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Exploring dynamic metabolomics data 
with multiway data analysis: a simulation study
Lu Li1*, Huub Hoefsloot2, Albert A. de Graaf3, Evrim Acar1* and Age K. Smilde1,2 

Abstract 

Background:  Analysis of dynamic metabolomics data holds the promise to improve 
our understanding of underlying mechanisms in metabolism. For example, it may 
detect changes in metabolism due to the onset of a disease. Dynamic or time-
resolved metabolomics data can be arranged as a three-way array with entries organ-
ized according to a subjects mode, a metabolites mode and a time mode. While such 
time-evolving multiway data sets are increasingly collected, revealing the underlying 
mechanisms and their dynamics from such data remains challenging. For such data, 
one of the complexities is the presence of a superposition of several sources of vari-
ation: induced variation (due to experimental conditions or inborn errors), individual 
variation, and measurement error. Multiway data analysis (also known as tensor factori-
zations) has been successfully used in data mining to find the underlying patterns in 
multiway data. To explore the performance of multiway data analysis methods in terms 
of revealing the underlying mechanisms in dynamic metabolomics data, simulated 
data with known ground truth can be studied.

Results:  We focus on simulated data arising from different dynamic models of increas-
ing complexity, i.e., a simple linear system, a yeast glycolysis model, and a human cho-
lesterol model. We generate data with induced variation as well as individual variation. 
Systematic experiments are performed to demonstrate the advantages and limitations 
of multiway data analysis in analyzing such dynamic metabolomics data and their 
capacity to disentangle the different sources of variations. We choose to use simula-
tions since we want to understand the capability of multiway data analysis methods 
which is facilitated by knowing the ground truth.

Conclusion:  Our numerical experiments demonstrate that despite the increasing 
complexity of the studied dynamic metabolic models, tensor factorization methods 
CANDECOMP/PARAFAC(CP) and Parallel Profiles with Linear Dependences (Paralind) 
can disentangle the sources of variations and thereby reveal the underlying mecha-
nisms and their dynamics.

Keywords:  Dynamic metabolomics data, Tensor factorization, CANDECOMP/PARAFAC, 
Paralind
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Background
With the availability of advanced analytical measurement techniques such as Nuclear 
Magnetic Resonance (NMR) Spectroscopy and Mass Spectrometry (MS) coupled to 
gas-chromatography (GC) or liquid-chromatography (LC), it is increasingly popular to 
collect dynamic or time-resolved (or longitudinal) metabolomics data from biological 
systems. This is more so since such data holds the promise to be able to reveal under-
lying biological processes and mechanisms. Examples are from the field of metabolism 
and health, where challenge tests are used to probe the health status of individuals [1]; 
from food science where the metabolic fate of certain food compounds are studied [2]; 
in the study of diseases where biomarkers for diseases and early transitions to disease 
states are captured [3], and so on.

The main characteristics of the mentioned dynamic metabolomics studies are the lim-
ited number of time points at which measurements are taken from a limited number of 
subjects, and the superposition of different sources of variations. In terms of different 
sources of variation, first, there is induced variation which can be caused by different 
treatments, e.g., the Qingkailing injection group considered in [4], or caused by a dis-
ease whereby one enzyme has a much lower than usual activity, e.g., the human mutants 
described in [5]. Secondly, there is individual (also called biological) variation which 
is usually quite large [6]. Finally, there is (unavoidable) measurement error (also called 
technical error) which depends on the instrument and can be considerable [7]. All of 
these make the analysis of such dynamic metabolomics data challenging.

Given these challenges, dimension reduction methods are promising approaches since 
they are ideal for noise reduction (e.g., dealing with measurement error) and for captur-
ing primary underlying sources of variation (see Smilde et al. [8] for a review on differ-
ent methods to analyze dynamic metabolomics data). Dimension reduction techniques 
use the fact that there is an underlying low dimensionality in the data, and prototypi-
cal examples of such methods for so-called two-way data, such as Principal Component 
Analysis (PCA) and Orthogonal Partial Least Squares (OPLS), have shown their power 
[9], with extensions to dynamic probabilistic PCA for longitudinal metabolomics data 
analysis [10]. When data has more than two modes such as subjects, metabolites and 
time, a multiway array (also referred to as a higher-order tensor) can be constructed 
rather than treating the data as a two-way array, and dimension reduction methods for 
multiway arrays, known as tensor factorizations [11–14] can be used to analyze such 
temporal data. Compared to two-way PCA-based methods previously used to analyze 
time-evolving metabolomics data, tensor factorizations have the promise to provide the 
underlying patterns in all modes simultaneously, e.g., patterns in subjects, metabolites 
and time modes. Tensor factorizations have been successfully used in analyzing time-
evolving data in data mining for discussion tracking [15], temporal link prediction [16], 
analysis of data streams [17], neuroimaging data analysis [18–20], and the analysis of 
electronic health records [21]. However, the use of tensor methods in dynamic metabo-
lomics analysis has so far been limited due to the lack of such longitudinal metabolomics 
data until recently, and due to the limited understanding of the performance of the 
methods in metabolomics. One exception is the use of the CANDECOMP/PARAFAC 
(CP) [22, 23] tensor model combined with ASCA (ANOVA-simultaneous component 
analysis) to study the effect of treatments in time on a toxicological insult in rats [24].
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In this paper, we explore the potential of tensor factorizations in analyzing dynamic 
metabolomics data and revealing the underlying mechanisms and their dynamics. 
To have the ground truth and study the limitations and advantages of such methods, 
we generate data through simulations of dynamic systems with increasing complex-
ity, including a constructed linear open system, the yeast glycolysis model [25] and 
the human cholesterol model [5]. Both the glycolysis model and the cholesterol model 
are in silico models. These in silico models are realistic models of a biological system 
and allow for testing different scenarios of induced variation. To better mimic the real 
data, we introduce individual variation in these in silico models by randomly perturb-
ing the kinetic parameters in the equations, and also introduce mutants, i.e., induced 
variation, by giving a decrease of specific parameters. We arrange the simulated data as a 
three-way array with modes: subjects, metabolites, and time, as shown in Fig. 1. The con-
structed multiway array is then analyzed using one of the most popular tensor models 
known as the CANDECOMP/PARAFAC model. We choose this model instead of other 
tensor models, e.g., the Tucker3 model [26], since the CP model is unique (up to per-
mutation and scaling ambiguities) [13, 27]. Uniqueness leads to interpretable patterns 
which are important when analyzing dynamic metabolomics data. Moreover, we con-
sider a restricted CP model, i.e., the Paralind (Parallel Profiles with Linear Dependences) 
model [28], since it can reveal the latent structure better than the CP model in the pres-
ence of linearly dependent factors.

Methods
Dynamic systems and data generation

The dynamics of metabolite concentrations can be modeled by differential equations of 
the form

where the vector x represents the metabolite concentrations, the derivative dx
dt

 describes 
the change of metabolite concentrations over time, the vector v describes the fluxes 
of reactions between the metabolites, and the matrix S is the stoichiometric matrix 
describing the metabolic network. Each row in the matrix S represents a metabolite, 
each column corresponds to a reaction, and each entry stands for the stoichiometric 
coefficient of a metabolite in a reaction for which a negative coefficient will be obtained 
with the metabolite consumed while a positive number will be given with the metabolite 

(1)
dx

dt
= f (v) := Sv,

x(0) = x0,

Fig. 1  An R-component CP model of a three-way array with modes: subjects, metabolites, and time 
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produced. The vector v is usually a function of the concentrations of the metabolites 
with kinetic parameters.

Linear open system

If the fluxes are linear functions of concentrations: f (v) = Ax + b , then the differen-
tial equation can be rewritten as dx

dt
= Ax + b . We build a linear open system with 11 

internal metabolites, where b = 103 × [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T and A is a tridi-
agonal matrix of size 11× 11 . The subdiagonal elements in matrix A are set to be 
103 × [0.2, 0.1, 0.5, 0.3, 2, 1, 3, 0.4, 1, 0.4]T and the superdiagonal elements are set to 
103 × [0.3, 0.5, 2, 2, 0.3, 3, 0.5, 1, 0.2, 0.4]T . In addition, to satisfy the mass conservation 
law, the diagonal elements are chosen such that the summation of each column is zero 
except that A(11, 11) = −103 . The initial value is set to x0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T . 
More details about the linear open system can be found in Additional file 1: Section 1. 
When we generate the data, we consider the simulation on [0, 0.2]  min and pick the 
solution at time points (6+ 5× k)× 0.002 for k = 0, 1, . . . , 19 . The pathway is shown in 
Additional file 1: Fig. S1.

Glycolysis model

The glycolysis model was proposed by Van Heerden et al. [25], and the non-linear term 
v in Eq. (1) contains parameters describing the kinetic equations. This model is an open 
system, but much more complex than the linear open system due to the additional loops, 
e.g., the feed-forward control loop from metabolite FBP to enzyme PYK, the ADP-ATP 
cycle, and the NADH-NAD cycle shown in the pathway plot in Additional file  1: Fig. 
S3; more details about this model can be found in Additional file 1: Section 2. When we 
generate the data, we use the default initial values considered in [25]. We consider the 
simulation on [0, 0.2]min1, and pick the solution at time points (6+ 5× k)× 0.002 for 
k = 0, 1, . . . , 19.

Cholesterol model

The cholesterol model was proposed by van de Pas et al. [5], and the non-linear term 
v in Eq. (1) for this model contains parameters in the kinetic equations. Similar to the 
glycolysis model, this model is also an open system but with more cycles among differ-
ent cholesterols; see the pathway in Additional file 1: Fig. S8. The model was validated by 
data with ten known mutations, including, for example, the mutations that cause famil-
ial hypercholesterolemia (FH), fish eye disease, Smith–Lemli–Opitz syndrome (SLOS), 
and other diseases [5]. For each mutation, some particular enzymes have much lower 
activities than in the usual situation. In this paper, we consider these different types of 
mutants as different sources of induced variations. We generate the data by simulating 
the model using the same initial settings as in [5], i.e., all normal subjects start with the 
given initial metabolite conditions and the mutant subjects start with the steady state 
conditions of the normal subjects. The way we pick the time points is as follows: for the 

1  The reactions in the glycolysis model are very fast and the concentrations of metabolites reach the steady state quickly. 
Therefore, we focus on a short time interval where dynamic change shows up. However, it is feasible to acquire real 
metabolomics data at such a timescale; see in [29] where the sampling time can be 220 ms per sample when extracting 
the intracellular metabolites.
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time points used in [5], i.e., (logspace(0,6,1000)-1)2, we start from the first time point 
and pick every 24th time point until we obtain 21 time points in total3.

Multiway data analysis

CANDECOMP/PARAFAC (CP) model

The CP model, which stems from the polyadic form of a tensor [30], has become popu-
lar since it was introduced in 1970 [22, 23]. The CP factorization represents a tensor as 
a sum of rank-one tensors (see Fig. 1) and can be viewed as one generalization of the 
matrix Singular Value Decomposition (SVD). Given a third-order tensor X ∈ R

I×J×K  , 
an R-component CP model of X is as follows:

where the rank-one components consist of vectors ar , br and cr which are the columns 
of factor matrices A ∈ R

I×R,B ∈ R
J×R and C ∈ R

K×R , respectively; �r is a scalar, and ◦ 
denotes the vector outer product. In this definition, it is assumed that columns of A,B,C 
are normalized to norm one, and the weights are absorbed by the vector � . Unlike most 
dimension reduction methods for two-way data sets, the CP model is unique up to per-
mutation and scaling ambiguities under mild conditions, without imposing additional 
constraints [13, 27]. The uniqueness allows the CP model to give interpretable results, 
making it a much-preferred tool for interpretable data analysis. When interpreting the 
results, the factor loadings in the subjects, metabolites and time modes should be viewed 
together for each component.

The CP model can also be used to analyze data with missing entries [31, 32] by solving 
the following optimization problem:

where the operator ∗ is the Hadamard product, ‖ . ‖ denotes the Frobenius norm for 
higher-order tensors/matrices and the 2-norm for vectors, and entries of W ∈ R

I×J×K  
are as follows:

Paralind model

For three-way data with patterns generated by underlying sources of variations with 
linearly dependent effects in at least one mode, the most appropriate CP model should 
show these dependences and such a solution is rank deficient. However, the standard 
CP model might fail to reveal the true latent structure due to the noise in the data [28]. 
Instead, a special case of CP model, namely the Paralind model [28] which was originally 

X ≈ X̂ = ��;A,B,C� :=
R
∑

r=1

�rar ◦ br ◦ cr ,

min
A,B,C

∥

∥W ∗ (X− ��;A,B,C�)
∥

∥

2
,

(2)wijk =

{

1 if xijk is known,
0 if xijk is missing.

2  The time unit is day in the cholesterol model, and the time interval is set to be long enough in the experiment in [5] so 
that the system can reach its steady state.
3  In MATLAB notation: consider the vector tspan=logspace(0,6,1000)-1; the picked time points are tspan(1:24:500).
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introduced as a restricted Tucker model [33], is more favourable. This model is partially 
unique, i.e., it has uniqueness only in the factors that have linearly independent factor 
vectors but non-uniqueness in the linearly dependent factors. It represents the implicit 
linear dependencies inherent in the data explicitly and thus recovers the latent structure 
more accurately. In addition, since fewer parameters are used in the Paralind model, it is 
less prone to overfitting. The Paralind model with linearly dependent factors in the first 
mode can be formulated as follows:

where Ã = AH with A ∈ R
I×S and H ∈ R

S×R , B ∈ R
J×R and C ∈ R

K×R . The matrix H is 
called the ‘dependency matrix’ which stores the linearly dependent relations. We denote 
this model by Paralind(S, R, R). Take a 3-component model with two components equal 
in the first mode as an example, the matrix H in the Paralind(2,3,3) can be given as

Numerical experiments
In this section, we first present the set-ups we used to generate the datasets and then 
demonstrate CP and Paralind models’ performance in terms of capturing the underlying 
mechanisms and dynamics.

Experimental set‑up and details

Before introducing the datasets, we first define the individual and induced variations.

•	 The individual variation refers to the random perturbations added to the constant 
kinetic parameters. The level of the individual variation (denoted by β ) depends on 
the level of the perturbations. For the linear system, the individual variation is intro-
duced by adding random perturbations to the superdiagonal and subdiagonal ele-
ments within a certain level, e.g., within 1%4 of the default values (i.e., β = 0.01 ) and 
keeping the summations of each column to be zero except that A(11, 11) = −1× 103 
is always enforced5 . For the glycolysis and cholesterol models, the individual vari-
ation is introduced by adding random perturbations within a certain level of the 
kinetic parameters, e.g., within 2% of the default values ( β = 0.02).

•	 The induced variation refers to the change given to a specific kinetic parameter and 
the level of the induced variation (denoted by α ) depends on the level of the change.

We consider the following two types of datasets.

X ≈ X̂ = ��; Ã,B,C� =
R
∑

r=1

�r ãr ◦ br ◦ cr ,

H =

[

1 1 0
0 0 1

]

.

4  We choose small numbers to mimic systems with small biological variations, but this number can also be large as dis-
cussed later in the paper.
5  These restrictions are always used in the data generation for the linear open system to ensure the mass conservation 
law.
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•	 Dataset with one source of induced variation. This type of dataset contains 20 sub-
jects:

•	 (Normal subjects) The first 10 subjects are obtained by running simulations with 
only individual variation at level β;

•	 (Abnormal subjects) The next 10 subjects are obtained by running simulations 
with individual variation at level β and induced variation as giving a 50% decrease 
of the default value of A(7, 6) for the linear open systems (we denote these sub-
jects by abnormal_ A(7,6) subjects); for the glycolysis model, as having a 50% 
decrease of the default values of VmaxPFK6 (these subjects are denoted by abnor-
mal_VmaxPFK subjects); for the cholesterol model, as using mutant1 ( α = 0.62 ) 
(these subjects are denoted by abnormal_mutant17 subjects).

•	 Dataset with two sources of induced variations. This type of dataset contains 30 
subjects and is generated for glycolysis and cholesterol models:

•	 (Normal subjects) The first 10 subjects are generated in the same way as the nor-
mal subjects described above, with β = 0.02.

•	 (Abnormal subjects) The next 10 subjects are abnormal_VmaxPFK ( α = 0.50 ) in 
the glycolysis model and abnormal_mutant6 ( α = 0.35 ) in the cholesterol model, 
all with β = 0.02.

•	 (Abnormal subjects) The last 10 subjects are abnormal_VmaxPYK ( α = 0.50 ) in 
the glycolysis model and abnormal_mutant10 ( α = 0.95 ) in the cholesterol model, 
all with β = 0.02.

Each dataset is then arranged as a third-order tensor with subjects, metabolites and time 
modes. Datasets generated by the linear open system and glycolysis model are of size # 
of subjects × 11 metabolites × 20 time points, and datasets generated by the cholesterol 
model are of size # of subjects × 8 metabolites × 21 time points.

Data preprocessing

Before the analysis, we center each third-order tensor across the subjects mode [34]. In 
addition, since concentrations of different metabolites are of different ranges, the tensor 
is scaled within the metabolites mode by the root mean squared value of each slice in the 
metabolites mode [34].

Model selection

When assessing different models and determining the number of components, we 
use several diagnostics, in particular, the model fit, core consistency diagnostic, 

6  Here, enzymes other than VmaxPFK can also be considered. We choose VmaxPFK since we want to start with one 
enzyme positioned in the middle part of the pathway.
7  If the induced variation is defined by a decrease in other enzyme reaction rates, e.g., 50% decrease of 
VmaxPYK/mutant6/mutant10, then the abnormal subjects are denoted by abnormal_VmaxPYK/abnormal_
mutant6/abnormal_mutant10, respectively.
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cross-validation and Tucker’s congruence coefficient. The model fit (also often referred 
to as explained variance) is defined as:

where X and X̂ denote the original data and the data approximation by the model, 
respectively. A fit value of 100% means that X is fully explained by the model, while a 
fit value smaller than 100% implies that there is an unexplained part left in the residuals. 
An evident change in model fit for different models (e.g., models with different number 
of components) indicates a significant gain that should be considered when pursuing a 
better model.

The core consistency diagnostic has also been shown to be useful for determining the 
number of components in a CP model [35]. The core consistency of a CP model is defined 
by comparing the degree of superdiagonality of the core array8 of the CP model and the 
core array obtained by modeling the data with a Tucker3 model [26] using the CP fac-
tors. The core consistency value close to 100% indicates an appropriate model, and it is 
expected to drop if too many components are used.

Finally, we use missing data estimation performance through cross-validation for 
model selection. More precisely, we add some noise to the data, i.e.,

where N  is a third-order tensor with entries randomly drawn from a standard normal 
distribution, and η is the level of noise. We randomly set 20% of tensor entries to be 
missing, preprocess the data and use different models (i.e., CP and Paralind) to recover 
missing entries. We repeat this process 20 times to assess the performance of the meth-
ods using different sets of randomly missing entries. The performance of different mod-
els are then evaluated using the tensor completion score (TCS) defined as [31]

where W  is defined by Eq. (2). TCS can be viewed as an evaluation of the test error for a 
model and lower value indicates that the model behaves better in capturing the underly-
ing patterns in the data.

CP models may suffer from a two-factor degeneracy (see [36] for more details on 
degeneracy). To assess whether the model has a two-factor degeneracy, we use the Tuck-
er’s congruence coefficient (denoted by TC) [37]. The TC value for the ith and jth com-
ponent is defined as:

Fit = 100× (1−

∥

∥

∥
X− X̂

∥

∥

∥

2

�X �2
),

Xnoise = X+ ηN
�X�

�N�
,

TCS =
�(1−W) ∗ (X̂−Xnoise)�

�(1−W) ∗Xnoise�
,

8  The core array of a CP model is the core tensor obtained by expressing the CP model as a special case of a Tucker3 
model. The core array of the CP model is a superdiagonal tensor with � , i.e., weights of the rank-one components, on the 
superdiagonal, and all other entries as zero.
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which corresponds to the multiplication of cosine similarity ( Cij =
ai

Taj

�ai ��aj �
 ) of the two 

components in each mode. In this paper, we take the TC value as TC = TCi0j0 where 
|TCi0j0 | = max

i,j
|TCij| . A TC value close to − 1 indicates a degenerate model, which is not 

a valid model.

Implementation details

The CP models are fitted using cp-opt [38] and cp-wopt [31] (to data with missing 
entries) from the Tensor Toolbox version 3.1 [39] using Limited Memory BFGS with 
bounds (LBFGS-B)9 as the optimization algorithm. We impose non-negativity constraint 
in the time mode. The Paralind model10 is fitted using the algorithm introduced by Bro 
et al. [28]. In order to get unique models, we enforce the factor matrix in the metabo-
lites mode to be orthogonal and in the time mode to be non-negative when fitting the 
Paralind model. Multiple random initializations are used to avoid local minima. For the 
computation of core consistency, we use the function corcond from the N-way toolbox 
[40]. All experiments are carried out in MATLAB (2020a release).

Results and discussions

Linear open system

Dataset with one source of induced variation We focus on the data with the induced 
variation as 50% decrease of the default value of A(7, 6) , and the individual variation 
at level β = 0.01 . We first consider the analysis of the data using a CP model. From 
Table 1, we can see that the core consistency drops sharply from a 2-component model 
to a 3-component model. This implies that a 2-component model might be more suit-
able. However, rank deficiency is observed in the subjects mode for the 2-component CP 
model (the components in the subjects mode having a similarity score C12 = 1.00 ). This 
indicates that the data indeed follows a Paralind(1,2,2) model, and the cross-validation 
performance shown in Fig.  2 implies that the Paralind(1,2,2) model is better than the 
2-component CP model in recovering the left-out data.

TCij =
ai

T
aj

�ai �
∥

∥aj

∥

∥

bi
T
bj

� bi �
∥

∥ bj

∥

∥

ci
T
cj

� ci �
∥

∥ cj

∥

∥

,

Table 1  Explained variance (fit), core consistency (CC), Tucker’s congruence coefficient (TC), cosine 
similarity score of the first two components ( C12 ) in the subjects mode and number of components 
(R) for CP models used to analyze the data generated by the linear open system with one source of 
induced variation and individual variation at level β = 0.01

R Fit CC TC C12

1 88.15 100

2 98.55 100 0.10 1.00

3 99.45 − 16 − 0.68

9  We use the implementation of LBFGS-B available on https://​github.​com/​steph​enbec​kr/L-​BFGS-B-C.
10  For Paralind model, we use the implementation on http://​www.​models.​life.​ku.​dk/​paral​ind.

https://github.com/stephenbeckr/L-BFGS-B-C
http://www.models.life.ku.dk/paralind
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The Paralind(1,2,2) model explains 98.38% of the data, which is slightly lower than the 
CP model due to the extra restriction. The subject mode of Paralind(1,2,2) model shows 
a clear separation between the two groups (Fig.  3b). From the first component in the 
metabolites mode (Fig. 3b), we observe that metabolites M1, M2, M3 and M4 have large 
absolute coefficients and in the time mode the first component captures the dynam-
ics shown in these metabolites. The coefficients of the remaining metabolites for this 
component are close to zero. For the second component, oppositely, metabolites M7, 
M8, M9, M10, M11 and M5, M6 have large coefficients, and the dynamics shown in these 
metabolites are captured by the second component in the time mode. Besides, from 
both components in the metabolites mode (Fig. 3b), we observe a jump change between 
metabolites M6 and M7, which is consistent with the switch of the blue and red lines 
between these two metabolites shown in Fig. 3a. This change is due to the decrease of 
A(7, 6) in the abnormal_ A(7,6) subjects, and the successful capture of the change by the 
model results in the successful separation of the normal (the first 10 subjects) and abnor-
mal_ A(7,6) (the last 10 subjects) groups in the subjects mode, as observed in Fig. 3b.

When larger individual variation is considered, the rank deficiency disappears and 
CP models capture the underlying patterns better, see for example Fig. 4, where the 

Fig. 2  Cross-validation performance of the Paralind(1,2,2) model and the 2-component CP model for the 
data generated by the linear open system with one source of induced variation and individual variation 
at level β = 0.01 . The noise level is η = 0.3 , and 20 TCS values are used in the boxplots. The missing data 
patterns are the same for both CP and Paralind(1,2,2), and thus the TCS is paired. The difference in TCS is 
statistically significant based on the paired t-test

Fig. 3  Data generated by the linear open system with one source of induced variation and the level of 
individual variation as β = 0.01 , and the factors captured using a Paralind(1,2,2) model. In Fig. 3a, legend: red 
(normal), blue (abnormal_ A(7,6))
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level of the individual variation is β = 0.3 and the similarity score of the two com-
ponents in the subjects mode for the 2-component CP model is C12 = −0.24 . The CP 
model explains 62.42% of the data. From the first component in the metabolites and 
time modes presented in Fig. 4b, we observe that all metabolites except for M2 have 
coefficients with large absolute values, and the component in the time mode captures 
the dynamic seen in all metabolites, to some extent. From the second component 
in the metabolites mode (4b), we observe that metabolites M6, M7, M8, M9, M10 and 
M11 have large coefficients, and in the time mode this component captures the fast 
decrease shown in these metabolites. The dynamics in M9, M10 and M11 are mainly 
captured by the second component, however the dynamics in metabolites M5, M6, M7 
and M8 are a mixture of the two components in the time mode, as shown in Fig. 4a. 
Besides, we observe a jump change between metabolites M6 and M7 in the second 
component in the metabolites mode (4b), similar to the jump change shown in Fig. 3b. 
This is consistent with the switch of the blue and red lines in metabolites M6 and M7 
shown in Fig. 4a and is due to the decrease of A(7, 6) in the abnormal_ A(7,6) sub-
jects. Thus it is reasonable that the second component in the subjects mode can sepa-
rate to some extent the normal and abnormal_ A(7,6) subjects, as shown in Fig. 4c.

Fig. 4  Data generated by the linear open system with one source of induced variation and the individual 
variation at level β = 0.3 , as well as the factors captured by a 2-component CP model. In Fig. 4a, c, legend: red 
(normal), blue (abnormal_ A(7,6))



Page 12 of 22Li et al. BMC Bioinformatics           (2022) 23:31 

Auxiliary experiments indicate that the behaviour of CP models relies on 
the kinetic coefficients. For some particular cases, degeneracy is observed for 
CP models, e.g., the setting with b = 103 × [0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T , and 
matrix A a tridiagonal matrix for which the diagonal elements are set to be 
103 × [−1,−2,−2,−2,−2,−2,−2,−2,−2,−2,−2] and the superdiagonal and subdiag-
onal elements are set to be 103 × [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] . For data generated by the linear 
open system with such a setting and a small individual variation, e.g, β = 0.01 , the CP 
model is degenerate. However, the Paralind model is useful in such cases as well and 
captures the underlying dynamics; see Additional file 1: Fig. S2.

Glycolysis model

Dataset with one source of induced variation
We consider the data with the induced variation as 50% decrease of the default value 

of VmaxPFK, and the individual variation at level β = 0.02 . Temporal profiles of each 
metabolite are shown in Fig. 5a. Based on Table 2, we use a 2-component CP model, and 
as in the linear open system, we observe rank deficiency in the subjects mode. To account 
for rank deficiency, we instead use a Paralind(1,2,2) model to analyze this dataset. Cross-
validation performance of CP versus Paralind also indicates that the Paralind(1,2,2) 
model, which explains 96.05% of the data, is a better choice for this dataset (see Addi-
tional file 1: Fig. S4). The two groups of subjects can be separated well and compared to 

Table 2  Explained variance (fit), core consistency (CC), Tucker’s congruence coefficient (TC), cosine 
similarity score of the first two components ( C12 ) in the subjects mode and number of components 
(R) for CP models used to analyze the data generated by the glycolysis model with one source of 
induced variation and individual variation at level β = 0.02

R Fit CC TC C12

1 89.67 100

2 96.31 100 0.06 0.99

3 98.17 − 5 − 0.74

Fig. 5  Data generated by the glycolysis model with one source of induced variation and individual variation 
at level β = 0.02 , and factors extracted from this dataset using a Paralind(1,2,2) model. In Fig. 5a, legend: red 
(normal), blue (abnormal_VmaxPFK)
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the linear system, the factor plot in the metabolites mode shown in Fig. 5b is more com-
plex due to the complexity of the network.

The first component shows that there are two major jump changes, one between 
metabolites F6P and FBP and the other between metabolites PEP and PYR, which are 
consistent with the switch of the blue and red lines between these metabolites shown 
in Fig.  5a and are due to the decrease of VmaxPFK. The change between metabolites 
F6P and FBP corresponds directly to the decrease of VmaxPFK, similarly as the change 
shown in Fig. 3 for the linear open system. The change between metabolites PEP and 
PYR corresponds to the reduction of the activity of the enzyme VmaxPYK, which is due 
to the decrease of FBP caused by reducing VmaxPFK and the feed-forward control loop 
shown in the pathway plot (Additional file 1: Fig. S3). Metabolites G6P, F6P, FBP and 
PYR have large absolute coefficients on the first component and the dynamics from the 
third time points shown in these metabolites are well captured by the first component 
in the time mode, as demonstrated in Fig.  5b. The bumps shown in metabolites FBP 
and PYR can be captured by the linear combinations of the two components in the time 
mode. Models with an extra component will be helpful for capturing more variance, e.g., 
the bump in G6P, as illustrated in Additional file 1: Fig. S5. However, we prefer to use the 
Paralind (1,2,2) model since it captures most of the dynamic variations and is easier to 
interpret.

The second component in the metabolites mode indicates a jump change between 
metabolites BPG and P3G, which is consistent with the switch of the blue and red lines 
shown in Fig. 5a. This switch results from the increase of PEP, P2G and P3G caused by 
the drop of the reaction rate of VmaxPYK11, and the decrease of FBP, TRIO and BPG due 
to the reduction of VmaxPFK for the abnormal_VmaxPFK subjects. Metabolites GLCi, 
BPG, and ACE have large absolute scores on the second component and the dynamics 
of these metabolites are well captured by the second component in the time mode, as 
shown in Fig. 5b. The dynamics shown in metabolites TRIO, P3G, P2G and PEP are a 
mixture of both components in the time mode.

When a higher level of individual variation is considered, the linear dependence in the 
subjects mode gets weaker, see for example Additional file 1: Table S1, where the level of 
individual variation is β = 0.36 and the cosine similarity score of the two components in 
the subjects mode for a 2-component CP model is C12 = −0.28 . Thus CP models instead 
of Paralind models are preferable. From Additional file 1: Table S1, core consistency val-
ues indicate using a 2- or 3-component model. We choose the 2-component CP model 
since the additional factor in the 3-component model does not provide useful informa-
tion. The 2-component CP model explains 54.12% of the data. From the first compo-
nent in the metabolites and time mode (see Fig. 6b), we observe that metabolites P3G, 
P2G and PEP have large coefficients and the dynamics of those metabolites, as shown in 
Fig. 6a, are captured. From the second component in the metabolites mode (see Fig. 6b), 
we observe that metabolites F6P, FBP, TRIO and BPG have large absolute coefficients 
and in most of these metabolites the blue and red lines are separable. This is consistent 
with the separation observed in the subjects mode by the second component between 

11  The decrease of the reaction rate of VmaxPYK is due to the reduction of VmaxPFK which results in a decrease of FBP, 
and the effect of the feed-forward control loop.
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the normal and abnormal_VmaxPFK subjects, as illustrated in Fig. 6c. The second com-
ponent in the time mode captures the dynamics shown by some of the subjects in these 
metabolites (Fig. 6a).

For data with even larger individual variation, the CP models might not be able to 
separate the groups. The failure results from (i) the individual variation dominating 
the variance, see for example Additional file 1: Fig. S6, where the level of the individ-
ual variation is equal to the induced variation ( β = α = 0.50 ), (ii) the limited number 
of subjects with the possibility of having one or two subjects showing idiosyncratic 
behavior (see the profiles for BPG in Additional file  1: Fig. S6a) and thus extracting 
commonality becomes challenging. Indeed, when the number of subjects is larger 

Fig. 6  Data generated by the glycolysis model with one source of induced variation and the level of the 
individual variation as β = 0.36 , and the factors captured by a 2-component CP model. In Fig. 6a, c, legend: 
red (normal), blue (abnormal_VmaxPFK)

Table 3  Explained variance (fit), core consistency (CC), Tucker’s congruence coefficient (TC), cosine 
similarity score of the first two components ( C12 ) in the subjects mode and number of components 
(R) for CP models used to analyze the data generated by the glycolysis model with two sources 
of induced variation as 50% decrease of VmaxPFK and 50% decrease of VmaxPYK as well as 
individual variation at level β = 0.02

R Fit CC TC C12

1 59.83 100

2 88.68 100 − 0.00 0.09

3 96.04 1 − 1.00
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(see Additional file 1: Fig. S7), the 3-component CP model which explains 66.56% of 
the data can capture the main change (decrease of VmaxPFK) in the data and separate 
the normal and abnormal_VmaxPFK subjects successfully even for β = α = 0.50 . Idi-
osyncratic behavior has become more common, thereby facilitating the modeling.

Dataset with two sources of induced variations We consider the data generated 
with the individual variation at level β = 0.02 and two sources of induced variation 
as 50% decrease of the default value for VmaxPFK and 50% decrease of the default 
value for VmaxPYK. Table 3 indicates using a 2-component CP model which explains 
88.68% of the data.

From the first component in the metabolites and time mode (see Fig. 7b), we observe 
that metabolites GLCi, G6P, F6P, FBP, TRIO, BPG, PYR and ACE have large absolute 
coefficients and the dynamics in most of these metabolites, shown in Fig. 7a, are cap-
tured. Besides, the blue lines are separable from the other lines in these metabolites 
as shown in Fig. 7a. This is consistent with the observation that the first component 
in the subjects mode (Fig.  7c) separates the abnormal_VmaxPFK subjects from the 
others. Moreover, we observe a jump change between metabolites F6P and FBP and 
also between PEP and PYR, which is in accordance with the switch of the blue lines 
with the other lines in Fig. 7a due to the decrease of VmaxPFK and the feed-forward 

Fig. 7  Data generated by the glycolysis model with the two sources of induced variations as 50% decrease 
of VmaxPFK and 50% decrease of VmaxPYK, and the individual variation at level β = 0.02 , as well as factors 
extracted from the data using a 2-component CP model. In Fig. 7a, c, legend: red (normal), blue (abnormal_
VmaxPFK), green (abnormal_VmaxPYK)
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control loop. These observations are similar to what have been noticed in Fig. 5a, b 
for the glycolysis model with one source of induced variation. From the second com-
ponent in the metabolites and subjects mode (see Fig. 7b, c), we see that metabolites 
P3G, P2G and PEP have large scores, and the three types of subjects can be sepa-
rated from each other. This makes sense since different colors of lines are separable in 
metabolites P3G and P2G, as shown in Fig. 7a. Moreover, we observe a jump change 
between metabolites PEP and PYR on this component in the metabolites mode. This 
is compliant with the switch of the green lines with the other lines shown in Fig. 7a 
and it is due to the reduction of VmaxPYK. In the time mode, we observe that the 
dynamics shown in metabolites P3G and P2G are captured by the second component.

Cholesterol model

Dataset with one source of induced variation We consider the data with the induced 
variation as mutant1 and the individual variation at level β = 0.02 . Temporal profiles 
of the preprocessed data are shown in Fig. 8a. Additional file 1: Table S2 indicates using 
a 2- or 3-component model, and rank deficiency is observed in the subjects mode for CP 
models with both two and three components.

Thus we use the Paralind model, and from the interpretation, we prefer a 2-compo-
nent model. Moreover, cross-validation performance (Additional file 1: Fig. S9) shows 
that the Paralind(1,2,2) model behaves better than the 2-component CP model. The Par-
alind(1,2,2) model explains 89.10% of the data. From the factor plot in the subjects mode 
(Fig.  8b), we observe a clear separation between the normal and abnormal_mutant1 
subjects. From the first component in the metabolites and time mode (see Fig. 8b), we 
observe that metabolites HDL-CE, nonHDL-C and Per-C have large coefficients while 
coefficients of the remaining metabolites are close to zero; the component in the time 
mode captures the dynamics shown in metabolite nonHDL-C and also a mixture of 
the dynamics in metabolites HDL-CE and Per-C, as illustrated in Fig.  8a. Moreover, 

Fig. 8  Data generated by the cholesterol model with one source of induced variation, and the individual 
variation at level β = 0.02 , as well as the factors extracted from this dataset using a Paralind(1,2,2) model. In 
Fig. 8a, legend: red (normal), blue (abnormal_mutant1)
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we observe a clear jump change between metabolites HDL-CE and nonHDL-C which is 
consistent with the switch of the blue and red lines in Fig. 8a and is due to an elevation of 
metabolites nonHDL-C and a reduction of metabolites HDL-CE for abnormal_mutant1 
subjects caused by mutant1. From the second component in the metabolites and time 
mode (see Fig. 8b), we see that metabolites Liv-FC, Int-FC, Liv-CE and Int-CE 
have large coefficients and the component in time mode captures the common dynamics 
shown in these metabolites, as shown in Fig. 8a; we also observe a jump change between 
metabolites nonHDL-C and Per-C, which is consistent with the switch of the blue and 
red lines shown in Fig. 8a.

This change is also due to mutant1 since the reaction rate from nonHDL-C to both 
Liv-FC and Per-C decreases which leads to a growth of nonHDL-C and a decrease of 
Per-C.

When high levels of individual variations are considered, rank deficiency in the 
subjects mode disappears, and CP models are preferable. We consider data with the 
individual variation at level β = 0.65 . Based on Additional file  1: Table  S3, we use a 
4-component CP model which explains 79.15% of the data. From the first component 
in the metabolites and time mode (see Fig.  9a), we observe that metabolites HDL-CE 
and nonHDL-C have the largest absolute coefficients and the dynamics in metabolite 

Fig. 9  Data generated by the cholesterol model with one source of induced variation and the individual 
variation at level β = 0.65 , and the factors extracted from this dataset using a 4-component CP model. In 
Fig. 9a, c, legend: red (normal), blue (abnormal_mutant1)
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HDL-CE are captured, as illustrated in Fig. 9b. In addition, we see in Fig. 9c that the first 
component in the subjects mode separates the normal and abnormal_mutant1 subjects. 
This is reasonable since the blue and red lines are separable in metabolites HDL-CE and 
nonHDL-C, as shown in Fig. 9a. The second component in the time mode captures the 
dynamics shown in metabolite HDL-FC which has the most significant absolute score 
on the second component in the metabolites mode. The third component captures the 
dynamics shown in metabolite Int-CE which has the largest positive score on the third 
component in the metabolites mode, and the fourth component captures the dynamics 
shown in metabolite Per-C which has the largest positive score on the fourth compo-
nent in the metabolites mode.

Dataset with two sources of induced variations We consider the data generated 
with the individual variation at level β = 0.02 and two sources of induced variations as 
mutant6 and mutant10 in [5]. Additional file  1: Table  S4 indicates using a 2-com-
ponent model. The CP model with two components explains 91.89% of the data. From 
the subjects mode shown in Fig. 10c, we observe that the first component separates the 
abnormal_mutant10 subjects from the remaining subjects while the second compo-
nent separates the normal subjects from the abnormal_mutant6 subjects. This makes 
sense since all the metabolites except for HDL-CE have a large coefficient on the first 

Fig. 10  Data generated by the cholesterol model with the two sources of induced variations as mutant6 
and mutant10 and the individual variation at level β = 0.02 , as well as the factors captured using a 
2-component CP model. In Fig. 10a, c, legend: red (normal), blue (abnormal_mutant6), green (abnormal_
mutant10)
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component in the metabolites mode, and we can see from Fig. 10a that for these metab-
olites, the blue lines and the red lines in the preprocessed data are quite close and they 
are clearly separated from the green lines. While metabolite HDL-CE has the largest 
absolute score on the second component and the blue lines are clearly separable from 
the other lines for metabolite HDL-CE as shown in Fig. 10a. Combining the plots in the 
metabolites and time mode (Fig.  10b), we observe that the model captures two main 
types of dynamics, i.e., one that increases fast to the steady state (the second compo-
nent) shown in metabolite HDL-CE and one that increases slowly towards the steady 
state (the first component) shown in most of the remaining metabolites.

Conclusion
In this paper, we have explored tensor factorizations for analyzing dynamic metabo-
lomics data generated through simulations of dynamic systems. The basic idea for such 
methods, including the CP and Paralind model, is to extract the commonality between 
the subjects, i.e., the common dynamic behaviors. The dynamic behavior of metabolic 
systems as encountered in practice depends on (i) sizes of different sources of variation, 
and (ii) the structure of the system itself, i.e., the topology of the metabolic network as 
well as sizes of the kinetic constants. Using dynamic systems of increasing complexity, 
namely, a linear open system, a yeast glycolysis model and a human cholesterol model, 
we have studied the structure of the system as well as different sources of variation, and 
demonstrate how well CP and Paralind models capture the underlying dynamics in dif-
ferent settings. In all cases of enough commonality that we have studied, we can model 
the three-way data with relatively simple multiway models, i.e., the CP and Paralind 
models. These models manage to detect the interventions in the data, which is reflected 
by the successful capture of the changes in relations between metabolites, as shown by 
the jump changes in the factor plots of the metabolites. A detailed account of the rela-
tionship between the metabolic network (topology and connection strengths) and the 
factor loadings of the metabolites in CP or Paralind models is the subject of follow-up 
research. In most cases, we can also explain and understand the extracted patterns from 
the underlying in silico model. However, individual differences in dynamic behavior 
can be enormous in practice, e.g., in challenge tests [41]. This means that in a limited 
number of sampled individuals, there will be some with idiosyncratic behavior. We have 
demonstrated in our experiments that this idiosyncratic behavior is more of an under-
sampling problem.

The choice between a CP and a Paralind model depends on the data characteristics, 
and this, in turn, depends on the two aspects (i) and (ii) discussed in the above para-
graph. In this paper, we present good diagnostics to select a proper model in practice. 
For data with small individual variation and sources of induced variations that have simi-
lar effects on the dynamic behavior, we use the Paralind model (due to linear dependence 
factors in the CP model); for data with large individual variation or data with various 
induced variations, we demonstrate that CP models work well.

For more complex cases such as dynamic systems with delays or with different dynam-
ics due to significant differences in induced variation or with large idiosyncratic behav-
ior, we may need more complex multiway models such as PARAFAC2 [42] or Restricted 
Tucker [33]. Also, for cases, where we are interested in time-evolving metabolites [10], 
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PARAFAC2 is expected to reveal those by capturing evolving factor matrices in the 
metabolites mode. It may also be worth considering mixed effect three-way models 
accounting for the random variation among the individuals.

This simulation study is motivated by the analysis of a real dynamic metabolomics 
dataset. In real data, the underlying dynamic network is unknown and the data set size 
is larger, e.g., the number of metabolites and subjects is in the order of hundreds. CP 
models are still expected to reveal the main patterns of variations as well as the cor-
responding temporal profiles, as we plan to demonstrate with our findings on a real 
metabolomics challenge test dataset. The methods could also be scaled up to larger 
data sets [43, 44] (with thousands of or more variables in each mode) if such large-scale 
dynamic metabolomics data sets were to be available in the future.

While we focus on only the analysis of dynamic metabolomics data in this paper, 
future work includes joint analysis of multiple omics data sets [45] through extensions of 
tensor factorizations to coupled matrix and tensor factorizations [46].
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