + Jt)

(b∗t−1)η−γ − 1
)
πt−dNt.

(2.59)

We can now substitute the HJB-equation (2.53) into the stochastic discount factor. Sev-
eral terms cancel out and we are left with:

dπt =
{
− β − µ

ε
+
(

1 +
1

ε

)γ
2
σ2 +

(
γ − 1

ε

)
λ∗t

−1

b∗tη + 1− γ

+ λt(1− a∗t )
}
πtdt− γσπtdZt

+
(
a∗t b
∗
t (1 + Jt)

(b∗t−1)η−γ − 1
)
πt−dNt.

(2.60)

2.F.2 Interest rate

By the no-arbitrage argument, rt should be such that πtBt is a martingale, where Bt is
the price of the risk-free asset. Now write dπt = µπ,tπtdt + σππtdZt + Jπ,tπt−dNt. The
product with Bt then follows:

dπtBt = (rt + µπ,t)πtBtdt+ σππtBtdZt + Jπ,tπt−BtdNt. (2.61)
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This is a martingale if rt +µπ +λtEt[Jπ,t] = rt +µπ +λt

(
a∗t

b∗t η
b∗t η−γ

− 1
)

= 0. Therefore the

interest rate equals:

rt =− µπ − λt
(
a∗t

b∗tη

b∗tη − γ
− 1
)

= β +
µ

ε
−
(

1 +
1

ε

)γ
2
σ2 −

(
γ − 1

ε

)
a∗tλt

−1

b∗tη + 1− γ

− a∗tλt
( b∗tη

b∗tη − γ
− 1
)
.

(2.62)

Substituting rt into the stochastic discount factor gives:

dπt =
{
− rt − λt

(
a∗t

b∗tη

b∗tη − γ
− 1
)}
πtdt− γσπtdZt

+
(
a∗t b
∗
t (1 + Jt)

(b∗t−1)η−γ − 1
)
πt−dNt.

(2.63)

2.F.3 Equity premium

Using equation (2.25), we know that the drift of the stock equals µS,t = µ− kX(Xt)
k(Xt)

µX(Xt)+

k(Xt). From (2.23) we have: k(Xt) = βg(Xt)
− 1−1/ε

1−γ . This gives: kX(Xt)
k(Xt)

= −1−1/ε
1−γ

gX(Xt)
g(Xt)

.

Rewriting the HJB-equation (2.53) gives:

1− 1/ε

1− γ
gX(Xt)

g(Xt)
µX(Xt) + k(Xt) = β + (1/ε− 1)

(
µ− γ

2
σ2

+ a∗tλt
−1

b∗tη + 1− γ

)
.

(2.64)

Substituting this into µS,t gives:

µS,t = µ− kX(Xt)

k(Xt)
µX(Xt) + k(Xt)

= µ+ β + (1/ε− 1)
(
µ− γ

2
σ2 + a∗tλt

−1

b∗tη + 1− γ

)
.

(2.65)

The risk premium is then equal to the excess return of the stock over the interest rate:

rpt = µS,t + a∗tλt
−1

b∗tη + 1
− rt

= γσ2 + a∗tλt

( −1

b∗tη + 1
− b∗tη

b∗tη + 1− γ
+

b∗tη

b∗tη − γ

)
.

(2.66)

2.F.4 Consumption strips

Let Ht = H(Ct, Xt, s − t) = Et

[
πs
πt
Cs

]
be the price of an asset that pays out the ag-

gregate consumption at time s. Ht is also called a consumption strip. Conjecture that
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H(Ct, Xt, u) = exp
{
−
∫ t+u
t

CDRsds
}
Ct. u denotes the time to maturity of the consump-

tion strip. Clearly, H(Ct, Xt, 0) = Ct. Applying Itô’s lemma to Ht gives:

dHt = HCdCt +HXdXt −
∂Ht

∂u
dt =

1

Ct
HtdCt

− ∂

∂Xt

(∫ t+u

t

CDRsds

)
µX(Xt)Htdt

+
∂

∂u

(∫ t+u

t

CDRsds

)
Htdt.

(2.67)

We can calculate both derivatives:

∂

∂Xt

(∫ t+u

t

CDRsds
)
µX(Xt) =

∂

∂t

(∫ t+u

t

CDRsds
) ∂t

∂Xt

µX(Xt)

=
∂

∂t

(∫ t+u

t

CDRsds
)

= CDRt+u − CDRt,

(2.68)

∂

∂u

(∫ t+u

t

CDRsds
)

= CDRt+u. (2.69)

Therefore dHt becomes:

dHt =
(
µ+ CDRt

)
Htdt+ σHtdZt + JtHt−dNt. (2.70)

Now define dHt = µH,tHtdt + σHtdZt + JtHt−dNt. By the no arbitrage condition, πtHt

must be a martingale:

dπtHt = (µπ,t + µH + σσπ)πtHtdt+ (σ + σπ)πtHtdZt

+
(

(1 + Jt)(1 + Jπ,t)− 1
)
πt−Ht−dNt.

(2.71)

We can calculate the expectation of the jump term:

Et[(1 + Jt)(1 + Jπ,t)− 1] = Et[a
∗
t b
∗
t (1 + Jt)

(b∗t−1)η+1−γ − 1]

= a∗t
b∗tη

b∗tη + 1− γ
− 1.

(2.72)

Therefore πtHt is a martingale if:

0 = µπ + µH + σσπ + λt

(
a∗t

b∗tη

b∗tη + 1− γ
− 1
)
. (2.73)

Substituting µπ, µH and σσπ = −γσ2 gives:

0 = µ+ CDRt − rt − λt
(
a∗t

b∗tη

b∗tη − γ
− 1
)
− γσ2

+ λt

(
a∗t

b∗tη

b∗tη + 1− γ
− 1
)
.

(2.74)

Note that this implies that: CDRt = rt + rpt− (µ+ a∗tλt
−1

b∗t η+1
). Lastly, we can substitute

rt and rpt, which yields:

CDRt = β + (1/ε− 1)
(
µ− γ

2
σ2 + a∗tλt

−1

b∗tη + 1− γ

)
. (2.75)
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2.G Calibration of climate model

Table 2.3: Parameters for the climate model.

Par. Description Value

E0 Initial level of total emissions (in GtC, 2015) 10.45
gE0 Initial growth rate of emissions (2015) 0.017
gE∞ Long-run growth rate of emissions -0.02
δgE Speed of convergence of growth rate of emissions 0.0075
M0 Initial carbon concentration compared to pre-industrial (in GtC, 2015) 263
Mpre Pre-industrial atmospheric carbon concentration (in GtC) 588
M0,0 Initial carbon concentration box 0 (in GtC, 2015) 139
M1,0 Initial carbon concentration box 1 (in GtC, 2015) 90
M2,0 Initial carbon concentration box 2 (in GtC, 2015) 29
M3,0 Initial carbon concentration box 3 (in GtC, 2015) 4
δM,0 Decay rate of carbon box 0 0
δM,1 Decay rate of carbon box 1 0.0025
δM,2 Decay rate of carbon box 2 0.027
δM,3 Decay rate of carbon box 3 0.23
ν0 Fraction of emissions carbon box 0 0.217
ν1 Fraction of emissions carbon box 1 0.224
ν2 Fraction of emissions carbon box 2 0.282
ν3 Fraction of emissions carbon box 3 0.276
FE

0 Initial level of exogenous forcing (in W/m2, 2015) 0.5
FE
∞ Long-run level of exogenous forcing (in W/m2) 1
δF Speed of convergence exogenous forcing 0.02
T0 Initial surface temperature compared to pre-industrial (in ◦C, 2015) 0.85
T oc0 Initial ocean temperature compared to pre-industrial (in ◦C, 2015) 0.0068
κ Speed of temperature transfer between upper and deep ocean 0.73
υ Equilibrium temperature response to radiative forcing 1.13
α Equilibrium temperature impact of CO2 doubling (in ◦C) 3.05
τ Heat capacity of the surface 7.34
τoc Heat capacity of the oceans 105.5
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3 Solution methods for DSGE models in continuous

time: Application to a climate-economy model

3.1 Introduction

This chapter considers two solution methods to solve multi-dimensional continuous-time
DSGE models. The setting that we study is a stochastic endowment economy with disaster
risk, in which the representative agent has Epstein-Zin preferences. We also show how to
calculate the equilibrium asset prices in this setting. Specifically, we derive the endogenous
risk-free rate, risk-premium and consumption-wealth ratios of the asset pricing model.
We use this specific setting as an illustration for our solution methods, but the solution
methods are applicable to a more general class of models.

The numerical example that we consider is a stochastic climate model in which the
economy is subject to climate disasters. Outcome variables of interest are optimal carbon
abatement policy, expected trajectories of the climate variables over time and the social
cost of carbon (the monetized welfare loss of emitting one ton of carbon emissions).

The first method that we consider is the finite difference method using the sparse grid
combination technique. Finite difference methods have recently been a popular method
to solve continuous-time DSGE models. The value function of the model must satisfy
the Hamilton-Jacobi-Bellman (HJB) equation. This equation is a controlled partial dif-
ferential equation. The finite difference method is a standard method to solve partial
differential equations. One of the first applications in economics is Candler (1999). More
recently, Achdou, Han, Lasry, Lions, and Moll (2021) use the finite difference method to
solve a heterogeneous agent model and to back out the wealth distribution. Barnett et
al. (2020) solve a climate-economy model with ambiguity aversion using a finite difference
scheme.

One extension to the standard finite difference method is the use of sparse grids. A
good overview of different sparse grid solution methods is Pflüger (2010). Griebel (1998)
proposes a finite difference algorithm with adaptive sparse grids. Ruttscheidt (2018)
uses a similar algorithm to solve heterogeneous agent models. Brumm and Scheidegger
(2017) apply adaptive sparse grid methods to discrete time problems using value function
iteration. We do not consider adaptive sparse grids, but rather apply the sparse grid
combination technique (Griebel, Schneider, & Zenger, 1990). The idea behind the combi-
nation technique is to solve the problem using several smaller regular grids, and combine
the solutions of the smaller grids to obtain a single solution on a sparse grid. The main
advantage of this technique compared to adaptive sparse grids is its simple implementa-
tion. Furthermore, the sub-problems can easily be solved in parallel which speeds up the
computation time. The sparse grid combination method has to our knowledge not been
applied to macro models yet. Another extension of this paper is that we show that the
finite difference method is also applicable to the more general Epstein-Zin setting.

In addition to the finite difference method, we also consider the stochastic grid method
(SGM), which is a regression-based method. Regression-based methods were originally
proposed to calculate the price of american options (Longstaff & Schwartz, 2001; Tsitsiklis
& Van Roy, 2001). The idea is that in a dynamic programming setting, the conditional
expectation can be approximated using a regression. In the initial algorithms, the condi-



tional expectation Et[Vt+δt ] is approximated by regressing the value function at time t+δt
on basis functions of the state variables at time t. The approach that we use is the regress
later approach. The idea is to regress the value function at time t on basis functions of
the state variables at time t, and then use (closed-form) conditional expectations of the
basis functions to obtain an approximation of the conditional expectation of the value
function. This method is used by Jain and Oosterlee (2012) to price options.

Several methods designed to value american options rely on forward simulation and
then solve the recursive programming problem backwards. If we consider an optimal
control problem, forward simulation is not possible, since the control is unknown. One
way to solve this problem is to use a random control variable in the simulation stage, and
then optimize over the control variable when solving the model backwards. This is for
example applied in Andreasson and Shevchenko (2019). However, it is not necessary for
the approximation of the conditional expectations to actually simulate the process of the
state variables forward. It is more efficient to specify at every time point a support region
for the state variables and draw random state variables from this support region. This
idea is also used in Balata and Palczewski (2017) and Ikefuji, Laeven, Magnus, and Muris
(2020). Different from pricing american options, in our setting each period the optimal
contral variable has to be calculated. A key new insight of this paper is that in continuous
time, one can directly use the first order conditions from the HJB-equation to find the
optimal policy, which is faster than performing grid search or some other maximization
algorithm. Furthermore, we show how to apply the stochastic grid method to recursive
Epstein-Zin preferences.

Regression-based solution methods are widely used in derivative pricing, but are not
often used to solve macro-models. A literature where these methods are used more often
including an optimal control setting are portfolio choice models (Brandt, Goyal, Santa-
Clara, & Stroud, 2005; Koijen, Nijman, & Werker, 2010). One closely related example
of an application in a macro model is Ikefuji et al. (2020), who look at a stochastic
climate-economy model and solve the model using a simulation and regression method.

3.2 General problem

We first specify a general problem, then the solution methods are discussed. After that
we look at the accuracy and performance of the solution methods for several numerical
examples.

The general setting that we consider in this paper is the setting of a stochastic Lucas-
tree economy with disasters in continuous time. There is a single representative agent that
maximizes utility of consumption. The agent receives a stochastic exogenous endowment
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stream. We assume that the representative agent has Epstein-Zin utility:12

Vt = max
{us}s≥t

Et

[ ∫ ∞
t

f(Cs, Vs)ds
]

where

f(C, V ) =
β

1− 1/ε

C1−1/ε −
(
(1− γ)V

) 1
ζ(

(1− γ)V
) 1
ζ
−1

for ε 6= 1

with ζ =
1− γ

1− 1/ε
.

(3.1)

Define Xt as the dX-dimensional vector with state variables: Xt = [X1,t ... XdX ,t]
′.

ut is the du-dimensional vector of control variables: ut = [u1,t ... udu,t]
′. Endowment Yt

follows a geometric Brownian motion with additional jump processes. The drift, volatility
and arrival rate distributions can depend on the state variables Xt and the controls ut:

dYt = µ(Xt, ut, t)Ytdt+ σ(Xt, ut, t)YtdZ
Y
t +

M∑
m=1

Jm,tYt−dNm,t. (3.2)

ZY
t is a standard Brownian motion. Nm,t is a Poisson process with a state- and control-

dependent arrival rate λm,t = λm(Xt, ut, t). The multiple Poisson processes are assumed to
be independent. Yt− denotes aggregate endowment just before a jump (Yt− = limh↓0 Yt−h).
When a jump of Poisson process Nm,t arrives at time t, the jump size is controlled by
the random variable Jm,t. Jm,t can be seen as the percentage change of Yt after a jump.
We assume that the distributions of the jump sizes are time invariant, so we drop the
time-index of Jm from now on. The dynamics of the vector of state variables is given by:

dXt = µX(Xt, ut, t)dt+ σX(Xt, ut, t)dZ
X
t . (3.3)

Here ZX
t is a dX-dimensional standard Brownian motion, µX(Xt, ut, t) is a dX-dimensional

drift vector and σX(Xt, ut, t) is a dX × dX matrix of volatilities. We assume that σX is a
diagonal matrix, i.e. we assume that the Brownian motions of the different state variables
are not correlated.

A fraction of the endowment can be spent on costly control variables. The cost function
can be time- and state-dependent. Consumption is then equal to endowment net of the
cost function: Ct = Yt(1 − c(Xt, ut, t)). Define the consumption-endowment ratio by
ξt = ξ(Xt, ut, t) = 1 − c(Xt, ut, t). One can for example consider that it is possible
to invest part of the endowment to increase the drift of the endowment or decrease the
volatility of the endowment. Another example is investing part of the endowment to avert
catostrophes. Martin and Pindyck (2015) consider a model with multiple catastrophes and
look at optimal investment to reduce the disaster probabilities. Barro (2015) considers a
model with climate disasters with a constant probability and environmental investment

12Note that Vt is not directly the continuous time counterpart of the Epstein-Zin preferences, but a
transformed ordinally equivalent utility process. This transformation is performed to make sure that the
variance multiplier that belongs to f is 0. This transformation makes the utility function more tractable.
For more details, see chapter 2 or Duffie and Epstein (1992b).
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to decrease the probability of a climate disaster. The setting that we will consider as
a numerical example is the setting of climate disasters where the arrival rate of climate
disasters is a function of temperature. The control variable in this case is carbon emissions
abatement.

We use this specific model to illustrate the solution methods. However, the solution
methods are also applicable to several extensions. It is possible to also allow for jumps
in the state variables. Furthermore, correlation between Brownian motions can be intro-
duced. For the stochastic grid method, this is straightforward to implement. For the finite
difference method, this is slightly more involved. We will come back to this point later.
Another possible extension is to step away from the Lucas-tree model and to consider a
capital and/or labour based model with a production function and investment.

3.2.1 HJB-equation

To keep notation simple, we often drop the explicit dependence of variables on the state
and control variables. For example, we use µt instead of µ(Xt, ut, t). We use notation VX ,
VXX for the derivatives of the value function with respect to the vector of state-variables:

VX =
[
∂Vt
∂X1,t

... ∂Vt
∂XdX,t

]
and

VXX =


∂2Vt

(∂X1,t)2 . . . ∂2Vt
∂XdX,t∂X1,t

...
. . .

...
∂2Vt

∂X1,t∂XdX,t
. . . ∂2Vt

(∂XdX,t)
2

 . (3.4)

We obtain the following HJB-equation that the value function V (Yt, Xt, t) must satisfy:

0 = max
ut

{
f(Ct, Vt) + VY µtYt +

1

2
VY Y σ

2
t Y

2
t +

∂Vt
∂t

+ VXµX

+
1

2
tr(VXXσXσ

′
X) +

M∑
m=1

λm,tE
[
V
(
Yt−(1 + Jm), Xt, t

)
− V (Yt−, Xt, t)

]}
.

(3.5)

Now conjecture: V (Yt, Xt, t) =
g(Xt,t)Y

1−γ
t

1−γ . We can calculate the derivatives and we can

substitute the conjecture of Vt into f(C, V ). Substituting our conjecture into f(C, V )
gives:

f(Ct, Vt) =
β

1− 1/ε

(
Ytξt

)1−1/ε

−
(
gtY

1−γ
t

) 1
ζ

(
gtY

1−γ
t

) 1
ζ
−1

=
β

1− 1/ε

(
g

1− 1
ζ

t ξ
1−1/ε
t Y 1−γ

t − gtY 1−γ
t

)
= βζ

(
g
− 1
ζ

t ξ
1−1/ε
t − 1

)
Vt.

(3.6)
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The partial derivatives of Vt are given by:

VY = gtY
−γ
t , VY Y = −γgtY −γ−1

t ,

VX =
gXY

1−γ
t

1− γ
, VXX =

gXXY
1−γ
t

1− γ
,

∂Vt
∂t

=
∂gt
∂t
Y 1−γ
t

1− γ
.

(3.7)

Here gX denotes the row vector with partial derivatives to each of the state variables,
similar to VX and gXX the matrix of second derivatives, similar to VXX . Note that for
γ > 1 (which we will assume throughout this chapter), Vt is negative. Substituting the
derivatives and dividing by Vt gives the reduced HJB-equation:

0 = min
ut

{(
βζ
(
g
−1/ζ
t ξ

1−1/ε
t − 1

)
+ (1− γ)

(
µt −

1

2
γσ2

t+

M∑
m=1

λm,tE
[(1 + Jm)1−γ − 1

1− γ

]))
gt +

∂gt
∂t

+ gXµX +
1

2
tr
(
gXXσXσ

′
X

)}
.

(3.8)

Note that since we assume that Vt is negative, dividing by Vt implies that the maximization
problem becomes a minimization problem. Our goal is to find the function gt that solves
this partial differential equation. Given gt, the optimal policy can be obtained using the
first order condition(s). Denote the optimal policy by u∗t . In special cases, it is possible
to find a closed form expression for u∗t as a function of gt, gX , gXX and Xt. Otherwise, u∗t
is implicitly defined by the first order condition(s).

3.2.2 Asset prices

Once we know the function gt, it is possible to derive the endogenous risk-free rate,
risk premium and wealth-consumption ratio. Let πt be the stochastic discount factor
of the economy. First, define by Bt the risk free asset that pays continuous interest rt.
Furthermore, let St be the price of the asset that gives a claim on the consumption stream.

It therefore pays continuous dividends equal to Ct. More formally: St = Et

[ ∫∞
t

πs
πt
Csds

]
.

The risk premium is defined by the difference between the return on St (including dividend
payments) and the return on the risk-free asset. The consumption-wealth ratio kt in the
model is equal to Ct

St
. The interest rate rt, risk premium rpt and consumption-wealth ratio

kt can be expressed as a function of the parameters, gt and the consumption-endowment
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ratio ξt:

rt = β +
µt
ε
−
(

1 +
1

ε

)γ
2
σ2
t︸ ︷︷ ︸

Standard interest rate

− 1

2

1

ζ
(1/ζ − 1)tr

(g′XgX
g2
t

σXσ
′
X

)
︸ ︷︷ ︸

Diffusion risk of the state variables

+ 1/ε
(
µξ −

1

2
(1 + 1/ε)tr

(ξ′XξX
ξ2
t

σXσ
′
X

))
− 1/ε(1/ζ − 1)tr

(g′XξX
gtξt

σXσ
′
X

)
︸ ︷︷ ︸

Drift and diffusion risk of the consumption-endowment ratio

−
(
γ − 1

ε

) M∑
m=1

λm,tE
[(1 + Jm)1−γ − 1

1− γ

]
−

M∑
m=1

λm,tE
[
(1 + Jm)−γ − 1

]
︸ ︷︷ ︸

Jump risk

,

rpt = γσ2
t︸︷︷︸

Standard diffusion risk

+
M∑
m=1

λm,tE
[
Jm + (1 + Jm)−γ − (1 + Jm)1−γ

]
︸ ︷︷ ︸

Jump risk

+
1

ζ
(1/ζ − 1)tr

(g′XgX
g2
t

σXσ
′
X

)
︸ ︷︷ ︸
Diffusion risk of the state variables.

+
1

ε2
tr
(ξ′XξX

ξ2
t

σXσ
′
X

)
+

1

ε

(2

ζ
− 1
)
tr
(g′XξX
gtξt

σXσ
′
X

)
︸ ︷︷ ︸

Diffusion risk of the consumption-endowment ratio

,

kt = βg
− 1
ζ

t ξ
1−1/ε
t .

(3.9)
The derivations are given in appendix 3.A.

3.3 Solution method 1: Finite difference

The reduced HJB-equation is a partial differential equation. The finite difference method
numerically solves this partial differential equation. We refer to Lapeyre, Sulem, and
Talay (2005), chapter 7 and 8 or Thomas (2013), for proofs and more details on finite
difference methods. First, we specify a bounded domain on which gt is defined. Even
though several state variables might have an unbounded domain, we still have to cut off
the domain at some point. The cut off point should be far enough away of the area of
interest. Let X = [X1 ... XdX ]′ and X = [X1 ... XdX ]′ be respectively the vector with
minimum and maximum values for each of the state variables. We also cut off the time
dimension at a point T far enough in the future. We can write the reduced HJB-equation
as follows:

0 = min
ut

{
R(Xt, gt, ut, t)gt +

∂gt
∂t

+Dtgt

}
where Dtgt =

dX∑
d=1

(µX)d
∂gt
∂Xd,t

+
1

2

dX∑
d=1

(σXσ
′
X)d,d

∂2gt
(∂Xd,t)2

and R(Xt, gt, ut, t) = βζ
(
g
−1/ζ
t ξ

1−1/ε
t − 1

)
+ (1− γ)

(
µt −

1

2
γσ2

t +
M∑
m=1

λm,tE
[(1 + Jm)1−γ − 1

1− γ

])
.

(3.10)
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Dt is a difference operator that depends on Xt, ut and t. Here (µX)d denotes the d-th
element of the vector µX . Similar notation is used for the volatility matrix. Denote by ed
a dX dimensional vector with zeros except for the d-th element, which is a one. A natural
way to approximate the first and second derivative with respect to Xd,t is to use the
central finite difference approximations. Let δd be the finite difference step in dimension
d. The derivatives can then be approximated by:

∂gt
∂Xd,t

≈ g(Xt + δded, t)− g(Xt − δded, t)
2δd

≡ ∂dg(Xt, t),

∂2gt
(∂Xd,t)2

≈ g(Xt + δded, t)− 2g(Xt) + g(Xt − δded, t)
δ2
d

≡ ∂ddg(Xt, t).

(3.11)

Finite difference schemes are unfortunately not always stable and might therefore not
converge to the right solution. A textbook example is the one-dimensional advection
equation ∂g(x,t)

∂t
+ a∂g(x,t)

∂x
= 0 where a > 0 with g(x, 0) given. The finite difference

approximation of a∂g(x,t)
∂x

with a central scheme with step size δ can then be written as:

a
∂g(x, t)

∂x
≈ a

2δ
g(x+ δ, t)− a

2δ
g(x− δ, t). (3.12)

This scheme turns out to be unstable when central differences are used. To obtain a stable
scheme, the scheme must be monotonically decreasing in both g(x+ δ, t) and g(x− δ, t).
The coefficients of g(x+ δ, t) and g(x− δ, t) must therefore both be non-positive. This is
the case when a backward-difference approximation is used. More details on stability of
finite difference schemes will be discussed later.

In our setting, the coefficient on the derivative ∂gt
∂Xd,t

is the drift of the state variable:

(µX)d. The drift can be both positive and negative. In order to obtain a stable scheme,
one can use the so-called upwind method. The upwind scheme either uses a forward or
backward first difference approximation, depending on whether the drift is positive or
negative. Formally, we define the upwind differential operator ∂ud as follows:13

∂+
d g(Xt, t) ≡

g(Xt + δded, t)− g(Xt, t)

δd
,

∂−d g(Xt, t) ≡
g(Xt, t)− g(Xt − δded, t)

δd
,

∂gt
∂Xd,t

≈ ∂+
d g(Xt, t)1(µX)d≥0 + ∂−d g(Xt, t)1(µX)d<0 ≡ ∂ud g(Xt, t).

(3.13)

For the second derivative approximation, we can use the central difference scheme. The
second central derivative scheme is monotone since the volatility is always non-negative:
(σXσ

′
X)d,d ≥ 0. Due to the assumption that covariances between state variables are zero,

13Note that in the example of the advection equation, the backward difference approximation is stable
when the drift a is positive. In our definition of the upwind scheme, we use a forward difference ap-
proximation when the drift is positive. The reason for this difference is that HJB-equations are solved
backwards in time given a terminal condition, where the advection equation is solved forward in time
given an initial condition.
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we only have to consider ∂2gt
(∂Xd,t)2 . If we would consider non-zero covariances between

different Brownian motions, we would have to calculate ∂2gt
∂Xi,t∂Xj,t

as well. The covariances

can be negative and therefore it is not straightforward to obtain a monotone scheme. A
way to deal with negative covariances is described in Ma and Forsyth (2017). We do not
consider this extension.

Let us now define an operator Di,j,t on the grid points, that approximates the exact
operator Dt. To keep the notation clear, we consider for now a 2-dimensional problem.
The extension to a dX dimensional problem is straightforward. Assume that the number

of grid points per dimension equals Nd. This gives δd =
Xd−Xd
Nd−1

. Then we obtain the
following grid points:

x1
i = X1 + δ1(i− 1), i ∈ {1, ..., N1},
x2
j = X2 + δ2(j − 1), j ∈ {1, ..., N2}.

(3.14)

Define for each grid point the following functions:

gi,j,t ≡ g(x1
i , x

2
j , t), u∗i,j,t = u∗(x1

i , x
2
j , gi,j,t, t),

µXi,j,t = µX(x1
i , x

2
j , u
∗
i,j,t, t), µ+

Xi,j,t = max
(

0, µXi,j,t

)
,

µ−Xi,j,t = −min
(

0, µXi,j,t

)
, σXi,j,t = σX(x1

i , x
2
j , u
∗
i,j,t, t).

(3.15)

Using an upwind approximation for the first derivative and a central approximation for
the second derivative we obtain for the interior points of the grid the following operator
Di,j,t:

Di,j,tgi,j,t =

(
−

2∑
d=1

|(µXi,j,t)d|
δd

−
2∑
d=1

(
σXi,j,tσ

′
Xi,j,t

)
d,d

δ2
d

)
gi,j,t

+

(
(µ−Xi,j,t)1

δ1

+
1

2

(
σXi,j,tσ

′
Xi,j,t

)
1,1

δ2
1

)
gi−1,j,t

+

(
(µ−Xi,j,t)2

δ2

+
1

2

(
σXi,j,tσ

′
Xi,j,t

)
2,2

δ2
2

)
gi,j−1,t

+

(
(µ+

Xi,j,t)1

δ1

+
1

2

(
σXi,j,tσ

′
Xi,j,t

)
1,1

δ2
1

)
gi+1,j,t

+

(
(µ+

Xi,j,t)2

δ2

+
1

2

(
σXi,j,tσ

′
Xi,j,t

)
2,2

δ2
2

)
gi,j+1,t.

(3.16)

3.3.1 Boundary conditions

At the boundaries of the grid it is not possible to apply the central scheme for the second
derivative since there is only one neighbour point available. Furthermore, the backward
(forward) differences at the left (right) boundaries are also not possible anymore. We have
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to specify some kind of boundary condition such that we are able to deal with these issues.
It is often the case that the state variables are somehow mean-reverting. When this is the
case, the drift of the state variable will be positive at the left boundary and negative at the
right boundary if the boundaries are chosen far enough to the left and right. The upwind
scheme will then use the forward (backward) difference at the left (right) boundary and
therefore there are no problems with the first difference at the boundaries. In this case, we
can assume as a boundary condition that the second derivative vanishes at the boundary
to handle the problem with the central difference scheme for the second derivative. Every
boundary condition will introduce an error at the boundary, but this error will be small
for points far enough away from the boundaries.

One way to implement the boundary conditions is to introduce so called ‘ghost’ points.
Consider the point at the boundary g1,j,t where j ∈ {2, .., N2−1}, i.e. x2

j is not a boundary
point but x1

1 is at the boundary. In this case we can define the ‘ghost’ point g0,j,t. The
second difference approximation in dimension 1 becomes:

∂11g1,j,t =
1

2

(
σX1,j,tσ

′
X1,j,t

)
1,1

δ2
1

(
g0,j,t − 2g1,j,t + g2,j,t

)
. (3.17)

Setting the second derivative equal to 0 implies that g0,j,t = 2g1,j,t− g2,j,t. Given g0,j,t, we
can simply apply (3.16). For different boundary points, we can construct ‘ghost’ points
in a similar way.

When the state variables are not mean-reverting and the upwind scheme might use
the backward (forward) difference at the left (right) boundary, the boundary conditions
specified above might not be stable. One can instead assume that the first derivative
vanishes at the boundary. Again, a ‘ghost’ point can be introduced. For the point g1,j,t

we will now obtain the ‘ghost’ point g0,j,t = g1,j,t. The reason that we do not always
use the condition on the first derivative, is because the condition specified on the second
derivative will lead to a smaller error.

3.3.2 Setting up the scheme

It is possible to perform all the operations directly for an entire vector of grid points.
Define Ri,j,t = R(x1

i , x
2
j , gi,j,t, u

∗
i,j,t, t). We define the vector gδt and the vector Rδ

t :

gδt ≡



g1,1,t

g2,1,t
...

gN1,1,t

g1,2,t
...

gN1,N2,t


, Rδ

t ≡



R1,1,t

R2,1,t
...

RN1,1,t

R1,2,t
...

RN1,N2,t


. (3.18)

So these two vectors evaluate the functions g(Xt, t) and R(Xt, gt, u
∗
t , t) at all grid points

of the state variables. The superscript δ on gδt and Rδ
t indicates that these are vectors of

the functions gt and Rt evaluated at the different grid points. Using this notation we can
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distinguish the vectors from the original functions gt = g(Xt, t) and Rt = R(Xt, gt, u
∗
t , t).

gδt and Rδ
t are column vectors of length N1N2.

Note that equation (3.16) describes the finite difference operation Di,j,t for a single
point gi,j,t. It is now possible to construct a matrix Dδ

t such that Dδ
t g
δ
t performs the finite

difference operation directly for the entire vector gδt . The definition of the N1N2 ×N1N2

matrix Dδ
t is given in appendix 3.B. Note that Dδ

t is a very sparse matrix. Lastly, denote
by IN1N2 the N1N2 ×N1N2 identity matrix. Similar to our state space, we also discretize
the time-space. Assume the time step equals δt, this gives the grid of time points: [t0 =
0, t1 = δt, ..., tNt = T ].

We will now propose two finite difference schemes: the explicit and the semi-implicit
scheme. Let us start with the explicit scheme. A possible discrete approximation of the
reduced HJB-equation (3.10) at time ti+1, i ∈ {0, ..., Nt − 1} is the following:

0 =
gδti+1

− gδti
δt

+
(
Dδ
ti+1

+ diag(Rδ
ti+1

)
)
gδti+1

. (3.19)

Here
gδti+1

−gδti
δt

is a backward approximation of the time derivative for the vector gδti+1
.

Dδ
ti+1

gδti+1
equals a vector that approximates the true difference operator Dti+1

gti+1
. Lastly,

diag(Rδ
ti+1

)gδti+1
is the matrix-vector multiplication that calculates Rtgt at every grid point.

Rewriting this equation gives the explicit scheme:

gδti = AEti+1
gδti+1

,

AEti+1
≡ IN1N2 + δt

(
Dδ
ti+1

+ diag(Rδ
ti+1

)
)
.

(3.20)

Similarly, we can define the semi-implicit scheme as:

0 =
gδti+1

− gδti
δt

+
(
Dδ
ti+1

+ diag(Rδ
ti+1

)
)
gδti ,

=⇒ gδti = AIti+1
gδti+1

,

AIti+1
≡

(
IN1N2 − δt

(
Dδ
ti+1

+ diag(Rδ
ti+1

)
))−1

.

(3.21)

The explicit scheme is the most straightforward scheme, but has the issue that the stability
of the scheme depends on the time step. In some cases, a very small time step is required
to obtain a stable solution. The semi-implicit scheme is generally more stable but either
requires to invert a matrix or solve a linear system, where the explicit scheme merely
requires a matrix vector multiplication. Note that the scheme is called semi-implicit since
the vector Rδ

ti+1
still depends on gδti+1

. A fully implicit scheme would solve the following

equation for gδti :

0 =
gδti+1

− gδti
δt

+
(
Dδ
ti

+ diag(Rδ
ti

)
)
gδti . (3.22)

A fully implicit scheme is unconditionally stable. This implies that the stability condi-
tions are met for an arbitrarily large time step. We will discuss stability later in more
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detail. Since Rδ
t depends on the unknown function gδt in a non-linear way, a non-linear

solver must be used to obtain gδt . However, this is inefficient. This is the reason why we
do not consider the fully implicit scheme. Let us now describe the full algorithm.

The algorithm
Step 1: Start with an initial guess for gδT .
Start one step before terminal time tNt−1. Backwards in time, for every time step ti,
i = Nt − 1, ..., 1, perform the following steps.
Step 2: gδti+1

is obtained from the previous iteration. Calculate the optimal policy u∗ti+1

using either a closed form or implicit expression that follows from the first order condi-
tions. This requires as input gδti+1

and its derivatives. The derivatives can be calculated
using central finite differences.
Step 3: Use u∗ti+1

to calculate µXti+1
and σXti+1

.

Step 4: Construct Dδ
ti+1

(see appendix 3.B).

Step 5: Use gδti+1
and u∗ti+1

to calculate Rδ
ti+1

.

Step 6: Given gδti+1
, Dδ

ti+1
and Rδ

ti+1
, we can calculate At and either use the explicit scheme

(3.20) or the semi-implicit scheme (3.21) to obtain gδti .
Optional: Step 7. To obtain the risk-free rate and the risk premium at period ti, ξti and
its derivatives can be calculated using (central) finite differences.
Repeat steps 2-7 until gδ0 is obtained. Given gδ0, calculate the optimal policy u∗0 once more.

The matrix At (both in the explicit and implicit case) is a large sparse matrix. Several
programming languages (e.g. Matlab and Python) have efficient procedures to set up the
matrix At, by using the fact that only a few diagonal arrays are non-zero. In the case of
the explicit scheme, the sparsity of the matrix speeds up the matrix-vector multiplication
AEt g

δ
t . In the case of the semi-implicit scheme, calculating the matrix AIt requires a matrix

inversion. Actually inverting the matrix every time step is inefficient. Instead, one can
find gδti by solving the following linear system:(

IN1N2 − δt
(
Dδ
ti+1

+ diag(Rδ
ti+1

)
))

gδti = gδti+1
. (3.23)

There are several efficient routines to efficiently solve this linear system. We use the
biconjugate gradient stabilized method, which is especially convenient to solve a linear
system with a large and sparse matrix.

If the optimal policy u∗t has a closed form expression, one can easily calculate the
optimal policy given gt and its derivatives. If this is not the case, a non-linear equation
has to be solved. Solving such an equation can be slow. To speed up the computation,
it is important to start with a good initial guess. A good guess is the optimal policy
in the previous period. So the guess for u∗ti is u∗ti+1

. Furthermore, it pays off to supply
the analytical Jacobian of the first order conditions to the solver. We use a trust-region
algorithm with analytical Jacobian to calculate the optimal policy function.

As mentioned before, finite difference schemes can be unstable. Furthermore, oscilla-
tions might occur, which especially in the Epstein-Zin setting can cause problems since
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it may lead to complex numbers. Consistency, convergence and stability are discussed in
more detail in appendix 3.C.

Until now we have assumed that the time derivative ∂gt
∂t
6= 0. In the case of an infi-

nite horizon problem the time derivative in not equal to zero when there is explicit time
dependence. Also in finite horizon problems the time derivative is non-zero. However,
many economic models have an infinite time horizon and do not have explicit time de-
pendence. In this case ∂gt

∂t
= 0. In a discrete time framework, one can then solve for the

value function by starting with an initial guess and iterating over the Bellman equation
until the value function converges. We can use a similar algorithm for the finite difference
approach. This approach is described in appendix 3.D and turns out to be very similar
to the finite difference scheme that we already proposed.

3.3.3 Sparse grids: Combination method

A problem with the finite difference approach is that it suffers from the curse of dimen-
sionality. The size of the matrix At and of the vector gδt grows exponentially with the
number of dimensions. One solution to make sure the computational effort grows less fast
with the number of dimensions is to use sparse grids. For a full grid with equal amount
of points in each dimension, the total number of points on the d-dimensional grid equals
Nd. So doubling the number of points in each dimension leads to 2d times as much points.
For a sparse grid with N points at the boundary in each dimension, the total number of
points is of the order O(N(logN)d−1). As an example, doubling the number of points
at the boundary of a sparse grid in 3 dimensions from 128 to 256 leads to 2.3 times as
many points, instead of 8 times as many points for the full grid. Of course, less points on
the grid also implies that the approximation will be less accurate. The accuracy of the
solution depends on the smoothness of the function that is approximated, together with
the task (e.g. interpolation, finite difference). Overall it turns out that sparse grids do
not give up too much accuracy, while they are not subject to the curse of dimensionality.

A possible extension of regular sparse grids are spatially adaptive sparse grids. Based
on some condition, an algorithm puts more grid points at the places where the error of
the approximation is the largest. This is useful if the function that is approximated is
very non-linear in some area’s. However, there are computational costs related to the
adaptivity. Griebel (1998) proposes an algorithm to apply finite differences on adaptive
sparse grids. For more details on (adaptive) sparse grids, see for example Pflüger (2010)
or Zumbusch (2000).

We choose to apply the so called combination method (Griebel et al., 1990). Instead
of directly solving the problem on a sparse grid, one can combine solutions on smaller full
grids to generate a sparse grid solution. For linear interpolation tasks, it turns out that
using the combination method or a direct sparse grid method give equivalent results. For
non-linear tasks like solving a partial differential equation, combining full grids might not
lead to exactly the same answer as solving the equation on the corresponding sparse grid.
Nevertheless, the combination method has been widely applied. The first advantage is that
one still solves full-grid problems. Finite difference operations on full grid problems are
more straightforward to implement and can also be coded more efficient. Second, solving
several sub-problems and combining them later is ideal for parallelization. Compared to
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Figure 3.1: Full grids for several level combinations in two dimensions.
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direct sparse grid methods, the number of evaluation points will be slightly larger but
the efficiency due to the well-behaved full grids and the possibility to parallelize outweigh
this disadvantage. Spatial adaptivity is not possible with the combination method.

Let us again start with a 2-dimensional problem. Remember that Nd denotes the
number of points in dimension d. Xd and Xd are respectively the maximum and minimum

values in both dimensions and δd =
Xd−Xd
Nd−1

is the step size. Define the so called level per

dimension by ld. At the first level in dimension d (ld = 1), we assume that the number of
points in that dimension equals 3. When we increase the level by 1, we assume that the
step size in that dimension is divided by two. This leads to the following relation between
the number of points and the level: Nd = 2ld + 1. In two dimensions, we can therefore
define a grid by the level l = [l1 l2]′. This is graphically illustrated in figure 3.1.

The combination method combines the finite difference solutions on several of the
sub-grids. Define by gδ,l0 the finite difference solution at t = 0 on a full grid with level l.
Combining grids is not straightforward since all grids have different grid points. Assume
we are interested in the value of g at a point x = [x1 x2]. The full grid with level l gives
as output the value of g at the grid points x1

i = X1 + δ1(i − 1), i ∈ {1, ..., 2l1 + 1} and
x2
i = X2 + δ2(i − 1), i ∈ {1, ..., 2l2 + 1}. To obtain the value of g at the point x, we

use linear interpolation. Define the approximation of g at the point x using a level l full
grid by gδ,l(x, 0). Lastly, denote by L the level of the sparse grid. Then the sparse grid
combination solution at point x becomes:

gδSG(x, 0) =
∑

l1+l2=L+1

gδ,l(x, 0)−
∑

l1+l2=L

gδ,l(x, 0). (3.24)

Figure 3.2 shows graphically how the full sub-grids are combined. For a d-dimensional
problem, the intuition of the combination method is similar to the 2-dimensional problem,
but the formulas are slightly different. Let dX be the number of state variables. Then the
sparse grid solution becomes:

gδ,LSG(x, 0) =

dX−1∑
k=0

(−1)k
(
dX − 1

k

) ∑
l1+...+ldX=L+(dX−1)−k

gδ,l(x, 0). (3.25)

3.4 Solution method 2: Stochastic grid method

Regression-based methods are originally proposed to calculate the value of American op-
tions. The methods use dynamic programming which makes them suitable for the type of
problem that we consider. Traditional value function iteration can become extremely slow
for high-dimensional problems. We start with discussing the least squares Monte Carlo
algorithms that are used by Tsitsiklis and Van Roy (2001) and Longstaff and Schwartz
(2001). We then explain why some adjustments to this method are useful in our setting.

3.4.1 Least squares Monte Carlo algorithm for option pricing

The algorithm that we discuss here is the algorithm described in Tsitsiklis and Van Roy
(2001). The algorithm used by Longstaff and Schwartz (2001) is quite similar but is more
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Figure 3.2: The combination method to obtain a sparse grid with level L = 4 in two
dimensions.
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focused on optimal stopping times for American options and is therefore less useful to
compare with our method.

Assume that the american option can be excercised at time points t0 = 0, t1 =
δt, ..., tN = T . Note that this is an approximation since in reality the american option
can be evaluated at any time. Define the value of the option as a function of the stock
price by V (Xt, t). The idea of the algorithm is as follows. Starting with the initial stock
price X0, simulate K trajectories forward up to time T . Define by V̂ the approximate
value of the option. At time T , the value of an american call option in trajectory k equals
V̂ (XT (k), T ) = h(XT (k)) where h(x) = max(0, x−A) and A is the strike price. The value
of the option one period earlier is described by the following recursive relation:

V
(
Xti(k), ti

)
= max

(
h(Xti(k)), e−rδtEti [Vti+1

|Xti(k)]
)
. (3.26)

The conditional expectation is then approximated using a set of basis functions B
(
Xt

)
=

[B1

(
Xt

)
... BNb

(
Xt

)
]. The idea is to regress Vti+1

(k) on the vector of basis functions
B(Xti(k)), which yields an 1×Nb vector of coefficients νti . The conditional expectation is
then approximately equal to: Eti [Vti+1

|Xti(k)] ≈ ν ′tiB(Xti(k)). Given this approximation

of the conditional expectation, we can use equation (3.26) to calculate V
(
Xti(k), ti

)
.
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Repeating these steps for all time periods, we are able to find the price of the option at
the initial date.

The first issue with using this algorithm to solve for the value function in our setting is
that the value function at the terminal date T is unknown, in contrast to the option case
where the value of the option at the terminal date is known. This issue can be resolved by
using a guess for the value function at the terminal date. It is then important to choose
the date T far enough in the future, such that the guess does not influence the initial
outcomes.

The second issue is that it is not possible to simulate state variables forward, since
the evolution of the state variables depends on the unknown control variable. One way to
deal with this is to use random control variables in the simulation stage. When solving
the problem backwards, the optimal policy can be calculated. Another possibility, and
the approach that we use, is to apply the stochastic grid method (Jain & Oosterlee, 2012).
This method relies on random grid points instead of simulating the state variables forward.
The advantage of this method is that the only randomness in the solution method comes
from the random grid points and therefore much fewer simulations are necessary for the
same accuracy. Furthermore, it is very easy to calculate derivatives of the value function
using this method which is necessary to efficiently solve for optimal policy every time
period.

Additional to the fact that we use random grid points instead of actually simulating the
state variables forward, the main difference lies in the regression stage. In the least squares
Monte Carlo algorithm, the value function at time ti+1 is regressed on basis functions at
time ti to approximate the conditional expectation. We are not able to perform that
regression since we do not simulate the state variables forward. In the stochastic grid
algorithm, the value function at time ti is regressed on basis functions of state variables
at time ti. We then use (closed-form) conditional expectations of the basis functions to
approximate the conditional expectation of the value function.

Jain and Oosterlee (2012) use the stochastic grid method to calculate the value of
american options. Our main contribution to this method is that we use this method to
solve for the value function in a DSGE model with recursive preferences. Additionally, we
show that the Hamilton-Jacobi-Bellman equation can be used to efficiently calculate opti-
mal control variables. Calculating the value of the option does not involve the calculation
of optimal control variables.

3.4.2 Stochastic grid method

We now outline the algorithm for the stochastic grid method. Similar to the option pricing
case, we start with a dynamic programming equation. Since we look at recursive prefer-
ences, we can not use the standard dynamic programming equation for value functions.
Instead, we use the discrete time Epstein-Zin recursive equation. Assume that the time
step equals δt. The standard discrete time Epstein-Zin equation equals:

Ut = max
ut

(
(1− e−βδt)C1−1/ε

t + e−βδtEt[U
1−γ
t+δt

]1/ζ

) 1
1−1/ε

. (3.27)
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Instead of using the standard discrete time equation of the Epstein-Zin preferences, we
again use an ordinally equivalent version to be in line with the stochastic differential

utility setting. Define Vt =
U1−γ
t

1−γ . We have derived that Vt =
g(Xt,t)Y

1−γ
t

1−γ . We again assume
that γ > 1. After substitution of Vt and rearranging we obtain the following equation:

g(Xt, t)Y
1−γ
t = min

ut

(
(1− e−βδt)C1−1/ε

t + e−βδt
(
Et
[
g(Xt+δt , t+ δt)Y

1−γ
t+δt

])1/ζ
)ζ

. (3.28)

Note that the maximization has become a minimization problem, since γ > 1. Dividing
both sides by Y 1−γ

t and rearranging gives:

g(Xt, t) = min
ut

(
(1− e−βδt)ξ1−1/ε

t + e−βδt
(
Et

[
g(Xt+δt , t+ δt)

Y 1−γ
t+δt

Y 1−γ
t

])1/ζ
)ζ

. (3.29)

For small time steps δt, it is reasonable to assume that Et

[
g(Xt+δt , t + δt)

Y 1−γ
t+δt

Y 1−γ
t

]
≈

Et[g(Xt+δt , t + δt)]Et

[
Y 1−γ
t+δt

Y 1−γ
t

]
. The quadratic covariation between g(Xt) and Yt is equal

to 0, which implies that for small enough time steps we can separate the expectations.
The idea behind this is that there is no correlation between the shocks that drive Yt and
Xt. The correlation occurs through the drift µ, standard deviation σ and arrival rate λ.
However, it takes some time for a shock in Xt to have an effect on Yt through µ, σ and λ.

Applying Itô calculus, we can derive a closed form expression for
Y 1−γ
t+δt

Y 1−γ
t

:

Y 1−γ
t+δt

Y 1−γ
t

= exp
(

(1− γ)

∫ t+δt

t

(
µ(Xs, u

∗
s, s)− σ(Xs, u

∗
s, s)

2/2
)
ds

+ (1− γ)

∫ t+δt

t

σ(Xs, u
∗
s, s)dZ

c
s + (1− γ)

M∑
m=1

Nm,t+δt−Nm,t∑
i=1

log(1 + Jm,i)
)
.

(3.30)

If Nm,t+δt −Nm,t ≥ 2, i.e. when there are more than two jump processes of type m over
the period [t, t + δt], then Jm,i, i = 1, ..., Nm,t+δt − Nm,t are independent realizations
of Jm. Then depending on the processes µ(Xt, u

∗
t , t), σ(Xt, u

∗
t , t) and λ(Xt, u

∗
t , t) we are

either able to calculate the conditional expectation for the ratio in closed form or we can
approximate it.

The unknowns in the recursive equation are therefore the conditional expectation and
the vector of optimal control variables u∗t .

We now describe the main characteristics of the algorithm in the one-dimensional case
with single state variable Xt. The detailed algorithm for the multi-dimensional case is
given in appendix 3.E. Similar to value function iteration, the algorithm starts at time T
far in the future and we solve the problem backwards. Instead of using an equally spaced
grid, we randomly draw grid points every time period from a uniform distribution. The
advantage is that the grid points are better spread over the parameter space. We redraw
the grid points every time period and even allow the boundaries of the grid to depend on
the time period. It can be useful to have a time-varying boundary if the range of a state
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Figure 3.3: An example of a stochastic grid in the one-dimensional case with T = 10 and
δt = 1.
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variable that you are interested in varies over time, for example if the state variable is
exponentially growing. An example of a stochastic grid is given in figure 3.3.

Now assume that at time t+δt we know the function gt+δt = g(Xt+δt , t+δt) at random
grid points Xt+δt(1) up to Xt+δt(K). We perform the following steps to obtain the value
function at time t. First, the value function is regressed on the polynomial basis functions
1, Xt+δt , X

2
t+δt

, ..., XL
t+δt

where L controls the highest order of the polynomial basis
functions. This regression gives coefficients ν0,t+δt up to νL,t+δt and we then approximately
have:

g(Xt+δt , t+ δt) ≈
L∑
i=0

νi,t+δtX
i
t+δt . (3.31)

We now know the (approximate) value of gt+δt at the entire parameter space. Some
examples of function approximation for different levels of L are given in figure 3.4. To
calculate optimal policy, we use a non-linear solver to solve the first order condition.
Optimal policy u∗ is an implicit function of the derivative of gt+δt with respect to Xt+δt ,

which can easily be calculated as:
∂g(Xt+δt ,t+δt)

∂Xt+δt
≈
∑L

i=1 iνi,t+δtX
i−1
t+δt

.

The next step is to draw random grid points Xt(1) up to Xt(K) and to calculate the
conditional expectation of the value function Et

[
gt+δt |Xt(k)

]
for each of the random grid

points Xt(k), k = 1, ..., K. Using our functional form for gt+δt , we have:

Et

[
gt+δt |Xt(k)

]
≈

L∑
i=0

νi,t+δtEt

[
X i
t+δt |Xt(k)

]
. (3.32)

We use Itô calculus to calculate the conditional expectations of the state variables. For
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Figure 3.4: Some examples of function approximation using basis function regression for
different levels of L. L controls the highest order of the basis functions.
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example, if dXt = µdt+ σdZt, we can apply Itô’s lemma to obtain:

dX i
t =

(
iµX i−1

t +
1

2
i(i− 1)σ2X i−2

t

)
dt+ iX i−1

t σdZt. (3.33)

For small time steps the following approximation is reasonable:

Et

[
X i
t+δt |Xt(k)

]
≈ Xt(k)i +

(
iµXt(k)i−1 +

1

2
i(i− 1)σ2Xt(k)i−2

)
δt. (3.34)

Applying (3.29) then yields the value function g(Xt, t) at the random grid points Xt(1)
up to Xt(K). Starting with a guess at terminal date T and repeating the previous steps
every time period, we obtain an approximation of the true value function at time 0 for
the entire parameter space.

The main advantage of this algorithm is that the random grid points are spread well
over the parameter space. The number of grid points can be much smaller compared to
conventional equally spaced grids, without losing much accuracy. Furthermore, compared
to other least squares solution methods, the only randomness in this method are the grid
points. We do not have to simulate shocks, since we use the closed form conditional
expectations of the basis functions. This combination makes the algorithm efficient to
solve high-dimensional optimal control problems.

3.5 Results

In this section we present several numerical results. All computations are performed on a
laptop with 7-th generation intel i7 processor, 4 cores and 16GB RAM. The first example
that we consider is the asset pricing model of Wachter (2013).

3.5.1 Time-varying jump risk

Wachter (2013) considers a jump risk model where the arrival rate is time-varying. The
model can be solved analytically when it is assumed that ε = 1, but in this example we
deviate from this assumption. Furthermore, we use a different jump size distribution for
tractability. Except from that, the model is identical to the model developed in Wachter
(2013). The growth rate µ and volatility σ of the endowment process are constant. There
is a single Poisson process with arrival rate λt, which is time-varying. The jump size 1+J
follows a power distribution with parameter αJ and pdf f(x) = αJx

αJ−1, 0 < x < 1.

This gives: E[J ] = −1
αJ+1

and E
[
(1 + J)n

]
= αJ

αJ+n
.

The model has a single state variable, namely the arrival rate λt. λt follows a Cox-
Ingersoll-Ross (CIR) process:

λt = κλ(λ− λt)dt+ σλ
√
λtdZ

λ
t . (3.35)

The calibration is given in table 3.1. This problem does not have any control variables
and ξt = 1 which implies that endowment and consumption are equal in equilibrium:
Yt = Ct.
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Table 3.1: Calibration.

Parameter Value

γ 4
ε 1.5
β 0.02
µ 0.025
σ 0.03

λ 0.035
κ 0.08
σλ 0.07
αJ 6.5

Table 3.2: Consumption-wealth ratio, the function g, interest rate, risk premium and
computation time for different number of points N (λt = λ).

# points k = C
S

g ∂g
∂λt

Interest rate Risk premium time (s)

201 1.724% 0.263 3.410 0.922% 2.849% 0.03
2001 1.708% 0.242 3.053 0.931% 2.831% 0.04
20001 1.707% 0.240 3.021 0.932% 2.830% 0.13
200001 1.706% 0.240 3.018 0.932% 2.829% 1.49

Finite Difference Method This problem is an infinite horizon problem without ex-
plicit time dependency, which implies that the time derivative is equal to zero. Further-
more, the problem is one-dimensional which implies we do not have to use the sparse
grid method. We use an equally spaced one-dimensional grid to discretize the problem.
The only state variable is the arrival rate: Xt = λt. The following parameters are used:
[X,X] = [0, 1], ∆ = 50, crit = 10−6 and we vary the number of points. The right bound-
ary is chosen such that increasing the boundary does not change the results anymore. As
initial guess, we choose gδT such that gδT solves R(Xt, gt, t) = 0 at the grid points. This
initial guess is chosen since it makes sure that the finite difference scheme satisfies the
stability conditions.

Table 3.2 illustrates the results for λt = λ. Since the problem is only one-dimensional,
the finite-difference scheme is very fast. When λt is at its average value, the model
generates a risk-free rate of 0.9% and a risk premium of 2.8%. The consumption-wealth
ratio is around 1.7%. The risk-free rate is close to the historical observed real risk-free
rate. The risk-premium is bit lower than the historical equity premium, which implies
that this model does not fully solve the equity premium puzzle (Mehra & Prescott, 1985).
Dimson, Marsh, and Staunton (2011) estimate the world-wide historical equity premium
to be around 4.5%, which shows that the model implied equity premium is on the low side.
One way to obtain a more realistic equity premium is to introduce leverage, as Wachter
(2013) does. However, since it is not our main purpose to solve this puzzle, we will not
consider this extension.
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Stochastic Grid Method We compare the stochastic grid method with the finite
difference method. λt follows a CIR-process. Shao (2012) shows that this implies that
the increments of the arrival rate follow a non-central χ2 distribution:

λti+1
|λti(k) ∼ a2χ

2
a1

(a3λti(k)) where

a1 =
4κλλ

σ2
λ

, a2 =
σ2
λ(1− e−κλδt)

4κ
and a3 =

4κλe
−κλdt

σ2
λ(1− e−κλδt)

.
(3.36)

As basis functions we use standard polynomials: Bj

(
λt
)

= λjt . Therefore, Eti [B(λti+1
)|λti(k)]

is just a vector of moments of the non-central χ2-distribution, which are known in closed

form. Also Eti

[
Y 1−γ
ti+1

Y 1−γ
ti

|λti(k)
]

can be calculated in closed form:

Eti

[Y 1−γ
ti+1

Y 1−γ
ti

|λti(k)
]

= Eti

[
exp

(
(1− γ)(µ− σ2/2)δt + (1− γ)σ(Zc

ti+1
− Zc

ti
)

+ (1− γ)

Nti+1−Nti∑
j=1

log(1 + Jj)
)]

= exp
(

(1− γ)(µ− σ2/2)δt

+
1

2
(1− γ)2σ2δt + Eti

[ ∫ ti+1

ti

λsds|λti(k)
]
E[(1 + J)1−γ − 1]

)
.

(3.37)

We approximate Eti

[ ∫ ti+1

ti
λsds|λti(k)

]
by λti(k)δt, which is a decent approximation for

small time steps.
We have to choose several algorithmic parameters. First, we fix T at 500 years. For

larger values of T the outcomes do not change anymore. When there is no jump risk, the
problem can be solved in closed form. We use the g that belongs to the problem without
jump risk as guess for g at terminal time for all grid points. The number of grid points
equals: K = 1000. Increasing K doesn’t change the results. Since there is no explicit
time dependence, we choose Xti = 0.1 and Xti = 0 for any ti.

Table 3.3 shows the results for the stochastic grid method. In the first step, we start
with a fast run. After that run we change several algorithmic parameters to see how that
influences the estimate. The first run uses 3 basis functions (up to quadratic) and has
a time step δt of 1 year. The algorithm is fast but is also not very accurate. Increasing
the number of basis function to 9 improves the estimate a lot. To verify how important
the discretization error is, we then decrease the time step to δt to 0.1. This is a slight
improvement. This run takes about 9 seconds. In the last step we again decrease the
time step (δt = 0.01). The run now takes around 90 seconds. There is only modest
improvement now. If we compare the results of the last run to the results of the finite
difference method, the two are very close.

The computation time depends a lot on the discount rate β. In this example we use
a discount rate β = 2%. However, if we would choose e.g. β = 5%, the problem will
converge in much shorter time period and we could choose T smaller.

Graphical results We have now presented the results at one specific point, namely
λt = λ. In this section we present graphically the results for an entire grid of values
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Table 3.3: Consumption-wealth ratio, the function g, interest rate, risk premium and
computation time for different algorithmic parameters.

Nb δt k = C
S

g ∂g
∂λt

r rp time (s)

3 1 1.657% 0.184 2.066 0.966% 2.762% 0.2
6 1 1.698% 0.229 2.872 0.934% 2.826% 0.6
9 1 1.704% 0.236 3.004 0.929% 2.836% 1.0
9 0.1 1.705% 0.238 3.001 0.932% 2.829% 8.6
9 0.01 1.706% 0.239 3.001 0.933% 2.828% 88.9

for λt. The results are shown in figure 3.5. The consumption-wealth ratio is not very
responsive to changes in the arrival rate. However, the risk-free rate and the equity
premium do react a lot. The risk-free rate even becomes negative if the arrival rate is
large enough. The risk premium also increases a lot for large values of λt.

Concluding, the stochastic grid method provides accurate solutions in a reasonable
time for this example, but in a one-dimensional setting the finite difference method is
much faster. It is clear that this model is quite non-linear, since relatively many points
are needed for the finite difference method to converge. Also for the stochastic grid
method, three basis functions are not enough to capture the curvature of the function g.
This example illustrates the capability of these methods to solve non-linear problems.

3.5.2 Multidimensional climate problem

The second problem we consider is a multidimensional climate problem similar to the
model in chapter 2. However, instead of having a deterministic climate model we assume
that the climate model is stochastic. We take our climate model from Aengenheyster,
Feng, Van der Ploeg, and Dijkstra (2018), who develop a stochastic climate model. In
their paper, the stochastic climate model is used to answer the following question: by
how much should carbon emissions be reduced to meet the 2 degrees target with 67%
probability in 2100? We integrate the stochastic model in a consumption based asset
pricing model with an exogenous emissions path to calculate the social cost of carbon.

The model setup is as follows. µt = µ and σt = σ are constant. There are two Poisson
processes: N1,t and N2,t. N1,t reflects economic disasters as in the example of the previous
subsection. In contrast to the previous model, we now assume that the arrival rate
λ1,t = λ1 is constant. J1 has again a power distribution with parameter αJ1 . The second
type of disasters are climate disasters. The arrival rate of climate disasters is assumed
to increase with the temperature: λ2,t = λ2Tt. J2 also follows a power distribution with
parameter αJ2 .

Carbon emissions Et (in GtC) are an exogenous function of time and calibrated
to match the business-as-usual scenario of the DICE model (Nordhaus, 2017): Et =
1450.84 exp(−4.933e−0.0075t − 0.02t).

The vector of state variables equals Xt = [MP,t M1,t M2,t M3,t T0,t T1,t T2,t]
′. Mt =

MP,t+M1,t+M2,t+M3,t is the atmospheric carbon concentration and Tt = T0,t+T1,t+T2,t is
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Figure 3.5: The consumption-wealth ratio, risk-free rate and the risk premium as a func-
tion of the state variable λt.

the temperature anomaly. The idea is to model artificial carbon and temperature boxes
in order to mimic the dynamics of the complex climate system. Atmospheric carbon
concentration is measured in GtC and temperature in oC. Define radiative forcing at

time t as Ft = A log
(

Mt

Mpre

)
. The drift and volatility vectors are defined as:

µX =



a0Et
a1Et − 1

τ1
M1,t

a2Et − 1
τ2
M2,t

a3Et − 1
τ3
M3,t

b0Ft − 1
τb0
T0,t

b1Ft − 1
τb1
T1,t

b2Ft − 1
τb2
T2,t


, σX =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 σM2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 σT0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 σT2Tt


. (3.38)

Note that this implies that there is one permanent carbon box MP,t that does never decay.
The coefficients a0, a1, a2 and a3 sum up to 1, such that a percentage ai of one unit of
emissions ends up in the artificial carbon box Mi,t. The calibration of the model is given
in table 3.4.

One of the variables of interest for a climate model is the social cost of carbon, which
is the welfare loss of emitting one unit of carbon emissions in terms of consumption units
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Table 3.4: Calibration.

Par. Value Par. Value Par. Value Par. Value

γ 4 αJ2 35 τ3 4.304 τb1 1.427062
ε 1.5 C0 80×1012 σM2 0.65 τb2 8.021185
β 0.02 a0 0.2173 Mpre 592.25 σT 0 0.015
µ 0.025 a1 0.2240 A 7.92 σT 2 0.13
σ 0.03 a2 0.2824 b0 0.001152
λ1 0.035 a3 0.2763 b1 0.109680
αJ1 6.5 τ1 394.4 b2 0.033611
λ2 0.015 τ2 36.54 τb0 400

at time t. In this model it is not straightforward to define the social cost of carbon, since
we have four artificial carbon boxes. One unit of emissions will lead to an increase of a0

units of MP,t, a1 units of M1,t, a2 units of M2,t and a3 units of M3,t. The social cost of
carbon then becomes:

SCCt = −
a0

∂Vt
∂MP,t

+ a1
∂Vt
∂M1,t

+ a2
∂Vt
∂M2,t

+ a3
∂Vt
∂M3,t

fC(Ct, Vt)
. (3.39)

Note that the social cost of carbon scales with the endowment or consumption level, since
damages are a fraction of endowment. Therefore the social cost of carbon will grow over
time. The social cost of carbon in this paper is measured in $ per ton carbon. To get
the social cost of carbon per ton CO2, the social cost of carbon must be divided by 3.67.
As initial consumption level, we use Y0 = C0 = 80 trillion US $ where the base year is
chosen to be 2015. This is a proxy for world consumption using purchasing power parity
(instead of exchange rates) in 2015. The vector of initial points at the base year 2015 is
given by: X0 = [680.2 83.2 56.9 11.1 0.11 0.41 0.62]′.

Finite Difference Method The problem that we have to solve is a 7-dimensional
problem with explicit time dependence. We choose X = [3000 2000 250 50 8 3 10]′

and X = [600 0 0 0 0 0 0]′. With these bounds, except for MP,t, all state variables
on the left of the grid have a positive drift and on the right of the drift have a negative
drift. Therefore, we use as boundary condition that the second derivative vanishes, except
for MP,t. The drift of MP,t is always positive. Therefore we can again set the second
derivative to zero at the left boundary. At the right boundary of MP,t, we assume that
the first derivative is equal to zero.

To get a good starting guess, we first solve the problem with the finite difference
method at T = 250 with ∆ = 50 and crit = 10−6 assuming that there are no emissions:
E250 = 0. The time derivative of gt comes from carbon emissions and therefore ∂gt

∂t
= 0

in this setup. We use the outcome as our initial guess. Given our initial guess, we solve
the actual problem with explicit time dependence starting from T = 250 and working
backwards in time. A more ‘stupid’ initial guess would also work, as long as the stability
conditions are met using that guess. The algorithm might take longer to converge, so T
might have to be chosen larger in that case.
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Table 3.5: Consumption-wealth ratio, g, social cost of carbon, interest rate, risk premium
and computation time for different algorithmic parameters.

L N δt k = C
S

g SCC ($) r rp time (s)

1 1 1 1.600% 0.134 242.2 1.058% 2.506% 2.8
2 8 1 1.601% 0.135 250.0 1.058% 2.506% 8.6
3 36 1 1.603% 0.136 253.0 1.058% 2.506% 57.4
4 120 1 1.603% 0.137 253.4 1.058% 2.506% 287.7
5 330 1 1.603% 0.137 253.0 1.058% 2.506% 1440.1
1 1 0.1 1.600% 0.134 242.3 1.058% 2.506% 17.9
2 8 0.1 1.602% 0.135 250.2 1.058% 2.506% 71.4
3 36 0.1 1.603% 0.136 253.2 1.058% 2.506% 501.6

We use the sparse grid combination method and try different combinations of L and
δt. Define by N the number of sub-problems that are solved, so N depends on the level
of the sparse grid L. We use the semi-implicit method in all runs. The explicit method
is not much faster and the semi-implicit method is more stable. One of the outputs of
the finite difference method is the first derivative of gt with respect to the vector of state
variables Xt. This derivative is used to calculate the social cost of carbon. The results
are given in table 3.5.

If we look at the table, it is clear that the run on a single grid (L = 1) and δt = 1
already gives a reasonable approximation of the outcomes. This implies that the model
is not very non-linear. If we increase the level L to 2 or 3, we see that the social cost
of carbon becomes approximately 250$. Increasing L even further does not change the
outcomes much, and also choosing a smaller time step has little effect.

Stochastic Grid Method We use again standard power functions as basis functions.
However, in the multidimensional setting we also consider cross terms. Define in this case
the highest order of the basis functions by L. Then if L = 1, we only consider the vector
of linear first order basis functions:

B(Xt) = [1 MP,t M1,t M2,t M3,t T0,t T1,t T2,t]
′. (3.40)

When L = 2, we use basis functions up to order two, for example (MP,t)
2 and the cross-

term MP,tM1,t. And for order L = 3 we consider e.g. M3
P,t, M

2
P,tM1,t and MP,tM1,tM2,t, so

all possible basis functions up to third order. This can be extended to any higher order.
We define the number of basis functions again by Nb.

For this setup, there are no closed form expectations of the basis functions available.
Using the Euler method, we can still find closed form approximate conditional expec-
tations. The conditional expectation for the linear basis functions are straightforward:
E[Xti+1

|Xti ] = Xti + µX(Xti)δt. For the higher order and cross terms, we can use Itô-

72



Table 3.6: Consumption-wealth ratio, g, social cost of carbon, interest rate, risk premium
and computation time for different algorithmic parameters.

L Nb δt k = C
S

g SCC ($) r rp time (s)

1 8 1 1.606% 0.139 259.2 1.058% 2.506% 0.3
2 36 1 1.606% 0.139 249.5 1.058% 2.506% 1.1
3 120 1 1.373% 0.034 16602.7 1.055% 2.511% 4.7
4 330 1 1.803% 0.394 1127.8 1.058% 2.506% 19.0
1 8 0.1 1.603% 0.137 261.0 1,058% 2.506% 2.7
2 36 0.1 1.604% 0.137 251.4 1.058% 2.506% 10.3
3 120 0.1 1.604% 0.137 250.4 1.058% 2.506% 49.7
4 330 0.1 1.604% 0.137 250.4 1.058% 2.506% 224.2
1 8 0.01 1.603% 0.136 261.1 1.058% 2.506% 27.3
2 36 0.01 1.603% 0.137 251.6 1.058% 2.506% 101.7
3 120 0.01 1.603% 0.137 250.6 1.058% 2.506% 496.1
4 330 0.01 1.603% 0.137 250.6 1.058% 2.506% 2333.7

calculus and then use the Euler method approximation. For example:

dM2
2,t = 2M2,tdM2,t + d[M2,M2]t

=
(

2M2,t(a2Et −
1

τ2

M2,t) + σ2
M2

)
dt+ 2M2,tσM2dZ

M2

t ,

E[M2
2,ti+1
|M2,ti ] ≈M2

2,ti
+
(

2M2,ti(a2Eti −
1

τ2

M2,ti) + σ2
M2

)
δt.

(3.41)

The conditional expectation for Yt becomes:

E
[Y 1−γ

ti+1

Y 1−γ
ti

|Xti(k)
]

= exp
(

(1− γ)(µ− σ2/2)δt

+
1

2
(1− γ)2σ2δt + λ1δt(E[(1 + J1)1−γ]− 1)

+ λ2(T0,ti(k) + T1,ti(k) + T2,ti(k))δt(E[(1 + J2)1−γ]− 1)
)
.

(3.42)

The algorithmic parameters that we use are T = 500 and K = 1000. To obtain the
time-dependent grid boundaries, we first calculate the expected path of the state variables.
This can be easily found by setting σX = 0 and solving the system forward using a stan-
dard differential equation solver. Around the expected path, we then create an interval for
the simulation. Define by Xav

t the expected value of the vector of state variables at time t.
Then at time ti, we define the boundaries as: Xti = Xav

ti
+[150 75 37.5 7.5 1.5 0.75 1.5]′

and Xti = Xav
ti
− [100 50 25 5 1 0.5 1]′. If the lower bound becomes negative, we set

it equal to zero.
Table 3.6 shows the results for different combinations of L and δt. We start with δt = 1.

The first run with only linear basis functions already gives reasonable results. This again
shows that the function g is not very non-linear in the state variables. Increasing L to
2 improves the results, but when L is increased to 3 or 4 the results become unstable.
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The SCC explodes. The reason for this is that the conditional expectations of the basis
functions are an approximation that depends on the time step, in contrast to the time-
varying jump risk example where the conditional expectations could be calculated in
closed form. Especially for the higher order basis functions, this approximation seems
to be not very accurate. If we decrease the time step δt to 0.1 or 0.01, the results also
become stable for L = 3 and L = 4.

Graphical results In this section, we present some graphical results of the evolution
of the problem over time. Since the problem is stochastic, we do not know the exact
future path of the state variables. The output of the solution methods gives the value
function and therefore the social cost of carbon at any time t for any combination of the
state variables. The results are graphically presented for the expected path of the state
variables. Figure 3.6 shows the climate variables, social cost of carbon, consumption-
wealth ratio, risk-free rate and risk premium. Emissions are exogenous and are modeled
to peak at the end of the century. Both the carbon concentration and the temperature
keep increasing over time. The social cost of carbon at 2015 is approximately 250$ and
grows over time, since endowment also grows over time. The risk-free rate slightly declines
over time and the risk premium increases due to higher climate risk, but both effects are
quantitatively small.

In terms of computation time, the stochastic grid method is more efficient. However,
both methods are able to solve this multidimensional problem in reasonable computation
time.

3.5.3 Multidimensional climate problem with control variable

In the last example we consider a very similar model as in the previous example, but we
add a control variable. In the previous example emissions were entirely exogenous. In
this example, the agent can reduce emissions using abatement policy. Assume that Ẽt =
Et(1 − ut) are actual carbon emissions where Et are business-as-usual carbon emissions.
ut is called the emissions control rate. In this example we assume that endowment Yt
can be spent on consumption Ct and abatement At. Abatement costs are proportional
to output: At = c1,tu

c2
t Yt where c2 > 1 is used to capture that the marginal cost of

abatement increases in the emissions control rate and c1,t is declining over time to take
into account technological process in abatement technologies. This yields Ct = Yt−At =
(1−c1,tu

c2
t )Yt = ξtYt where ξt = 1−c1,tu

c2
t . We assume that ut ≤ 1, so that it is not possible

to take carbon out of atmosphere. At best, it is possible to reduce carbon emissions to
zero.

The set of state variables and initial conditions is the same as in the previous example.
The only difference is that now in the drift µX of the state variables, business-as-usual
emissions Et are replaced by controlled emissions Ẽt. The calibration is also identical, but
we have two additional abatement parameters now. These are calibrated to match the
abatement function of the DICE model (Nordhaus, 2017): c1,t = 0.074 exp(−0.019t) and
c2 = 2.8. As initial endowment level, we take Y0 = 80 trillion US $. The HJB-equation
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Figure 3.6: The expected paths of emissions, carbon concentration, temperature, social
cost of carbon, consumption-wealth ratio, risk-free rate and the risk premium over time.
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Table 3.7: Consumption-wealth ratio, g, social cost of carbon, optimal abatement policy,
interest rate, risk premium and computation time for different algorithmic parameters.

L N δt k = C
S

g SCC ($) u∗ r rp time (s)

1 1 1 1.584% 0.125 290.0 38.9% 1.045% 2.506% 11.7
2 8 1 1.586% 0.126 312.2 40.5% 1.043% 2.506% 38.7
3 36 1 1.587% 0.127 325.7 41.5% 1.042% 2.506% 303.4
4 120 1 1.587% 0.127 332.6 42.0% 1.042% 2.506% 2153.4
5 330 1 1.588% 0.128 333.5 42.0% 1.042% 2.506% 12373.5
1 1 0.1 1.584% 0.125 290.0 38.9% 1.045% 2.506% 90.3
2 8 0.1 1.586% 0.126 312.1 40.5% 1.043% 2.506% 344.6
3 36 0.1 1.587% 0.127 325.6 41.5% 1.042% 2.506% 3108.6

corresponding to this problem is:

0 = min
ut

{(
βζ
(
g
− 1
ζ

t ξ
1−1/ε
t − 1

)
+ (1− γ)

(
µ− 1

2
γσ2 + λ1E

[(1 + J1)1−γ − 1

1− γ

]
+ λ2TtE

[(1 + J2)1−γ − 1

1− γ

]))
gt +

∂gt
∂t

+ gXµX +
1

2
tr
(
gXXσXσ

′
X

)}
.

(3.43)

Taking the first derivative, we obtain the first order condition for ut:

0 = −β(1− γ)g
1− 1

ζ

t ξ
−1/ε
t c1,tc2u

c2−1
t

− a0
∂gt
∂MP,t

Et − a1
∂gt
∂M1,t

Et − a2
∂gt
∂M2,t

Et − a3
∂gt
∂M3,t

Et.
(3.44)

This first order condition cannot be solved in closed-form for ut and therefore the optimal
policy ut is implicitly defined by the first order condition.

Finite difference We use exactly the same algorithmic parameters and boundary con-
ditions as in the previous example. The only difference is that we calculate optimal policy
at every time period and grid point. So again we first solve the problem with E250 = 0
and then solve the problem with explicit time dependence backward in time. The results
of the finite difference methods are presented in table 3.7. Compared to the previous
problem, this time we need a higher level L for the problem to converge. L = 3 already
gives relatively accurate results. The time step again does not play an important role,
δt = 1 seems to be accurate enough. It is also clear that solving for the optimal control
variable increases the computation time quite a lot, especially for the higher sparse grid
levels.

Stochastic grid method We again assume T = 500 but in this case choose K = 2500.
The reason that we increase K is because the problem is more non-linear compared
to the problem without control variable. The non-linearity is due to the cap on the
emissions control rate. As lower bound we take the following bounds for any period in
time: X = [600 0 0 0 0 0 0]′. To obtain an upper bound, we first assume a constant
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Table 3.8: Consumption-wealth ratio, g, social cost of carbon, optimal abatement policy,
interest rate, risk premium and computation time for different algorithmic parameters.

L Nb δt k = C
S

g SCC ($) u∗ r rp time (s)

1 8 1 1.590% 0.129 347.4 43.0% 1.041% 2.506% 4.4
2 36 1 1.591% 0.130 326.5 41.5% 1.042% 2.506% 8.6
3 120 1 - - - - - - -
4 330 1 - - - - - - -
1 8 0.1 1.586% 0.127 350.7 43.2% 1.041% 2.506% 39.4
2 36 0.1 1.588% 0.128 329.4 41.7% 1.042% 2.506% 77.5
3 120 0.1 1.588% 0.128 327.8 41.6% 1.042% 2.506% 217.8
4 330 0.1 1.588% 0.128 327.7 41.6% 1.042% 2.506% 832.4
1 8 0.01 1.586% 0.127 351.0 43.2% 1.041% 2.506% 387.4
2 36 0.01 1.587% 0.127 329.7 41.7% 1.042% 2.506% 774.8
3 120 0.01 1.587% 0.127 328.1 41.6% 1.042% 2.506% 2237.2
4 330 0.01 1.587% 0.127 328.0 41.6% 1.042% 2.506% 8156.5

policy rule of u = 0.5. We then calculate the expected path of state variables Xav
t given

u = 0.5 by solving the system forward with σX = 0. At time ti, we define the upper
boundary as: Xti = Xav

ti
+ [150 75 37.5 7.5 1.5 0.75 1.5]′. We tried different choices

for u and this does not seem to matter much, as long as the resulting interval turns out
to be roughly around the optimal expected path of state variables. In general, the results
seem to be robust against differences in the boundaries.

The outcomes and computation times are given in table 3.8. Taking L = 2 and δt = 1
provides reasonable results in a short computation time. In this case, the problem does
not even converge for L > 2 and δt = 1, due to the approximation error of the conditional
expectations. Decreasing δt to 0.1 and choosing L = 3 gives accurate results in a few
minutes. Increasing L or decreasing δt even further does not change the results much.

Graphical results Again, we present results for the expected path of state variables
over time. Since we do not know the optimal emissions control rate before solving the
problem, we first solve the problem backward and then iterate forward to obtain the
expected path of state variables. The graphs are presented in figure 3.7. The optimal
emissions control rate equals roughly 40% in 2015 and increases over time. The reason
of this increase over time is that the abatement costs are assumed to decrease over time.
In the optimal policy scenario the emissions control rate reaches 100% between 2065 and
2070. The temperature level peaks at 1.7 degrees, which is in line with the Paris climate
agreement.

The social cost of carbon at 2015 is approximately 330$, which is larger than in the
business-as-usual scenario. If we look at the consumption-endowment ratio, we see that
the slope of ξt changes at the point where the emissions control rate reaches its upper
bound of 100%. Up to that moment, the amount of endowment that is spent on abatement
is increasing. Although abatement becomes cheaper, the emissions control rate increases
fast enough to make the total amount increasing. However, when the upper bound is
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Figure 3.7: The expected paths of emissions, carbon concentration, temperature, social
cost of carbon, consumption-endowment ratio, risk-free rate and the risk premium over
time.
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reached, the amount spent on abatement decreases over time. At the moment that u∗t
reaches its upper bound there is a jump in the interest rate, since the growth rate of the
endowment-consumption ratio (µξ) jumps. However, quantitatively the effect of climate
change on the risk-free rate and risk premium is not very large.

Comparing the two methods in this case, it is clear that the stochastic grid method
outperforms the finite difference method. The stochastic grid method converges faster
and the computation time increases not as fast when the accuracy of the solution method
is increased. The main reason is that the number of grid points increases much faster
for the finite difference method than for the stochastic grid method. One of the most
time-consuming parts of the algorithm is to find the optimal policy at every grid point.
This leads to very large computation times for more accurate runs of the finite difference
method. For multi-dimensional problems with optimal policy, it is therefore more efficient
to use the stochastic grid method.

3.6 Conclusion

We have developed and compared two solution methods that are suitable to solve multi-
dimensional DSGE models. The finite difference method has recently been popular to
solve macro-models. We extend this method to the setting with Epstein-Zin preferences
and show how to easily apply the finite difference method on sparse grids using the com-
bination method. This method is capable of solving the 7-dimensional optimal control
example of an economic model with a climate change externality. However, the compu-
tation time increases substantially for denser grids, which might be problematic if one
wants to solve high-dimensional problems that are very non-linear.

The second method that we have discussed is the stochastic grid method that up to
now is mostly applied to option pricing applications. We show that this method is very
suitable to solve optimal control DSGE models with multiple state variables. The method
is able to solve the example problem within a few minutes. It does not suffer from the
curse of dimensionality. The conditional expectations are straightforward to calculate
for any set of basis functions by applying Itô calculus. This makes the method flexible
and makes it also able to solve non-linear problems. The order of basis functions can be
increased to capture the non-linearities.

In this paper only three numerical examples have been considered. It would be inter-
esting to see how these methods perform on problems with different characteristics. As
mentioned before, another topic for further research is to see how the methods perform if
there is correlation between the state variables.
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3.A Asset prices

3.A.1 Consumption-wealth ratio

St equals the total wealth of the representative agent. At the optimum, the following
condition is satisfied: fC = VS (see for example Tsai and Wachter (2018)). Now define the
consumption-wealth ratio by kt = Ct

St
. Using the chain rule, this implies that VS = VCkt.

The optimality condition then implies that: kt = fC
VC

. We can calculate fC :

fC(C, V ) =
βC−1/ε(

(1− γ)V
) 1
ζ
−1
. (3.45)

Substituting in fc, Vt = gt
Y 1−γ
t

1−γ = gt
(
Ct
ξt

)1−γ

1−γ and VC = gtξ
γ−1
t C−γt gives:

kt = βg
− 1
ζ

t ξ
1−1/ε
t . (3.46)

3.A.2 Stochastic discount factor

Duffie and Epstein (1992a) derive that the stochastic discount factor with stochastic

differential utility equals πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt).

We will start with deriving the explicit stochastic differential equation of the stochastic
discount factor. First we calculate the derivatives of f(C, V ) with respect to V (the
derivative with respect to C is given in the previous subsection):

fV (C, V ) = βζ
{(

1− 1

ζ

)(
(1− γ)V

)− 1
ζ
C1−1/ε − 1

}
. (3.47)

Substituting Vt = gt
Y 1−γ
t

1−γ and Ct = ξtYt into fC(C, V ) and fV (C, V ) we obtain:

fC(Ct, Vt) = βξ
−1/ε
t g

1− 1
ζ

t Y −γt , (3.48)

fV (Ct, Vt) = βζ
{
g
− 1
ζ

t ξ
1−1/ε
t

(
1− 1

ζ

)
− 1
}
. (3.49)

This gives:

πt = exp

(∫ t

0

βζ
{
g
− 1
ζ

s ξ1−1/ε
s

(
1− 1

ζ

)
− 1
}
ds

)
βξ
−1/ε
t g

1− 1
ζ

t Y −γt . (3.50)

Write as a differential equation:

dπt
πt−

= βζ
{
g
− 1
ζ

t ξ
1−1/ε
t

(
1− 1

ζ

)
− 1
}
dt+

dY −γt

Y −γt−
+
dg

1−1/ζ
t

g
1−1/ζ
t

+
dξ
−1/ε
t

ξ
−1/ε
t

+
d[g

1−1/ζ
t , ξ

−1/ε
t ]

g
1−1/ζ
t ξ

−1/ε
t

.

(3.51)
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Applying Itô’s lemma to Y −γt gives:

dY −γt = −γ
(
µt−

1

2
(γ+1)σ2

t

)
Y −γt dt−γσtY −γt dZc

t +
M∑
m=1

(
(1+Jm)−γ−1

)
Y −γt− dNm,t. (3.52)

We can also apply Itô’s lemma to g
1−1/ζ
t :

dgt =
(∂gt
∂t

+ gXµX +
1

2
tr(gXXσXσ

′
X)
)
dt+ gXσXdZ

X
t ,

dg
1−1/ζ
t = (1− 1/ζ)

(
∂gt
∂t

gt
+
gX
gt
µX +

1

2
tr
(gXX
gt

σXσ
′
X

)
− 1

2

1

ζ
tr
(g′XgX

g2
t

σXσ
′
X

))
g

1−1/ζ
t dt+ (1− 1/ζ)

gX
gt
g

1−1/ζ
t σXdZ

X
t .

(3.53)

And lastly, applying Itô’s lemma to ξ
−1/ε
t gives:

dξt =
(∂ξt
∂t

+ ξXµX +
1

2
tr(ξXXσXσ

′
X)
)
dt+ ξXσXdZ

X
t ,

dξ
−1/ε
t = −1/ε

(
∂ξt
∂t

ξt
+
ξX
ξt
µX +

1

2
tr
(ξXX
ξt

σXσ
′
X

)
− 1

2
(1 + 1/ε)tr

(ξ′XξX
ξ2
t

σXσ
′
X

))
ξ
−1/ε
t dt− 1/ε

ξX
ξt
ξ
−1/ε
t σXdZ

X
t .

(3.54)

The quadratic covariation between g
1−1/ζ
t and ξ

−1/ε
t equals:

d[g
1−1/ζ
t , ξ

−1/ε
t ]

g
1−1/ζ
t ξ

−1/ε
t

= −1/ε(1− 1/ζ)tr
(g′XξX
gtξt

σXσ
′
X

)
dt. (3.55)

Define µg =
∂gt
∂t

gt
+ gX

gt
µX + 1

2
tr
(
gXX
gt
σXσ

′
X

)
and µξ =

∂ξt
∂t

ξt
+ ξX

ξt
µX + 1

2
tr
(
ξXX
ξt
σXσ

′
X

)
.

Combining everything gives:

dπt
πt−

=
{
βζ
(
g
− 1
ζ

t ξ
1−1/ε
t

(
1− 1

ζ

)
− 1
)
− γ
(
µt −

1

2
(γ + 1)σ2

t

)
− 1/ε

(
µξ −

1

2
(1 + 1/ε)tr

(ξ′XξX
ξ2
t

σXσ
′
X

))
− 1/ε(1− 1/ζ)tr

(g′XξX
gtξt

σXσ
′
X

)
+ (1− 1/ζ)

(
µg −

1

2

1

ζ
tr
(g′XgX

g2
t

σXσ
′
X

))}
dt

− γσtdZc
t +

(
(1− 1/ζ)

gX
gt
σX − 1/ε

ξX
ξt
σX

)
dZX

t +
M∑
m=1

(
(1 + Jm)−γ − 1

)
dNm,t.

(3.56)
We can now substitute the HJB-equation into the stochastic discount factor. Note that
we can rewrite the HJB-equation as:

µg = −βζ
(
g

−1
ζ

t ξ
1−1/ε
t − 1

)
− (1− γ)

(
µt −

1

2
γσ2

t +
M∑
m=1

λm,tE
[(1 + Jm)1−γ − 1

1− γ

])
. (3.57)
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Substituting this gives:

dπt
πt−

=
{
− β − µt

ε
+
(

1 +
1

ε

)γ
2
σ2
t +

(
γ − 1

ε

) M∑
m=1

λmt E
[(1 + Jm)1−γ − 1

1− γ

]
− 1/ε

(
µξ −

1

2
(1 + 1/ε)tr

(ξ′XξX
ξ2
t

σXσ
′
X

))
− 1/ε(1− 1/ζ)tr

(g′XξX
gtξt

σXσ
′
X

)
− 1

2

1

ζ
(1− 1/ζ)tr

(g′XgX
g2
t

σXσ
′
X

)}
dt− γσtdZc

t

+
(

(1− 1/ζ)
gX
gt
σX − 1/ε

ξX
ξt
σX

)
dZX

t +
M∑
m=1

(
(1 + Jm)−γ − 1

)
dNm,t.

(3.58)

Therefore πt is of the form: dπt
πt−

= µπdt−γσtdZc
t +σπdZ

X
t +

∑M
m=1

(
(1+Jm)−γ−1

)
dNm,t.

3.A.3 Interest rate

Let Bt be the price of the risk-free asset with continuous return rt: dBt = rtBtdt. Using
a no-arbitrage argument, πtBt must be a martingale:

dπtBt

πt−Bt

= (rt + µπ)dt− γσtdZc
t + σπdZ

X
t +

M∑
m=1

(
(1 + Jm)−γ − 1

)
dNm,t. (3.59)

This is a martingale if rt = −µπ −
∑M

m=1 λm,tE
[
(1 + Jm)−γ − 1

]
. Therefore the interest

rate equals:

rt = β +
µt
ε
−
(

1 +
1

ε

)γ
2
σ2
t −

1

2

1

ζ
(1/ζ − 1)tr

(g′XgX
g2
t

σXσ
′
X

)
+ 1/ε

(
µξ −

1

2
(1 + 1/ε)tr

(ξ′XξX
ξ2
t

σXσ
′
X

))
− 1/ε(1/ζ − 1)tr

(g′XξX
gtξt

σXσ
′
X

)
−
(
γ − 1

ε

) M∑
m=1

λm,tE
[(1 + Jm)1−γ − 1

1− γ

]
−

M∑
m=1

λm,tE
[
(1 + Jm)−γ − 1

]
.

(3.60)

3.A.4 Risk premium

Let St be the ex-dividend price of the stock that pays dividend at a rate Ct and denote
by Sdt the cum-dividend price. Then by no arbitrage, πtS

d
t must be a martingale. Fur-

thermore, we use the relationship St = ξt
k(Xt,t)

Yt =
ξ
1/ε
t g

1/ζ
t Yt
β

. The dynamics of Sdt are given
by:

dSdt = dSt + Ctdt = St
dYt
Yt

+ St
dg

1/ζ
t

g
1/ζ
t

+ St
dξ

1/ε
t

ξ
1/ε
t

+ St
d[g

1/ζ
t , ξ

1/ε
t ]

g
1/ζ
t ξ

1/ε
t

+ βξ
1−1/ε
t g

−1/ζ
t Stdt.

(3.61)

82



Now we calculate dg
1/ζ
t and dξ

1/ε
t and the quadratic covariation:

dg
1/ζ
t

g
1/ζ
t

= 1/ζ

(
µg +

1

2
(1/ζ − 1)tr

(g′XgX
g2
t

σXσ
′
X

))
dt+ 1/ζ

gX
gt
σXdZ

X
t ,

dξ
1/ε
t

ξ
1/ε
t

= 1/ε

(
µξ +

1

2
(1/ε− 1)tr

(ξ′XξX
ξ2
t

σXσ
′
X

))
dt+ 1/ε

ξX
ξt
σXdZ

X
t ,

d[g
1/ζ
t , ξ

1/ε
t ]

g
1/ζ
t ξ

1/ε
t

=
1

ε

1

ζ
tr
(g′XξX
gtξt

σXσ
′
X

)
.

(3.62)

Substituting this into (3.61) yields:

dSdt
St

=

{
µt + 1/ζ

(
µg +

1

2
(1/ζ − 1)tr

(g′XgX
g2
t

σXσ
′
X

))

+ 1/ε

(
µξ +

1

2
(1/ε− 1)tr

(ξ′XξX
ξ2
t

σXσ
′
X

))
+

1

ε

1

ζ
tr
(g′XξX
gtξt

σXσ
′
X

)}
dt

+
(

1/ζ
gX
gt
σX + 1/ε

ξX
ξt
σX

)
dZX

t + σtdZ
c
t +

M∑
m=1

JmdNm,t.

(3.63)

Substituting µg (3.57) and taking everything together gives:

µS = β +
µt
ε
− 1

2
(1/ε− 1)γσ2

t + (1/ε− 1)
M∑
m=1

λm,tE
[(1 + Jm)1−γ − 1

1− γ

]
+

1

2

1

ζ
(1/ζ − 1)tr

(g′XgX
g2
t

σXσ
′
X

)
+ 1/ε

(
µξ +

1

2
(1/ε− 1)tr

(ξ′XξX
ξ2
t

σXσ
′
X

))
+

1

ε

1

ζ
tr
(g′XξX
gtξt

σXσ
′
X

)
.

(3.64)

From this equation we can calculate the risk premium rpt:

rpt = µS +
M∑
m=1

λm,tE[Jm]− rt = γσ2
t +

M∑
m=1

λm,tE
[
Jm + (1 + Jm)−γ − (1 + Jm)1−γ

]
+

1

ζ
(1/ζ − 1)tr

(g′XgX
g2
t

σXσ
′
X

)
+

1

ε2
tr
(ξ′XξX

ξ2
t

σXσ
′
X

)
+

1

ε

(2

ζ
− 1
)
tr
(g′XξX
gtξt

σXσ
′
X

)
.

(3.65)
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3.B Definition of finite difference matrix

We first define the backward, central and forward parameters α for the interior grid points.

αCi,j,t = −
2∑
d=1

|(µXi,j,t)d|
δd

−
2∑
d=1

(
σXi,j,tσ

′
Xi,j,t

)
d,d

δ2
d

, i ∈ {2, ..., N1 − 1}, j ∈ {2, ..., N2 − 1}

αBi,j,t,d =
(µ−Xi,j,t)d

δd
+

1

2

(
σXi,j,tσ

′
Xi,j,t

)
d,d

δ2
d

αFi,j,t,d =
(µ+

Xi,j,t)d

δd
+

1

2

(
σXi,j,tσ

′
Xi,j,t

)
d,d

δ2
d

d = 1, i ∈ {2, ..., N1 − 1}, j ∈ {1, ..., N2}, d = 2, i ∈ {1, ..., N1}, j ∈ {2, ..., N2 − 1}
(3.66)

In this example, assume that (µXi,j,t)1 > 0 when i = 1, (µXi,j,t)2 > 0 when j = 1,
(µXi,j,t)1 < 0 when i = N1 and (µXi,j,t)2 < 0 j = N2. This implies that at all left
boundaries, the forward difference is used and at all right boundaries, the backward
difference is always used in the upwind scheme. At the boundary points we then assume
that the second derivative vanishes. The α parameters at the boundaries then become.

αCi,j,t = −
2∑
d=1

|(µXi,j,t)d|
δd

, (i, j) ∈ {(1, 1), (1, N2), (N1, 1), (N1, N2)}

αCi,j,t = −
2∑
d=1

|(µXi,j,t)d|
δd

−

(
σXi,j,tσ

′
Xi,j,t

)
2,2

δ2
2

, i ∈ {1, N1}, j ∈ {2, ..., N2 − 1}

αCi,j,t = −
2∑
d=1

|(µXi,j,t)d|
δd

−

(
σXi,j,tσ

′
Xi,j,t

)
1,1

δ2
1

, i ∈ {2, .., N1 − 1}, j ∈ {1, N2}

(3.67)

αB1,j,t,1 = 0, j ∈ {1, ..., N2}, αBi,1,t,2 = 0, i ∈ {1, ..., N1}

αBN1,j,t,1
=

(µ−XN1,j,t
)1

δ1

, j ∈ {1, ..., N2}, αBi,N2,t,2
=

(µ−Xi,N2,t
)2

δ2

, i ∈ {1, ..., N1}

αF1,j,t,1 =
(µ+

X1,j,t)1

δ1

, j ∈ {1, ..., N2}, αFi,1,t,2 =
(µ+

Xi,1,t)2

δ2

, i ∈ {1, ..., N1}

αFN1,j,t,1
= 0, j ∈ {1, ..., N2}, αFi,N2,t,2

= 0, i ∈ {1, ..., N1}

(3.68)
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Putting everything together, we can construct the matrix Dδ
t .

DC
j,t =



αC1,j,t αF1,j,t,1 0 0 . . . 0 0 0 0
αB2,j,t,1 αC2,j,t αF2,j,t,1 0 . . . 0 0 0 0

0 αB3,j,t,1 αC3,j,t αF3,j,t,1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . αBN1−2,j,t,1 αCN1−2,j,t αFN2−2,j,t,1 0
0 0 0 0 . . . 0 αBN1−1,j,t,1 αCN1−1,j,t αFN1−1,j,t,1

0 0 0 0 . . . 0 0 αBN1,j,t,q
αCN1,j,t



DB
j,t =


αB1,j,t,2 0 . . . 0 0

0 αB2,j,t,2 . . . 0 0
...

...
. . .

...
...

0 0 . . . αBN1−1,j,t,2 0
0 0 . . . 0 αBN1,j,t,2



DF
j,t =


αF1,j,t,2 0 . . . 0 0

0 αF2,j,t,2 . . . 0 0
...

...
. . .

...
...

0 0 . . . αFN1−1,j,t,2 0
0 0 . . . 0 αFN1,j,t,2



Dδ
t =



DC
1,t DF

1,t 0 0 . . . 0 0 0 0
DB

2,t DC
2,t DF

2,t 0 . . . 0 0 0 0
0 DB

3,t DC
3,t DF

3,t . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . DB
N2−2,t DC

N2−2,t DF
N2−2,t 0

0 0 0 0 . . . 0 DB
N2−1,t DC

N2−1,t DF
N2−1,t

0 0 0 0 . . . 0 0 DC
N2,t

DF
N2,t


(3.69)

3.C Consistency, convergence and stability

A proper finite difference scheme should satisfy the following three properties: consistency,
convergence and stability. We will briefly cover these three properties, see Thomas (2013)
for more details. Let us start with consistency. Denote the true solution at the grid points
at time ti by gti and the approximate solution by gδti . A scheme gδti = Agδti+1

is consistent
with respect to the norm ||.|| if gti satisfies:

gti = Agti+1
+ δtτti+1

, and ||τti || → 0 as δt, δ1, δ2 → 0. (3.70)

τti is the error vector of the finite difference approximation. We did not yet explicitly
specify the norm, but one can use for example the absolute sum (||.||1), the Euclidean
norm (||.||2) or the max absolute value (||.||∞). If the function g is sufficiently smooth
(bounded and existing derivatives), then consistency is satisfied. One can for example
verify consistency by writing out the error terms of the Taylor approximations of the
finite difference schemes.
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Convergence and stability are less straightforward to show. We now first consider
stability. We use the following definition for stability. A finite difference scheme is said
to be stable with respect to the norm ||.|| if there exist positive constants ∆1,∆2,∆t and
a non-negative constant K such that:

||gδ0|| ≤ K||gδT ||, for 0 < δ1 ≤ ∆1, 0 < δ2 ≤ ∆2, 0 < δt ≤ ∆t. (3.71)

The stability condition implies that when you let the time steps go from ∆1,∆2,∆t towards
zero, the norm of the solution remains bounded. It turns out that when considering a
consistent linear scheme of the form gδti = Agδti+1

, the scheme is convergent if and only if
it is stable. This is the so called Lax Equivalence theorem. So the only thing that we
have to verify is the stability of the scheme.

Let us first consider a simplified example of the PDE that we are trying to solve.
Assume that R = −r where r > 0 is the interest rate. Furthermore, assume that µX =

[rX1,t rX2,t] and σX =

[
σ1X1,t 0

0 σ2X2,t

]
, so there is no optimal control. Then the PDE

becomes:

0 =
∂gt
∂t

+rX1,t
∂gt
∂X1,t

+rX2,t
∂gt
∂X2,t

+
1

2
(σ1X1,t)

2 ∂2gt
(∂X1,t)2

+
1

2
(σ1X2,t)

2 ∂2gt
(∂X2,t)2

−rgt. (3.72)

This is the two-dimensional Black-Scholes PDE when the assets are uncorrelated. Note
that the drifts are always positive, so the upwind scheme implies that only forward dif-
ferences are used. Since the drift is always positive in this case, we assume that the first
derivative vanishes at the boundary. Every European style two-asset option satisfies this
equation. We can again write the scheme as gδti = Agδti+1

where A is independent of time
since µX , σX and R are independent of time.

Due to the upwind scheme, the matrix Dδ satisfies the following properties:

(Dδ)i,i < 0, (Dδ)i,j ≥ 0 j 6= i,∑
j

(Dδ)i,j = 0 ∀i. (3.73)

Then it can be shown that ||AI ||∞ ≤ 1
1+rδt

(see Lapeyre et al. (2005), Theorem 7.2.3).

Since we can write ||gδ0||∞ = ||(AI)NtgδT ||∞ ≤
(
||AI ||∞

)Nt
||gδT ||∞ ≤ ||gδT ||∞, the implicit

scheme is stable for any time step δt. The ||.||∞ for a matrix corresponds to the maximum
absolute row sum of a matrix. Note that the implicit scheme in this case is fully implicit,
since R does not depend on gt.

Similarly, ||AE||∞ ≤ 1
1+rδt

when the additional condition δt ≤ 1
|(Dδ)i,i| ∀i is satisfied.

So given a small enough time step, the explicit scheme is stable as well. However, this
condition can be quite restrictive in some cases. It might lead to an unnecessary small
time step which will make the algorithm slower compared to the implicit method which
is stable for any time step.

But in the general case there is no guarantee that R(Xt, gt, ut, t) is negative for any
Xt. Now consider again a simplified problem where R(Xt, ut) does not depend on time or
on gt, but possibly on the states Xt and the control ut and R(Xt, ut) can be both negative
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and positive. Furthermore, assume that µX and σX are independent of t such that the
matrix A does not depend on time. Define the spectral radius as: ρ(A) ≡ max{|λ| :
λ is an eigenvalue of A}, i.e. the maximum absolute eigenvalue. A necessary condition
for stability is then that the spectral radius must be smaller or equal to one: ρ(A) ≤ 1.
The idea behind this condition is the following. We can write: ||gδ0|| = ||ANtgδT ||. Since
||An|| ≥ ρ(A)n ∀n, ρ(A) ≤ 1 is a necessary condition for stability. So if we want the
norm of the matrix A to the power n to be bounded for large n, the spectral radius must
be less or equal to one. This condition is also a sufficient condition when the matrix A is
symmetric. When A is not symmetric (which is often the case), in practice this condition
turns out to still be useful.

Consider now the general problem where At depends on time since µX , σX and
R(Xt, gt, ut, t) might depend on time. In this case we can write ||gδ0|| = ||At1 ...AtNgδT || ≤
||At1 ...AtN || ||gδT ||. We therefore must find a bound on the product of a sequence of ma-
trices, which is not straightforward. We can use the following inequality: ||At1 ...AtN || ≤
||At1||...||AtN ||. This implies that if we can establish that the norm of the matrix At is
less than or equal to one for every t, the scheme is stable. Since ||At|| ≥ ρ(At) ∀t, it is
again useful to verify whether the spectral radius of At is bounded by one for each t. It
might take some time to calculate the spectral radius of the matrix At, especially when
At is very large. Therefore, one should only calculate the spectral radius when there are
serious concerns about stability. It could be useful to calculate the spectral radius at least
for the first time step (AtN ) or every n-th iteration.

Lastly, we discuss oscillatory behavior. Even when the scheme is stable, there might be
oscillations if the time step is too large. In our specific setting, the function R(Xt, gt, ut, t)

contains a term g
−1
ζ

t . When gt becomes negative, this term might lead to complex numbers
which is unsatisfactory. The scheme is free of oscillatory behavior when all eigenvalues of
the matrix A are non-negative (Harwood, 2017). Note that this is a sufficient condition
and that the condition is not necessary.

Summarizing, it is not straightforward to derive precise stability conditions for the
general problem. In the simpler setting, it is shown that the implicit upwind scheme is
unconditionally stable. Although we cannot guarantee that this will also lead to a stable
scheme in the more general setting, in practice the implicit upwind scheme is often stable.
It can still be useful to verify, e.g. in the first step, whether the eigenvalues of the matrix
A are between 0 and 1 (up to numerical precision). If this is not the case, this indicates
an unstable algorithm. It is expensive in terms of computation time to do this often but
if there are concerns this gives at least some guidance in whether the scheme is stable or
not.

3.D Finite difference without time derivative

The problem that we are solving becomes:

0 = min
ut

{
R(Xt, gt, ut)gt +Dgt

}
where Dgt =

dX∑
d=1

(µX)d
∂gt
∂Xd,t

+
1

2

dX∑
d=1

(σXσ
′
X)d,d

∂2gt
(∂Xd,t)2

.
(3.74)
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Then our finite difference solution would solve the following equation:

0 =

(
Dδ
(
u∗(gδ)

)
+ diag

(
Rδ
(
gδ, u∗(gδ)

)))
gδ. (3.75)

Note that the matrix Dδ and the vector Rδ are independent of time. One possibility is to
solve this equation directly using a non-linear solver. Another way to solve this equation
is to use an iterative approach and add a ‘false transient’ with step size ∆ to (3.75).

Define Dδ
n = Dδ

(
u∗(gδn)

)
and Rδ

n = Rδ(gδn, u
∗(gδn)

)
. This gives the following equation:

gδn+1 − gδn
∆

=
(
Dδ
n + diag(Rδ

n)
)
gδn+1. (3.76)

We can use a similar algorithm as for the problem with time derivative to solve for gδ.
The algorithm

Step 1: Start with an initial guess for the gδ0 .
Starting with n = 0, repeat the following steps until |gδn+1− gδn| < crit where crit is some
small number.
Step 2: gδn is obtained from the previous iteration. Calculate the optimal policy u∗(gδn) us-
ing either a closed form or implicit expression that follows from the first order conditions.
This requires as input gδn and its derivatives. The derivatives can easily be calculated
using central finite differences.
Step 3: Use u∗n to calculate µX and σX .
Step 4: Construct Dδ

n (see appendix 3.B).
Step 5: Use gδn and u∗n to calculate Rδ

n.
Step 6: Given gδn, Dδ

n and Rδ
n, we can use a semi-implicit scheme to obtain gδn+1: gδn+1 =

AIng
δ
n =

(
IN1N2 −∆

(
Dδ
n + diag(Rδ

n)
))−1

gδn.

Optional: Step 7. To obtain the risk-free rate and the risk premium, ξ and its derivatives
can be calculated using (central) finite differences. Result: After convergence, we obtain
the function gδ and the optimal policy u∗(gδ).

The idea of the ‘false transient’ is to use an iterative method to solve (3.75). ∆ in this
case can be seen as a stability parameter in contrast to an actual time step. However,
the algorithm is basically identical to the algorithm for the problem with time derivative.
A small ∆ restricts the updated gδn+1 to be close to the previous step gδn. This leads to
a stable scheme, but it might take a long time before the algorithm converges. A larger
∆ will lead to faster convergence, but for a too large ∆ the matrix AIn might not satisfy
the stability conditions discussed in the previous section. In contrast to the problem with
time derivative, the accuracy of the scheme does not depend on ∆. It is therefore efficient
to choose ∆ quite large but to make sure that the stability conditions are met. The semi-
implicit scheme is stable for much larger ∆ compared to the explicit scheme and therefore
we do not consider the explicit scheme in this case.
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3.E Stochastic Grid Method: Algorithm

The algorithm
Initialization: First we determine some algorithm parameters. We must cut-off the in-
finite horizon problem at some time T in the future. T must be far enough away, such
that choosing a larger T does not change the solution anymore. We then discretize the
problem in the time dimension. The second choice is therefore the time step δt. Define
the grid of time points as: [t0 = 0, t1 = δt, ... , tN = T ]. Next we define the boundaries of
the random grid for the state variables Xt at every time point t. Since we do not know the
optimal policy u∗t yet, we do not know exactly what the distribution of the state variables
is. However, it is still possible to choose a wide enough grid for the state variables. Denote
the vector with upper bounds of Xti at period ti by Xti and the vector of lower bounds
by Xti . Note that the boundaries of the grid are allowed to be time-dependent.

Step 1: Simulate K random grid points of the state variables at time T . The easiest
way to do this is to simulate draws from a uniform distribution with boundaries XT and

XT . This gives the random grid points XT (k), k = 1, ..., K. If it is very clear that
it is more important to have a good fit of the value function in the middle of the grid,
one could for example also use a beta distribution or some other distribution to obtain
random grid points.

Step 2: Guess the function ĝ(XT (k), T ) at terminal time T . A good approximation at
terminal time implies that the solution will converge using a shorter time horizon.

Then start at one step before terminal time tN−1. Backwards in time, for every time
step ti, i = N − 1, ..., 1 we perform the following steps.

Step 3: Approximating g as a function of the state variables. To approximate g
(
Xti+1

, ti+1

)
,

choose a vector of Nb basis functions:

B
(
Xt

)
= [B1

(
Xt

)
... BNb

(
Xt

)
]′. (3.77)

Then using the sample of K grid points, regress ĝ
(
Xti+1

(k), ti+1

)
on B

(
Xti+1

(k)
)

to obtain
an Nb dimensional column vector of coefficients νti+1

.

Step 4: Simulation. Simulate K random grid points at time ti, using a uniform dis-
tribution with boundaries Xti and Xti .

Step 5: Calculating the optimal policy. To calculate u∗ti , we use the first order condition
from the HJB-equation, which needs as input the derivatives of g. To calculate these
derivatives, we use the following approximation of g(Xti , ti):

ĝ(Xti(k), ti) = ν ′ti+1
B(Xti(k)) =

Nb∑
j=1

(νti+1
)jBj(Xti(k)). (3.78)

Note that we have to use the coefficients α of the previous time period, since νti is still
unknown. This does not matter much if the time step δt is small. The vector of first
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derivatives with respect to the state variables can then be calculated as:14

ĝX(Xti(k), ti) =
∂ĝ(Xt, ti)

∂Xt

∣∣∣
Xti (k)

=

nb∑
j=1

(νti+1
)j
∂Bj(Xt)

∂Xt

∣∣∣
Xti (k)

. (3.79)

Similarly, we can find the second derivative ĝXX . Using these derivatives and the first
order condition, we can calculate u∗ti . If u∗ti does not have a closed form expression, a
non-linear equation has to be solved. It pays off to supply the analytical Jacobian of
the first order conditions to the solver. We use a trust-region algorithm with analytical
Jacobian to calculate the optimal policy function.

Step 6: Approximating the conditional expectation. We want to approximate for each

(dX-dimensional) grid point Xti(k) the conditional expectation Eti

[
g(Xti+1

, ti+1)|Xti(k)
]
,

k = 1, ..., K. We use the following relation:

Eti

[
ĝ
(
Xti+1

, ti+1

)
|Xti(k)

]
= ν ′ti+1

Eti

[
B
(
Xti+1

)
|Xti(k)

]
. (3.80)

Here Eti

[
B
(
Xti+1

)
|Xti(k)

]
is known in closed form or has an analytic approximation.

Note that this conditional expectation also depends on u∗ti .

Step 7: In this step we use the recursive equation to calculate the function g at time
ti:

ĝ(Xti(k), ti) =

(
(1− e−βδt)ξ1−1/ε

t + e−βδt(
Eti

[
ĝ(Xti+1

, ti+1)|Xti(k)
]
Eti

[Y 1−γ
ti+1

Y 1−γ
ti

|Xti(k)
])1/ζ)ζ

.

(3.81)

Optional: Step 8. To calculate the risk-free rate and the risk premium, we have to
calculate the derivatives of ξti . If u∗ti has a closed form expression in terms of gti and
its derivatives, it might be possible to express the derivatives of ξti as a function of the
derivatives of gti . If this is not possible, we can calculate the derivatives numerically.
Note that we can calculate gti and its derivatives at any state-space point Xti and time
point ti using ĝ(x, ti) = ν ′tiB(x). Therefore we can also calculate ξti = ξ(Xti , u

∗
ti
, ti) at any

state-space and time point ti. An easy way to calculate the derivatives of ξti numerically
is to use a finite difference approximation.

After iterating until i = 1, we obtain an estimate of g at time t0. Calculate u∗0 once
more to obtain the optimal policy at time 0.

14Similar to Jain and Oosterlee (2015) we assume that
∂νti
∂Xti

= 0. This makes it much simpler to calcu-

late the derivatives and this derivative is generally very close to zero. In a follow up paper, Jain, Leitao,
and Oosterlee (2019) relax this assumption and they show how to calculate the derivatives recursively.
We do not consider this extension.

90



4 The social cost of carbon: Optimal policy versus

business-as-usual

4.1 Introduction

The earth is warming due to man-made greenhouse gas emissions, which makes the prob-
lem of climate change a global externality: polluting has a negative effect on economic
activity but the cost of pollution is not priced. Since private interest and social interest
are not aligned, one solution is to levy a tax that is equal to the social cost of pollution as
proposed by Pigou (1920). Due to its slow decay, carbon dioxide is the most important
greenhouse gas. To be able to set a carbon tax, one must know the welfare loss of carbon
emissions expressed in dollar terms. This metric is called the social cost of carbon (SCC):
the marginal social cost of carbon emissions. This social cost consists of the discounted
sum of all future damages caused by emitting one unit of carbon today.

The most straightforward way to internalize the externality is to implement a global
carbon tax and set the carbon tax equal to the social cost of carbon. However, there
are several issues that prevent countries to implement a joint climate policy. Carbon
abatement is a clear example of a free-rider problem where a country benefits from good
behaviour of other countries. Furthermore, there is a lot of heterogeneity in the impact of
climate change and this makes some countries care less about climate change than others.
Additionally, there is discussion about the distribution of the financial burden between
the developed and developing countries since it were the developed countries that have
caused the largest part of the problem.

The first-best solution would be to consider the optimal policy scenario, calculate
the social cost of carbon and implement a global carbon tax that equals the social cost
of carbon. However, climate policy is currently far away from optimal. The benefit of
abating a unit of carbon today is equal to the social cost of carbon given the current policy
scenario. If coordination on a carbon tax is not possible, the SCC given the current policy
scenario should be used in current cost-benefit analysis. Directly implementing a carbon
tax for the entire world is currently infeasible and the more realistic scenario is that carbon
taxes will be implemented region by region. For regions currently implementing a carbon
tax, the tax should be equal to the benefit of emissions abatement given the current policy
scenario. If more and more regions implement a carbon tax, the actual policy scenario
will change and this should be taken into account when calculating the social cost of
carbon. In the literature, both the optimal policy scenario and business-as-usual scenario
are used to calculate the social cost of carbon.15 This paper studies how sensitive the
SCC is to the policy scenario and which assumptions matter for the difference between
the two scenarios.

We set up a global climate-economy model (also called integrated assessment model)
to analyze the social cost of carbon. The model is based on a pure exchange economy (or

15Nordhaus (2014a, pp. 274-275) for example states: “There is some inconsistency in the literature on
the definition of the path along which the SCC should be calculated. This paper will generally define
the SCC as the marginal damages along the baseline path of emissions and output and not along the
optimized emissions path.”



Lucas-tree economy) with a representative agent with Epstein-Zin preferences.16 We add
both climate disaster risk and economic disaster risk to the standard pure exchange model.
By adding a climate model and climate disasters, we are able to analyze the externality
of global warming. Economic growth leads to carbon emissions, which accumulate in
the atmosphere. This in turn leads to a rise in the temperature level. The frequency
of the climate disasters is assumed to be increasing in the temperature level. Both the
timing of climate disasters and the size is stochastic: we are not able to predict the exact
damages of climate change in the future. Abatement policy can reduce the amount of
carbon emissions, so there is a trade-off between consuming more today and having less
disasters in the future.

We start with some simplifying assumptions. First, we assume that carbon emissions
are exogenous. Second, the carbon concentration decays at a constant rate and is a
deterministic function of emissions. Lastly, there is a single deterministic equation that
describes the link between carbon concentration and temperature. These assumptions
allow us to derive an intuitive expression for the social cost of carbon and to highlight
the two offsetting effects of abatement policy on the SCC. A less stringent climate policy
(BAU) compared to a more stringent policy (optimal) has two offsetting effects on the
social cost of carbon. On the one hand, increasing the carbon concentration by one unit
has a smaller effect on temperature when the carbon concentration is already high. On
the other hand, marginal damages are increasing in temperature. Since both effects work
in opposite directions, a quantitative estimation of the social cost of carbon is needed.

To quantitatively estimate the social cost of carbon, we relax the simplifying assump-
tions, extend the climate model and solve the model numerically. Emissions are no longer
exogenous but depend on the level of economic activity. Furthermore, we use multiple
state variables for both the carbon concentration and temperature dynamics to make sure
these dynamics are in line with complex climate models. Lastly, we add random shocks
to both the carbon concentration and temperature dynamics to reflect uncertainty within
the climate system. Additional to the climate model and disaster specifications, the pref-
erence parameters and the economic risk structure are important for the discount rate
that is used to discount future climate damages.17 All these ingredients together are then
incorporated in the social cost of carbon.

Using the DICE model, Nordhaus (2014a) calculates the SCC both for the business-
as-usual case and the optimal case. The difference turns out to be rather small. Hope
and Newbery (2007) also find that the SCC is insensitive to the policy scenario using
the PAGE model and argue that this result is not trivial. The reason that the policy
scenario does not play a large role in determining the social cost of carbon is that the

16This type of model is often used in an asset pricing setting. Although at first sight the two might not
have much to do with each other, determining the social cost of carbon is basically calculating the value
today of a risky cash-flow (the climate disasters) that materializes in the future. Therefore this type of
model is suitable for the analysis.

17It is well known that the standard Lucas-tree model with power utility is not able to solve the equity
premium puzzle (Mehra & Prescott, 1985), but the combination of Epstein-Zin preferences and economic
disasters is able to generate a more realistic interest rate and risk premium. Although we are not trying
to solve the equity premium puzzle, the interest rate and risk premium are part of the discount rate that
is used to discount future damages within the social cost of carbon. We therefore make sure that the
interest rate and risk premium are in line with historical averages.
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two previously mentioned offsetting effects cancel out in their model. This result however
depends crucially on the calibration of the damage function.

In the literature there is no clear consensus about the convexity and calibration of the
damage function. Especially the effects of larger temperature increases above 3 degrees
Celsius are hard to obtain estimates for since we have not experienced such global warming
in the recent past. Bretschger and Pattakou (2019) stress that there is no agreement on
the form of the damage function and consider different polynomial specifications for the
damage function, ranging from linear to quartic. Nordhaus (2017) calibrates the damage
function in the DICE model to be a quadratic function of temperature. Weitzman (2012)
argues that the damage function in DICE is not convex enough and that damages are
underestimated for large temperature increases. He proposes to add an additional term
to the quadratic damage function that kicks in after roughly three degrees warming.
Dietz and Stern (2015) integrate the more convex specification of Weitzman (2012) within
Nordhaus’s DICE framework and additionally consider a scenario in which damages are
even larger. On the other hand, Karydas and Xepapadeas (2019) develop an integrated
assessment model where climate change affects the economy via disasters, similar to our
framework. Based on data of climate disasters between 1955 and 2015, they find that
there has been historically a linear relationship between the temperature anomaly and
the arrival rate of disasters. Summarizing, the jury is still out on the form and convexity
of the damage function. In the quantitative part of the paper, we therefore vary the
convexity of damages in temperature and analyze the effect on the sensitivity of the SCC
to the policy scenario. We show that for the convex specification the social cost of carbon
in the business-as-usual scenario is 41% higher than in the optimal policy scenario.

This paper is related to the literature on climate-economy or integrated assessment
models. The well-known DICE model forms the basis of this literature. It combines
a neoclassical economic growth model with a deterministic climate model. The earliest
version is Nordhaus (1992). After that the model was regularly updated, the most re-
cent version is the DICE 2016 model (Nordhaus, 2017). Another well known integrated
assessment model is PAGE (Hope, 2006). DICE and PAGE are deterministic models
and uncertainty is captured by drawing random parameters instead of actually capturing
uncertainty within the model. More recently, several papers have studied the effects of
risk, uncertainty and more complex preferences on the social cost of carbon. This paper
fits within this literature, since we integrate Epstein-Zin preferences and different types
of risk into our climate-economy model.

Our model builds on the model from chapter 2, which also extends a pure exchange
economy with climate disasters to analyze the social cost of carbon. We additionally
include economic disasters and study optimal policy decisions, where chapter 2 includes
ambiguity aversion and only considers the social cost of carbon in the BAU scenario.
Jensen and Traeger (2014) add long term economic growth uncertainty to their integrated
assessment model and stress the impact on discounting. Crost and Traeger (2014) focus
rather on damage uncertainty given the temperature level. Cai and Lontzek (2019) include
economic uncertainty and climate tipping into the DICE model. Van den Bremer and
Van der Ploeg (2021) develop a model with both economic and climate risk and obtain
closed-form approximate solutions for the social cost of carbon. Hambel et al. (2021)
study temperature feedback in a stochastic equilibrium model with climate change. Lastly,
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Karydas and Xepapadeas (2019) develop an asset pricing model with both economic and
climate disasters. Their model is used to study the social cost of carbon and the effect
of both physical climate risk and transition risk on the portfolio allocation of carbon
intensive assets.

Where the earlier integrated assessment models (DICE and PAGE) use the BAU
scenario as the benchmark to calculate the social cost of carbon, the standard in the more
recent literature focusing on risk and uncertainty is to calculate the social cost of carbon
solely in the optimal scenario. We develop a climate-economy model in line with recent
advances in both the economic and climate literature to properly calculate the social cost
of carbon. We then use this model to look at the scenario dependence of the social cost
of carbon, since that has received little attention within the literature.

We additionally study the implications of a hybrid policy scenario, in which no climate
policy is implemented in the first 20 years, and after that optimal policy is implemented.
Our simulations show that with convex damages, delay is costly. Furthermore, after the
delay of optimal policy carbon taxes must be set even higher compared to the optimal
policy scenario.

4.2 Model

We extend the stochastic pure exchange economy (Lucas Jr, 1978) in continuous time
with a climate model and both climate and economic disasters. We assume for simplicity
that there is a single representative agent. Instead of specifying a production function
with input factors, the representative agent owns an asset that pays as dividends a stream
of endowment. The asset can be seen as a tree that yields an amount of fruit every period.
The endowment or the yield of the tree is stochastic. We differentiate between two types
of risk: diffusion risk and disaster risk. Diffusion risk represents ‘standard’ risk in the
economy: there are continuous fluctuations in the endowment. On the other hand, the
economy is also subject to disaster risk. We consider both economic disasters and climate
disasters where economic disasters represent any non-climate type of disaster. Examples
are economic crises, financial crises and wars. Non-climate disasters also have an effect
on the valuation of climate disasters since the exchange model is a general equilibrium
model: the risk structure of the endowment process has an effect on all asset prices in the
economy.

The main focus of this paper is on the climate disasters. Due to global warming,
the frequency of climate-related disasters is expected to increase and historically there
has already been a positive relationship between the temperature level (with respect to
the pre-industrial temperature) and the number of climate-related disasters (Karydas &
Xepapadeas, 2019). We model this by assuming that the arrival rate of climate disas-
ters is an increasing function of temperature. We consider both linear and more convex
specifications.

In the pure exchange economy the endowment cannot be stored: it must be consumed
directly. In the standard exchange economy this implies that in equilibrium, consumption
is equal to endowment in every period. We allow the agent to spend the endowment
on two goods: abatement and consumption. Abatement reduces carbon emissions and
therefore reduces the risk of climate disasters in the future. Consumption directly enters
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the utility function.
The exchange economy might look very simplistic. It does not consider investment and

production and the output in the economy is basically an exogenous process. However,
this type of model does allow for a rich risk structure: we feed different types of risk into
the model. In a general equilibrium model the risk sources are important since they affect
discount rates and asset prices.

In this section, the climate model consists of just two state variables: the atmospheric
carbon concentration and the temperature level. We start with a simple climate model
to obtain an intuitive expression of the social cost of carbon. We will specifically look
at the difference of the social cost of carbon in the business-as-usual (BAU) scenario
and the optimal policy scenario. Later in this paper, a more realistic (climate) model is
numerically solved to obtain quantitative estimations of the social cost of carbon.

The mathematical formulation of the model is as follows. Consider a single repre-
sentative agent with stochastic differential utility (Duffie & Epstein, 1992b). This is the
continuous time equivalent of Epstein-Zin utility (Epstein & Zin, 1989) and allows us to
separate the risk aversion coefficient γ from the elasticity of intertemportal substitution
ε. Especially since the climate change problem has such a long horizon and risk plays an
important role, it is necessary to disentangle these. Let β be the rate of time preference.
The value function Vt is then recursively defined:

Vt = Et

[ ∫ ∞
t

f(Cs, Vs)ds
]

where

f(C, V ) =
β

1− 1/ε

C1−1/ε −
(
(1− γ)V

) 1
ζ(

(1− γ)V
) 1
ζ
−1

for ε 6= 1

with ζ =
1− γ

1− 1/ε
.

(4.1)

The exogenous endowment Yt follows a geometric Brownian motion with two additional
jump (Poisson) processes. The growth rate µ and volatility σ are constant. The first jump
process captures economic disasters as in Barro (2009). It is important to add economic
disasters in a climate-economy model since disaster risk plays an important role in the
valuation of uncertain future payoffs. Economic disaster risk affects the discount rate that
is used to discount future climate disasters and therefore has an impact on the social cost
of carbon. These economic disasters in combination with Epstein-Zin utility yield a more
realistic risk-free rate and equity premium. Next to economic disasters, we also consider
climate disasters of which the arrival rate is temperature-dependent.

The dynamics of Yt are given by:

dYt = µYtdt+ σYtdZt − J1Yt−dN1,t − J2Yt−dN2,t. (4.2)

Zt is a standard Brownian motion, Yt− denotes aggregate endowment just before a jump
(Yt− = limh↓0 Yt−h). N1,t is the Poisson process for economic disasters with constant arrival
rate λ1 and jump size J1, where J1 can be interpreted as the percentage loss of endowment
when a disasters strikes. We assume that x = (1− J1) follows a power distribution with
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parameter α1 and probability density function f(x) = α1x
α1−1, 0 < x < 1. This implies

that E[J1] = 1
α1+1

and E
[
(1−J1)n] = α1

α1+n
. The Poisson process N2,t for climate disasters

has arrival rate
λ2,t = λ2T

θ
t , (4.3)

where Tt is the temperature compared to the pre-industrial level and θ controls the con-
vexity of the arrival rate in temperature. Since there is no agreement within the literature
about the convexity parameter θ, we will vary this parameter in the numerical part of the
paper. The jump size of climate disasters J2 follows the same distribution as J1, but with
parameter α2.

Business-as-usual carbon emissions Et are assumed to be exogenous. This assumption
will later be relaxed in the extended version of the model. The agent can reduce BAU
emissions using abatement policy: Ẽt = Et(1− ut) are actual carbon emissions where Et
are business-as-usual carbon emissions and ut is the emissions control rate. Endowment
Yt can thus be spent on consumption Ct and abatement At where At = c1,tu

c2
t Yt represents

the cost of abatement policy ut. This yields Ct = Yt−At = ξtYt where ξt = Ct
Yt

= 1−c1,tu
c2
t

is the consumption-endowment ratio.
Define by Mt the atmospheric carbon concentration compared to the pre-industrial

level Mpre. Emissions accumulate in the atmosphere and carbon is assumed to decay at
a constant rate δM :

dMt = (Ẽt − δMMt)dt. (4.4)

An increase in the atmospheric carbon concentration will lead to positive radiative forcing
due to the greenhouse effect, which in turn leads to a higher temperature.18 Radiative
forcing is a concave function of the carbon concentration compared to the pre-industrial

level: Ft = αF ln
(
Mt+Mpre

Mpre

)
. Temperature increases with radiative forcing and has the

following dynamics:
dTt = (bFt − τTTt)dt. (4.5)

4.2.1 Asset prices

Appendix 4.A shows the derivations of the endogenous risk-free rate and risk premium.
The interest rate and risk premium are important drivers of the social cost of carbon,
which we will discuss in the next section.

Let πt be the stochastic discount factor of this economy. First, define by Bt a risk

free asset that pays 1 at a future date T . The price of this asset equals: Bt = Et

[
πT
πt

]
.

The return of the risk free asset at time t is the risk free interest rate rt. Furthermore,
let St be the price of the asset that gives a claim on the consumption stream. Therefore

St pays continuous dividends equal to Ct. More formally: St = Et

[ ∫∞
t

πs
πt
Csds

]
. The

risk premium is defined by the difference between the return on St (including dividend
payments) and the return on the risk-free asset:

18Radiative forcing is the difference between energy coming into the Earth and energy leaving the
Earth.
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rt = β +
µc,t
ε
−
(

1 +
1

ε

)γ
2
σ2︸ ︷︷ ︸

Standard interest rate

+λ1

( γ − 1
ε

α1 + 1− γ
− γ

α1 − γ

)
︸ ︷︷ ︸

Economic disaster risk

+ λ2,t

( γ − 1
ε

α2 + 1− γ
− γ

α2 − γ

)
︸ ︷︷ ︸

Climate disaster risk

,

rpt = γσ2︸︷︷︸
Standard risk premium

+λ1

( −1

α1 + 1
+

α1

α1 − γ
− α1

α1 + 1− γ

)
︸ ︷︷ ︸

Economic disaster risk

+ λ2,t

( −1

α2 + 1
+

α2

α2 − γ
− α2

α2 + 1− γ

)
︸ ︷︷ ︸

Climate disaster risk

.

(4.6)

The key determinants of the interest rate and the risk premium are the preference pa-
rameters (rate of time preference, elasticity of intertemporal substitution and risk aversion
coefficient) and the structure of endowment (growth rate, volatility and disaster param-
eters). The standard interest rate without jump risk depends on three terms. The first
reason for a positive interest rate is the pure rate of time preference β; the agent would
rather like to consume earlier than later. Second, since consumption is growing over time,
the marginal utility of consumption is declining over time and this gives rise to a higher
interest rate. The magnitude of this effect is controlled by the elasticity of intertemporal
substitution ε. The third term is negative and captures diffusion risk and risk aversion.
Due to a flight to safety argument, risk lowers the interest rate. This term scales with
risk aversion γ and volatility σ2. Economic and climate disaster risk have qualitatively a
similar effect to the interest rate: disasters depress the interest rate. The magnitude of
the disaster terms depends again on risk aversion and on the jump parameters.

The standard risk premium without jump risk equals γσ2. Economic and climate
disasters lead to a higher risk premium and again risk aversion γ is a key parameter for
the risk premium. With the right calibration, we can match the historical risk-free rate
and risk premium.

4.2.2 Social cost of carbon

The social cost of carbon is the marginal welfare loss of carbon emissions expressed in
current consumption units. Formally, it is defined as: SCCt = − ∂Vt/∂Mt

fC(Ct,Vt)
. Intuitively, the

social cost of carbon equals the discounted value of future damages caused by emitting
one unit of carbon today.

As an intermediate step, it is useful to define a consumption strip. A consumption
strip is an asset that pays a unit of consumption at a future date. Assume that currently
we are at time 0 and that this asset pays out at time t. The expected payoff equals:

E0[Ct] = C0 exp
{∫ t

0

(
µc,u− λ1

α1+1
− λ2,u

α2+1

)
du
}

where µc,t is the growth rate of consumption

at time t when there are no disasters. Since jumps have a negative effect on endowment
and therefore on consumption, λ1

α+1
and λ2,t

α2+1
must be subtracted from µc,t to obtain the

expected growth rate. The price of this asset is smaller than the expected payoff due to
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discounting. The appropriate discount rate for a risk-free payoff is the risk-free interest
rate, but since Ct is risky we should include the risk premium. Therefore, the price of the
asset equals:

E0

[πt
π0

Ct

]
= exp

{
−
∫ t

0

(ru + rpu)du
}
E0[Ct]. (4.7)

The social cost of carbon can be calculated as follows (detailed derivations are given in
appendix 4.B):

SCC0 = − ∂V0/∂M0

fC(C0, V0)
= −∂S0/∂M0

1− 1/ε
− ∂ξ0/∂M0

ξ0

S0. (4.8)

Using the product rule, the social cost of carbon in the optimal policy scenario equals
the discounted sum of future marginal damages given the initial policy (the first term)
plus the welfare effect of a change in policy due to a change in M0 (the second term).
Note that the second term of the SCC is not present for any exogenous policy path ut,
since in that case the consumption-endowment ratio ξt = c1,tu

c2
t does not change when

the carbon concentration Mt changes. A special case of an exogenous policy path is the
business-as-usual scenario where the emissions control rate ut = 0 for all t. The second
term in the SCC formula is quantitatively negligible and for illustrative purposes not very
interesting. If we impose that ∂u∗0/∂M0 ≈ 0, we obtain the following formula for the SCC:

SCC0 ≈
∫ ∞

0

∫ t

0

∂λ2,s

∂M0

ds︸ ︷︷ ︸
Change in probability of
disaster between 0 and t

1

α2 + 1− γ︸ ︷︷ ︸
Certainty equivalent
of climate disaster

exp
{
−
∫ t

0

(ru + rpu)du
}
E0[Ct]︸ ︷︷ ︸

Price of
consumption strip

dt. (4.9)

Consider the effect of pulse of carbon emissions at time 0. This will change the expected
payoff of consumption strips at any time t in the future. The atmospheric carbon concen-
tration and temperature affect the consumption dynamics via the climate disasters. The
first term in the social cost of carbon denotes the change in the arrival rate of disasters
due to the carbon pulse. Note that any disaster between time 0 and time t affects the level
of consumption at time t. Therefore, the derivative of the arrival rate with respect to the
carbon concentration is integrated from 0 to t to obtain the change in the probability of a
disaster taking place between time 0 and t. The second term is the certainty equivalent of
the disaster size. When the agent is risk neutral (γ = 0), the certainty equivalent equals
the expected disaster size. Since the agent is risk averse, the certainty equivalent is larger
than the expected disaster size. The last term in the social cost of carbon is the price of
a consumption strip. Since the disaster size is defined as a percentage of endowment and
therefore of consumption, the first two terms are multiplied with the price of a consump-
tion strip. The social cost of carbon integrates the product of these three terms over all
future periods.

The future expected damages within the SCC are discounted at a rate equal to the
interest rate plus the risk premium. The effects of the elasticity of intertemporal substi-
tution ε and the pure rate of time preference β work through the discount rates. A higher
elasticity or a lower rate of time preference lowers the interest rate and therefore affects
the SCC. Risk aversion has multiple effects. A higher risk aversion lowers the interest rate
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(flight to safety) and increases the risk premium. The effect on discounting is ambiguous
and depends on ε.19 Non-climate disasters also influence the SCC through the discount
rate. Risk aversion also plays a direct role in the SCC since the certainty equivalent of
the climate disasters depends on risk aversion.

The role of the policy scenario ut in the SCC is not directly clear from the formula.
To get a better idea, we can look in more detail at the derivative: ∂λ2,s

∂M0
= λ2θT

θ−1
s

∂Ts
∂M0

.
Due to the specific setting of our climate model, we can also calculate the derivative of
temperature with respect to the carbon concentration in closed form:

∂Ts
∂M0

=

∫ s

0

e−τT (s−i)b
∂Fi
∂M0

di =

∫ s

0

e−τT (s−i)αF b
1

Mi

∂Mi

∂M0

di

= e−δMs
∫ s

0

e−(τT−δM )(s−i)αF b
1

Mi

di.

(4.10)

Let us start with the special case in which the arrival rate is a linear function of tempera-
ture (θ = 1). In that case, ∂λ2,s

∂M0
= λ2

∂Ts
∂M0

. The derivative of Ts with respect to M0 depends

on the policy scenario. Radiative forcing Ft = αF ln
(
Mt+Mpre

Mpre

)
is a concave function of

the atmospheric carbon concentration and thus ∂Ft
∂Mt

is decreasing in Mt. When the car-
bon concentration is already very high, an additional unit has a small effect on radiative
forcing and therefore on temperature.

Consider two abatement policies ut and ut, where ut > ut for all t. This in turn implies

that Mt < Mt since more abatement leads to a lower carbon concentration. From (4.10)

it then becomes clear that ∂Ts/∂M0 > ∂Ts/∂M0 due to the concavity of radiative forcing.

Therefore we have SCC0 > SCC0. This directly implies that the SCC in the optimal
policy scenario is larger than the SCC in the business-as-usual scenario.

However, damages are often assumed to be a convex function of temperature, i.e.
θ > 1. In that case, ∂λ2,s

∂M0
= λ2θT

θ−1
s

∂Ts
∂M0

. Again consider the two abatement strategies ut

and ut . We still have that ∂Ts/∂M0 > ∂Ts/∂M0, but additionally Ts < Ts and these two
effects work in opposite directions.

If we compare the optimal scenario to the BAU scenario, then both the future temper-
ature and the future carbon concentration are lower in the optimal scenario. The lower
carbon concentration in the optimal scenario implies that a unit of carbon emissions has
a larger effect on radiative forcing and therefore on temperature (concavity of Ft in Mt).
But on the other hand, marginal damages are now increasing in temperature since θ > 1
(convexity of λ2,t in Tt). Therefore, future marginal damages are smaller in the optimal
scenario since future temperature is smaller. θ controls the strength of the latter effect
and is therefore an important driver of the difference between the SCC in the optimal
and the BAU scenario. To figure out in which scenario the SCC is largest when θ > 1,
we will numerically determine which effect dominates.

19See chapter 2 for a detailed discussion of the effect of preference parameters on discounting within
the SCC.
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4.3 Extended climate model

In the previous section, we developed an integrated assessment model with some simpli-
fying assumptions and analyzed the analytic formula for the social cost of carbon. In this
section a more realistic model is presented, which will be solved numerically.

First, emissions are not exogenous but do clearly depend on economic activity itself.
We therefore model emissions now as the product of the carbon intensity and endowment,
where the carbon intensity declines over time to represent technological progress. This
formulation captures that emissions are higher in booms, while in crisis times emissions
decline together with the economy. Second, the climate model in the previous section was
useful for illustrative purposes but is too simple to properly capture climate dynamics.
This will certainly affect quantitative outcomes and simplifying the climate model can
have non-negligible effects. Lemoine and Rudik (2017) use a single state variable for
both the carbon cycle and temperature dynamics to look at optimal abatement policy.
In a comment, Mattauch et al. (2019) show that allowing for multiple state variables in
both the carbon cycle and the temperature module does lead to significantly different
outcomes. Lastly, not only damages are stochastic, but also the climate variables: we
cannot predict exactly what the carbon concentration and temperature will be given the
abatement policy. We therefore also allow for randomness in the climate state variables.

Endowment has the same structure as in (4.2):

dYt = µYtdt+ σYtdZt − J1Yt−dN1,t − J2Yt−dN2,t, (4.11)

where again the arrival rate of climate disasters depends on temperature: λ2,t = λ2T
θ
t .

The business-as-usual emissions in the extended model are proportional to endowment:
Et = ψtYt, where ψt is the carbon intensity. The carbon intensity is declining over time
to represent technological progress. We use the following functional form for the carbon
intensity: ψt declines at a rate δψt = δψ0 e

−αψt + δψ∞(1 − e−αψt). Initially, the decline rate
of the carbon intensity δψ0 is smaller than the growth of the economy and emissions are
increasing. In the long run, δψ∞ is larger than the growth of the economy so emissions will
eventually go towards zero even in the BAU scenario. Eventually emissions must decline,
simply because fossil fuels are of finite supply. Actual emissions are then Ẽt = Et(1−ut).
Abatement costs are proportional to endowment and have the same form as in Nordhaus
(2017): At = c1,tu

c2
t Yt. c2 > 1 captures that the marginal cost of abatement increases

in the emissions control rate and c1,t is declining over time at a constant rate δc to take
into account technological process in abatement technologies. We assume that it is not
possible to have net negative emissions, which implies that ut has an upper bound equal
to 1. Although it might technically be possible to take carbon out of the atmosphere,
these techniques are expensive and net negative emissions on a large scale seem currently
unrealistic. The representative agent consumes what is not spent on endowment, which
implies Ct = Yt − At = ξtYt where ξt = Ct

Yt
= 1 − c1,tu

c2
t is the consumption-endowment

ratio.
We integrate the climate model developed in Aengenheyster et al. (2018) into our

economic model. Aengenheyster et al. (2018) use this stochastic climate model to analyze
how early policymakers must at least start with stricter abatement policies in order to
keep temperature below two degrees with a 66% probability. We rather use the model to
look at optimal policy and the social cost of carbon.
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The simple model assumed that there is a single constant decay rate of carbon con-
centration. In reality the dynamics of the carbon concentration are more complex and a
constant decay rate does not hold. Joos et al. (2013) perform a multi-model comparison
of different climate models and propose a four-box specification for the carbon model to
fit the mean response of the carbon concentration to different emission runs. A fraction
a0 of emissions Ẽt ends up in the permanent carbon box M0,t, which does not decay.
Similarly, a fraction ai ends up in carbon box Mi,t, i ∈ {1, 2, 3} where a higher index
belongs to a box with a faster decay. The fractions add up to 1: a0 + a1 + a2 + a3 = 1.
The carbon concentration compared to the pre-industrial level is then the sum of the four
boxes: Mt = M0,t + M1,t + M2,t + M3,t. These four boxes should not be interpreted to
physically exist but this is rather a reduced form method to match the carbon dynamics
of more sophisticated models. The dynamics of the boxes are given by:

dM0,t = a0Ẽtdt,

dM1,t =
(
a1Ẽt −

M1,t

τM1

)
dt,

dM2,t =
(
a2Ẽt −

M2,t

τM2

)
dt+ σM2dZ

M2
t ,

dM3,t =
(
a3Ẽt −

M3,t

τM3

)
dt,

τM1 > τM2 > τM3 .

(4.12)

This model can capture the dynamics of a carbon pulse: part of the pulse will decay
relatively fast within one or two decades but after that decay is slow and a fraction of
the pulse will stay in the atmosphere for multiple centuries. The latter effect is captured
by having a permanent carbon box that does not decay. The Brownian motion dZM2

t

captures uncertainty about the carbon concentration given a certain emissions scenario.

Radiative forcing Ft = αF log
(
Mpre+Mt

Mpre

)
is increasing in the carbon concentration,

where Mpre is the pre-industrial level of carbon concentration. Temperature increases due
to radiative forcing. To calibrate the temperature dynamics, Aengenheyster et al. (2018)
look at the temperature response of climate models to different representative concen-
tration pathways (RCPs). These RCPs are different standardized carbon concentration
scenarios. Aengenheyster et al. (2018) find that three temperature boxes are sufficient to
fit the mean temperature response of multiple climate models to different RCPs. We there-
fore use three artificial temperature boxes Ti,t, i ∈ {0, 1, 2}. The temperature anomaly is
then the sum of the three boxes: Tt = T0,t + T1,t + T2,t, with dynamics:

dT0,t =
(
b0Ft −

T0,t

τT0

)
dt+ σT0dZ

T0
t ,

dT1,t =
(
b1Ft −

T1,t

τT1

)
dt,

dT2,t =
(
b2Ft −

T2,t

τT2

)
dt+ σT2T2,tdZ

T2
t .

(4.13)

Note that the standard deviation of T2,t is multiplicative, so volatility increases with the
temperature level. This is in line with the finding that the uncertainty about future tem-
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perature levels given a carbon concentration scenario is increasing with the temperature
level itself.

In this model we can not directly use the same definition for the social cost of carbon,
since we have four artificial carbon boxes. One unit of emissions will lead to an increase
of a0 units of M0,t, a1 units of M1,t, a2 units of M2,t and a3 units of M3,t. The social cost
of carbon then becomes:

SCCt = −
a0

∂Vt
∂M0,t

+ a1
∂Vt
∂M1,t

+ a2
∂Vt
∂M2,t

+ a3
∂Vt
∂M3,t

fC(Ct, Vt)
. (4.14)

4.3.1 Hamilton-Jacobi-Bellman equation and optimal policy

The representative agent maximizes welfare by choosing optimal abatement given the
dynamics of equations (4.11), (4.12) and (4.13):

Vt = max
{us}s≥t

Et

[ ∫ ∞
t

f(Cs, Vs)ds
]
. (4.15)

The value function Vt must then satisfy the Hamilton-Jacobi-Bellman equation. We de-
note derivatives with subscripts:

0 = max
ut

{
f(Ct, Vt) + VM0a0Ẽt +

3∑
i=1

VMi

(
aiẼt −

Mi,t

τMi

)}
+
∂V

∂t
+ VY µYt +

2∑
i=0

VTi

(
biFt −

Ti,t
τTi

)
+

1

2
VY Y σ

2Y 2
t +

1

2
VM2M2σ

2
M2

+
1

2
VT0T0σ

2
T0

+
1

2
VT2T2σ

2
T2
T 2

2,t

+ λ1E
[
V
(
Yt−(1− J1),M0,t,M1,t,M2,t,M3,t, T0,t, T1,t, T2,t, t

)
− Vt−

]
+ λ2,tE

[
V
(
Yt−(1− J2),M0,t,M1,t,M2,t,M3,t, T0,t, T1,t, T2,t, t

)
− Vt−

]
.

(4.16)

Optimal policy balances the trade-off between a higher consumption level today and less
climate damages in the future. Consumption today equals endowment minus abatement
costs: Ct = Yt−At = ξtYt where the consumption-endowment ratio equals: ξt = 1−c1,tu

c2
t .

So when the emissions control rate goes up, consumption goes down and therefore also
the instantaneous utility f(Ct, Vt) is affected. On the other hand, actual emissions depend
on the control rate: Ẽt = (1−ut)Et. Furthermore, a higher carbon concentration leads to
more warming and more damages. Therefore, future consumption will benefit (at least in
expectation) from abatement. The optimal abatement can therefore be seen as a trade-off
between consumption today and in the future. The first order condition for optimal policy
equals:

0 = −fC(Ct, Vt)c1,tc2u
c2−1
t Yt −

3∑
i=0

VMi
aiEt. (4.17)
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This condition is equivalent to: SCCt = MACt where MACt = ∂At/∂ut
Et

=
c1,tc2u

c2−1
t Yt
Et

. In
words, in the optimal policy scenario the social cost of carbon is equal to the marginal
abatement cost. We have to divide ∂At

∂ut
by the emissions level since ut is the fraction

of total emissions that is abated, while the marginal abatement costs are the costs of
reducing emissions by one unit. This equation cannot be solved in closed form for ut but
u∗t is implicitly defined as a function of Vt, its derivatives and Yt.

4.3.2 Calibration

The next step is to calibrate the model. First, consider the endowment process except
for the climate disasters. We assume that the growth rate of endowment in normal non-
disaster times equals µ = 3%, which is the projected long-run global growth rate in
Johansson et al. (2012). Volatility is set to 2.5%. Barro and Jin (2011) estimate the
probability and size of economic disasters based on historical data of several countries.
These estimations yield λ1 = 0.038 (on average once every 26 years a disaster) and
an expected disaster size of approximately 20%. However, Barro and Jin (2011) use a
minimum disaster size of 9.5%. We do not consider such a cut-off and therefore the
arrival rate of λ1 = 0.038 is too low and the expected disaster size is too high. Following
Hambel, Kraft, and Van der Ploeg (2020), we can derive the arrival rate and expected size
without the cut-off. This yields λ1 = 0.088 (on average every 11.4 years a disaster) and
α1 = 8 (mean disaster size of 11%). Abatement is only a small fraction of endowment and
therefore we set the initial endowment level equal to the world consumption level. We can
not just use GDP because our asset pricing model does not take into account investments.
The base year is 2015. World consumption (using purchasing power parities) is set equal
to 83 trillion US dollars in 2015.

To calibrate the preference parameters, we use the following procedure. The interest
rate and risk-premium in the model depend on the endowment process and the preference
parameters. We choose our preference parameters such that the interest rate and equity
premium in the model match historical data. Note that in the past, climate change did
not play a big role in both the interest rate and equity premium. For the calibration we
therefore consider the interest rate and risk premium assuming there is no climate risk
(λ2,t = 0). Since climate disasters are relatively small compared to economic disasters, the
effect of climate risk on the interest rate and risk premium will be modest anyhow. The
observed world-wide averages over the period 1900-2010 of the worldwide risk-free interest
rate and risk premium were respectively 1% and 4.5% (Dimson et al., 2011). However,
Dimson et al. (2011) argue that the historical equity premium might be overoptimistic,
since the second half of the 20th century was a period with high returns which turned
out better than expected. Based on dividend projections, the authors expect the future
equity premium to be in the range of 3%− 3.5%. The combination γ = 4.25, ε = 1.5 and
β = 2.5% yields a risk-free rate and an equity premium (without climate risk) of 0.94%
and 3.24% respectively. Note that the disentangling of risk aversion and the elasticity
of intertemporal substitution is necessary to be able to obtain a reasonable risk-free rate
and equity premium. We are fully aware of the fact that the outcomes are very sensitive
to the preference calibration. However, the focus of this paper is not to discuss the effect
of different preference calibrations on the social cost of carbon and optimal policy.
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The emissions parameters are set such that the expected business-as-usual emissions
scenario is comparable to the BAU scenario in Nordhaus (2017). The emissions are
assumed to peak at the beginning of the next century and start decreasing after that. The
abatement costs are also calibrated to resemble the abatement cost function in Nordhaus
(2017).

For the climate model, we take over the calibration of Aengenheyster et al. (2018).
The authors base the calibrations on a multi-model comparison of the Coupled Model
Intercomparison Project (CMIP). CMIP develops standardized experiments that make it
possible to compare different climate models. The parameters ai and τMi

(carbon cycle)
and bi and τTi (temperature model) are calibrated to the match the mean of the multiple
climate models. The volatility parameters (σM2 ,σT0 ,σT2) are chosen to match the standard
deviation of the multi-model comparison.

The last part is the calibration of the climate disasters. Climate damages are often
assumed to have a level effect. The well-known DICE model uses an inverse quadratic
damage function: Dt = 1

1+0.00266T 2
t

(Nordhaus, 2014a). Weitzman (2012) argues that this

specification underestimates damages for high temperature levels and proposes to use:
Dt = 1

1+(
Tt

20.46
)2+(

Tt
6.081

)6.754
. On the contrary, our setup with climate disasters yields on

average a growth effect instead of a level effect. Hambel et al. (2021) study both growth
and level effects in a stochastic climate economy model. They show that the level effects
are very similar to the following growth effects: 0.00026Tt (Nordhaus) and 0.000075T 3.25

t

(Weitzman). The similarity is reflected in both the output loss over the first century and
the social cost of carbon. We use these growth damages to calibrate our climate disasters.
We fix the size of a disaster at 3%. We then consider two specifications of the arrival rate:
λ2,t = 0.0087Tt (linear) or λ2,t = 0.0025T 3.25

t (convex), such that on average the growth
impact is equal to the impact of Hambel et al. (2021).

4.4 Results

In this section we present several numerical results. All computations are performed on
a laptop with 7-th generation intel i7 processor and 16GB RAM.

4.4.1 Computation times and algorithm convergence

We solve the model using the stochastic grid method discussed in chapter 3. The details
of the solution method are described in appendix 4.D. Before analyzing the outcomes, we
first look at the trade-off between computation time and accuracy. We set the number of
trajectories K equal to 2500 and the terminal date T to 500. It turns out that increasing
either one does not really change the results.

The outcomes and computation times are given in tables 4.1 (linear case) and 4.2
(convex case). We show the value function at the initial date V0, the initial social cost of
carbon SCC0 and the optimal policy u∗0. The number of basis functions in the algorithm
is varied by changing the number of basis functions (by changing the parameter L) and
the results are also given for different time steps δt. Both the linear case (table 4.1) and
the convex case (table 4.2) are evaluated to see what the effect is of non-linearity in the
model.
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Table 4.1: Calibration: θ = 1, λ2 = 0.87%. The value function, social cost of carbon (in
US dollars), optimal abatement policy and computation time (in seconds) for different
algorithmic parameters.

Optimal BAU
L Nb δt V0 SCC0 u∗0 time V0 SCC0 u0 time

1 9 2−1 -263.1 116.0 0.191 23 -263.5 88.5 0 8
2 45 2−1 -262.3 109.4 0.184 45 -263.0 106.5 0 24
3 165 2−1 -262.1 110.8 0.186 123 -263.0 108.0 0 83
4 495 2−1 -262.0 111.7 0.187 422 -263.0 107.9 0 313
1 9 2−2 -263.6 115.2 0.190 44 -264.0 87.9 0 16
2 45 2−2 -262.8 108.9 0.184 87 -263.5 105.4 0 48
3 165 2−2 -262.6 110.1 0.185 242 -263.5 107.3 0 163
4 495 2−2 -262.5 110.9 0.186 888 -263.5 107.2 0 639
1 9 2−3 -263.9 114.8 0.190 89 -264.2 87.5 0 31
2 45 2−3 -263.1 108.6 0.183 181 -263.7 105.1 0 97
3 165 2−3 -262.8 109.7 0.184 496 -263.7 106.9 0 319
4 495 2−3 -262.7 110.6 0.185 1801 -263.8 106.9 0 1293

Starting with the linear damages case, it turns out that the linear approximation of the
value function (L = 1) is not yet very accurate, especially in the BAU scenario. Including
the cross-terms and quadratic terms to the set of basis functions by increasing L to 2
already gives accurate results. Choosing L even larger does not change the outcomes
much. Decreasing the time step from 2−1 to 2−2 and from 2−2 to 2−3 slightly changes the
results but the effects are not large.

When we set θ = 3.25, the problem becomes more non-linear. This is clearly visible
in the outcomes: the linear approximation with L = 1 is not accurate at all in table 4.2.
It understates the social cost of carbon in the optimal scenario and overstates it in the
BAU scenario. Increasing L improves the results. In the optimal scenario, L = 2 already
gives a reasonable outcome. In the BAU scenario the value function is more non-linear
and a higher order L is needed to obtain an accurate solution.

The outcomes also clearly show the trade-off between computation time and accuracy.
The fastest run takes about 10 seconds, while the slowest run takes around two hours.
Increasing the level L by one unit approximately triples the computation time, while
halving the time step doubles the computation time. For all following results, we choose
to set L = 3 in the linear case and L = 5 in the convex case.

4.4.2 Social cost of carbon: Optimal policy versus business-as-usual

We now quantitatively investigate the difference between the optimal policy scenario and
the business-as-usual scenario. The analytic section highlighted two offsetting effects. In
the optimal scenario the future carbon concentration is smaller than in the business-as-
usual scenario. Adding one unit of carbon into the atmosphere has a larger effect on
temperature when the concentration is small, due to the concavity of radiative forcing in
the carbon concentration. When climate damages are a linear function of temperature,
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Table 4.2: Calibration: θ = 3.25, λ2 = 0.25%. The value function, social cost of carbon
(in US dollars), optimal abatement policy and computation time (in seconds) for different
algorithmic parameters.

Optimal BAU
L Nb δt V0 SCC0 u∗0 time V0 SCC0 u0 time

1 9 2−1 -264.9 247.5 0.307 19 -284.1 479.8 0 9
2 45 2−1 -261.9 305.4 0.350 48 -272.1 574.1 0 30
3 165 2−1 -261.6 293.2 0.341 139 -281.3 381.2 0 103
4 495 2−1 -261.3 301.2 0.347 489 -278.5 448.1 0 370
5 1287 2−1 -261.2 298.5 0.345 1771 -279.7 420.2 0 1393
1 9 2−2 -265.1 248.3 0.307 38 -283.1 480.7 0 18
2 45 2−2 -262.4 306.9 0.351 95 -270.8 598.1 0 57
3 165 2−2 -262.2 292.9 0.341 283 -281.9 372.6 0 200
4 495 2−2 -261.9 300.2 0.346 957 -279.1 450.7 0 714
5 1287 2−2 -261.8 297.7 0.344 3534 -280.2 420.7 0 2778
1 9 2−3 -265.4 245.8 0.305 82 -283.8 475.7 0 36
2 45 2−3 -262.7 307.6 0.351 192 -271.2 586.8 0 116
3 165 2−3 -262.5 292.2 0.340 570 -282.0 370.7 0 411
4 495 2−3 -262.1 299.6 0.346 2132 -279.3 450.9 0 1558
5 1287 2−3 -262.0 297.4 0.344 7028 -280.5 420.0 0 5557

Table 4.3: Social cost of carbon (in $/tC).

Linear Damages (θ = 1) Convex Damages (θ = 3.25)

Opt 111 299
BAU 108 420
BAU
Opt

97% 141%

the social cost of carbon is therefore larger in the optimal scenario.
However, when the arrival rate is modeled as a convex function of temperature the

situation changes. In the optimal scenario, the future carbon concentration is lower but
also the future temperature level. With a convex damage specification, marginal damages
are increasing in the temperature level. The arrival rate of climate disasters has the
following functional form: λ2,t = λ2T

θ
t .

The quantitative results are given in table 4.3. For the linear specification, the SCC in
the business-as-usual scenario is equal to 108$ per ton carbon, which is 97% of the SCC
in the optimal scenario. We will express the SCC in the entire paper in US$/tC. 108$ per
ton carbon is equivalent to 29$ per ton CO2, the conversion factor is 3.67. This result
shows that the difference between the SCC in the optimal and BAU scenario is very small
in the linear specification. So the concavity of radiative forcing does not play a big role.
One reason for this small effect is that optimal climate policy is not very stringent with
the linear damages calibration. The optimal abatement rate starts at 19%, which implies
that in the beginning the climate state variables of the BAU and optimal scenario will not
be very different. When it would be optimal to initially abate much more, for example
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because of a higher damages (higher λT ) or because of cheaper abatement technologies,
the difference between the SCC in the optimal and the BAU scenario would be larger.

The takeaway from this table is that if damages are assumed to be convex, which is for
example argued by Weitzman (2012) and Dietz and Stern (2015), the difference between
the SCC in both scenarios becomes large. Using our convex calibration, the SCC in the
optimal scenario equals 299$/tC compared to 420$/tC in the BAU scenario. The SCC is
thus 41% larger in the BAU scenario compared to the optimal scenario. The conclusion
that it does not matter which scenario to use to evaluate the social cost of carbon is only
valid for specific calibrations that are close to linear. Since there is no consensus about
the specification of the damage function, it is therefore important to take into account
this wedge between the two scenarios and to consider the fact the global climate policy
at this moment is far from optimal.

4.4.3 Graphical results

This section presents graphical results over time. In the model, both endowment and the
climate variables are stochastic. Therefore, also the optimal policy and the social cost of
carbon are stochastic variables.

Figure 4.1 shows that there is considerable uncertainty about the future values of
most variables. In the worst case scenario (5th percentile), endowment barely doubles
within a period of 100 years which implies an average growth rate (including disasters)
of approximately 0.7%. The best case scenario (95th percentile) yields an average growth
rate of approximately 2.6%, while the median scenario has a growth rate of 1.8%.

The optimal social cost of carbon initially starts at 111 US$ per ton carbon. Most
of the expected growth and the uncertainty of the social cost of carbon is driven by the
endowment scenarios. Since damages are proportional to endowment, the SCC is also
proportional to endowment. A low economic growth scenario thus leads to a low social
cost of carbon. The social cost of carbon in the BAU scenario is below the optimal
scenario since θ = 1. Furthermore, it becomes clear that the differences between the
BAU scenario and optimal scenario are increasing over time. This is intuitive since in
the optimal policy scenario the climate variables reach an equilibrium, whereas in the
BAU scenario they keep growing. This amplifies the effects that are already present at
time t = 0. In the BAU scenario the SCC with θ = 1 grows significantly slower than the
growth of the economy. The reason for this is that the carbon concentration is growing.
Given the concavity of radiative forcing in the carbon concentration, an additional unit
of carbon in the atmosphere has a smaller effect if the concentration is already large.

In the optimal policy case, the emissions control rate is chosen such that the marginal
abatement cost is exactly equal to the social cost of carbon. The emissions control rate
in the initial period is 19%. This implies that actual emissions are 19% lower in the
optimal policy case compared to the business-as-usual case. The emissions control rate is
increasing over time since abatement costs go down due to technological progress. The
uncertainty about the future emissions control rate also comes mostly from economic
uncertainty. When endowment growth turns out to be low, the emissions control rate
is also low. Interestingly, there seems to be less variation in the optimal emissions path
compared to the control rate. The reason for this is that business-as-usual emissions are
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Figure 4.1: Calibration: θ = 1, λ2 = 0.87%. This graph shows the evolution of endowment,
the social cost of carbon, marginal abatement costs, the emissions control rate, yearly
emissions, the consumption-endowment ratio, the carbon concentration (in excess of the
pre-industrial level) and the temperature anomaly over time. Red solid (dashed) lines
denote the median (mean) of the optimal scenario and grey areas denote the 5th and 95th
percentiles. Lastly, the blue dotted lines denote the mean of the BAU scenario.
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Figure 4.2: Calibration: θ = 3.25, λ2 = 0.25%. This graph shows the evolution of en-
dowment, the social cost of carbon, marginal abatement costs, the emissions control rate,
yearly emissions, the consumption-endowment ratio, the carbon concentration (in excess
of the pre-industrial level) and the temperature anomaly over time. Red solid (dashed)
lines denote the median (mean) of the optimal scenario and grey areas denote the 5th and
95th percentiles. Lastly, the blue dotted lines denote the mean of the BAU scenario.
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proportional to endowment. When endowment is low, both the emissions control rate is
low and the business-as-usual emissions are low. On the other hand, when endowment is
high, business-as-usual emissions are high but so is the social cost of carbon and therefore
optimal abatement efforts are higher. Both effects somewhat cancel out and this yields
less variation in yearly emissions. In the BAU scenario the emissions control rate is simply
set to zero. The BAU emissions increase until the end of the century.

Initially, it turns out to be optimal to allocate a very small percentage of endowment
to abatement policies. In the median scenario, at the peak it is optimal to spend 0.7% of
endowment on emission reduction policies. When u∗ is stuck at its maximum level, the
abatement fraction starts going down again. This leads to a kink in the consumption-
endowment ratio. When the social cost of carbon grows very fast, it is optimal to have
a stringent abatement policy and to allocate more resources to abatement. In the 5th
percentile scenario, at its peak 1.5% of the resources is spent on abatement, while in the
95th percentile scenario the abatement costs are never above 0.2%.

The carbon concentration in the optimal case reaches its peak around the end of the
century, while in the BAU case it would just keep growing. There is some decay of carbon
in the atmosphere and therefore the optimal carbon concentration is slightly decreasing
after the peak. In our model, we even include a permanent carbon box which implies that
the optimal carbon concentration will never reach the original level.

With optimal policy temperature peaks at approximately 2.75 degrees Celsius in the
median scenario. This is way above the 2 degrees that is advocated in the Paris agreement.
The figure also shows that there is a lot of variation in possible future temperature levels.
In the 95th percentile scenario, the temperature peaks at 3.5 degrees. In the BAU scenario
the temperature simply keeps growing.

Overall, figure 4.1 shows that uncertainty plays an important role in climate policy.
The initial abatement decisions and the initial social cost of carbon are affected by the
uncertainty, but the future realizations of these variables are also uncertain. Furthermore,
even though policymakers can steer climate policy and react on a specific realization of the
state variables when choosing u∗, there is still considerable uncertainty left in the future
temperature level. Furthermore we can conclude that the linear damage specification does
not induce a stringent optimal policy response. Optimal abatement policy starts only at
a 19% reduction and on average the economy is not even carbon neutral at the end of the
century.

Figure 4.2 replicates the same graphs in the case of convex damages. Several things
are different. First, from the endowment graph it is now clear that no climate policy will
really hurt endowment; endowment in the BAU scenario is way below optimal endwoment
at the end of the century. Furthermore, when θ = 3.25, the SCC in the BAU scenario is
above the optimal scenario. Similar to the previous case, the difference becomes larger
over time. The SCC in the BAU scenario is now rising faster than economic growth.
The large increase in temperature in the BAU scenario combined with the high convexity
pushes up the SCC much faster than in the optimal scenario, where temperature stabilizes
at lower levels.

In the convex scenario the median emissions control rate reaches the upper bound of
100% around 2065. At that moment, the entire economy is emissions-neutral. We assume
that it is not possible to take carbon out of the atmosphere, which implies that actual
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emissions stay at 0 from that moment onward. Abatement policy has reached its upper
bound, which implies that after this moment the social cost of carbon is not equal to the
marginal abatement costs anymore. As long as u∗ has an interior solution, the optimal
carbon tax is equal to social cost of carbon, but when u∗ reaches 1, a carbon tax equal to
the marginal abatement costs will make sure that there will be no more carbon emissions.
There is considerable variation in the moment that the economy will be emissions neutral.

With convex damages, abatement spending as a fraction of endowment is also much
larger. It is optimal to increase spending on abatement over time up to 2.75% in the
median scenario. Temperature stays below two degrees Celsius with a high probability
and on average the temperature stabilizes just above 1.5 degrees Celsius. In contrast
to the linear specification, the convex damage calibration does induce an optimal policy
response that is in line with the Paris agreement.

4.4.4 Risk scenarios and the social cost of carbon

In this section we analyze the effect of the different types of risk on the social cost of
carbon. In order to do so, we first solve the deterministic model without any risk. This
implies that we set σ, σM2 , σT0 and σT2 equal to zero. To obtain a deterministic equivalent
to jump risk, we adjust the growth rate such that the expected growth rate is the same
as in the stochastic scenario. In the deterministic scenario, the growth rate of endowment
becomes: µ − λ1

α1+1
− λ2,t

α2+1
. Then, we first add economic risk by reintroducing economic

disaster risk and setting σ > 0. After that, we add climate risk by setting σM2 > 0,
σT0 > 0 and σT2 > 0. In the last step, we also include climate disaster risk. We calculate
the social cost of carbon for both scenarios. The results are given in table 4.4.

Compared to the situation with economic risk, the no risk scenario has a substantially
higher social cost of carbon. Economic risk affects the social cost of carbon via the discount
rate. The effect of risk on the discount rate interacts with the preference calibration. First,
the sign of the effect is determined by the elasticity of intertemporal substitution ε. In
our calibration, we assume ε > 1. The discount rate for the social cost of carbon equals
the interest rate plus the risk premium. In the no risk scenario, the risk premium equals
zero but the interest rate is substantially higher. However, since ε > 1 the sum of the
two is smaller in the no risk case and therefore the effective discount rate is smaller. This
leads to a higher social cost of carbon. When we would choose ε < 1, the SCC in the no
risk scenario would be smaller compared to the scenario with economic risk.

The change in the discount rate also has an effect on the difference of the SCC between
the optimal and BAU scenario. The difference is amplified in the no risk scenario. The
reason for this result is that the discount rate is smaller when there is no risk, so more
weight is given to the far future. The climate state variables in the BAU scenario are
increasing much faster compared to the optimal scenario and the further we get to the
future, the larger this difference is. This strengthens the effect that causes the discrepancy
of the SCC between the two policy scenarios.

Adding climate risk has a negligible effect when the arrival rate is a linear function
of temperature. With more convex specifications, the effects are somewhat larger. When
adding disaster risk, the social cost of carbon increases in all scenarios with a similar
percentage. The expected loss when a climate disaster strikes is calibrated at 3%. The
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Table 4.4: The social cost of carbon for different risk, policy and parameter scenarios.

θ = 1, λ2 = 0.87% θ = 3.25, λ2 = 0.25%
Risk type Opt BAU BAU

Opt
Opt BAU BAU

Opt

No Risk 133.5 118.5 89% 338.9 576.8 170%
Economic 96.7 94.5 98% 251.5 345.3 137%
Economic + Climate 96.8 94.5 98% 268.7 375.1 140%
Economic + Climate
+ Disaster 110.8 108.0 97% 298.5 420.2 141%

certainty equivalent with risk aversion γ = 4.25 equals 1
α2+1−γ = 3.4%, which is about 14%

higher compared to the expected value. If we would set the average disaster size at 6%, the
certainty equivalent would be 34% higher. This shows that risk plays a bigger role with
infrequent large disasters than with frequent small disasters, even if the expected value of
both disasters is the same. The relative differences between the SCC in the optimal and
BAU scenario do not change much when climate and disaster risk are included.

Summarizing, table 4.4 shows that it is important to take into account economic risk
when calculating the social cost of carbon. Having a realistic economic risk structure
generates a plausible interest rate and risk premium and these have a considerable effect
on the social cost of carbon. The effects of climate and disaster risk are somewhat smaller
with this calibration, but the quantitative effects depend crucially on the calibration. The
effect of disaster risk would for example be larger with infrequent large disasters.

4.4.5 Delay of climate policy

In this subsection we analyze the implications of a delay of climate policy. We consider
a run in which the abatement control rate is restricted to 0 in the first 20 years, after
which optimal policy is implemented. This run therefore is a hybrid between the optimal
policy scenario and the BAU scenario. We thus analyze how costly it is to wait with
implementing climate policy.

The results for the linear damage specification are given in figure 4.3. The figure
shows that after a delay of climate policy, it is not optimal to catch up and start with
a higher control rate. With linear damages, the marginal cost of carbon emissions (the
SCC) does not increase after 20 years of delayed climate policy. The welfare loss of the
delay in policy is also very small. The representative agent is willing to give up less
than 0.1% of permanent consumption in order to be able to directly start with optimal
abatement policy. One reason for this low welfare loss of delay is that even in the optimal
policy scenario, the optimal abatement rate is not very high in the first twenty years.
Summarizing, with linear damages delay of climate policy does not seem to be very costly
and optimal policy does not change much after the delay.

The picture however changes when we look at the case of convex damages. Figure
4.4 shows that after twenty years of delay optimal abatement policy is significantly above
the optimal policy path. This can also be seen from the social cost of carbon, which is
higher than the SCC in the optimal policy scenario. The intuition behind this is that a
delay in optimal policy leads to higher temperature levels. With convex damages, this
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Figure 4.3: Calibration: θ = 1, λ2 = 0.87%. This graph shows the emissions control rate
and the social cost of carbon. Red solid (dashed) lines denote the median (mean) of the
scenario in which optimal policy is implemented except for the first 20 years, in which the
emissions control rate is restricted to 0. Grey areas denote the 5th and 95th percentiles.
Lastly, the blue dotted lines denote the mean of the optimal policy scenario.
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Figure 4.4: Calibration: θ = 3.25, λ2 = 0.25%. This graph shows the emissions control
rate and the social cost of carbon. Red solid (dashed) lines denote the median (mean)
of the scenario in which optimal policy is implemented except for the first 20 years, in
which the emissions control rate is restricted to 0. Grey areas denote the 5th and 95th
percentiles. Lastly, the blue dotted lines denote the mean of the optimal policy scenario.
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leads to a higher welfare loss of carbon emissions. The representative agent is willing to
give up 0.4% of consumption permanently to be able to implement optimal policy in the
first twenty years. A 0.4% consumption loss might not sound as much, but note that
this is a permanent loss. So the cost of delay equals 0.4% of the value of the claim on
consumption. This cost is then equivalent to 17.5% - 20% of yearly consumption. The
main point is thus that with convex damages, delay is costly. Besides that, the optimal
abatement rate is even higher after the delay compared to the situation where optimal
policy is directly implemented.

4.5 Conclusion

We have developed a stochastic climate-economy model to analyze the social cost of car-
bon. Multi-box carbon and temperature models are integrated into a stochastic pure
exchange economy. Our model captures three types of risk: economic risk, climate diffu-
sion risk and climate disaster risk. All three types of risk are inputs of the social cost of
carbon, either directly or through discount rates. With this model in hand, we analyze
the effect of the policy scenario on the social cost of carbon.

First, using the closed form solution with a simplified climate model we show why and
how the policy scenario has an effect on the SCC. On the one hand, radiative forcing is a
concave function of the carbon concentration. This implies that emitting a unit of carbon
leads to less warming when the carbon concentration is already high, as in the business-as-
usual scenario. On the other hand, when damages are convex in temperature, the marginal
damages are increasing in the temperature level. This implies that a high temperature
level, also as in the business-as-usual scenario, leads to higher marginal damages.

Both effects work in opposite directions and therefore we numerically evaluate the SCC
to see which effects dominates. Since we have to solve the model numerically anyhow, we
extend our simplified model with endogenous emissions and a stochastic climate model
with multiple carbon and temperature boxes to get more realistic climate dynamics. The
simulations show that there is considerable uncertainty about future values of the social
cost of carbon, optimal policy and the climate variables.

We show that dependence of the SCC on the policy scenario varies with the convexity
of the damage function. In the convex calibration with a convexity parameter of 3.25, the
SCC in the business-as-usual scenario is 41% higher compared to the optimal scenario. In
the ideal world, a global carbon tax equal to the optimal social cost of carbon should be
implemented. However, currently global policy is far away from optimal. The SCC in the
business-as-usual scenario thus represents the benefit of carbon reduction in the current
situation and this metric should currently be leading when implementing climate policy.
This chapter additionally shows that delay of climate policy is costly when damages
are convex. It is therefore important that policymakers start as soon as possible with
implementation of carbon abatement policies.

Our results depend crucially on the convexity parameter of the damage function. As
discussed before, there is no clear consensus about what that value should be. A way
to explicitly model this uncertainty is to include parameter uncertainty and ambiguity
aversion within this framework. An interesting extension for future research is to evaluate
the dependency of the social cost of carbon on the emissions path within such a model.
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4.A Asset prices

4.A.1 Hamilton-Jacobi-Bellman equation and optimal policy

Derivatives are denoted by subscripts. The value function Vt = V (Yt,Mt, Tt, t) must
satisfy the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = max
ut

{
f(Ct, Vt) + VY µYt +

1

2
VY Y σ

2Y 2
t +

∂Vt
∂t

+ VM(Ẽt − δMMt) + VT (bFt − τTTt)

+ λ1E
[
V
(
Yt(1− J1),Mt, Tt, t

)
− V (Yt,Mt, Tt, t)

]
+ λ2,tE

[
V
(
Yt(1− J2),Mt, Tt, t

)
− V (Yt,Mt, Tt, t)

]}
.

(4.18)

Now conjecture: V (Yt,Mt, Tt, t) =
g(Mt,Tt,t)Y

1−γ
t

1−γ . We can calculate the derivatives and we

can substitute the conjecture of Vt into f(C, V ). Substituting our conjecture into f(C, V )
gives:

f(Ct, Vt) =
β

1− 1/ε

(
Ytξt

)1−1/ε

−
(
gtY

1−γ
t

) 1
ζ

(
gtY

1−γ
t

) 1
ζ
−1

=
β

1− 1/ε

(
g

1− 1
ζ

t ξ
1−1/ε
t Y 1−γ

t − gtY 1−γ
t

)
= βζ

(
g
− 1
ζ

t ξ
1−1/ε
t − 1

)
Vt.

(4.19)

The partial derivatives of Vt are given by:

VY = gtY
−γ
t , VY Y = −γgtY −γ−1

t

VM =
gMY

1−γ
t

1− γ
, VT =

gTY
1−γ
t

1− γ

Vt =
∂gt
∂t
Y 1−γ
t

1− γ
.

(4.20)

Substituting the derivatives and dividing by
Y 1−γ
t

1−γ gives the reduced HJB-equation:

0 = min
ut

{(
βζ
(
g
−1/ζ
t ξ

1−1/ε
t − 1

)
+ (1− γ)

(
µ− 1

2
γσ2 − λ1

1

α1 + 1− γ

− λ2,t
1

α2 + 1− γ

))
gt +

∂gt
∂t

+ gM(Ẽt − δMMt) + gT (bFt − τTTt)
}
.

(4.21)

We assume that γ > 1. Then dividing by
Y 1−γ
t

1−γ implies that the maximization problem
becomes a minimization problem. We were now able to get rid of one state variable,
namely Yt. Given gt, the optimal policy can be obtained using the first order condition.
Denote the optimal policy by u∗t , which solves the first order condition:

0 = −β(1− γ)g
1− 1

ζ

t ξ
−1/ε
t

∂ξt
∂ut
− gMEt. (4.22)
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Optimal policy is implicitly defined by this equation.

4.A.2 Consumption-wealth ratio

St equals the total wealth of the representative agent. At the optimum, the following
condition is satisfied: fC = VS (see for example Tsai and Wachter (2018)). Now define the
consumption-wealth ratio by kt = Ct

St
. Using the chain rule, this implies that VS = VCkt.

The optimality condition then implies that kt = fC
VC

. We can calculate fC :

fC(C, V ) =
βC−1/ε(

(1− γ)V
) 1
ζ
−1
. (4.23)

Substituting in fc, Vt = gt
Y 1−γ
t

1−γ = gt
(
Ct
ξt

)1−γ

1−γ and VC = gtξ
γ−1
t C−γt gives:

kt = βg
− 1
ζ

t ξ
1−1/ε
t . (4.24)

4.A.3 Stochastic discount factor

Duffie and Epstein (1992a) derive that the stochastic discount factor with stochastic

differential utility equals πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt).

We will start with deriving the explicit stochastic differential equation of the stochastic
discount factor. First we calculate the derivatives of f(C, V ) with respect to V (the
derivative with respect to C is given in the previous subsection):

fV (C, V ) = βζ
{(

1− 1

ζ

)(
(1− γ)V

)− 1
ζ
C1−1/ε − 1

}
. (4.25)

Substituting Vt = gt
Y 1−γ
t

1−γ and Ct = ξtYt into fC(C, V ) and fV (C, V ) we obtain:

fC(Ct, Vt) = βξ
−1/ε
t g

1− 1
ζ

t Y −γt ,

fV (Ct, Vt) = βζ
{
g
− 1
ζ

t ξ
1−1/ε
t

(
1− 1

ζ

)
− 1
}
.

(4.26)

This gives:

πt = exp

(∫ t

0

βζ
{
g
− 1
ζ

s ξ1−1/ε
s

(
1− 1

ζ

)
− 1
}
ds

)
βξ
−1/ε
t g

1− 1
ζ

t Y −γt . (4.27)

Write as a differential equation:

dπt
πt−

= βζ
{
g
− 1
ζ

t ξ
1−1/ε
t

(
1− 1

ζ

)
− 1
}
dt+

dY −γt

Y −γt−
+
dg

1−1/ζ
t

g
1−1/ζ
t

+
dξ
−1/ε
t

ξ
−1/ε
t

. (4.28)
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Applying Itô’s lemma to Y −γt gives:

dY −γt

Y −γt−
= −γ

(
µ− 1

2
(γ + 1)σ2

)
dt− γσdZt +

(
(1− J1)−γ − 1

)
dN1,t

+
(

(1− J2)−γ − 1
)
dN2,t.

(4.29)

We can also apply Itô’s lemma to gt and ξt:

dgt =
∂gt
∂t

+ gM(Ẽt − δMMt) + gT (bFt − τTTt)dt,

dξt =
∂ξt
∂t

+ ξM(Ẽt − δMMt) + ξT (bFt − τTTt)dt.
(4.30)

Define µg,t =
∂gt
∂t

gt
+ gM

gt
(Ẽt − δMMt) + gT

gt
(bFt − τTTt) and µξ,t =

∂ξt
∂t

ξt
+ ξM

ξt
(Ẽt − δMMt) +

ξT
ξt

(bFt − τTTt). Applying Itô’s lemma once more gives:

dg
1−1/ζ
t

g
1−1/ζ
t

= (1− 1/ζ)µg,tdt,
dξ
−1/ε
t

ξ
−1/ε
t

= −1/εµξ,tdt. (4.31)

Combining everything gives:

dπt
πt−

=
{
βζ
(
g
− 1
ζ

t ξ
1−1/ε
t

(
1− 1

ζ

)
− 1
)
− γ
(
µ− 1

2
(γ + 1)σ2

)
− 1/εµξ,t + (1− 1/ζ)µg,t

}
dt− γσdZt +

(
(1− J1)−γ − 1

)
dN1,t

+
(

(1− J2)−γ − 1
)
dN2,t.

(4.32)

We can now substitute the HJB-equation into the stochastic discount factor. Note that
we can rewrite the HJB-equation as:

µg,t = −βζ
(
g

−1
ζ

t ξ
1−1/ε
t −1

)
− (1−γ)

(
µ− 1

2
γσ2−λ1

1

α1 + 1− γ
−λ2,t

1

α2 + 1− γ

)
. (4.33)

Substituting this gives:

dπt
πt−

=
{
− β − µ+ µξ,t

ε
+
(

1 +
1

ε

)γ
2
σ2 −

(
γ − 1

ε

)
λ1

1

α1 + 1− γ

−
(
γ − 1

ε

)
λ2,t

1

α2 + 1− γ

}
dt

− γσdZt +
(

(1− J1)−γ − 1
)
dN1,t +

(
(1− J2)−γ − 1

)
dN2,t.

(4.34)

Therefore πt is of the form:

dπt
πt−

= µπ,tdt− γσdZt +
(

(1− J1)−γ − 1
)
dN1,t +

(
(1− J2)−γ − 1

)
dN2,t. (4.35)
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4.A.4 Interest rate

Let Bt be the price of the risk-free asset with continuous return rt: dBt = rtBtdt. Using
a no-arbitrage argument, πtBt must be a martingale. This is a martingale if rt = −µπ,t−
λ1

γ
α1−γ − λ2,t

γ
α2−γ . Note that consumption Ct has the following dynamics:

dCt
Ct−

= (µ+ µξ,t)dt+ σdZt − J1dN1,t − J2dN2,t. (4.36)

Define µc,t = µ+ µξ,t. The interest rate then equals:

rt = β +
µc,t
ε
−
(

1 +
1

ε

)γ
2
σ2 + λ1

( γ − 1
ε

α1 + 1− γ
− γ

α1 − γ

)
+ λ2,t

( γ − 1
ε

α2 + 1− γ
− γ

α2 − γ

)
.

(4.37)

4.A.5 Risk premium

Let St be the ex-dividend price of the stock that pays dividend at a rate Ct and denote by

Sdt the cum-dividend price. We use the relationship St = ξt
kt
Yt =

ξ
1/ε
t g

1/ζ
t Yt
β

. The dynamics

of Sdt are given by:

dSdt = dSt + Ctdt = St
dYt
Yt

+ St
dg

1/ζ
t

g
1/ζ
t

+ St
dξ

1/ε
t

ξ
1/ε
t

+ βξ
1−1/ε
t g

−1/ζ
t Stdt (4.38)

Now we calculate dg
1/ζ
t and dξ

1/ε
t :

dg
1/ζ
t

g
1/ζ
t

= 1/ζµg,tdt,
dξ

1/ε
t

ξ
1/ε
t

= 1/εµξ,tdt. (4.39)

Substituting this into (4.38) yields:

dSdt
St

=
(
µ+ 1/ζµg,t + 1/εµξ,t

)
dt+ σdZt − J1dN1,t − J2dN2,t. (4.40)

Substituting µg,t (4.33) and taking everything together gives:

µS,t = β +
µc,t
ε
− 1

2
(1/ε− 1)γσ2 − λ1

1/ε− 1

α1 + 1− γ
− λ2,t

1/ε− 1

α2 + 1− γ
. (4.41)

From this equation we can calculate the risk premium rpt:

rpt = µS,t − λ1E[J1]− λ2,tE[J2]− rt

= γσ2 + λ1

( −1

α1 + 1
+

α1

α1 − γ
− α1

α1 + 1− γ

)
+ λ2,t

( −1

α2 + 1
+

α2

α2 − γ
− α2

α2 + 1− γ

)
.

(4.42)
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4.A.6 Consumption-wealth ratio

We can find an expression for kt that does not depend on gt and ξt. First, the stochastic
discount factor can be written as:

dπt
πt−

=
{
− rt − λ1

γ

α1 − γ
− λ2,t

γ

α2 − γ

}
dt− γσdZt

+
(

(1− J1)−γ − 1
)
dN1,t +

(
(1− J2)−γ − 1

)
dN2,t.

(4.43)

Now consider the product of the stochastic discount factor πt and the consumption stream
Ct:

dπtCt
πtCt

=
{
µc,t − rt − λ1

γ

α1 − γ
− λ2,t

γ

α2 − γ
− γσ2

}
dt+

(
σ − γσ

)
dZt

+
(

(1− J1)1−γ − 1
)
dN1,t +

(
(1− J2)1−γ − 1

)
dN2,t.

(4.44)

Thus for t > 0:

πtCt = π0C0 exp
{∫ t

0

(
µc,u − ru − λ1

γ

α1 − γ
− λ2,u

γ

α2 − γ
− γσ2

− 1

2
(σ − γσ)2

)
du+ (σ − γσ)Zt

}N1,t∏
i=1

(1− J (i)
1 )(1−γ)

N2,t∏
i=1

(1− J (i)
2 )(1−γ).

(4.45)

Here J
(i)
1 denotes the realization of the i-th jump that occurs within the time interval

[0, t]. Let a consumption strip be an asset that pays a unit of consumption at some time
t in the future. The value of such a consumption strip at time 0 equals:

E0

[πt
π0

Ct

]
= C0 exp

{∫ t

0

(
µc,u − ru − λ1

γ

α1 − γ
− λ2,u

γ

α2 − γ
− γσ2

+ λ1

( α1

α1 + 1− γ
− 1
)

+ λ2,u

( α2

α2 + 1− γ
− 1
))

du

}
.

(4.46)

This is equivalent to:

E0

[πt
π0

Ct

]
= C0 exp

{
−
∫ t

0

(
ru + rpu − (µc,u −

λ1

α1 + 1
− λ2,t

α2 + 1
)
)
du
}
. (4.47)

Note that E0[Ct] = C0 exp
{∫ t

0

(
µc,u − λ1

α1+1
− λ2,t

α2+1

)
du
}

. The consumption-wealth ratio

is then equal to:

k−1
0 =

∫ ∞
0

E0

[πt
π0

Ct
C0

]
dt =

∫ ∞
0

exp
{
−
∫ t

0

(
ru + rpu

)
du
}
E0[Ct]dt. (4.48)
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4.B Social cost of carbon

The social cost of carbon can be calculated as the derivative of the value function with
respect to the atmospheric carbon concentration scaled by the marginal utility of con-
sumption:

SCC0 = − ∂V0/∂M0

fC(C0, V0)
= − ∂g0/∂M0

(1− γ)βξ
−1/ε
0 g

1− 1
ζ

0

Y0 = − ∂g0/∂M0

g0(1− γ)k0

C0

= −∂k
−1
0 /∂M0

1− 1/ε
C0 −

∂ξ0/∂M0

ξ0

k−1
0 C0.

(4.49)

Quantitatively, ∂u∗t/∂Mt is negligible and therefore we approximately have:

SCC0 ≈ −
∂k−1

0 /∂M0

1− 1/ε
C0

= − C0

1− 1/ε

∫ ∞
0

∂

∂M0

exp
{
−
∫ t

0

(
ru + rpu

)
du
}
E0[Ct]dt

=
C0

1− 1/ε

∫ ∞
0

∫ t

0

∂

∂M0

(
ru + rpu − (µc,u −

λ1

α1 + 1
− λ2,t

α2 + 1
)
)
du

exp
{
−
∫ t

0

(
ru + rpu

)
du
}
E0[Ct]dt

= C0

∫ ∞
0

∫ t

0

∂λ2,t

∂M0

du
1

α2 + 1− γ
exp

{
−
∫ t

0

(
ru + rpu

)
du
}
E0[Ct]dt.

(4.50)
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4.C Calibration

Table 4.5: Parameters for the economic model.

Par. Description Value

Y0 Initial endowment level (in USD, 2015) 83× 1012

µ Growth rate of endowment during non-disaster times 3%
σ Volatility of endowment 2.5%
λ1 Arrival rate of economic disasters 8.8%
α1 Economic disaster size parameter 8
λ2 Arrival rate coefficient of climate disasters 0.87% or 0.25%
θ Convexity parameter 1 or 3.25
α2 Climate disaster size parameter 32.33
β Rate of time preference 2.5%
γ Relative risk aversion coefficient 4.25
ε Elasticity of intertemporal substitution 1.5
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Table 4.6: Parameters for the climate model.

Par. Description Value

E0 Initial level of total emissions (in GtC, 2015) 9.75

δψ0 Initial decline rate of carbon intensity (2015) 0.5%
δψ∞ Long run decline rate of carbon intensity 6.5%
αψ Speed of convergence 0.0025
c1,0 Initial abatement cost level (2015) 7.41%
δc Decline rate of abatement costs 1.9%
c2 Convexity parameter of abatement costs 2.6
M0,0 Initial level of carbon box 0 (2015) 87.8
M1,0 Initial level of carbon box 1 (2015) 83.2
M2,0 Initial level of carbon box 2 (2015) 56.9
M3,0 Initial level of carbon box 3 (2015) 11.1
Mpre Pre-industrial carbon concentration 592.25
a0 Fraction of emissions that ends up in carbon box 0 21.73%
a1 Fraction of emissions that ends up in carbon box 1 22.40%
a2 Fraction of emissions that ends up in carbon box 2 28.24%
a3 Fraction of emissions that ends up in carbon box 3 27.63%
τM1 Decay parameter of carbon box 1 394.4
τM2 Decay parameter of carbon box 2 36.54
τM3 Decay parameter of carbon box 3 4.30
σM2 Volatility of carbon box 2 0.65
αF Radiative forcing parameter 7.92
T0,0 Initial level of temperature box 0 (2015) 0.11
T1,0 Initial level of temperature box 1 (2015) 0.41
T2,0 Initial level of temperature box 2 (2015) 0.62
b0 Radiative forcing parameter of temperature box 0 0.00115
b1 Radiative forcing parameter of temperature box 1 0.1097
b2 Radiative forcing parameter of temperature box 2 0.0336
τT0 Temperature parameter of box 0 400
τT1 Temperature parameter of box 1 1.43
τT2 Temperature parameter of box 2 8.02
σT0 Volatility of temperature box 0 0.015
σT2 Volatility of temperature box 2 0.13
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4.D Solution method

We apply the stochastic grid method as described in chapter 3 to solve this model. One
difference is that we cannot substitute out Yt as a state variable, since emissions are
assumed to be a function of endowment. We therefore use the following recursive equation:

Vt =

(
(1− e−βδt)C1−1/ε

t + e−βδtEt[(1− γ)Vt+δt ]
1/ζ

)ζ

/(1− γ). (4.51)

This equation is used instead of the recursive equation for gt in chapter 3. The vector of
state variables equals:

Xt = [Yt M0,t M1,t M2,t M3,t T0,t T1,t T2,t]
′. (4.52)

We can then write Vt = V
(
Xt, t

)
.

We use the following time-dependent boundaries for the random grid points. Yt is the
only exponentially growing variable. Without climate disasters, Yt grows in expectation

at a rate µ− λ1

α1+1
. Therefore we set the upper bound for Yt equal to 3Y0 exp

(
(µ− λ1

α1+1
)t
)

and the lower bound Yt to 0.1Y0 exp
(

(µ− λ1

α1+1
)t
)

. Since Yt is exponentially growing, the

bounds are also time-dependent. For the climate variables, there exists a natural lower
bound, namely that M0,t = M1,t = M2,t = M3,t = T0,t = T1,t = T2,t = 0. The lower bound
is the pre-industrial state of the climate. As upper bound, we use the following values:

[M0,t M1,t M2,t M3,t T0,t T1,t T2,t]
′ = [250 200 100 25 0.6 0.6 1.5]′. (4.53)

So for the climate variables, we use time invariant bounds. Let Xt and Xt denote the
column vectors of upper and lower bounds respectively. It is important to never evaluate
the value function at a state variable outside the bounds.

Since there is no abatement in the business-as-usual problem, the climate state vari-
ables will just grow over time. We therefore consider a somewhat wider range for the
climate state variables in the BAU case:

[M0,t M1,t M2,t M3,t T0,t T1,t T2,t]
′ = [500 400 200 50 0.9 1.2 2]′. (4.54)
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5 On current and future carbon prices in a risky

world

5.1 Introduction

Rising temperatures and the threat to our planet and the economy constitute the biggest
market failure we know of (Stern et al., 2006). One solution is to price carbon as this
reduces demand for carbon-intensive goods, encourages green innovation and carbon cap-
ture and sequestration, and locks up fossil fuel in the crust of the earth. This Pigouvian
solution charges emissions at a price that implements the optimal policy, namely the price
that internalizes the global warming externality (Pigou, 1920). There is a burgeoning de-
bate on how high that tax should be, but with implications for future values of that tax
often delivered as a by-product only. Yet future tax rates are a crucial determinant of the
investment decisions that need to be taken today to implement an efficient and timely
transition to a climate-neutral future. In this paper our emphasis is therefore not only
on the level but more on the shape of the time path of the optimal carbon price under a
wide range of economic, climatic and damage uncertainties.

Time paths matter as much as the initial price level since much of the adjustment
and mitigation efforts will have to take place through new investments and these depend
on the trade-off between current costs and future prices. In addition, as investments in
both carbon-intensive and green technologies are to a large extent irreversible, there are
strong option arguments for announcing a growing path of carbon prices and for policy
makers to stick to it so as to lower perceived volatility and thereby reducing the incentive
to delay investment (Dixit & Pindyck, 1994).

This price can be implemented as a carbon tax with the revenue rebated in lump-
sum manner to the private sector. An alternative and increasingly popular method is to
set up a competitive market for emission permits. Instead of the Pigouvian approach,
one could also adopt a Coasian approach where property rights to emit or the right to
a clean planet are allocated (Coase, 1960), with subsequent trade allowed. If there are
other market failures, they should be dealt with using separate instruments. For example,
learning-by-doing externalities in the production of green energy require early and direct
subsidies of green energy. If this subsidy is lumped together with carbon prices, as is
sometimes done in the literature (e.g. Daniel, Litterman, and Wagner (2019)), this leads
to an unwarranted early spike in carbon prices which may actually discourage investment
in clean technology by rising input costs while not raising future prices commensurately.

In climate economics the Pigouvian price is referred to as the social cost of carbon
or the SCC. This is defined as the expected present discounted value of all present and
future damages caused by emitting one additional ton of carbon today. Strictly speaking,
the SCC is a more general concept than a Pigouvian tax as it can be evaluated along
other paths than the optimal path. For example, the SCC evaluated along a business-as-
usual path where global warming externalities are not internalized, will be higher than
along the optimal path if damages are convex enough (see chapter 4). Policy makers must
evaluate the SCC under big uncertainties regarding the wealth of future generations and
future global warming damages resulting from emissions today. This involves difficult
trade-offs between consumption today and (the risks of) damages from global warming



to consumption in the distant future.
We thus focus on the main drivers for the growth, or decline, of the optimal carbon

price. Our benchmark is the case where damages to aggregate production are linear in
temperature. Given that recent insights in atmospheric science suggest that temperature
is linear in cumulative emissions (Allen et al., 2009; Dietz & Venmans, 2019; Matthews,
Gillett, Stott, & Zickfeld, 2009; Van der Ploeg, 2018), the function relating the percentage
loss in aggregate production to cumulative emissions is then also linear.20 We then see that
the optimal carbon price grows at the same rate of growth of the economy. The reason for
this is that damages are proportional to aggregate production. We then consider step by
step four generalizations of our benchmark and how they impact the qualitative pattern
of the time path of optimal carbon prices.

First, we show that if damages are a convex function of temperature as has been
argued by Weitzman (2012) and Dietz and Stern (2015), the optimal carbon price will
start at a higher level and will also grow faster than the economy.

Second, we confirm an earlier result by Daniel et al. (2019) that if there is gradual
resolution of uncertainty in the damage ratio, there is a component of the optimal carbon
price which falls over time.21 But we also show that when there is sufficient growth of
the economy, this component is outweighed by the growing component of the carbon
price resulting from growing damages. The key insight is thus that gradual resolution of
uncertainty slows down the rate of growth of the optimal carbon price but under plausible
assumptions does not reverse it. Gerlagh and Liski (2018) also find that learning and
resolution of uncertainty slows the rise in the optimal carbon price.22

Third, we show that climatic and economic tipping points whose arrival rates in-
crease in temperature boost the carbon price. Once a climate tipping point occurs, it will
suddenly increase the sensitivity of temperature to cumulative emissions which in turn
should prompt policy makers to boost carbon prices and abatement significantly right
now. Immediately after the tip has occurred, climate policy is ramped up resulting in an
instantaneous further upward jump in the carbon price and abatement. A temperature-
dependent risk of an economic tipping point that abruptly leads to a percentage destruc-
tion of production also leads to a higher path of carbon prices and abatement ex ante, but
immediately after the tip the carbon price and abatement jump down. Different types of
tipping points thus have radically different implications.

Fourth, although economists usually take a conventional welfare-maximizing approach,
the International Governmental Panel on Climate Change (IPCC) and most countries have
adopted the more pragmatic approach of agreeing that policy makers will do their utmost
best to keep global mean temperature well below 2 degrees Celsius and aim for 1.5 degrees

20This is related to Golosov et al. (2014), who take a different perspective. Their damage function is a
convex function of temperature and their temperature relationship is a concave function of the stock of
atmospheric carbon. They then notice that their exponential damage function is roughly a linear function
of the stock of atmospheric carbon.

21Daniel et al. (2019) employ the workhorse recursive dynamic asset pricing model consisting of a
discrete-time decision tree with a finite horizon extended to allow for Epstein-Zin preferences and generate
optimal carbon dioxide price paths based on probabilistic assumptions about climate damages. They
argue that it is optimal to have a high price today that is expected to decline over time as the “insurance”
value of mitigation declines and technological change makes emission cuts cheaper.

22For learning and optimal climate policy, see also Kelly and Kolstad (1999) and Kelly and Tan (2015).
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Celsius. A temperature cap which bites implies that the optimal carbon price should grow
at a rate equal to the risk-adjusted interest rate (cf. Gollier (2020)).23 Once allowance
is made for the risk premium, this Hotelling path for the carbon price is typically faster
than the rate of growth of the economy (even when the safe return is below the economic
growth rate). Hence, the initial carbon price and abatement will be lower upfront but
higher in the future. We find that taking into account risk and uncertainty, climate
policy is stepped up hugely as temperature gets closer to its cap. The reason is that
policy makers must prevent temperature overshooting the cap. If policy makers adopt
a tighter cap, they need to boost the carbon price and abatement. We also show that
if policy makers take account of a temperature cap and internalize damages from global
warming to aggregate production, the optimal carbon price will grow faster than if only
damages are internalized but slower than if only a temperature cap is imposed.

Overall, our results suggest that in face of a wide range of risks and uncertainties policy
makers should commit to a gradually rising path of carbon prices. This has the added
advantage that businesses get clear incentives to invest in long-term projects necessary
to make the transition from carbon-intensive to carbon-free production. Our framework
of analysis is a simple endowment economy where the endowment is subject to normal
economic shocks (modelled by a geometric Brownian motion) and by macroeconomic
disasters as in Barro (2006, 2009) and Barro and Jin (2011). Temperature is driven by
cumulative emissions, and the fraction of damages lost due to global warming is a power
function of temperature and is subject to stochastic shocks with a distribution that is
skewed and has mean reversion as in Van den Bremer and Van der Ploeg (2021). Our
short-cut approach to modelling gradual resolution of damage uncertainty is slow release of
information. We distinguish aversion to risk from aversion to intertemporal fluctuations,
so we use recursive preferences (Duffie & Epstein, 1992b; Epstein & Zin, 1989, 1991).
This allows for a preference for early resolution of uncertainty when the coefficient of
relative risk aversion exceeds the inverse of the elasticity of intertemporal substitution in
accordance with empirical evidence.

Our paper is closely related to a recent interesting contribution by Lemoine (2021) who
also studies the effect of damage ratio uncertainty and uncertainty about the economic
growth rate in an endowment economy and offers analytical insights into the determin-
istic, precautionary, damage scaling and growth insurance determinants of the optimal
social cost of carbon (cf. Van den Bremer and Van der Ploeg (2021)) and crucially gives
simulations that show these components of the optimal carbon price. Our model differs
in that we distinguish relative risk aversion from the inverse of the elasticity of intertem-
poral substitution and that that we have more general forms of uncertainty, i.e., we allow
for skewness and declining volatility of the shocks to the damage ratio (cf. Daniel et
al. (2019)), the risk of rare macroeconomic disasters, and both economic and climatic
tipping risks. We also allow for learning-by-doing effects in mitigation and thus for the
consequent need for renewable energy subsidies. Furthermore, another contribution of our
study is that we analyse the effects of temperature caps under uncertainty (both with and

23Gollier (2020) shows in his analysis of the optimal carbon price needed to ensure that a temperature
cap is not violated that this rate equals the safe rate plus the beta (the regression coefficient if rate of
change in marginal abatement costs is regressed on rate of growth in aggregate consumption) times the
aggregate risk premium.
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without damages to the economy) on the time paths of the optimal carbon price under
uncertainty.

Our paper is also related to an extensive literature on optimal discounting under
uncertainty (Gollier, 2002a, 2002b, 2008, 2011, 2012; Weitzman, 1998, 2007, 2009, 2011)
and optimal climate policy under uncertainty (Crost & Traeger, 2013, 2014; Jensen &
Traeger, 2014; Traeger, 2021; Van den Bremer & Van der Ploeg, 2021). It also relates to
a growing literature on optimal climate policy in the presence of climatic and economic
tipping points (Cai, Lenton, & Lontzek, 2016; Cai & Lontzek, 2019; Lemoine & Traeger,
2014, 2016; Van der Ploeg & de Zeeuw, 2018).

Our contribution is to present a simple asset pricing model to answer many of the
questions regarding uncertainty and tipping points in this literature. Our focus is, how-
ever, different in that we aim to understand the qualitative nature of the time path of the
path of optimal carbon prices and abatement. A novel contribution of our approach is to
also allow for temperature caps. Although Gollier (2020) has analysed these in a 2-period
model, we study temperature caps in a continuous-time, infinite-horizon integrated as-
sessment model of the economy and the climate. In the absence of damages from global
warming to the economy, we show that the expected growth in the marginal abatement
cost and the price of carbon equals the risk-free rate plus the insurance premium. Com-
pared to Gollier (2020), we additionally consider the implementation of a temperature
cap while at the same time internalizing the damages to aggregate production caused by
climate change. This gives an expected growth of the carbon price that is in the between
the growth rate of the economy and the risk-adjusted interest rate.

5.2 An integrated model for optimal climate policy evaluation
under risk

To make the trade-off between sacrifices in current consumption against less consumption
due to global warming in the future, we use recursive preferences which recursively defines
a value function giving the expected welfare from time t onwards, i.e. Vt (Duffie &
Epstein, 1992b; Epstein & Zin, 1989, 1991). This formulation distinguishes the coefficient
of relative risk aversion, denoted by RA, from the inverse of the elasticity of intertemporal
substitution, EIS. Policy makers prefer early (late) resolution of uncertainty if RA exceeds
(is less than) 1/EIS. Econometric evidence on financial markets strongly suggests this
separation and that RA exceeds 1/EIS (Van Binsbergen et al., 2012; Vissing-Jørgensen &
Attanasio, 2003). Hence, the risk-adjusted interest rate incorporates a so-called ‘timing
premium’ (Epstein, Farhi, & Strzalecki, 2014). If RA = 1/EIS as with the power utility
function, policy makers are indifferent about the timing of the resolution of uncertainty
and there is no timing premium in interest rates. Mathematically, this is represented as
follows. All agents have identical preferences and endowments, so all the agents can be
replaced by one representative agent. If RA = γ and EIS = ε, preferences of this agent
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follow recursively from:

Vt = max
{us}s≥t

Et

[ ∫ ∞
t

f(Cs, Vs)ds
]

with

f(C, V ) =
β

1− 1/ε

C1−1/ε −
(

(1− γ)V
)1/ζ

(
(1− γ)V

)1/ζ−1
,

(5.1)

where ζ = (1 − γ)/(1 − 1/ε) and β > 0 denotes the utility discount rate or rate of time
impatience. If RA = 1/EIS, equation (5.1) boils down to the expected utility approach
with no preference for early (or late) resolution of uncertainty.

The endowment of the economy Yt follows a geometric Brownian motion with drift µ
and volatility σY and includes additional terms to allow for disaster shocks with constant
mean arrival rate λ1. The size of the shocks is a random variable with time-invariant
distribution. The endowment thus follows the stochastic process:

dYt = µYtdt+ σY YtdW
Y
t − J1YtdN1,t, (5.2)

where W Y
t is a standard Brownian motion, N1,t is a Poisson process with arrival rate λ1,

and J1 is a random variable and corresponds to the share of endowment destroyed if a
disaster hits the economy. We assume that x = 1− J1 follows a power distribution with
density f(x) = α1x

α1−1, so E[xn] = α1/(α1 + n) and 0 ≤ E[J1] = 1/(α1 + 1) ≤ 1. For all
moments to exist, we assume that γ < α1. This process for the evolution of the economy
thus incorporates both normal macroeconomic uncertainty (captured by the geometric
Brownian motion) and macroeconomic disaster risks as in Barro (2006, 2009).

Consumption equals:

Ct =
1− At
1 +Dt

Yt, (5.3)

where At denotes the fraction of output used for abatement and Dt is the damage ratio as-
sociated with global warming. The time path of business-as-usual emissions Et is assumed
to be exogenous. Business-as-usual emissions grow at the decreasing rate gEt = gE0 e

−δEt,
where δE > 0 is a constant. Actual emissions are (1− ut)Et where ut denotes the abate-
ment rate. Without carbon capture and sequestration (CCS), the upper bound of the
abatement rate equals 1 in which case all emissions are fully abated and the economy
effectively only uses renewable energy.

The cost function for abatement is:

At = c0e
−c1Xtuc2t , (5.4)

where Xt is the stock of knowledge and c1 is the parameter that controls how fast the
costs decline over time due to technological progress. The future stock of knowledge is
uncertain. We assume that c2 > 1, so abatement costs are a convex function of the
abatement rate. We consider two different processes for the stock of knowledge. In the
standard case, the stock of knowledge grows exogenously over time, so that:

dXt = 1dt+ σXdW
X
t . (5.5)

129



Technological progress in this case is exogenous. In the absence of abatement cost uncer-
tainty (i.e. σX = 0), the cost function is identical to the cost function in the DICE model
(Nordhaus, 2017). In the alternative case we allow for learning-by-doing by assuming that
the growth of the stock of knowledge is a function of the cumulative amount of emissions
that have been abated:

dXt = utEtdt+ σXdW
X
t . (5.6)

Temperature is a linear function of cumulative carbon emissions and its dynamics are
described by:

dTt = χ(1− ut)Etdt, (5.7)

where χ denotes the transient climate response to cumulative emissions (TCRCE). The
damage ratio is a function of temperature and shocks that take some time to have their
full impact and follow a skewed distribution to reflect ‘tail’ risk. The damage ratio is
given by:

Dt = T 1+θT
t ω1+θω

t with dωt = υ(ω − ωt)dt+ σωt dW
ω
t , (5.8)

where ωt follows a Vasicek (or Ornstein-Uhlenbeck) process with short-run volatility σωt ,
mean reversion υ and long-run mean ω and W ω

t is a standard Brownian motion (cf.
Van den Bremer and Van der Ploeg (2021)). Here θT controls the convexity with respect
to temperature and θω controls the skew of the shock hitting the damage ratio. Linear
(convex) damages in temperature correspond to θT = 0 (or > 0). A novel feature of our
analysis is that we use the specification:

σωt = max
[
(1− t/tω)σω0 , 0

]
, (5.9)

so that volatility starts with σω0 and falls linearly to zero after t
ω

years. This captures
gradual resolution of damage uncertainty. Volatility is constant if t

ω → ∞. When a
temperature cap is implemented, we impose the restriction Tt ≤ T cap. This is in our setup
equivalent to the restriction that only renewable energy must be used once temperature
is at its cap, i.e. ut = 1 if Tt = T cap.

Finally, we allow for the possibility of an economic and a climatic tipping point. We
assume that the probability of a tipping point increases in global mean temperature.
The hazard rate of the economic tipping point equals λ2Tt where λ2 indicates the rate
at which the hazard rate increases with temperature. We assume that when the system
tips, a share J2 of endowment is destroyed. J2 is a random variable which also follows a
power distribution, but with parameter α2. The main difference between the economic
tipping point and the disaster process, is that the tipping point can only tip once, while the
Barro-style disasters are recurring. We also consider a climatic tipping point for which the
sensitivity of temperature with respect to cumulative emissions suddenly increases after
a tip. More specifically, we assume that before the tip the transient climate response to
cumulative emissions is equal to χ0 and after the tip it jumps to χ1. The hazard rate for
the climatic tipping point equals λ3Tt. We show that the two different specifications have
very different implications for the optimal carbon price.
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5.2.1 Optimal climate policies and implementation in a decentralized econ-
omy

We can solve the problem of maximizing expected welfare subject to equations (5.2) to
(5.9) using the method of dynamic programming (see Appendix 5.A). The resulting social
optimum gives rise to the optimal SCC and can be sustained in a decentralized market
economy when, for example, the carbon tax is set to the SCC and the revenue is rebated as
lump sums (see Appendix 5.B). The numerical implementation is discussed in Appendix
5.C.

The social cost of carbon (SCC) corresponds to the expected present discounted value
of all present and future damages to the economy resulting from emitting one ton of
carbon today. It equals the welfare loss of emitting one unit of carbon divided by the
instantaneous marginal utility of consumption:

SCCt = Ωi,j(Tt, ωt, Xt, t)C
1/ε
t Y

1−1/ε
t , (5.10)

where i ∈ {0, 1}, j ∈ {0, 1} indicates whether respectively the economic and the climate
tipping point have already occurred (cf. equation (5.18)). The second part of equation
(5.10) indicates that the optimal SCC is proportional to a weighted geometric average of
aggregate consumption and endowment with the weight to consumption equal to 1/EIS.
The first part of equation (5.10) indicates that the optimal SCC depends on temperature,
shocks to the damage ratio and cumulative learning-by-doing in renewable energy. The
SCC corrected for growth of the economy only depends on the first component of (5.10)
and is given by Ωi,j(Tt, ωt, Xt, t)

We consider two cases for the abatement costs. In the benchmark case abatement
costs decline exogenously over time. In the learning-by-doing case abatement costs are
endogenous and increase in the stock of accumulated past abatements (i.e. the stock
of knowledge). The social benefit of learning corresponds to all the present and future
marginal benefits in terms of lower mitigation costs resulting from using one unit of
mitigation more today:

SBLt = Θi,j(Tt, ωt, Xt, t)C
1/ε
t Y

1−1/ε
t (5.11)

(cf. equation (5.19)). Like the SCC, the SBL consists of two components. The second one
is proportional to a weighted average of endowment and aggregate consumption and the
first one depends on temperature, damage ratio shocks and cumulative learning-by-doing
in abatement. In the benchmark case without learning-by-doing, the SBL is simply equal
to zero.

When choosing optimal abatement policy, policy makers must recognize that abate-
ment serves two purposes in our set-up: 1) it reduces emissions, which leads to less climate
damages in the future and 2) due to learning-by-doing, abatement reduces future abate-
ment costs. But abatement is costly. Policy makers must sacrifice current consumption
to make room for abatement if they want to curb global warming and increase (expected)
future consumption. Optimal abatement ut thus follows from the condition that the
marginal abatement cost (MAC) must equal the social cost of carbon (SCC) plus the
social benefit of learning (SBL):
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MACt = SCCt + SBLt where MACt = −∂Ct/∂ut
Et

(5.12)

(cf. equation (5.20)). The marginal abatement cost is the cost of abating one more
unit of carbon emissions. It increases in the abatement rate ut since abatement costs
are a convex function of the abatement rate. The economy increases abatement until
the marginal abatement costs equal the benefits of abatement. If there is no learning-
by-doing, the only benefit of abatement is the reduction of climate change damages. In
that case the marginal abatement cost is equal to the SCC, which is the expected present
discounted value of all current and future damages caused by emitting one more ton of
carbon today. The learning-by-doing externality gives an additional incentive to reduce
emissions. The marginal abatement cost thus equals the sum of the social cost of carbon
and the social benefit of learning. We denote the optimal abatement policy that solves
the dynamic programming problem by u∗t .

When the government implements a carbon tax which is set to τt = SCCt and a
renewable energy subsidy which is set to st = SBLt, and the net revenue of these policy
instruments are rebated as lump sums, the social optimum can be replicated in a decen-
tralized market economy (see Appendix 5.B). Competitive energy producing firms will
then choose the energy mix such that the amount of fossil fuel use equals Ft = (1−u∗t )Et
and the amount of renewable energy use equals Rt = u∗tEt, where Et is the total amount
of energy use in the economy (which we have previously referred to as business-as-usual
emissions).

We have adapted the simple but widely used energy model of Nordhaus (2017) and
extended it to allow for uncertainty and tipping points in the economy, the climate sen-
sitivity, and damages from global warming. One drawback of this is that in our setting,
taxing carbon is equivalent to subsidizing renewable energy since total energy use is not
endogenously chosen by the energy producers and since fossil and green energy are perfect
substitutes. Optimal policy could thus in such a framework also be replicated by setting
a carbon tax equal to τt = SCCt + SBLt. However, it is important to stress that this
is no longer the case in more general models. When fossil fuel and renewable energy
use can be optimally chosen separately, replication of the command optimum can only
be done by setting τt = SCCt and st = SBLt (e.g. Rezai and Van der Ploeg (2017a)).
Taxing carbon then has different implications than subsidizing green energy. In a more
general setting with directed technical change, it can be shown that when green and dirty
inputs are sufficiently substitutable, a temporary green energy subsidy is optimal to fight
climate change by kickstarting the economy in directions of green technical progress (e.g.
Acemoglu, Aghion, Bursztyn, and Hemous (2012)).24 Although taxing carbon and sub-
sidizing green energy are equivalent in our simple framework, we do interpret the social
cost of carbon as the optimal carbon tax and the social benefit of learning as the optimal
renewable energy subsidy, to stress that the two are in general not equivalent.

We assume that negative emissions are not possible (or at least not at a competitive

24Bovenberg and Smulders (1995, 1996) offer early contributions on climate policy and endogenous
growth. It has also been argued that subsidizing green energy technology is not effective to fight climate
change, since it leads to higher energy use in total instead of substantially less fossil fuel use (Hassler,
Krusell, Olovsson, & Reiter, 2020).
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price) and therefore impose an upper bound on the abatement rate of 1. Hence, when
it would be optimal to abate more than 100% of the emissions, the optimality condition
(5.12) cannot be satisfied anymore. In this case the marginal abatement costs are smaller
than the sum of the social cost of carbon and the renewable energy subsidy.

5.2.2 Effects of a temperature cap on optimal abatement and carbon pricing

Optimal policy in presence of a temperature cap still satisfies the first-order condition,
but the social cost of carbon now must account for the temperature cap. A temperature
cap in our model is equivalent to the restriction that ut = 1 when Tt = T cap. We show
that in the case of a pure temperature cap (i.e. no effect of climate change on damages to
aggregate production), intertemporal optimization implies that the expected growth rate
of SCC and of the marginal abatement cost must equal the risk-free interest rate plus the
risk premium (for a proof, see Appendix 5.D). Let πt be the stochastic discount factor.
In this case, we thus have that expected growth in the marginal abatement cost and in
the optimal carbon price equals:

Et

[dMACt
MACt

]
= rt + rpt, (5.13)

where the approximate risk-free rate is given by

rt = Et

[
− dπt

πt

]
= β +

µc,t
ε
− 1

2
(1 + 1/ε)γσ2

Y − λ1

( α1

α1 − γ
− 1− γ − 1/ε

α1 + 1− γ

)
(5.14)

(cf. equation (5.46)) and the approximate risk premium is given by

rpt = Et

[
− d[πt,MACt]

πtMACt

]
= Et

[
− d[Y −γt , Yt]

Y 1−γ
t

]
= γσ2

Y + λ1

( α1

α1 − γ
+

α1

α1 + 1
− α1

α1 + 1− γ
− 1
) (5.15)

(cf. equation (5.48)). In expectation, the growth rate of marginal abatement costs is
therefore equal to the risk-free rate plus the risk premium. This result echoes the result
derived by Gollier (2020) for a two-period model. It follows from the assumption that
temperature is a linear function of cumulative emissions. In that case, we get an equivalent
of the celebrated Hotelling rule: the price path assures that temperature does not exceed
the cap and achieves intertemporal efficiency. In other words, the risk-adjusted discounted
marginal cost of abatement is the same for each period.

5.3 Calibration and benchmark results

We discuss our benchmark calibration and then present and discuss the corresponding
optimal time path for respectively the carbon price, the learning-by-doing subsidy, abate-
ment and temperature.
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5.3.1 Calibration

In our benchmark calibration, we choose RA = γ = 7, EIS = ε = 1.5 and the rate of
impatience β = 2% per year. These are values that are typically used in the asset pricing
literature with Epstein-Zin preferences (e.g. Table 1, Cai and Lontzek (2019)) based on
empirical evidence. The details of our calibration are reported in table 5.1.

The initial endowment is set to world consumption (using purchasing power parities)
of 80 trillion US dollars. We suppose this endowment is subject to normal shocks captured
by a geometric Brownian motion with a drift of 2% per year and an annual volatility of
3%. In addition, we have macroeconomic disaster shocks along the lines of Barro (2006,
2009). Here the mean size of the disaster shocks is 8.7% and the mean arrival rate of
these shocks is 0.035 per year corresponding to a mean arrival time of 29 years. This
calibration yields a real risk-free interest rate of 0.75% and a risk premium of 2.65% if
we abstract from the adverse effects of climate change on the economy. Since in the past
century climate change has arguably had no effect on interest rates, we can compare these
numbers to historical averages.

Dimson et al. (2011) calculate that the global real risk-free rate has been on average
1% and the risk premium 4.5% over the period 1900-2010. We are currently in a low
interest environment and in the long run it is questionable whether interest rate will
return to their old average levels, which makes 0.75% a reasonable real risk-free interest
rate. Our risk premium is lower than the historical average, but our main purpose is
not to solve the equity premium puzzle. Furthermore, a risk premium of 2.65% is more
realistic compared to most other climate-economy models in which the risk premium is
often small or non-existent. These numbers are also close to Gollier (2020) who calibrates
the risk-free rate at 1% and the risk premium at 2.5%. This calibration implies that in the
case of a temperature cap without damages, the optimal carbon price grows in expectation
at a rate equal to the risk-free rate plus the risk premium, i.e. 0.75%+2.65%=3.4%.

Parameters for business-as-usual (BAU) emissions are chosen to match the baseline
emissions scenario in Nordhaus (2017) over the first century of the simulation period and
afterwards BAU emissions stabilize. The parameters c0, c1 and c2 of the abatement cost
function in the benchmark case are taken from the DICE calibration (Nordhaus, 2017).
For the learning-by-doing calibration, we take the same value for c0 (cost of full abatement
in initial period) and for c2 (convexity of abatement costs in ut). The parameter c1 now
represents the decline in abatement costs when one additional Gt of carbon emissions
is abated and is set to c1 = 0.375% (cf. Rezai and Van der Ploeg (2017a)). With
the learning-by-doing in renewable energy production, future abatement costs depend
on cumulative past abatement efforts and thus also depend on the damage calibration.
Figure 5.1 compares abatement costs of the benchmark case with the learning-by-doing
case, both when damages from global warming are linear and when they are convex.

We take a transient climate response to cumulative emissions (TCRCE) of 1.8oC/TtC
(Matthews et al., 2009). The parameters of the uncertain damage shock and of the
convexity parameter θT are taken from Van den Bremer and Van der Ploeg (2021). For
the variant with gradual resolution of damage uncertainty, we assume that the volatility
of the damage shock is linearly declining to 0 over a period of 100 years as in equation
(5.9).
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Table 5.1: Calibration details.

Preferences RA = γ = 7, EIS = ε = 1.5, impatience = β = 2%
Economy Initial endowment Y0 = 80 trillion US dollars

Geometric Brownian motion
Drift in endowment µ = 2%/year
Volatility of shocks to endowment σY = 3%/

√
year

Macroeconomic disasters
Arrival rate of disasters λ1 = 0.035/year
Mean size of disasters E[J1] = 8.7%
Shape parameter of power distribution α1 = 10.5

BAU emissions Initial flow of global emissions in BAU scenario E0 = 10GtC/year
Initial growth of BAU emissions gE0 = 1.8%/year
Decline of growth rate of BAU emissions δE = 2.7%/year

Abatement costs Initial level of knowledge stock X0 = 0
(Benchmark Initial cost of full decarbonization c0 = 7.41% of GDP
case) Rate of technological progress c1 = 1.9%/year

Convexity parameter cost function c2 = 2.6
Abatement cost volatility σX = 1
Maximum abatement u ≤ 1

Abatement costs Initial level of knowledge stock X0 = 0
(Learning-by- Initial cost of full decarbonization c0 = 7.41% of GDP
doing case) Rate of technological progress c1 = 1.9%/unit of knowledge

Convexity parameter cost function c2 = 2.6
Abatement cost volatility σX = 5
Maximum abatement u ≤ 1

Temperature Initial temperature T0 = 1oC
Transient climate response to cumulative emissions
TCRCE = χ0 = 1.8oC/TtC
Temperature cap T cap = 2oC or T cap =∞

Damage ratio Convexity parameter θT = 0 (linear) or θT = 0.56 (convex)
Skew parameter shocks θω = 2.7
Mean reversion of shocks υ = 0.2/year
Initial and mean steady-state value of shocks ω0 = ω = 0.21
Constant volatility variant σω0 = 0.05, t

ω
=∞

Declining volatility variant σω0 = 0.05, t
ω

= 100 years
Economic Arrival rate of tipping point λ2 = 0.01Tt
tipping point Mean tipping damage level E[J2] = 2.5%

Shape parameter of power distribution α2 = 39
Climatic Arrival rate of tipping point λ3 = 0.006Tt
tipping point TCRCE after tipping χ1 = 2.5oC/TtC
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Figure 5.1: Costs of full abatement (ut = 1) in the benchmark and in the learning-by-doing
case for two different damage specifications (linear and convex).

Finally, we assume that initially an economic tipping point tips on average after 100
years. When temperature increases to two (four) degrees Celsius, this becomes on average
after 50 (25) years. The size of the damages caused by the tipping disaster is assumed to
be on average 2.5%. For the climate tipping point, it takes initially on average 167 years
for the climate system to tip. With 2 degrees Celsius warming the average time reduces
to 83 years. When the system tips, the TCRCE jumps from 1.8oC/TtC to 2.5oC/TtC.
Overall, the main message of the two tipping point calibrations is that the probability of
tipping in both cases is quite small, but we will show that the impact on optimal carbon
prices is nevertheless considerable.

5.3.2 Benchmark optimal carbon prices

With this calibration, the benchmark SCC (with linear damages, no learning-by-doing
and no temperature cap) is shown in figure 5.2. The SCC corresponds to the optimal
carbon price. The most striking feature of the top two panels is that the ex-ante mean
and median paths of the optimal carbon price start at almost 50$/tC and then grow
almost in tandem with the growth of the economy.

In fact, there is a modest decline in carbon price corrected for the growth of the
economy as can be seen from the top right panel. The median carbon price path lies
below the mean carbon price path, and the 5% and 95% bounds become wider for carbon
prices that are further in the future as one should expect given that a function of GBM
processes is a GBM process itself. As a result of the technological progress in abatement
technology, there is a gradual rise in abatement efforts over time. Due to the rise in
business-as-usual emissions, temperature rises to around 3 degrees Celsius in the next
century but by rather less than in the absence of abatement efforts. The plots also
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Figure 5.2: Benchmark with linear damages, no learning-by-doing, no gradual resolution
of uncertainty, no tipping points, and no temperature cap.

137



Figure 5.3: Convex damages.

indicate a sample run in blue. This suggests that for individual sample paths of the
optimal carbon price there may be substantial volatility, which does not show up in the
ex-ante time path for the mean (or median) optimal carbon price. Since we abstracted
from stochastic shocks to temperature and abatement efforts are much less volatile, the
temperature path itself shows hardly any volatility. When we allow for uncertain tipping
points in the sensitivity of temperature to cumulative emissions, this will change.

5.4 Five generalizations of the benchmark

We now discuss five generalizations of the benchmark. For expositional reasons, we discuss
these generalizations one by one. In practice, all these generalizations may be relevant at
the same time. We discuss first the effects of convex damages, then present the effects
of learning-by-doing and a combination of convex damages and learning-by-doing. After
that we discuss the implications of gradual resolution of damage uncertainty and then
show the differential impacts of climatic and economic tipping points. Finally, we analyse
the effects of temperature caps on the time path of carbon prices.

5.4.1 Convex damages

Figure 5.3 presents the effects of convex damages captured by the proportion of output
lost due to global warming being a convex rather than a linear function of temperature.
Following Van den Bremer and Van der Ploeg (2021), we let this function be proportional
to temperature to the power of 1.56. This is slightly less convex than the damage function
of Nordhaus (2017) but serves to illustrate the effects of convex damages. The most
striking effect of convex damages is that the carbon price starts at a higher level, 91$/tC
instead of 44$/tC, and then grows in expectation at a faster pace than in the benchmark.
We can see this most strikingly by comparing the top right panel of figure 5.2 with the left
panel of figure 5.3. This shows that with convex damages, the path of the optimal carbon
price corrected for the growth of the economy rises whilst with linear damages, this path
declined mildly. Hence, the abatement efforts are much stronger. The average mitigation
rate now rises in a century to 92% instead of 53% in the benchmark. We thus confirm the
Monte-Carlo results of Dietz and Stern (2015) in our fully stochastic framework: climate
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Figure 5.4: Learning-by-doing in abating emissions.

policies get intensified if damages are convex.

5.4.2 Learning-by-doing in abating emissions

Including learning-by-doing into the analysis gives an additional reason for abatement.
The marginal abatement cost is now equal to the social cost of carbon plus the social
benefit of learning. The social cost of carbon adjusted for economic growth is almost
identical to the base situation, so changing the abatement cost structure has no significant
effect on optimal carbon prices. Hence, optimal carbon prices still grow in tandem with
the economy (see top left panel of figure 5.4).

The social benefit of learning shown in the top right panel of figure 5.4 has a very
different shape. It grows faster than the economy in the first 50 years,25 but after that
time abatement costs have been reduced substantially because of learning-by-doing to such
an extent that even lower abatement costs do not give much additional benefit anymore.
The SBL is therefore sharply declining towards zero at the end of the century. Compared
to the benchmark case, the optimal abatement rate is much higher initially. At the end
of the century, it is optimal to abate around 85% of emissions, which is much higher than
the 53% abatement rate in the benchmark.

25Note that the panel displays the growth-adjusted SBL. Hence, an upward-sloping time path of this
SBL implies that the SBL grows at a higher rate than the economy.
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Figure 5.5: Convex damages and learning -by-doing in abating emissions.

5.4.3 Convex damages and learning-by-doing in abatement

Figure 5.5 shows that combining convex damages and learning-by-doing leads to an even
stronger incentive for abating emissions. The optimal carbon price is again very similar
to the optimal carbon price without learning-by-doing. The social benefit of learning
has a similar shape to the SBL in the linear case. However, it starts much higher and
declines towards zero faster. Since damages are more severe, more abatement is optimal
and lowering abatement costs by investing in knowledge is even more beneficial, which
explains the higher initial level of the SBL. In this scenario it is optimal to fully decar-
bonize the economy around 2075, much earlier than in the previous scenarios. The main
takeaway from the learning-by-doing simulations is that optimal abatement of emissions
is understated if learning-by-doing externalities are not internalized.

5.4.4 Gradual resolution of damage uncertainty

Our third generalization is to allow for gradual resolution of damage uncertainty. More
precisely, we let the annual volatility of the damage ratio fall to zero linearly in a century.
This is a shortcut to capturing slow resolution of uncertainty without delving into the
intricacies of learning. The left panel of figure 5.6 indicates that the expected optimal
path of carbon prices corrected for growth of the economy now falls over time, much
more strongly than the modest decline shown in the benchmark (see top right panel of
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Figure 5.6: Gradual resolution of damage uncertainty.

figure 5.2). We find that the carbon price does not only grow much more slowly than the
economy, but also starts at only 33$/tC instead of 44$/tC. The fact that there is declining
uncertainty about the damage ratio means that policy makers can pursue a less vigorous
climate policy than in the benchmark. Declining volatility in the future already has an
impact on the optimal carbon price today. This implies that the mitigation rate rises in a
century to only 38% compared to 53% in the benchmark. Note that if there is no or very
little growth in the economy, the optimal carbon price would decline over time as found
by Daniel et al. (2019) for a 7-period model for integrated assessment of economy and the
climate. The general point is that gradual resolution of damage uncertainty slows down
the rate of growth of the optimal carbon price. In a more formal context of learning and
resolution of uncertainty, Gerlagh and Liski (2018) show that this also tends to slow down
the rise in optimal carbon prices.

5.4.5 Climatic and economic tipping points

Our fourth generalization is to allow for climatic and economic tipping points. There is
a growing literature on the effects of various stochastic tipping points on optimal climate
policy (Cai & Lontzek, 2019; Lemoine & Traeger, 2014, 2016; Van der Ploeg & de Zeeuw,
2018). Most of these studies are quite challenging from a numerical point of view. Here we
simply present the effects (relative to our benchmark) of two illustrative tipping points.

We first present a single climatic tipping point for which we assume that there is a
risk of a regime shift in which the transient temperature response to cumulative emissions
suddenly jumps up from 1.8oC/TtC to 2.5oC/TtC. Moreover, we assume the arrival rate
to be higher at higher temperatures: the initial hazard of this tip at the initial temperature
of 1 oC is 0.006, which implies an expected arrival time of 167 years, but for every increase
in temperature by 1 oC we let the hazard rate rise by a further 0.006. This means that
at 3 oC the hazard is 0.018 and the mean arrival time for the catastrophe is only 56
years. Although these small risks are likely to occur in the very distant future, they
have consequences on optimal climate policy now already, as can be seen by comparing
figure 5.7 with figure 5.2. The mean optimal carbon price now starts somewhat higher
at 48$/tC than in the benchmark and then rises over time. Hence, the mitigation rate
ends up higher after a century, at 60% instead of 53%. The blue lines indicate a sample
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Figure 5.7: Risk of a climatic tipping point.

path with the tipping point occurring in 2045. At that time, the carbon price jumps
up substantially because of the bigger climate challenge resulting from the increased
sensitivity of temperature to cumulative emissions.

Figure 5.8 gives the optimal policy simulations for a different type of tipping point,
namely one that leads to a higher effect of global warming on damages instead of increased
temperature sensitivity. We assume that the size of the economy drops on average by 2.5%
once this tipping point occurs. The initial hazard of this tip at initial temperature is 0.01,
which implies an expected arrival time of 100 years. For each increase in temperature
by 1 oC, the hazard rate is assumed to rise by 0.01. Hence, at 3 oC the hazard is 0.03
and the mean arrival time for the tipping point goes down to 33 years. This economic
tipping point is thus expected to occur more rapidly than the climate tipping point. The
most striking feature is that for this tipping point, the initial carbon price is much higher
than in the benchmark, i.e., 78$/tC instead of 44$/tC, but that the mean and median
paths of the optimal carbon price corrected for growth of the economy fall strongly over
time. The blue line indicates a sample run where the tipping point occurs in 2045. At
that time, the carbon price drops down instantaneously and, as a result, the mitigation
rate drops down at that time too. The intuition behind this drop is obvious: initially, a
large fraction of the carbon price is reflecting the urgency of preventing the tipping point.
A higher carbon price leads to more mitigation efforts and therefore a lower probability
of the tipping. But when despite these additional abatement efforts, the system tips
eventually, there are no further tipping points to prevent. Moreover, after the tip has
occurred the economy is smaller because of the sudden increase in damages. The social
cost of carbon is proportional to output, which is another factor behind the drop in the
SCC after the damage catastrophe occurs. The benefit of carbon reduction after the tip
is the same as the benefit in the benchmark model without the tipping point for the same
level of output.

This is an important point: a tipping point in the climate system that speeds up
warming or leads to a slower decay of carbon emissions has very different implications than
a tipping point that directly affects the economy. In the former case abatement efforts
can be higher before the tip to prevent tipping, but when the system tips eventually
abatement efforts jump up even further since one unit of emissions now leads to more
global warming. The expected growth adjusted carbon price is therefore growing faster
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Figure 5.8: Risk of an economic tipping point.

Figure 5.9: Risk of two tipping points affecting respectively the climate system and the
size of the economy.

than economic growth. In the latter case of an economic tipping point, abatement efforts
before tipping are also higher than in the absence of a tipping point to prevent tipping,
but once the damage tipping point has happened, the carbon price jumps down.

We can also combine both types of tipping points in a single simulation. Figure 5.9
shows a sample path in which the climate tipping point tips very early and in which the
economic tipping point tips around 2055. The initial carbon price is equal to 80 $/tC.
The left panel indicates that the declining effect of the economic tipping point dominates
the increasing effect of the climate tipping point. However, the growth-adjusted carbon
price or social cost of carbon is now much flatter compared to the left panel of figure 5.8.
Abatement efforts are higher when both tipping points are present; the optimal abatement
rate is 63% after a century.

Of course, in practice, the impact of a tipping point may take a long time to materialize
(Cai & Lontzek, 2019; Van der Ploeg & de Zeeuw, 2018). We have abstracted from this,
but protracted effects of tipping points are clearly important in terms of the resulting time
path of optimal policy, which will change more gradually. It is also important to allow
for cascading tipping points where the onset of one tip might increase the likelihood of
another tipping point occurring, by more than implied by the temperature-dependence of
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Figure 5.10: Effects of a 2 degrees Celsius temperature cap without damages.

the hazard rate (Cai et al., 2016; Lemoine & Traeger, 2016). In particular, the downward
jump after the damage tip occurs will be smaller in that case since there is the remaining
incentive to delay future tipping points.

5.4.6 Temperature caps

Although most economists have adopted a welfare-maximizing approach where policy-
makers internalize the global warming externalities, many governments (as well as central
banks and the Network of Greening the Financial System) have followed the IPCC and
have decided that the best way to deal with global warming is to have a ceiling on global
mean temperature.

Given that temperature increases with cumulative emissions, the optimal carbon price
must then grow at a rate that is equal to the risk-adjusted interest rate which is in our
calibration equal to 3.4%. In figure 5.10 we show the optimal climate policies when a
cap on global mean temperature of 2 oC is implemented and where we abstract from
damages to global warming. The top left panel indicates a rapid rise in both the median
carbon price and in the median carbon price even when adjusted for growth rate of the
economy. The initial carbon price is about a fifth higher than in the benchmark, but the
carbon price grows much faster than the growth of the economy. In fact, we numerically
confirm our theoretical result that the expected growth rate of the carbon price and the
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Figure 5.11: Effects of a 2 degrees Celsius temperature cap with damages.

marginal abatement cost indeed equals the risk-free interest rate plus the risk premium.
This steep growth in carbon prices ensures a rapid rise in the abatement rate and quick
decarbonization of the economy (top right panel). Hence, temperature is much lower in
a century: 2 oC instead of 3 oC (bottom left panel).

Figure 5.11 plots the optimal climate policies under a 2 oC cap when there are also
linear damages from global warming to aggregate production. We then find that the
growth rate of the optimal path of carbon prices is somewhere in between the risk-adjusted
rate of interest and the rate of economic growth (cf. Van der Ploeg (2018)). Postponing
abatement can be more cost-efficient due to discounting and technological progress in
abatement technology, but that also leads to more warming and therefore more damages.
The initial price, with both a temperature cap and damages, is therefore higher (90$/tC
compared to 60$/tC without damages) and the growth rate lower.

Figure 5.12 shows the optimal policy function at the initial date (2015) for the abate-
ment rate in state space, so as a function of temperature. The solid line shows that the
abatement rate increases more and more rapidly in the direction of 100% mitigation as
the temperature of cap of 2 degrees Celsius is approached. This very nonlinear feature
is necessary to ensure that temperature stays below its cap. One can see that the corre-
sponding optimal policy function for the benchmark case of linear damages is flat. The
optimal policy function for the case of convex damages is, of course, much higher and
slopes gently upwards as the convexity of damages kicks in. Although the policy function
with convex damages starts higher than the one with a temperature cap, it rapidly is
overtaken as temperature increases. If we combine linear damages and a temperature
cap, the policy function starts slightly higher compared to the case with linear damages
only. A similar result emerges for the case with convex damages.

Finally, we calculate the welfare losses relative to the optimal scenario. The welfare
loss of business-as-usual relative to the optimum outcome for the benchmark case of linear
damages is 0.2%. The welfare loss of enforcing a temperature cap of 2 degrees Celsius
relative to the optimal policy setting is also 0.2%. However, with convex damages, the
welfare loss of business-as-usual relative to the optimal outcome rises to 0.8%. As a
result, the welfare loss of a 2 degrees Celsius temperature cap is only 0.1%. Hence, in
the benchmark case with linear damages, the damages are so small that business-as-usual
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Figure 5.12: Optimal policy functions for the abatement rate as function of temperature
at the initial date (2015).

and a temperature cap give roughly the same welfare loss. In the more realistic scenario
with convex damages the ambitious climate policy of enforcing a 2 degrees Celsius cap
is a lot less costly than doing nothing as under business-as-usual. If we would also take
account of tipping points, the difference will be even bigger. Hence, we conclude that it
is better to undertake too much climate action than too little or not at all.

5.5 Conclusion

We have shown that convex damages, tipping points and temperature caps all argue in
favour of a rising path of carbon prices. Only if there is gradual resolution of uncer-
tainty will there be a declining component in the optimal carbon price, but this effect is
dominated by rising components if damages and the economy are growing at empirically
plausible rates. Furthermore, convex damages and especially temperature caps require
that the carbon prices grow at a faster rate than the economy. Our policy recommenda-
tion is therefore that decision makers should start with a significant carbon price and at
the same time commit to a rising path of carbon prices. This rising path of carbon prices
can, if required by learning-by-doing externalities, be supplemented with a temporary
upfront spike in renewable energy subsidies. These two policies give the best guarantee
for redirecting investments from carbon-intensive to green technologies.

Only by credibly committing to such a path are corporations going to make the long
run and irreversible investments that are needed to transition to the carbon-free econ-
omy. Uncertainty about the timing of a transition will cause corporations to hold back
investments as carbon-intensive capital stock then acquires an option value in the likely
case that capital investment is irreversible so avoiding unnecessary volatility is extremely
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important. A practical problem that must be dealt with is that politicians tend to pro-
crastinate and postpone carbon pricing and prefer subsidies to higher carbon prices as
they fear of losing office. This can lead to adverse Green Paradox effects, where the antic-
ipation of a stepping up of climate policy induces owners of fossil fuel reserves to extract
more quickly and accelerate emissions and global warming rather than slowing it down
(Rezai & Van der Ploeg, 2017b; Van der Ploeg & Withagen, 2015). Such political distor-
tions might prevent the path of carbon prices to be not high enough upfront. Credible
commitment to a rising path of prices is thus of paramount importance.
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5.A Solving for optimal climate policy

Since we include two tipping points each of which can only tip once, we must solve four
sub-problems. Define by V 1,1

t the value function for the problem where both tipping points
have already taken place. V 1,0

t is the value function for the problem where the economic
(or more precisely the endowment) tipping point has tipped but the climate tipping point
has not tipped yet. V 0,1

t is defined similarly. Lastly, V 0,0
t is the value function before any

of the two tipping points have taken place. Each of the four sub-problems satisfies its
own Hamilton-Jacobi-Bellman (HJB) equation. The HJB-equation for V i,j

t , i ∈ {0, 1},
j ∈ {0, 1} equals:
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(5.16)

subject to ut = 1 if Tt = T cap, where the value function V i,j
t = Zi,j

(
Yt, Tt, ωt, Xt, t

)
depends on the three state variables and time and its partial derivatives are denoted by
subscripts. The term µX is equal to 1 in the benchmark case and equal to utEt if there is
learning-by-doing in abatement.

We conjecture and have verified that for each i and j the value function is of the form

V i,j
t = gi,jt

Y 1−γ
t

1−γ with gi,jt = hi,j
(
Tt, ωt, Xt, t

)
and rewrite equation (5.16) accordingly as:
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(5.17)

subject to ut = 1 if Tt = T cap. We define the social cost of carbon as the welfare loss of
emitting one unit of carbon divided by the instantaneous marginal utility of consumption:

SCCt = −χ ∂Zt/∂Tt
fC(Ct, Vt)

= Ωi,j
(
Tt, ωt, Xt, t

)
C

1/ε
t Y

1−1/ε
t , (5.18)
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where Ωi,j
(
Tt, ωt, Xt, t

)
= − χ

(1−γ)β

hi,jT
(gi,jt )1−1/ζ

. The first part of equation (5.18) indicates

that the optimal SCC depends on the shape of the reduced-form value function. The
second part indicates that it is proportional to the size of the economy.

The SBL corresponds to all the present and future marginal benefits in terms of lower
mitigation costs resulting from using one unit of mitigation more today:

SBLt =
∂Zt/∂Xt

fC(Ct, Vt)
= Θi,j

(
Tt, ωt, Xt, t

)
C

1/ε
t Y
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where Θi,j
(
Tt, ωt, Xt, t

)
= 1

(1−γ)β

hi,jX
(gi,jt )1−1/ζ

.

The optimality of the abatement rate implies that ut is chosen such that the MAC is
equal to the sum of the SCC and the SBL. Abatement on the one hand leads to lower
emissions and on the other hand lowers the costs for future abatement, which implies that
SCCt + SBLt = MACt, where:

MACt = −∂Ct/∂ut
Et

=
Yt/(1 +Dt)

Et

∂At
∂ut

=
Yt/(1 +Dt)

Et
c0e
−c1Xtc2u

c2−1
t . (5.20)

The relation SCCt+SBLt = MACt holds if the restriction u ≤ 1 is not binding. If u = 1,
then the sum of the SCC and the SBL will be larger than MAC, but it is not possible to
abate more. The single control variable ut thus tackles both externalities.

The main insight is that in more disaggregated models of energy use two separate
policy instruments should be included. In that case carbon emissions should be priced at
the SCC whilst mitigation should be subsidized at the SBL. We also refer to the SCC as
the optimal carbon price and to the SBL as the optimal mitigation subsidy, while we note
that this relation only holds as long as there is an interior solution to optimal abatement.
We also report the growth-adjusted quantities of the SCC, SBL and MAC to analyse
the determinants of these variables other than economic growth. We define the growth-

adjusted social cost of carbon by SCCt
C

1/ε
0 Y

1−1/ε
0

C
1/ε
t Y

1−1/ε
t

. This implies that the growth-adjusted

social cost of carbon equals the first term of equation (5.18): − χ
(1−γ)β

hi,jT
(gi,jt )1−1/ζ

, but scaled

with C
1/ε
0 Y

1−1/ε
0 to make the initial social cost of carbon equal to the actual initial social

cost of carbon. The growth adjusted SBL and MAC are defined in the same way.

5.B A decentralized market economy

In the decentralized market economy, we need to consider energy producers, households,
and the government separately. We assume that the households own the energy producers.
We denote the consumer price for fossil fuel by pt. Since fossil fuel and renewable energy
are perfect substitutes, the consumer price for renewable energy is also equal to pt. We
let τt and st denote the specific tax on fossil fuel and the subsidy on renewable energy,
respectively. Fossil fuel use is denoted by Ft and renewable energy use by Rt, so that
the mitigation rate is defined by ut = Rt

Ft+Rt
. Total energy use is exogenous and equal

to Et. Profits of and lump-sum rebates to energy producers are denoted by Πt and St,
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respectively. Profits of energy firms, the household budget constraint and the government
budget constraint are given by

Πt = ptFt + ptRt − τtFt + stRt − A(ut, Xt)
Yt

1 +Dt

,

Ct =
Yt

1 +Dt

+ Πt − τtFt − ptFt − ptRt,

St = τtFt − stRt.

(5.21)

Provided that it is not optimal to fully decarbonize the economy, the first-order optimality
conditions for fossil fuel and renewable energy use are

pt = τt − Au(ut, Xt)ut(1− ut)
Yt

Ft(1 +Dt)
,

pt = −st + Au(ut, Xt)ut(1− ut)
Yt

Rt(1 +Dt)
.

(5.22)

Now use that Ft = (1− ut)Et and Rt = utEt to obtain

pt = τt − Au(ut, Xt)ut
Yt

Et(1 +Dt)
,

pt = −st + Au(ut, Xt)(1− ut)
Yt

Et(1 +Dt)
.

(5.23)

Combining these two equations gives:

τt + st = Au(ut, Xt)
Yt

Et(1 +Dt)
. (5.24)

Note that MACt = Au(ut, Xt)
Yt

Et(1+Dt)
. Imposing a carbon tax and a renewable energy

subsidy implies that optimal policy is chosen such that the marginal abatement cost equals
the sum of the carbon tax and the renewable energy subsidy. We can therefore replicate
optimal policy of the command optimum by setting τt = SCCt and st = SBLt. In our
setting, both the learning-by-doing and the climate-change externality are tackled by one
policy instrument, i.e. the abatement rate ut.

5.C Numerical implementation

The HJB-equation is a set of partial differential equations. We solve this system of partial
differential equations using a finite-difference method, as described in chapter 3. We can
solve the model analytically when there are no climate damages. We use this as our initial
guess at time tmax = 500, and from there solve the system backwards with time step δt = 1.
The three-dimensional grid is equally spaced with upper boundaries [Tmax ωmax Xmax]′ =
[T cap 0.7 1000]′ if there is learning-by-doing and [Tmax ωmax Xmax]′ = [T cap 0.7 200]′

without learning-by-doing. The lower boundaries are equal to [Tmin ωmin Xmin]′ =
[0.75 0 − 25]′. Without a temperature cap, Tmax is set to 6 degrees Celsius. Optimal
policy is calculated every period by solving for ut such that the SCC is equal to the
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Figure 5.13: The sparse grid combination method.

marginal abatement cost. If this requires ut > 1, we set ut = 1. The restriction of
the temperature cap is implemented by imposing ut = 1 on the boundary Tt = Tmax.
The restriction at the boundary also affects optimal policy at all interior grid points
of temperature since it will affect the derivative of the value function with respect to
temperature. A temperature cap will thus lead to a higher social cost of carbon and to a
higher emissions control rate ut. More details on the finite-difference method for a more
general problem are given in chapter 3.

The sparse-grid combination method that we use in this chapter is slightly different
from the implementation in chapter 3. The difference is that we allow for asymmetry in
the grids. Define the ‘level’ of the grid for dimension i by Li, i ∈ {T, ω,X}. The number
of grid points on the edge of the sparse grid in dimension i is equal to 2Li + 1. The
level therefore controls the amount of grid points and the accuracy in dimension i. When
the value function is non-linear in a specific dimension it is possible to have more grid
points in that dimension. This is for example useful when we solve the problem with a
temperature cap, since in this case the value function becomes quite non-linear in the
temperature dimension.

Let L =
{
l : lT−1

LT−1
+ lω−1

Lω−1
+ lX−1

LX−1
≤ 1

}
be the set of all admissible sub-grids where

l = (lT , lω, lX). The weight of sub-grid l is equal to:

wl =
1∑

iT=0

1∑
iω=0

1∑
iX=0

(−1)iT+iω+iX I(lT+iT ,lω+iω ,lX+iX)∈L. (5.25)

We solve for g on all subgrids that have a non-zero weight wl. Note that all grids have
different grid points. To find the approximation gl on sub-grid l in a specific point, we
use linear interpolation. We then combine the solutions on all sub-grids by summing over
the product of the weight and the solutions: g =

∑
l∈Lwlgl.

Figure 5.13 shows an example of the sparse-grid combination method in two dimen-
sions. In the example L1 = 3 and L2 = 4, so the sparse grid will be denser in the second
dimension. First, the set L is constructed, which in this example consists of the following
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grids: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1). Of all grids within this set, the grids
(1, 4), (2, 2), (3, 1) all have weight +1 and the grids (1, 2), (2, 1) have weight −1. The other
two grids have weight zero and therefore these do not have to be evaluated.

5.D Derivation of the growth rate of marginal abatement costs
with a temperature cap and no damages

If climate damages are not taken account of and a temperature cap is in place instead, it
does not matter for the time at which the temperature cap is reached whether a unit of
emissions is abated today or in some period in the future before that time, at least as long
as the relationship between temperature and cumulative emissions is linear. Therefore,
along the optimal path, a marginal increase of abatement today combined with a marginal
decrease of abatement in the future should not lead to a change in welfare. The cost of
a marginal increase of abatement today equals MAC0, while the benefit of a marginal
decrease of abatement in time t equals MACt. Optimal behaviour therefore implies that

π0MAC0 = E0[πtMACt] where πt = exp
( ∫ t

0
fV (Cs, Vs)ds

)
fC(Ct, Vt) is the stochastic

discount factor (Duffie & Epstein, 1992b). We therefore must have that the product
πtMACt is a martingale. Now calculate:

dπtMACt
πtMACt

=
dπt
πt

+
dMACt
MACt

+
d[πt,MACt]

πtMACt
. (5.26)

Applying the martingale property and rearranging gives:

Et

[dMACt
MACt

]
= Et

[
− dπt

πt

]
+ Et

[
− d[πt,MACt]

πtMACt

]
, (5.27)

where [πt,MACt] denotes the quadratic covariation for the processes πt and MACt. Note

that the first term Et

[
− dπt

πt

]
is exactly equal to the real risk-free interest rate, while the

second term is a risk premium related to the correlation between the stochastic discount
factor and the marginal abatement costs. Equation (5.27) implies that the optimal carbon
price must grow at a rate equal to the sum of the real risk-free interest rate plus a risk
premium, similar to Gollier (2020). We now derive the risk-free rate and the risk premium.

5.D.1 Derivation of the risk-free rate and the risk premium

We can work out the stochastic discount factor πt and the marginal abatement cost
function MACt. The model without climate damages can be written as follows. The
endowment follows from:

dYt = µYtdt+ σY YtdW
Y
t − J1YtdN1,t. (5.28)

Consumption is equal to endowment minus abatement expenditure: Ct = (1 − At)Yt,
where the abatement cost function At = c0e

−c1Xtuc2t . Define the consumption-endowment
ratio ξt = 1− At = ν(Tt, Xt, t), which depends on the two state variables and time. The
two state variables Xt (abatement cost variable) and Tt (temperature) follow from:

dXt = µXdt+ σXdW
X
t ,

dTt = χ(1− ut)Etdt.
(5.29)
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The temperature cap adds the restriction ut = 1 if Tt = T cap. The HJB-equation corre-
sponding to the value function Vt for this problem is thus given by:
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subject to ut = 1 if Tt = T cap, where the value function Vt = Z(Yt, Tt, Xt, t) depends
on two state variables and time and its partial derivatives are denoted by subscripts.

We conjecture and have verified that the value function is of the form Vt = gt
Y 1−γ
t

1−γ with

gt = h(Tt, Xt, t) and rewrite equation (5.30) accordingly as:
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1

2
hXXσ

2
X

} (5.31)

subject to ut = 1 if Tt = T cap. The derivatives of instantaneous utility f(Ct, Vt) can be
calculated as:

fC(Ct, Vt) =
βC
−1/ε
t(

(1− γ)Vt

)1/ζ−1
,

fV (Ct, Vt) = βζ
(

(1− 1/ζ)C
1−1/ε
t

(
(1− γ)Vt

)−1/ζ

− 1
)
.

(5.32)

Now substitute in Vt = gt
Y 1−γ
t

1−γ and ξt = Ct
Yt

to obtain:

fC(Ct, Vt) = βξ
−1/ε
t g

1−1/ζ
t Y −γt ,

fV (Ct, Vt) = βζ
(

(1− 1/ζ)ξ
1−1/ε
t g

−1/ζ
t − 1

)
.

(5.33)

Substituting this into the stochastic discount factor gives:

πt = exp
(∫ t

0

βζ
(

(1− 1/ζ)ξ1−1/ε
s gs(−1/ζ − 1

)
ds
)
βξ
−1/ε
t g

1−1/ζ
t Y −γt . (5.34)

Writing πt as a differential equation gives:

dπt
πt

= βζ
(

(1− 1/ζ)ξ
1−1/ε
t g

−1/ζ
t − 1

)
dt

+
dY −γt

Y −γt

+
dg

1−1/ζ
t

g
1−1/ζ
t

+
dξ
−1/ε
t

ξ
−1/ε
t

+
d[g

1−1/ζ
t , ξ

−1/ε
t ]

g
1−1/ζ
t ξ

−1/ε
t

.

(5.35)
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Applying Itô’s lemma to Yt gives:

dY −γt

Y −γt

= −γ
(
µ− 1

2
(γ + 1)σ2

Y

)
dt− γσY dW Y

t +
(

(1− J1)−γ − 1
)
dN1,t. (5.36)

Similarly, we apply Itô’s lemma to gt to get:

dgt
gt

=
(ht
gt

+
hT
gt
χ(1− ut)Et +

hX
gt
µX +

1

2

hXX
gt

σ2
X

)
dt+

hX
gt
σXdW

X
t . (5.37)

Define µg = ht
gt

+ hT
gt
χ(1− ut)Et + hX

gt
µX + 1

2
hXX
gt
σ2
X . Then we can calculate:

dg
1−1/ζ
t

g
1−1/ζ
t

= (1− 1/ζ)
(
µg −

1

2

1

ζ

h2
X

g2
t

σ2
X

)
dt+ (1− 1/ζ)

hX
gt
σXdW

X
t . (5.38)

Using a similar derivation, we calculate that

dξ
−1/ε
t

ξ
−1/ε
t

= −1

ε

(
µξ −

1

2
(1 + 1/ε)

ν2
X

ξ2
t

σ2
X

)
dt− 1

ε

νX
ξt
σXdW

X
t , (5.39)

where µξ = νt
ξt

+ νT
ξt
χ(1− ut)Et + νX

ξt
µX + 1

2
νXX
ξt
σ2
X . The cross terms are equal to:

d[g
1−1/ζ
t , ξ

−1/ε
t ]

g
1−1/ζ
t ξ

−1/ε
t

= −1

ε
(1− 1/ζ)

hXνX
gtξt

σ2
Xdt. (5.40)

Putting everything together yields:

dπt
πt−

=
{
βζ
(

(1− 1/ζ)ξ
1−1/ε
t g

−1/ζ
t − 1

)
− γ
(
µ− 1

2
(γ + 1)σ2

Y

)
+ (1− 1/ζ)

(
µg −

1

2

1

ζ

h2
X
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t

σ2
X

)
− 1

ε

(
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1

2
(1 + 1/ε)
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X

ξ2
t

σ2
X

)
− 1

ε
(1− 1/ζ)

hXνX
gtξt

σ2
X
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dt− γσY dW Y

t + (1− 1/ζ)
hX
gt
σXdW

X
t

− 1

ε

νX
ξt
σXdW

X
t +

(
(1− J1)−γ − 1

)
dN1,t.

(5.41)

We now substitute this in the HJB-equation. The HJB-equation is equivalent to:

µg = −βζ
(
g
−1/ζ
t ξ

1−1/ε
t − 1

)
− (1− γ)

(
µ− 1

2
γσ2

Y + λ1
E[(1− J1)1−γ]− 1

1− γ

)
. (5.42)

Substituting this into the stochastic discount factor gives:

dπt
πt−

=
{
− β − µ

ε
+

1

2
(1 + 1/ε)γσ2

Y + (γ − 1/ε)λ1
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− 1
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− 1

2
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t

− 1

ε
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(1− J1)−γ − 1
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dN1,t.

(5.43)
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We can thus define µπ and σπ such that:

dπt
πt−

= µπdt− γσY dW Y
t + σπdW

X
t +

(
(1− J1)−γ − 1

)
dN1,t. (5.44)

We can now first calculate the risk-free rate:

rt = Et

[
− dπt

πt

]
= −µπ − λ1

(
E[(1− J1)−γ]− 1

)
= β +

µ+ µξ
ε
− 1

2
(1 + 1/ε)γσ2

Y

− λ1

(
E[(1− J1)−γ]− 1 + (γ − 1/ε)

E[(1− J1)1−γ]− 1

1− γ

)
− 1

2

1

ε
(1 + 1/ε)

ν2
X
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t

σ2
X − 1/2

1

ζ
(1/ζ − 1)

h2
X

g2
t

σ2
X − 1/ε(1/ζ − 1)

hXνX
gtξt

σ2
X .

(5.45)

The effect of abatement uncertainty σX on the interest rate is negligible compared to the
effect of economic uncertainty σY and jump risk. We can simplify the interest rate if
we leave out the terms related to abatement uncertainty. Additionally, we can calculate
the expectations of the jump variable J1, since J1 follows a power distribution. Lastly,
note that the growth rate of consumption, which we call µc, is equal to µ+ µξ. The real
risk-free rate is thus given by:

rt = β +
µc
ε
− 1

2
(1 + 1/ε)γσ2

Y − λ1

( α1

α1 − γ
− 1− γ − 1/ε

α1 + 1− γ

)
. (5.46)

Marginal abatement costs are given by:

MACt = −∂Ct/∂ut
Et

=
Yt
Et

∂At
∂ut

=
Yt
Et
c0e
−c1Xtc2u

c2−1
t . (5.47)

If we again assume that abatement uncertainty has a negligible effect on the risk premium,
we obtain the risk premium:

rpt = Et

[
− d[πt,MACt]

πtMACt

]
= Et

[
− d[Y −γt , Yt]

Y 1−γ
t

]
= γσ2

Y + λ1

(
E[(1− J1)−γ] + E[1− J1]− E[(1− J1)1−γ]− 1

)
= γσ2

Y + λ1

( α1

α1 − γ
+

α1

α1 + 1
− α1

α1 + 1− γ
− 1
)
.

(5.48)

In expectation, the growth rate of marginal abatement costs is therefore equal to the
risk-free rate plus the risk premium.
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6 Policy recommendations

Climate change is one of the main risks that the economy will face in the upcoming
decades. Climate scientists have improved our knowledge about climate change, but it
remains hard to accurately estimate the impact of the increased carbon concentration on
global temperature levels. We know that man-made emissions increase global tempera-
ture, but it is still uncertain by which exact amount. And it is even harder to estimate
damages resulting from this temperature increase, due to the lack of data and the complex
nature of the problem. Furthermore, tipping points and other feedback effects make it
hard to predict impacts. Summarizing, we have learned a lot about climate change and its
impact, and we are still learning. But there is also much uncertain about future impacts.

This thesis has focused on estimating the social cost of carbon, which is the discounted
value of all future damages caused by emitting one unit of carbon emissions today tak-
ing into account this uncertainty. It is necessary to estimate the negative value of these
uncertain future damages, since mitigation policies to stop climate change must be imple-
mented today. Uncertainty about future impacts of climate change matters a lot for the
social cost of carbon. In chapter 2 we introduce an economic model with climate disaster
risk. We include both standard risk and ambiguity into the model. In the case of risk,
all possible realizations are known and the probability of each realization is known, but
the exact outcome is random. Additionally, we add a deeper layer of uncertainty called
ambiguity. Ambiguity implies that even the probability distributions are unknown. We
find that the social cost of carbon in our model is between 25% and 50% larger if we take
into account risk and ambiguity of future climate impacts.

The policy implication is that the large amount of uncertainty around future climate
damages should lead to more stringent carbon abatement policy. We should not only focus
on the expected impacts of climate change, but also on limiting the probability of a large
irreversible impact. Carbon abatement policy can from this point of view also be seen
as buying insurance against tipping points and possible large impacts of climate change.
The recommendation is thus to start as soon as possible with more carbon abatement at
a global scale, which can be implemented using a substantial global carbon tax equal to
the social cost of carbon.

The previous discussion mainly focused on the estimate of the current social cost of
carbon. It is however not wise to implement a constant carbon price. Chapter 5 inves-
tigates the growth rate of the optimal carbon price in several scenarios. The economy is
growing over time and a larger economy also implies that more damage can be done to
the economy. A common assumption is to assume that climate damages are proportional
to the size of the economy. The optimal carbon price in this case grows as the economy
grows. Additionally, if climate damages are convex, the social cost of carbon is an in-
creasing function of the temperature anomaly. These two common assumptions (damages
proportional to the economy, convex damages) automatically imply that the social cost
of carbon should grow in expectation at a rate that is faster than the growth rate of the
economy. The growth rate of the economy can thus be used as a lower bound for the
growth rate of carbon prices.

On the other hand, we can consider the extreme case in which a temperature cap
is implemented and damages are ignored in the objective function. This is the approach



taken in the Paris agreement. This results in a modified Hoteling-rule in which the carbon
price grows at the risk-adjusted rate of interest. This rate is above the growth rate of the
economy and can be seen as an upper bound for the growth rate of the carbon price. As
a rule of the thumb, the carbon price should therefore be growing in between the growth
rate of the economy and the risk-adjusted interest rate.

Optimal policy implies that the carbon tax follows all shocks in the climate system
and the economy. Within the economic framework it is thus optimal for the price to drop
in recessions and jump in booms. And new information about the climate system and
damages should be incorporated in the carbon price. This results in a volatile optimal
carbon price. However, there is a trade-off for policymakers. Firms and investors that
have to make investments want to know future carbon prices. If carbon prices are volatile,
this might postpone investments. Also, in terms of transparency and political support
volatile carbon prices are not preferred. Policymakers thus face a trade-off between a
predictable future carbon price and staying close to the optimal value. This would be an
interesting topic for future research.

Summing up, the social cost of carbon is sensitive to assumptions about preferences,
discounting and damage specifications. But some general conclusions do emerge. First,
taking into account risk and ambiguity about the climate system and climate damages
leads to a substantially higher estimate of the social cost of carbon. Second, average
carbon prices in the world are currently still close to zero and much lower than optimal.
The majority of emissions in the world is still not priced. Several countries have started
with carbon pricing but prices are often low or only a small part of total emissions is
covered by the pricing systems. Third, not only the initial price should be higher, but
prices should also be growing over time. With plausible assumptions the growth rate of
the optimal carbon price is larger than the growth rate of the economy.
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7 Summary in English

Anthropogenic carbon emissions are the main cause of climate change. It is thus clear that
in order to tackle climate change, carbon emissions must be rapidly reduced. This thesis
focuses on the question: what is the present value of all damages caused by emitting one
unit of carbon today, which is called the social cost of carbon. It is an important input
for policy decisions, since it represents the benefit of carbon abatement. The social cost
of carbon is estimated using an integrated assessment model, in which a climate model is
integrated within an economic framework. Estimating the social cost of carbon requires
specifying a model for the climate system, a damage function, an economic model and a
utility function. This thesis analyzes how uncertainty and utility specifications affect the
social cost of carbon.

Chapter 2 introduces an integrated assessment model with climate disaster risk. The
model captures two types of uncertainty. The first type of uncertainty is risk, in which the
exact timing and size of climate disasters are unknown, but the probability distribution
is known. With risk, all possible realizations are known and the probability of each
realization is known, but the exact outcome is random. Additionally, we add a deeper
layer of uncertainty called ambiguity. With climate damages, it is realistic to assume that
even the probability distributions are unknown. It is taken into account that the best-
estimate probability distribution is not the right one. People are averse to both risk and
ambiguity, and the model shows that risk and ambiguity have quite different implications
for the social cost of carbon. Overall, uncertainty increases the social cost of carbon by a
substantial amount. Due to some specific assumptions, the model could be solved largely
analytically. These analytic results make the model very transparent. It is then very clear
how different parameters affect the social cost of carbon.

Due to some specific assumptions, the model in chapter 2 could be solved without
advanced numerical techniques. When these assumptions are relaxed, solving integrated
assessment models becomes more challenging due to the ‘curse of dimensionality’. Chapter
3 develops and compares two methods to numerically solve integrated assessment models
with uncertainty in continuous-time. Integrated assessment models generally have multi-
ple state variables, since the model contains both economic and climate variables. Both
methods that are introduced are suitable to solve high-dimensional problems. The first
method applies a finite difference method on sparse grids using the combination method.
The combination method combines several smaller sub-problems, which makes the algo-
rithm very suitable for parallel computing. The second method relies on stochastic grid
points and function approximation using a regression with basis functions. Both meth-
ods are applied to a high-dimensional climate-economy model with uncertainty. In the
example problem, the stochastic grid method outperforms the finite difference method.

Chapter 4 applies the stochastic grid method to a climate-economy model with a fully
stochastic climate model. This chapter investigates the dependence of the social cost of
carbon on the policy scenario. Since the social cost of carbon is forward-looking, future
carbon abatement policy already affects the social cost of carbon today. While the social
cost of carbon using the optimal policy scenario equals the optimal carbon tax, the current
policy scenario better captures the welfare loss of carbon emissions. The current policy
scenario should thus be used in cost-benefit analysis. Both policy scenarios are used in



the literature to calculate the welfare loss of carbon emissions. We show that if damages
are a convex function of temperature, the social cost of carbon is substantially higher in
the current policy scenario. It is additionally shown that the delay of climate policy is
costly when damages are convex.

Finally, chapter 5 investigates the time path of optimal carbon prices. The focus is
often on the initial optimal carbon price. However, the time path of carbon prices is just
as important. Investment decisions about carbon abatement have to be taken today while
the value of this investment depends on future carbon prices. We start with a very simple
setting in which temperature is a linear function of cumulative emissions, damages are
proportional to output and damages are a linear function of temperature. In this simple
setting, the carbon price grows in expectation at the same rate as the economy. We then
investigate the effects of several extensions on the optimal carbon price path: convex
damages, learning-by-doing, resolution of uncertainty, tipping points and temperature
caps. In the end it is concluded that the optimal carbon price should grow at a rate that
is between the growth rate of the economy and the risk-adjusted interest rate.
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8 Summary in Dutch

Antropogene CO2 emissies zijn de voornaamste oorzaak van klimaatverandering. Het is
dus duidelijk dat de CO2 uitstoot snel verminderd moet worden om klimaatverandering
tegen te gaan. Dit proefschrift focust op de volgende vraag: wat is de contante waarde
van alle schade die veroorzaakt wordt door de uitstoot van een eenheid CO2. Dit getal
wordt de social cost of carbon genoemd. De social cost of carbon is een belangrijk gegeven
voor beleidsmakers, omdat het de baten van CO2 reductie vertegenwoordigt. Dit getal
wordt geschat met een zogenoemd gëıntegreerd model, waarin een klimaatmodel en een
economisch model worden gecombineerd. De social cost of carbon is een functie van het
klimaatsysteem, de schadefunctie, het economische systeem en de nutsfunctie. Dit proef-
schrift analyseert hoe onzekerheid en verschillende nutsfuncties de social cost of carbon
bëınvloeden.

Hoofdstuk 2 introduceert een gëıntegreerd klimaat-economie model met risico op kli-
maatrampen. Het model neemt twee types onzekerheid mee. Het eerste type onzekerheid
is risico, waarbij de timing en de grootte van een klimaatramp onzeker zijn, maar de
kansverdelingen wel bekend zijn. In het geval van risico zijn de mogelijke uitkomsten en
de kansverdelingen van deze uitkomsten bekend, maar de uiteindelijke uitkomst is van
tevoren onbekend. Naast risico bekijken we ook een diepere onzekerheid genaamd am-
bigüıteit. Met klimaatrampen is het realistisch om aan te nemen dat zelfs de kansverdelin-
gen onbekend zijn. Het model neemt de mogelijkheid mee dat de beste schatting van de
kansverdeling niet de juiste kansverdeling is. Mensen mijden het liefst zowel risico als
ambigüıteit. Deze verschillende soorten onzekerheid hebben duidelijke andere effecten
op de social cost of carbon. Uiteindelijk kan geconcludeerd worden dat het meenemen
van onzekerheid zorgt voor een significant hogere social cost of carbon. Door een aantal
specifieke aannames is het mogelijk om het model bijna volledig analytisch op te lossen.
Dit zorgt voor een transparante uitkomst, waarbij het erg duidelijk is hoe verschillende
parameters de uitkomsten bëınvloeden.

Door bepaalde aannames te maken kon het model in hoofdstuk 2 opgelost worden zon-
der ingewikkelde numerieke methodes. Zonder specifieke aannames is het niet mogelijk
om analytische oplossingen te krijgen, en is het een stuk ingewikkelder om gëıntegreerde
modellen op te lossen vanwege de ‘vloek van de dimensionaliteit’. Hoofdstuk 3 ontwikkelt
en vergelijkt twee methodes waarmee gëıntegreerde modellen met onzekerheid in continue
tijd opgelost kunnen worden. Gëıntegreerde modellen hebben vaak meerdere variabe-
len, omdat het model zowel economische als klimaatgerelateerde variabelen bevat. Beide
methodes zijn geschikt om problemen met een hoge dimensie aan variabelen op te lossen.
De eerste methode is een finite difference methode waarbij gebruik wordt gemaakt van de
combinatiemethode. De combinatiemethode lost verschillende kleinere sub-problemen op
en combineert deze resultaten, waardoor het probleem makkelijk in parallel opgelost kan
worden. De tweede methode is gebaseerd op stochastische grid punten en een functie ap-
proximatie methode gebruikmakend van een regressie met basisfuncties. Beide methodes
worden toegepast op een klimaat-economie model met onzekerheid. In het voorbeeldprob-
leem presteert de stochastische grid methode het beste.

Hoofdstuk 4 past de stochastische grid methode toe op een klimaat-economie model
met een volledig stochastisch klimaatmodel. Dit hoofdstuk onderzoekt hoe de social cost of



carbon afhangt van het klimaatbeleid scenario. Toekomstig klimaatbeleid heeft namelijk
een effect op toekomstige klimaatschade en dus ook op de social cost of carbon. De
social cost of carbon in het geval van een optimaal klimaatbeleid scenario is gelijk aan de
optimale CO2 heffing. Wanneer wordt aangenomen dat het huidig beleid wordt doorgezet
kan de social cost of carbon worden gëınterperteert als het huidige welvaartsverlies door
CO2 uitstoot. Voor een kosten-baten analyse is het dus beter om uit te gaan van het
huidige beleidsscenario. Beide beleidsscenarios worden in de literatuur gebruikt om de
social cost of carbon te berekenen. We laten zien dat als klimaatschade een convexe
functie is van temperatuur, dat de social cost of carbon dan substantieel hoger is in het
huidige beleidsscenario ten opzichte van het optimale beleidsscenario. Daarnaast laten
we in dit hoofdstuk zien dat uitstel van klimaatbeleid duur is als de schade een convexe
functie is van temperatuur.

Tenslotte onderzoekt hoofdstuk 5 het tijdspad van optimale CO2 prijzen. De focus
ligt vaak op de initiële optimale CO2 prijs. Het tijdspad van CO2 prijzen is echter net zo
belangrijk. Investeringskeuzes over CO2 reductie moet op dit moment gemaakt worden,
terwijl de waarde van deze investering afhangt van toekomstige CO2 prijzen. We beginnen
met een simpele setting waarin temperatuur een lineaire functie is van cumulatieve CO2

uitstoot, klimaatschade een lineaire functie van temperatuur en waarin klimaatschade
proportioneel is aan de economie. In deze simpele setting groeit de optimale CO2 prijs in
verwachting met dezelfde groeivoet als de economie. Daarna bekijken we de effecten van
verschillende uitbreidingen op het tijdspad van CO2 prijzen: convexe klimaatschade, leren
door te doen, afname van onzekerheid, tipping points en temperatuurlimieten. Uitein-
delijk kan geconcludeerd worden dat de optimale CO2 prijs zou moeten groeien met een
groeivoet die tussen de groeivoet van de economie en de risicogecorrigeerde rente ligt.
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