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A B S T R A C T

The COVID-19 pandemic made robot manufacturers explore the idea of combining mobile robotics with UV-C
light to automate the disinfection processes. But performing this process in an optimum way introduces some
challenges: on the one hand, it is necessary to guarantee that all surfaces receive the radiation level to ensure
the disinfection; at the same time, it is necessary to minimize the radiation dose to avoid the damage of the
environment. In this work, both challenges are addressed with the design of a complete coverage path planning
(CCPP) algorithm. To do it, a novel architecture that combines the glasius bio-inspired neural network (GBNN),
a motion strategy, an UV-C estimator, a speed controller, and a pure pursuit controller have been designed.
One of the main issues in CCPP is the deadlocks. In this application they may cause a loss of the operation, lack
of regularity and high peaks in the radiation dose map, and in the worst case, they can make the robot to get
stuck and not complete the disinfection process. To tackle this problem, in this work we propose a preventive
deadlock processing algorithm (PDPA) and an escape route generator algorithm (ERGA). Simulation results
show how the application of PDPA and the ERGA allow to complete complex maps in an efficient way where
the application of GBNN is not enough. Indeed, a 58% more of covered surface is observed. Furthermore, two
different motion strategies have been compared: boustrophedon and spiral motion, to check its influence on
the performance of the robot navigation.
1. Introduction

COVID-19 pandemic has highlighted the importance of health secu-
rity strategies. Among these, surface disinfection in health-care settings,
as well as other public spaces, transportation, and so on, has shown to
be quite successful [1]. However, as disinfection is time consuming and
may be even harmful, the automatic execution of this process by robots
would be very profitable [2]. Indeed, some mobile robot manufacturers
have recently launched disinfection solutions to market [3].

For this purpose, the combination of UV-C light and mobile robotics
has been explored as UV-C light provides a fast, clean and efficient
inactivation of microorganisms [4]. The complete automation of this
process while desirable presents several challenges. On the one hand,
it is vital to guarantee a good coverage to ensure all surfaces receive the
required dose for disinfection. On the other hand, the radiation must
not be too high to prevent premature degradation of the furniture and
other items [5]. This is even more crucial in healthcare and hospital
environments, where very high-accuracy electronic instruments are
present and damage to them must be avoided at all costs. But at the
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same time, it is that location where disinfection is more necessary
to avoid any nosocomial infections [6]. It is important to remark
that safety issues are at utmost importance when dealing with UV-C
radiation. Thus, the algorithms proposed here have been designed to
work in scenarios without humans beings or animals. This way, any
possible harm is avoided.

Different path planning methods and algorithms have been pro-
posed to face the complete coverage problem (CCPP). For a further
study on this topic [7–9], and [10] can be consulted. Among CCPP al-
gorithms, Glasius Bio-inspired neural network (GBNN) has been widely
used to complete coverage path planning of autonomous robots. To
mention some works, in [11] GBNN algorithm is applied to the com-
plete coverage path planning of an autonomous underwater vehicle
(AUV). The grid map is built by discretizing the two-dimensional
underwater environment. In a previous work (with respect to [11]),
Zhu et al. propose a method of cooperative complete coverage path
planning for multi-AUVs based on the GBNN algorithm, where all AUVs
share the common working environment information, and each AUV
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deals with other AUVs as moving obstacles [12]. Maintenance oper-
ations have been also solved with this approach; for instance, a novel
energy-efficient CCPP method based on GBNN for a ship hull inspection
robot is proposed in [13]. However, GBNN may lead to unsatisfactory
performance in complex environments, so different modifications have
been proposed [14,15]. There are some previous works that use CCPP
algorithms for different applications in the robotics field. However, to
the best of our knowledge, there are not previous works where GBNN
is modified and applied for automatic disinfection with UV-C robots.
Furthermore, in this work, we improve the GBNN by adding preventive
deadlock processing and the automatic generation of escape routes.

In order to test CCPP algorithms for UV-C disinfection, we present
a simulation model of the whole scenario. We propose a control ar-
chitecture that combines GBNN for discretizing the map, a motion
strategy to improve the path planning in presence of obstacles, an UV-C
radiation dose estimation together with a speed controller in charge of
adjusting the robot speed so to get the appropriate radiation dose and,
finally, a pure pursuit controller to ensure a correct movement of the
mobile robot. Two different motion strategies have been tested to check
the influence on the performance of the algorithm: the boustrophedon
movement and the spiral one.

One of the main challenges of CCPP algorithms, especially in com-
plex environments with many obstacles, is the deadlocks that may
cause the robot to get stuck and fail to complete the navigation of the
map. In our case, deadlocks cause operation loss as the robot needs
more time and energy to complete the map, and they may also lead
to higher peaks in the radiation map as the robot passes several times
through the same place, reducing the useful life of the furniture or
damaging it. In the worst case, it can cause the robot to stuck and
not to complete the disinfection process. To address this problem, in
this work we have designed a strategy which includes a preventive
deadlock processing algorithm (PDPA) and an escape route generator
algorithm (ERGA). On the one hand, by the preventive approach the
robot anticipates to the deadlocks by inspecting the surrounding cells,
and react to avoid the blockage. On the other hand, when a deadlock is
estimated, the algorithm obtains the optimum escape route to reach the
closest non-disinfected zone by the ERGA. Simulation results show how
the application of PDPA and the ERGA allow to complete complex maps
where application of GBNN is not enough. Furthermore, the radiation
levels obtained are more regular.

Hence, the main contributions of this work can be summarized as
follows:

• Simulation model to test CCPP algorithms for UV-C disinfection.
• Control architecture which combines GBNN, UV-C estimation,

speed controller, and pure pursuit control to enable UV-C CCPP.
• Development of preventive deadlock processing novel strategy.
• Development of escape route generator algorithm.
• Improvement of the GBNN by the integration of preventive dead-

lock processing and escape route generator.
• Comparison of the performance with spiral and boustrophedon

movement strategies.

The rest of the paper is structured as follows. Section 2 describes
how the UV-C radiation and the robot have been modeled. The de-
scription of the control architecture is explained in Section 3. Section 4
details how the algorithms for preventive deadlock processing and the
escape route generator work. Results are discussed in Section 5. Finally,
the paper ends with the conclusions and the future works.

2. Description of the system model

2.1. UV-C disinfection

Ultraviolet light is a type of electromagnetic radiation, invisible
to humans. The electromagnetic spectrum includes many types of ra-
diation, each one defined by a range according to wavelength or
2

Fig. 1. Propagation of UV-C light according to the inverse square law [19].

frequency. The wavelength of the UV radiation varies from 100 nm
to 400 nm, and this range of energy can be divided into 4 types:
UV-A (320–400 nm), UV-B (280–320 nm), UV-C (200–280 nm), UV-V
(100–200 nm). UV-C is the UV type used for disinfection purposes.

UV disinfection technologies play an essential role in the cleaning
and disinfection of environmental surfaces. The term UVGI (UltraViolet
Germicidal Irradiation) refers to the fact of using UV radiation energy
to inactivate fungi, bacteria, or viruses, applied at a given location.
The UV-C light provides a fast and efficient inactivation of microor-
ganisms through a physical process. It penetrates the cell wall of the
microorganisms, being absorbed by the genetic material (DNA or RNA).
This absorption generates damage and impedes microorganisms from
surviving (inability to replicate or cell death). In [16], results from
several studies that have been carried out on Coronaviruses exposed to
ultraviolet light are summarized. In these studies, 𝐷90 value normally
denotes the UV dose for 90% inactivation. The range of 𝐷90 values for
coronaviruses is 7–241 J∕m2, whose average, 67 J∕m2, should describe
the ultraviolet susceptibility of the SARS-CoV-2 virus. However, UV
dose requirements for SARS-CoV-2 removal must be guaranteed in the
sterilization process in a human-safe way [17].

UV germicidal lamps are used to achieve this disinfection. An
alternative to mercury-based UV lamps is Light Emitting Diodes. UV-
LEDs are semiconductor devices that can emit radiation at different
wavelengths, including the germicidal range. This disinfection devices
are typically characterized by their radiation profile, their radiant
power and their peak wavelength. In contrast, the radiation profile
of low-pressure mercury lamps is axisymmetric. The spectrum of the
emitted radiation is constant, so the lamp power can be calculated by
measuring the irradiation from a single point at a specific distance from
the lamp in a steady-state using an appropriate formula. This procedure
is not directly applicable to determining the power of LED-UV [18].

The factors that have the highest impact on disinfection are humid-
ity and distance from the source of radiation. On the one hand, the UV
absorbance of the fluid where the light propagates influences the UV
radiation dose received. A larger absorbance indicates that the fluid is
opaquer and thus, the dose received by the surfaces to be disinfected is
lower. In our case, the fluid is the air; the relative humidity in the air
determines the concentration of water steam in the air, therefore larger
humidity means higher concentration and thus, higher absorbance. On
the other hand, the germicidal dose is the product of time and intensity.
High intensities over a short period of time and low intensities over
a long period of time are fundamentally the same regarding their
lethal action on bacteria. The law of the inverse square applies to the
germicidal ultraviolet light. Therefore, lethal power decreases as the
lamp distance increases (Fig. 1).

In addition, when a microorganism is exposed to UV-C radiation,
cell nuclei are modified due to photolytic processes. As a result, cell
division and reproduction are prevented. The relationship between
dose and deactivation of a target microorganism can be expressed as
(1) [20].
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Fig. 2. UV radiation profile approximation (550 μJ∕cm2) [19].

As the UV-C is harmful for humans, all safety regulations must be
strictly complied when these technologies are applied [21]. We must
ensure that all workers who can be exposed to radiation risk receive
all the necessary information and training in relation to the result
of the risk assessment. It is necessary to wear safety glasses or face
shields and clothing that covers all skin; use dosimeters to ensure that
the clothing is UV-C opaque; use plastic or glass screens to limit the
exposed area, and place caution signs at the entrances to the spaces
under disinfection.

2.2. Ultraviolet distribution model

To estimate the disinfection provided by the robot during the mis-
sion a model is needed. In this case, the relationship between dose and
destruction of a target microorganism is expressed in (1), where 𝑁 is
the number of microorganisms; 𝑁0 is the initial number of microorgan-
isms; 𝑘 is a constant value [cm2∕J]; 𝐼 is the UV lamp intensity [μW∕cm2];
𝑡 the time of exposure [s]; and 𝐷𝑈𝑉 = 𝐼 ⋅𝑡 [μJ∕cm2] is the dose received.
This equation is further explained in [20].
𝑁(𝑡)
𝑁0

= 𝑒−𝑘⋅𝐼 ⋅𝑡 = 𝑒−𝑘⋅𝐷𝑈𝑉 (1)

A circular distribution from 8 UV-C lamps as shown in Fig. 2 is
considered. It is also assumed that this circular radiation profile only
represents a 2D environment, and only follows the inverse square law.

The disinfection process is simulated using the cell matrix with the
proposed UV distribution presented in [19]. This circular radiation pro-
file follows the inverse square law, and the radiation emitted by each
lamp in this scenario is approximately 𝐼𝑈𝑉 = 550 μW∕cm2 at a distance
of 1 m, that is, 𝐷𝑈𝑉 = 550 μJ∕cm2 in 1 s. To obtain a 99% SARS-CoV-2
disinfection, we need to administer a dosage of 500 J∕m2 [22]. In any
case, this dosage threshold is a parameter of the algorithm and can be
easily updated to disinfect other microorganisms.

It is important to remark that this model considers that the area
under the robot does not receive radiation. Furthermore, the radia-
tion model proposed has no distance limitation, i.e., the absorption
coefficients of each material are not considered and the radiation goes
through the existing obstacles in the map.
3

Fig. 3. Kinematic model of a differential robot in the Cartesian coordinate space [19].

The latter assumption is only used to accelerate the simulation
time and it only slightly modifies some numerical results. It must be
taken into account that the obstacles in the maps we are using are
wide, and knowing that the radiation intensity decreases quickly with
the inverse square law (see Fig. 2), behind the obstacles the radiation
must be low. That is, results are not modified. That is why when this
assumption is applied the cells near the obstacles present a very slightly
increased radiation regarding the real one. If we do not consider this
assumption, the radiation near the obstacles would be slightly lower,
without affecting the rest of the algorithm. In any way, this assumption
does not affect the way how the PDPA and the ERGA work.

2.3. Robot model

The proposed system combines autonomous mobile robotics for the
exploration of environments with the use of UV-C light for disinfection.
The differential drive system considered is represented in Fig. 3, where
the position 𝑝𝐼{𝑥, 𝑦, 𝜃} is expressed in Cartesian coordinates of the
inertial frame {𝑋𝐼 , 𝑌𝐼}. The relationship between the robot speed in
this space, i.e., �̇�𝐼 , and the velocity in the robot frame {𝑋𝑅, 𝑌𝑅}, �̇�𝑅,
is defined in [23]. This relationship is used in the differential drive
kinematics module of the architecture.

It is a common a practice to assume that there is not lateral slippage,
thus the y-component of the velocity in the robot frame is 0. The
position and orientation are then the state variables. The linear speed,
𝑉 , is defined as the average speed of the two wheels. The angular
velocity, 𝑊 (rad/s), is the speed difference of each wheel divided by
the distance between them.

The kinematic model is defined at some arbitrary position 𝑝 in the
global inertial frame. The combined action of linear velocity 𝑉 and
angular velocity 𝑊 describes the movement of the robot (2), where 𝑉𝐿
and 𝑉𝑅 are the left and right wheel linear velocity in m/s, respectively.
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3. System control architecture

The control scheme is shown in Fig. 4. The architecture is based
on one of our previous works [19], in this case it is improved to
include the PDPA and ERGA. It is mainly composed by two modules,
the CCPP algorithm and the path planning. The first one generates a list
of waypoints where the robot should go through (𝑔𝑜𝑎𝑙𝑠), and the UV
percentage that feeds the speed controller in the path planner (𝑈𝑉 ).
%
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Fig. 4. System architecture diagram, which involves the complete coverage path planning and the simulation environment.
The path planner uses this UV amount to adjust the velocity of
the autonomous robot with the speed controller. The list of waypoints
are filtered and sequentially given to the pure pursuit controller. The
robot in its disinfection task only uses vertical, horizontal and diagonal
straight lines to move around the map obtained from the algorithm.
For this reason, in order to reduce the list of waypoints used, only
those that involve the end of a line (horizontal, vertical or diagonal)
are considered. To this end, the list of raw waypoints is analyzed and
when a change of orientation of a goal with respect to the previous
one is detected, the corresponding cell is added to the definitive list
of waypoints. There is not any theoretical limit in the number of
waypoints generated. However, in practice, the limitation is related
to the RAM memory of the computer where the algorithm runs. The
control strategy is validated in simulation, thus the components INIT
and MAP GENERATOR of the Figure. They are used to initialize the
simulation and the map. When the controller is deployed in a real robot
these components are not present.

The pure pursuit control is a path tracking algorithm. It calculates
the target angular velocity to make the robot reach some look-ahead
point in front of its current position. This way, this controller constantly
pursues a point in front of the robot. The look-ahead distance is how far
along the path the robot should look from the current location to obtain
the angular speed. A small look-ahead distance will cause the robot
to move quickly towards the path, but the robot overshoots the track
causing oscillations. On the other hand, a large look-ahead distance
might result in larger curvature near the corners.

The CCPP algorithm used is based on the enhanced GBNN algorithm
briefly explained in the next section and further explained in [19].
This methodology uses a neural network to discretize a space on a
grid map. The size of each cell (neuron) is adjusted to the dimension
of the robot. All neurons are associated with a cell in the grid. Each
element is connected to its 8 immediate neighbors. Another important
component is the preventive deadlock processing, composed by the
4

deadlock estimator (DLE) and the ERGA. They are explained in detail
in Section 4.

3.1. Enhanced Glasius Bio-Inspired Neural Network algorithm

In [24], the GBNN algorithm was proposed as a new strategy to
perform the complete coverage path planning of autonomous under-
water vehicles. This strategy solves the disadvantages of the biological
inspired neural network algorithm, reducing the amount of calculation
and improving the efficiency of path planning.

In order to improve this algorithm and apply it to space disinfection
by means of ultraviolet radiation, the enhanced GBNN algorithm is
proposed in [19]. This new approach incorporates a series of modi-
fications, applying templates to ensure that a path is performed in a
more efficient way, and focusing its path to reach an adequate dose of
ultraviolet radiation in all the accessible points of the environment.

The enhanced GBNN uses the neural activity to determine the dif-
ferent weights between the neuronal connections in combination with
several templates and a deadlock detector to increase the algorithm
performance. The deadlock detector improves the efficiency as it allows
to detect if the robot will get stuck, and through Dijkstra’s algorithm,
it establishes an escape route to new areas without disinfection.

The behavior of the enhanced GBNN algorithm is detailed in [19].
Using this algorithm, the main task of the robot is to dynamically build
the path for complete coverage and to guarantee the disinfection of the
workspace. The robot moves to non-visited areas until all regions have
been visited. In other words, non-visited regions attract the robot.

Considering the obstacle distribution known, a grid is drawn in the
space to be covered, forming cells. A series of flags 𝑓𝑙𝑎𝑔(𝑘, 𝑙) are defined
for each neural position (𝑘, 𝑙). The flag indicates the current state of
each cell. The value 0 means non-visited, 1 indicates visited, 2 means
that there is an obstacle, and 3 refers to a deadlock. In the same way,
the external input 𝐼 is initialized according to the information available
𝑖
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about the environment. The value 0 means visited, +100 indicates not
visited, and −100 means there is an obstacle in that cell.

The time evolution of the neural activity is given by (3).

𝑛𝑎𝑖(𝑡) = 𝑓

( 𝑘
∑

𝑗=1
𝑤𝑖𝑗 ⋅ 𝑚𝑎𝑥[𝑛𝑎𝑗 (𝑡 − 1), 0] + 𝐼𝑖

)

(3)

Where 𝑛𝑎𝑖(𝑡) is the activity of the 𝑖-neuron at 𝑡; 𝑛𝑎𝑗 (𝑡− 1) is the activity
of the neighbor neuron 𝑗 at 𝑡− 1, which is laterally connected with the
𝑖-neuron, and the index 𝑘 corresponds to the links between the neuron
𝑖 and its neighboring neurons. The operator 𝑚𝑎𝑥[𝑎, 0] ∶ R → R denotes
he biggest value between 𝑎 and 0.

The function 𝑓 (𝑎) ∶ R → R is defined as (4),

𝑓 (𝑎) =

⎧

⎪

⎨

⎪

⎩

−1, 𝑎 < 0
𝛽𝑎, 0 ≤ 𝑎 < 1
1, 𝑎 ≥ 1

(4)

Where 𝛽 > 0 is a parameter to adjust the activation function.
egarding the connection weight 𝑤𝑖𝑗 between neuron 𝑖 and 𝑗, it is
efined in Eq. (5), where |𝑞𝑖 − 𝑞𝑗 | is the Euclidean distance between
ectors 𝑞𝑖 and 𝑞𝑗 in the state space and 𝛼 is a positive constant.

𝑖𝑗 =

{

𝑒−𝛼|𝑞𝑖−𝑞𝑗 |
2
, 0 < |𝑞𝑖 − 𝑞𝑗 | ≤ 𝑟0

0, |𝑞𝑖 − 𝑞𝑗 | > 𝑟0
(5)

Therefore, Eq. (3) determines the dynamic of each neuron, attract-
ng the robot to non-visited areas, avoiding already detected obstacles
nd visited regions.

To ensure a proper operation, the neural network must be updated
nce the escape path is generated. The neuronal activity (𝑥) and the
xternal input (𝐼) are re-establish with the information of the path
o be followed. In this way, the affected cells are restored to their
riginal state of non-disinfected, and the GBNN algorithm can continue
ts normal activity to escape the deadlock situation in a natural way.
he block detector is activated at each iteration. However, while the
obot moves along a path generated in response to a deadlock situation,
he detector remains inactive. In case the target cell is not reached
ithin the expected number of iterations, the algorithm is re-activated

n case a new path needs to be obtained. The operation of the deadlock
etector is further explained in the next section.

.2. Motion strategies

The trajectory is then generated applying the corresponding dynam-
cs to the previous position. Hence, the next position, denoted 𝑝𝑛, is
alculated from the current position, (𝑘𝑐 , 𝑙𝑐 ), (6).

𝑛 = argmax
(𝑚,𝑛)∈ 𝑟(𝑘𝑐 ,𝑙𝑐 )

{𝑥(𝑚, 𝑛) + 𝑐𝑦(𝑚, 𝑛)} (6)

Where 𝑥(𝑚, 𝑛) is the activity of the (𝑚, 𝑛)-neuron and 𝑐 is a positive
constant. The function 𝑦(𝑚, 𝑛) is monotonically increasing and is de-
scribed as the angular difference with the current orientation to reach
that cell (7).

𝑦(𝑚, 𝑛) = 1 −
𝛥𝜃(𝑚, 𝑛)

𝜋
(7)

The term 𝛥𝜃(𝑚, 𝑛) ∈ [0, 𝜋] corresponds to the angle of rotation be-
tween the current and the possible next moving direction. The general
expression is then, (8).

𝛥𝜃(𝑚, 𝑛) = |𝜃𝑛 − 𝜃𝑐 | (8)

The robot follows the above strategy to select the next cell, however
when several neighbor neurons have the same neural activity or the
robot arrives an obstacle, this strategy must be complemented with a
motion pattern to ensure all cells are visited. In these cases, there are
two basic motion patterns that can be used to achieve the complete
coverage, the square spiral motion and the boustrophedon motion. The
5

latter consists of alternatively performing one vertical movement from
bottom to top and the next one from top to bottom or vice versa [8] [7].
The spiral motion is to move in a winding or circular motion around
a central point. Both motion strategies are shown in Fig. 5, and have
been tested and compared in this work.

The coverage of a surface can be achieved using a single robot or
a multi-robot tactic according to the environment size. However, both
ways have common aspects regarding the coverage algorithm.

• The environment decomposition method determines the strategy
to divide the workspace into cells.

• The sweep direction influences the path generated in terms of
performance.

• The optimal backtracking mechanism ensures that no area is left
unvisited, reaching the highest possible efficiency.

Within the spiral movement, there are two possible variants. First,
the robot can start at the center of the environment and move towards
the edges in an increasing spiral path. With the second option, the robot
starts at one edge of a side and moves towards the center, generating a
decreasing spiral path [25,26]. The latter option is the one considered
in this article and can be formalized by the algorithm 1.
Algorithm 1: Spiral Algorithm

1. Start robot motion direction up
2. Check obstacle

𝑖𝑓 next cell is obstacle or visited 𝑡ℎ𝑒𝑛
Turn 90◦ clockwise

𝑒𝑙𝑠𝑒
Move forward one cell

𝑒𝑛𝑑

Boustrophedon refers to the ox-turning in ancient Greek. The algo-
rithm starts by going upwards and then makes the robot turn round
at every collision with an obstacle (or wall). The turning direction of
the robot continuously changes [25,26]. This motion strategy can be
formalized by the algorithm 2.
Algorithm 2: Boustrophedon Algorithm

1. Init count = 0
2. Start robot motion direction up
3. Check obstacle

𝑖𝑓 next cell is obstacle or visited 𝑡ℎ𝑒𝑛
𝑖𝑓 count is odd 𝑡ℎ𝑒𝑛

Turn 90◦ clockwise
Move forward one cell
Turn 90◦ counterclockwise
count = count + 1

𝑒𝑙𝑠𝑒
Turn 90◦ counterclockwise
Move forward one cell
Turn 90◦ clockwise
count = count + 1

𝑒𝑛𝑑
𝑒𝑙𝑠𝑒

Move forward one cell
𝑒𝑛𝑑

To be efficient in terms of time and energy, the robot must travel
along the shortest path, avoiding previously visited areas and un-
necessary turns. However, to achieve complete coverage, previously
covered cells are sometimes overlapped. To avoid these situations, we
have implemented obstacle templates to ensure that the robot faces an
obstacle in the most orchestrated way possible. These templates [19]
force the robot to adopt a specific path without considering the neural
network behavior during the GBNN algorithm process. On the other
hand, diagonal movements have been disabled, and their use is only
allowed when these movements occur in deadlock situations.
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Fig. 5. Motion strategy comparison in an empty map.
The generated path will have some specific characteristics according
to the motion strategy used for the complete coverage navigation. In
most cases, when the environment is full of obstacles, it is impossible
to achieve a single pass coverage. In these cases, more advanced
strategies are required to complete the disinfection of the workspace,
as the deadlock detector and the escape route generator here proposed
(Section 4).

3.3. UV estimation and speed control

Fig. 6 shows the dose received in an empty map by using the pro-
posed UV distribution model and the specifications of the disinfection
lamp. The UV radiation percentage estimation is obtained during the
CCPP by the enhanced GBNN algorithm. This radiation calculation is
used to estimate the highest dose of each cell. A grid map is created
to store the dose at each cell while the robot moves (Figs. 6(a) and
6(b)). In an empty map, the UV% signal (see Fig. 4) is similar for both
types of movements, spiral and boustrophedon. There is only a slight
difference in the center of the map in the case of the spiral movement
(Fig. 6(a)). With this spiral pattern, the density of radiation tends to
grow at the center of the map, as the circles are smaller and smaller.
Thus, the control signal, i.e., the UV%, is slightly reduced to correct
this effect.

The UV% information is then sent to the robot speed controller that
adjusts the velocity to ensure that the final dose is within the desired
range ( Figs. 6(c) and 6(d)).

The information provided by the coverage algorithm is used to
estimate the speed in each section associated to a neuron (cell). Based
on the UV percentage matrix (𝑈𝑉%), the intensity of the lamp model
(𝐼𝑈𝑉 ), and the dose required for disinfection (𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2), a speed
value is obtained using (9), as shown in the figures Fig. 6(c) and
Fig. 6(d).

𝑣(𝑥, 𝑦) = 𝜌 ⋅ 𝑈𝑉%(𝑥, 𝑦)
(

𝐼𝑈𝑉
𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2

)

(9)

Where 𝑣 is the linear velocity of the robot in m/s; 𝜌 is a positive
parameter which varies depending on the size and complexity of the
map, considering the overall accumulated amount of radiation due to
the time spent in the disinfection; 𝑈𝑉% is the estimated maximum
percentage of the dose received, taken into account the position of the
robot and its eight neighboring cells; 𝐼𝑈𝑉 is the lamp radiation power in
mW∕cm2; and 𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2 is the required SARS-CoV-2 dose in mJ∕cm2

to achieve the disinfection of the environment. 𝜌 can be manually
adjusted considering the size and the complexity of the map. If the
size of the map or the number of obstacles grows it is recommended
to increase the value. It is recommended to use values close to 1.
6

The 𝐷𝑈𝑉 value is based on the specifications of the UV distribution
model. Specifically, a value of 0.55 mJ∕cm2 for the lamp is used. This
value comes from the tests performed in [27].

To achieve the inactivation of SARS-CoV-2, it would be convenient
to apply a dose of 250 J∕m2 in the air and on surfaces. This value would
guarantee a 90% reduction of the virus [22]. Nevertheless to achieve a
99% reduction, the power should be doubled. For the above reasons, it
has been considered appropriate the dose of 500 J∕m2. In any case the
recommended radiation dose is given by the parameter 𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2
and can be easily updated.

In addition, as shown in the control architecture, a pure pursuit
controller calculates the angular velocity that moves the robot from its
current position to the next waypoints ([𝑥 𝑦 𝜃]) [28].

4. Generation of escape routes when deadlocks

4.1. Deadlock situation

A deadlock is a potential situation that may happen in a complete
coverage path planning where no solution can be found, or even it
may not exist. Mathematically, it can be defined as follows: Given the
2D Cartesian workspace  and a neuron 𝑁(𝑚, 𝑛), a deadlock situation
occurs when each neuron in the neighborhood has been previously
visited (𝑓𝑙𝑎𝑔(𝑘, 𝑙) = 1), or is an obstacle (𝑓𝑙𝑎𝑔(𝑘, 𝑙) = 2), or has
less neural activity (𝑛𝑎(𝑘, 𝑙) < 𝑛𝑎(𝑚, 𝑛)). In this case, the following
characteristic can be asserted [29]:

if ∃(𝑚, 𝑛) ∣ ∀𝑘 ∈ {𝑚 − 1, 𝑚, 𝑚 + 1},∀𝑙 ∈ {𝑛 − 1, 𝑛, 𝑛 + 1},

(𝑘, 𝑙) ≠ (𝑚, 𝑛), 1 ≤ 𝑚 ≤ 𝑁𝑥, 1 ≤ 𝑛 ≤ 𝑁𝑦,

s.t. [(𝑓𝑙𝑎𝑔(𝑘, 𝑙) == 1 ∨ 2) ∨ 𝑥(𝑘, 𝑙) < 𝑥(𝑚, 𝑛)]

then 𝑓 (𝑚, 𝑛) ∶= 3

(10)

Where 𝑁𝑥 and 𝑁𝑦 denote the number of cells in the 𝑥-axis and 𝑦-axis
of the map. Therefore, once the robot is in a deadlock situation, the
neural activity of its neighboring neurons is no longer from the activity
at the current position, as all the surrounding cells have been previ-
ously visited, and hence, disinfected. Consequently, during a deadlock
situation the robot has to wait until another neuron is available in the
neural activity landscape.

When the robot reaches a deadlock position, the neural network
model and the proposed coverage algorithm could sometimes solve
automatically this situation. The robot stuck in the deadlock will wait
until the neural activity propagates to its position, and then it will be
able to get out of this situation and continue with the coverage. This
is automatically performed by GBNN. However, if the environment is
very complex, the robot could remain trapped indefinitely without ever
finding a way out. To solve this problem, we have implemented the DLE
and the ERGA.
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Fig. 6. Dose received in an empty map, at the end of the disinfection process, with the UV distribution model proposed and lamp power 𝐷𝑈𝑉 = 550 μJ∕cm2.
4.2. Escape provided by GBNN

When a deadlock appears the neural network model and the cov-
erage algorithm try to automatically solve the situation. The robot
trapped in the deadlock will move to the neighbor cell with the
maximum value, even if they have been previously visited, so at each
iteration the robot selects a new cell, it never stays in the same position.
Performing this movement, it may sometimes find and go back to
a previously visited cell and can get out of this situation and then
continue with the coverage. Fig. 7 shows a clear example of this. It
can be seen how the robot must go back before it finds a new path
without disinfecting. The escape is achieved through the propagation
of neuronal activity.

However, in some cases the robot may be changing cells perma-
nently without finding a way to solve the deadlock. This situation is
more frequent when the robot goes into closed rooms with only a way
to escape.
7

4.3. Escape provided by preventive deadlock processing

Although standard GBNN may allow the robot to escape in certain
deadlock situations, this approach may be too slow or even it may
not find the way out. This results in the robot wandering in circles
in the workspace until the neural map is enough updated so to find
a clear escape route, if it does. Moreover, depending on the complexity
and size of the workspace, it might be impossible to access all the
non-disinfected areas using the neural approximation.

In an effort to improve the results of the CCPP strategy, the DLE
and the ERGA have been implemented and integrated with the main
enhanced GBNN algorithm.

The PDPA explains the steps designed to anticipate deadlock issues.
The deadlock estimator is activated at each iteration. However, while
the robot moves along a path generated in response to a deadlock
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Fig. 7. Deadlock situation solved with a neural approach.
estimation, the DLE remains inactive. If the target cell is not reached
within the expected number of iterations, the algorithm is re-activated
as it is necessary to obtain a new path.

To ensure the PDPA works in a preventive way, it is important
to mention that the deadlock estimation is not obtained with the
expression (10), but when (11) is met. That is, as long as the energy
of the 24 neurons (𝑟 = 2) surrounding the current one is equal to 0, the
8

algorithm will automatically anticipate to a future deadlock situation
and will react triggering the ERGA.

if 𝐼(𝑔, ℎ) == 0,∀𝑔 ∈ {𝑘𝑐 − 2, 𝑘𝑐 , 𝑘𝑐 + 2}, ℎ ∈ {𝑙𝑐 − 2, 𝑙𝑐 , 𝑙𝑐 + 2}

then 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘𝑒𝑠𝑡 = true

(11)
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Algorithm 3: Preventive Deadlock Processing Algorithm PDPA

1. Analyses the current situation of the robot
𝑖𝑓 𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘𝑒𝑠𝑡 == false 𝑡ℎ𝑒𝑛

1.1. Check if the external input 𝐼 is equal to 0 in the cells
close to the current position (𝑘𝑐 , 𝑙𝑐).

𝑖𝑓 𝐼(𝑔, ℎ) == 0 ∈ 𝑛(𝑚, 𝑛),
∀𝑔 ∈ {𝑘𝑐 − 2, 𝑘𝑐 , 𝑘𝑐 + 2} 𝑎𝑛𝑑 ℎ ∈ {𝑙𝑐 − 2, 𝑙𝑐 , 𝑙𝑐 + 2} 𝑡ℎ𝑒𝑛

1.1.1. The status of the robot is updated
𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘𝑒𝑠𝑡 := true
1.1.2. 𝐶𝑎𝑙𝑙 𝐸𝑅𝐺𝐴. Use route escape generator to modify

the neuron map
1.1.3. The desired target escape position is obtained

(𝑘𝑒, 𝑙𝑒, 𝑖𝑡𝑒𝑟𝑒)
get 𝑘𝑒, 𝑙𝑒, 𝑖𝑡𝑒𝑟𝑒
set 𝑖𝑡𝑒𝑟𝑐 ∶= 0

𝑒𝑙𝑠𝑒
1.2. Update iterations
𝑖𝑡𝑒𝑟𝑐 ∶= 𝑖𝑡𝑒𝑟𝑐 + 1
1.3. Check if the robot has reached the target escape

position
𝑖𝑓 𝑘𝑐 == 𝑘𝑒 𝑎𝑛𝑑 𝑙𝑐 == 𝑙𝑒 𝑡ℎ𝑒𝑛

𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘𝑒𝑠𝑡 := false
1.4 Check if the robot is stuck during escape
𝑖𝑓 𝑖𝑡𝑒𝑟𝑐 > 𝑖𝑡𝑒𝑟𝑒 + 1 𝑡ℎ𝑒𝑛

Go to step 1.1
𝑒𝑛𝑑

4.4. Escape route generator

Once a deadlock is estimated, as an alternative to the neuronal
approach, a solution based on Dijkstra’s algorithm is proposed. The
algorithm will calculate the shortest path between two nodes within
the same graph. As a result, the robot will be able to escape from a
deadlock situation as soon as possible.

In order to use the Dijkstra’s algorithm during the initialization
process, a graph is created from the map. The graph has as many nodes
as non-obstacle cells. In addition, an edge between each cell and its
neighbor cells is established. All edges have the same constant weight.

When an imminent deadlock situation has been detected, the ERGA
starts a search, looking for the shortest path between the current robot
position and the remaining non-disinfected cells being 𝑝𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 and
𝑑𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 the minimum path and the minimum distance obtained by the
Disktra’s algorithm, respectively.

To summarize, the ERGA initially obtains the Euclidean distance
between the current position and the rest of the candidate cells. In this
step the obstacles are not considered to compute the distance. These
candidates are classified according to their distance from the current
position from furthest to closest.

Once this step is made, Dijkstra’s algorithm is applied from the
current cell to all previously ordered candidates, taking into account
the following:

• The Disktra’s route computed in this step considers the obstacles,
that is the generated route will not cross obstacles. The explana-
tion is that as in the graph there are only connections between
non-obstacle cells, the paths returned by the Disktra’s algorithm
do not include obstacles. Thus, the length of this route is usually
different from the euclidean distance to the destination cell.

• The value of the target cell is updated when the distance obtained
by this algorithm is the smallest one achieved until now.

• In an attempt to avoid wasting CPU time, when the distance
obtained using Dijkstra’s is 𝑑𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 ≈ |𝑞𝑖 − 𝑞𝑗 | ± 0.1 m, the search
9

ends and set that candidate as the destination to escape from the
Algorithm 4: Escape Route Generator Algorithm ERGA

1. Search for non-visited cells 𝑁(𝑚, 𝑛)
𝑁𝑓=0(𝑚, 𝑛), ∀ 𝑚 ≠ 𝑘𝑐 , 𝑛 ≠ 𝑙𝑐 , 1 ≤ 𝑚 ≤ 𝑁𝑥, 1 ≤ 𝑛 ≤ 𝑁𝑦, s.t
𝑓 (𝑚, 𝑛) = 0

2. All possible escape positions are analysed
𝑓𝑜𝑟 (𝑘𝑒𝑠𝑐 , 𝑙𝑒𝑠𝑐 ) ∈ 𝑁𝑓=0

2.1 Calculate Euclidean distance for each possible escape
cell.

𝑑𝑒𝑠𝑐 (𝑖𝑛𝑑𝑒𝑥, 𝑝𝑒𝑠𝑐 ) = 𝑑𝐸 (𝑝𝑐 , 𝑝𝑒𝑠𝑐 ) =
√

(𝑘𝑐 − 𝑘𝑒𝑠𝑐 )2 + (𝑙𝑐 − 𝑙𝑒𝑠𝑐 )2 ∀ 1 ≤ 𝑖𝑛𝑑𝑒𝑥 ≤ (𝑁𝑓=0𝑥 +𝑁𝑓=0𝑦)

3. Ascending order the distances
𝑑𝑒𝑠𝑐 (𝑖𝑛𝑑𝑒𝑥) = 𝑑𝑒𝑠𝑐 (𝑖𝑛𝑑𝑒𝑥, 𝑝𝑒𝑠𝑐) ∀ 1 ≤ 𝑖𝑛𝑑𝑒𝑥 ≤ (𝑁𝑓=0𝑥 +𝑁𝑓=0𝑦) s.t
𝑑𝑒𝑠𝑐 (𝑖𝑛𝑑𝑒𝑥, 𝑝𝑒𝑠𝑐 ) ≤ 𝑑𝑒𝑠𝑐(𝑖𝑛𝑑𝑒𝑥 + 1, 𝑝𝑒𝑠𝑐 )

4. The minimum distance 𝑑𝑚𝑖𝑛 is initialized
set 𝑑𝑚𝑖𝑛 ∶= ∞
set 𝑑𝑙𝑜𝑜𝑝 ∶= 𝑡𝑟𝑢𝑒

5. All possible ascending ordered escape positions are analysed
𝑓𝑜𝑟 𝑝𝑒𝑠𝑐 ∈ 𝑑𝑒𝑠𝑐 s.t 𝑑𝑙𝑜𝑜𝑝 == 𝑡𝑟𝑢𝑒

5.1. Calculate distance with Dijkstra’s algorithm
[𝑑𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎, 𝑝𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎] ∶= 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝑝𝑐 , 𝑝𝑒𝑠𝑐 )
5.2. Check if 𝑑𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 is less than 𝑑𝑚𝑖𝑛
𝑖𝑓 𝑑𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 < 𝑑𝑚𝑖𝑛 𝑡ℎ𝑒𝑛

5.2.1. Update 𝑑𝑚𝑖𝑛
set 𝑑𝑚𝑖𝑛 ∶= 𝑑𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎
set 𝑝𝑚𝑖𝑛 ∶= 𝑝𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎
5.2.2. Check if 𝑑𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 is the same as 𝑑𝑒𝑠𝑐
𝑖𝑓 𝑑𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 == 𝑑𝑒𝑠𝑐 𝑡ℎ𝑒𝑛

set 𝑑𝑙𝑜𝑜𝑝 ∶= 𝑓𝑎𝑙𝑠𝑒

6. Neural behaviour is updated
set 𝑥(𝑚, 𝑛) ∶= 1 ∀ (𝑚, 𝑛) ∈ 𝑝𝑚𝑖𝑛
set 𝐼(𝑚, 𝑛) ∶= 100 ∀ (𝑚, 𝑛) ∈ 𝑝𝑚𝑖𝑛

deadlock situation. The value 0.1 m is a configurable parameter.
The recommended value is 1/10 of the size of the cell in the map.
In our case is 1 m, thus this parameter is set to 0.1 m.

The neural network must be updated once the escape path is gener-
ated. The neuronal activity 𝑥 and the external input 𝐼 are re-establish

ith that path. In this way, the affected cells are restored to their
riginal state of non-disinfected, and the enhanced GBNN algorithm
an continue its normal activity to escape the deadlock situation in a
atural way.

This approach requires a higher computational cost but it optimizes
he escape route after a deadlock situation. The Dijkstra’s algorithm
mplementation is based on the code by [30] and the Bioinformatics
oolbox of Matlab was used. The result is that the optimal path between
wo given nodes is obtained.

To illustrate the way in which the ERGA intervenes in the neural
ctivity to find a escape route from a blocking situation, a capture of
he map and the neural activity at two different iterations is shown in
he following figure.

• In Fig. 8(a), when the GBNN algorithm is at 𝑖𝑡𝑒𝑟 = 555, a
deadlock situation occurs in the current position (green cell). The
neural activity at this point is shown in Fig. 8(b).

• At this point in time, the ERGA is activated. In Fig. 8(c), the
escape route the algorithm has found is examined. This route is
represented in the legend as ‘‘dlock erg’’. Once the affected cells
are known, the neural activity is initialized as shown in Fig. 8(d).
It is possible to see how the color of these cells has changed to
yellow, that is, neural activity equal to 1.

• After having modified the neural activity, the enhanced GBNN
algorithm is able to get out of the deadlock situation by itself



Advances in Engineering Software 175 (2023) 103330D.V. Rodrigo et al.
Fig. 8. Deadlock situation solved using ERGA.
( Fig. 8(e)). In this case, the neural activity is updated to 0 by
the enhanced GBNN as can be seen in Fig. 8(f).

It is worth noting that the other deadlock situation shown in the
example in Fig. 8(a) has been solved without the need of the ERGA.

5. Simulation results and discussion

In this section qualitative and quantitative results of the application
of control approach are presented and discussed. The computer used
10
for the tests is an Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz with
a 2201 MHz clock; 1536 KB cache; and 6 processors. The operating
system is Microsoft Windows 10 Education N. The algorithms have been
implemented in Matlab/Simulink.

5.1. Preventive deadlock processing vs GBNN

Fig. 9 compares the results obtained when the escape route gener-
ator is active and when it is not applied in a scenario with medium
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Fig. 9. Deadlock situation solved by different approaches.
obstacle distribution. The images on the left show the obstacles, the
visited and unvisited cells, and the cells where a deadlock occurs. The
images on the right represent the UV dose relative error regarding the
expected dose, 𝑒𝑟𝑟𝐷. This error is computed by (12), where 𝐷(𝑥, 𝑦)
denotes the dose received in the location (𝑥, 𝑦). When 𝑒𝑟𝑟𝐷 is negative,
the cell receives less dose than expected and is not correctly disinfected.
When it is positive the cell receives more dose than required, however
high positive errors must be avoided in order not to degrade the
environment. On the other hand, the images in the first row depict the
results provided by the neural activity approach (standard GBNN) and
the second one by the escape route generator.

𝑒𝑟𝑟𝐷(𝑥, 𝑦) =
𝐷(𝑥, 𝑦) −𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2

𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2
(12)

As it may be observed, GBNN can solve the first deadlocks. How-
ever, when the robot arrives at cell (9,25), -green cell in the figure-,
it gets stuck and is not able to go any further. This means that in this
case an 11.66% of cells are not visited. Moreover, this issue causes a
large growth in the radiation diagram. Nevertheless, using the ERGA,
it is always possible to escape from these deadlock situations and the
robot completes the map successfully.

Furthermore, when the ERGA is used the radiation surface is more
regular and the values are closer to the required dose. By contrast,
when the neural activity approach is applied some zones have very low
radiation (zones near the unvisited cells with negative 𝑒𝑟𝑟𝐷) and others
have very large radiation values (near the deadlocks with high positive
𝑒𝑟𝑟𝐷). It is noteworthy to remark that an excessive UV radiation may
damage the environment and reduce of the useful life of the elements.
11
5.2. Spiral vs Boustrophedon performance evaluation

The control proposal has been evaluated with two different move-
ment patterns: spiral and boustrophedon motions. In both cases the
ERGA and the deadlock detector have been used. As it will be shown,
both movement types give successful results, but the evaluation values
are different. To summarize, with spiral motion less deadlocks appear
and the robot requires smaller control effort. On the other hand, with
the boustrophedon movement the cells are closer to the required dose
and the excess of the radiation is lower.

Therefore, in general there is no one motion strategy better than
another. One is good at some metrics and the other is better at the rest.
The choice of method will depend on the metrics we wish to prioritize.

5.2.1. Metrics
As explained, the robot must complete the map while spreading the

required radiation dose, and as much exceeding it as little as possible so
as not to damage the environment, meanwhile minimizes the number
of turns and the control effort for efficiency reasons. In order to quan-
titatively evaluate the performance of this control proposal, different
metrics related to the movement of the robot and the radiation dose
received have been defined:

• 𝒕𝒓𝒐𝒃𝒐𝒕: is the total time required to complete the maps, that is, to
visit all cells at least once. One of the goals is to reduce this value
as much as possible to improve the efficiency of the disinfection
procedure.

• 𝒏𝑫𝒊𝒋𝒌𝒔𝒕𝒓𝒂: determines the number of times the Dijkstra’s algorithm
is required to get out of a deadlock situation. It is desirable that
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this value is as small as possible. This way the control algorithm
requires less computational effort and the radiation level is more
regular.

• 𝒅𝒓𝒐𝒃𝒐𝒕: indicates the total distance traveled by the robot. The robot
must complete the map keeping this value as small as possible.

• 𝒓𝒓𝒐𝒃𝒐𝒕: indicates the total radians rotated by the robot. Like in the
total distance, it is intended to reduce as much as possible the
number of turns to avoid mechanical robot wear.

• 𝒗𝒂𝒗: denotes the average velocity of the robot, calculated as 𝑑𝑟𝑜𝑏𝑜𝑡
divided by 𝑡𝑟𝑜𝑏𝑜𝑡. Therefore, the smaller this value is, the smoother
the movement will be.

• 𝑪𝑬: indicates the control effort. This metric is usually considered
in control studies. 𝐶𝐸 is based on the angular velocity reference.
As expected, many turns may increase the overall consumption
and the degradation of the robot. This control effort is expressed
in (13), where 𝑤𝑟𝑒𝑓 (𝑡) is the angular speed reference.

𝐶𝐸 =

√

∫ 𝑤𝑟𝑒𝑓 (𝑡)2𝑑𝑡
𝑡𝑟𝑜𝑏𝑜𝑡

(13)

• 𝒕𝒄𝒆𝒙: generally, to complete the map the number of visited cells is
larger than the available cells. This metric measures this excess of
visited cells, and it is defined as the ratio between total traveled
cells vs available cells (14). This metric is related to 𝑑𝑟𝑜𝑏𝑜𝑡 and
should be as small as possible.

𝑡𝑐𝑒𝑥 =
𝑐𝑒𝑙𝑙𝑠 𝑇 𝑟𝑎𝑣𝑒𝑙𝑒𝑑 − 𝑐𝑒𝑙𝑙𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑐𝑒𝑙𝑙𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
⋅ 100 (14)

The ratio between complete cells vs available cells is not con-
sidered because, as the map is always complete, all cells are
explored, so this value would be 100% in all cases.

• 𝑫𝒎𝒂𝒙: is the maximum radiation dose received by a cell of the
map. It should be very close to the specified.

• 𝑫𝒎𝒊𝒏: is the minimum radiation dose received in a cell of the map.
This value should be very close to the required dose.

• 𝑫𝑵 : is the percentage of cells that receive the desired dose range.
It should be noticed that the purpose of the disinfection is to
maximize the percentage of cells with a UV radiation dose in the
expected range, i.e., (15), where 𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2 is the SARS-CoV-2
required dose to achieve the expected disinfection, and 𝐷 is the
final UV dose received.

𝐷𝑁 =

[

1
𝑐𝑒𝑙𝑙𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

∑

(𝑖,𝑗)
1

]

⋅ 100,

(𝑖, 𝑗) ∈ N2 ∣ 0.9𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2 < 𝐷(𝑖, 𝑗) < 1.1𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2

(15)

• 𝑫𝑯 : is the percentage of cells whose dose is higher than
1.1𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2. It is desirable to reduce this value as much as
possible to avoid environment damages.

• 𝑫𝑳: is the percentage of cells whose dose is lower than
0.9𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 −2. It is desirable to reduce this as much as possible
to guarantee a correct disinfection.

• 𝑵𝑪: is the percentage of non-visited cells at the end of the
simulation if the PDPA is not used. That is, the standard GBNN
is used instead of DLE+ERGA. This metric informs us about the
benefit of the use of PDPA.

5.2.2. Simulation scenarios
To evaluate the performance of the proposal, four scenarios of

growing complexity have been considered: empty, low, medium and
high ( Fig. 10). When the complexity increases the size of the map
and the number of obstacles grow. These scenarios have been designed
to create challenging situations where the robot goes into some zones
where there is only a way to escape.
12

a

In all these scenarios, the initial position is set to 𝑝 = (2, 2, 𝜋2 ), and
the parameters of the model [𝛼, 𝛽, 𝜌0, 𝑐, 𝐸] are [2, 0.6, 7, 0.1, 100]. The
ntensity of the lamp is constant and provides 𝐼𝑈𝑉 = 5.5 W∕m2. In
ddition, the value 𝐷𝑆𝐴𝑅𝑆−𝐶𝑜𝑉 2 = 500 J∕m2 is set as the reference value
o achieve disinfection; 𝑑𝐿𝐴 = 0.2 as the anticipation value for the pure
ursuit controller. The sample time for simulation is 𝑑𝑡 = 0.1 ms. As the
ize of the map changes depending on the scenario, the value 𝜌 of the
peed controller has been adjusted for each one: 1.11 is used for the
ow complexity scenario, 1.25 for medium one, and 1.43 for the most
omplex one.

.2.3. Comparison of results
Table 1 shows all metrics obtained when the control approach is

pplied to the four different scenarios, with both the spiral movement
nd the boustrophedon one. The 𝜌 value used in each scenario is
ndicated together the name. For each scenario the best results have
een boldfaced in the Table. For 𝐷𝐻 the minimum is the best; for 𝐷𝑚𝑖𝑛,
he best is the value closest to the expected value, that is, 550. As all
he results are below this expected dose, the best value of 𝐷𝑚𝑖𝑛 is the
aximum.

Looking at the times required by the robot in each of the experi-
ents, the type of motion strategy has no influence on it. This is due

o the speed controller described in (9), as it allows the speed to be in-
reased or decreased so that the radiation absorbed in the environment
s appropriate. That is, thanks to the algorithm, the disinfection process
an be successfully completed by adjusting the speed according to the
umber of times a robot passes through the same area.

If we look at the number of existing deadlock situations, as expected
his number increases as the complexity of the map increases. a higher
umber of deadlock situations means a greater distance traveled and a
igher number of turns. However, whenever boustrophedon motion is
sed, the number of deadlocks is always higher.

Although the distance traveled is quite similar for both strategies,
he difference between the radians turned by the robot for each motion
ncreases as the complexity of the map grows. For the high obstacle
istribution scenario, the difference is approximately 980 rad. Since one
evolution is 2𝑝𝑖 radians, the robot using boustrophedon motion turns
pproximately 160 revolutions more than the robot using spiral motion.
herefore, using boustrophedon motion would result in more fatigue
nd higher energy consumption.

In almost all cases the maximum dose (𝐷𝑚𝑎𝑥) is smaller with the
oustrophedon movement although in all cases radiation peaks are
roduced, mainly due to the turns. It is often the case that in cells that
re adjacent to an obstacle, the received dose is below the threshold, as
hey are typically hardly passed through when the robot escapes from

deadlock situation (diagonal movements are often used to get to a
on-disinfected area faster). However, in the case of the minimum dose
𝐷𝑚𝑖𝑛), both movement types produce similar results.

As the maximum dose is smaller with boustrophedon, this strategy
lso gives larger percentage of cells with the desired dose range 𝐷𝑁 . It
ay be explained as the spiral movement tends to create peaks in the

enter of the spiral, especially at the beginning of the ellipse.
By inspecting NC in the table, it is possible to realize how this value

rows with the complexity of the map. In other words, if the complexity
f the map is high, the GBNN is not enough to solve the deadlocks and
he application of the DLE and ERGA is necessary. Another interesting
esult is that when only GBNN is used, the boustrophedon movement
orks worse than the spiral one.

In addition to the quantitative results, graphical results have been
lso obtained. Fig. 11 shows the results when the control algorithm is
sed with the high complexity map and the two types of movement.
igures on the left (a, c, e) represent the results with spiral motion and
igures (b, d, f) with the boustrophedon. On the other hand, figures of
he first row show the path, the second row represents the cells and
ound deadlocks, and figures in the last row show the radiation dose

dministered.
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Fig. 10. Working environments used in the simulation for the analysis of the disinfection process.
Table 1
Disinfection process analysis.
Empty Obstacle Distribution Map (𝜌 ≈ 1.11)

𝑀𝑜𝑡𝑖𝑜𝑛 𝑡𝑟𝑜𝑏𝑜𝑡 𝑛𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 𝑑𝑟𝑜𝑏𝑜𝑡[𝑚] 𝑟𝑟𝑜𝑏𝑜𝑡[𝑟𝑎𝑑] 𝑣𝑎𝑣[𝑚∕𝑠] 𝐶𝐸 𝑡𝑐𝑒𝑥[%] 𝐷𝑚𝑎𝑥[𝐽∕𝑚2] 𝐷𝑚𝑖𝑛[𝐽∕𝑚2] 𝐷𝑁 [%] 𝐷𝐻 [%] 𝐷𝐿[%] 𝑁𝐶[%]

Spiral 01 ∶ 03 ∶ 38 0 596.70 𝟕𝟑.𝟖𝟔 0.16 0.23 0 596.53 𝟐𝟑𝟕.𝟕𝟕 73.45 13.97 12.58 0.00
Boustrophedon 𝟎𝟏 ∶ 𝟎𝟑 ∶ 𝟏𝟖 0 𝟓𝟗𝟓.𝟖𝟓 75.20 0.16 0.23 0 𝟓𝟕𝟕.𝟖𝟗 188.83 𝟕𝟖.𝟏𝟓 𝟗.𝟒𝟗 𝟏𝟐.𝟑𝟔 0.00

Low Obstacle Distribution Map (𝜌 ≈ 1.11)

𝑀𝑜𝑡𝑖𝑜𝑛 𝑡𝑟𝑜𝑏𝑜𝑡 𝑛𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 𝑑𝑟𝑜𝑏𝑜𝑡[𝑚] 𝑟𝑟𝑜𝑏𝑜𝑡[𝑟𝑎𝑑] 𝑣𝑎𝑣[𝑚∕𝑠] 𝐶𝐸 𝑡𝑐𝑒𝑥[%] 𝐷𝑚𝑎𝑥[𝐽∕𝑚2] 𝐷𝑚𝑖𝑛[𝐽∕𝑚2] 𝐷𝑁 [%] 𝐷𝐻 [%] 𝐷𝐿[%] 𝑁𝐶[%]

Spiral 𝟎𝟏 ∶ 𝟎𝟏 ∶ 𝟑𝟑 𝟗 639.75 𝟑𝟎𝟔.𝟒𝟏 0.17 𝟎.𝟒𝟖 15.24 798.48 𝟐𝟑𝟏.𝟒𝟒 57.28 𝟐𝟔.𝟑𝟔 16.36 𝟎.𝟎𝟎
Boustrophedon 01 ∶ 01 ∶ 54 10 𝟔𝟑𝟕.𝟔𝟏 377.18 0.17 0.54 15.24 𝟔𝟗𝟓.𝟒𝟔 204.91 𝟔𝟓.𝟏𝟑 20.64 𝟏𝟒.𝟐𝟑 14.34

Medium Obstacle Distribution Map (𝜌 = 1.25)

𝑀𝑜𝑡𝑖𝑜𝑛 𝑡𝑟𝑜𝑏𝑜𝑡 𝑛𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 𝑑𝑟𝑜𝑏𝑜𝑡[𝑚] 𝑟𝑟𝑜𝑏𝑜𝑡[𝑟𝑎𝑑] 𝑣𝑎𝑣[𝑚∕𝑠] 𝐶𝐸 𝑡𝑐𝑒𝑥 𝐷𝑚𝑎𝑥[𝐽∕𝑚2] 𝐷𝑚𝑖𝑛[𝐽∕𝑚2] 𝐷𝑁 [%] 𝐷𝐻 [%] 𝐷𝐿[%] 𝑁𝐶[%]

Spiral 𝟎𝟐 ∶ 𝟒𝟕 ∶ 𝟑𝟔 𝟒𝟕 𝟐𝟐𝟑𝟓.𝟗𝟏 𝟏𝟏𝟔𝟖.𝟗𝟔 𝟎.𝟐𝟐 𝟎.𝟓𝟕 𝟐𝟓.𝟕𝟒 𝟕𝟏𝟗.𝟗𝟖 228.93 55.66 31.56 12.77 𝟓𝟒.𝟓𝟕
Boustrophedon 02 ∶ 48 ∶ 10 55 2316.56 1406.77 0.23 0.63 30.69 722.39 𝟐𝟑𝟑.𝟏𝟒 𝟔𝟏.𝟏𝟔 𝟐𝟖.𝟐𝟏 𝟏𝟎.𝟔𝟑 80.31

High Obstacle Distribution Map (𝜌 ≈ 1.43)

𝑀𝑜𝑡𝑖𝑜𝑛 𝑡𝑟𝑜𝑏𝑜𝑡 𝑛𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 𝑑𝑟𝑜𝑏𝑜𝑡[𝑚] 𝑟𝑟𝑜𝑏𝑜𝑡[𝑟𝑎𝑑] 𝑣𝑎𝑣[𝑚∕𝑠] 𝐶𝐸 𝑡𝑐𝑒𝑥 𝐷𝑚𝑎𝑥[𝐽∕𝑚2] 𝐷𝑚𝑖𝑛[𝐽∕𝑚2] 𝐷𝑁 [%] 𝐷𝐻 [%] 𝐷𝐿[%] 𝑁𝐶[%]

Spiral 𝟎𝟕 ∶ 𝟐𝟕 ∶ 𝟏𝟎 𝟏𝟏𝟗 𝟔𝟕𝟗𝟒.𝟑𝟓 𝟑𝟑𝟖𝟎.𝟗𝟓 𝟎.𝟐𝟓 𝟎.𝟓𝟗 𝟐𝟐.𝟐𝟔 739.34 224.57 57.67 29.96 12.37 𝟓𝟖.𝟑𝟕
Boustrophedon 07 ∶ 28 ∶ 39 161 7070.34 4358.31 0.26 0.68 27.47 𝟕𝟎𝟐.𝟗𝟑 𝟐𝟐𝟒.𝟓𝟒 𝟔𝟏.𝟐𝟖 𝟐𝟖.𝟏𝟖 𝟏𝟎.𝟓𝟒 99.02
Some numerical results can be confirmed in the figures. For in-
stance, the boustrophedon tends to generate more turns, and this is
even more evident in the narrow aisles if they are not aligned with
the main direction of the movement. It is possible to see this at the top
13
left. In addition, when the boustrophedon is used, there are differences
between following the longest or the shortest axis in the workspace. If
the robot moves across the longer side of the room it will make more
turns than in the other case. This dependency with the direction does
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Fig. 11. High obstacle distribution map simulation.
not happen with the spiral movement, being this one of its advantages.
Moreover, reducing the turns saves the robot battery.

It is also possible to observe that there are fewer deadlocks when
the spiral movement is applied. On the whole, deadlocks are more
frequent in narrow zones where the robot has only one way to escape.
For instance, in the zones located at the top and the bottom of the map.

On the other hand, as far as the radiation map is concerned, the
zones with higher values are at the crossing paths where the robot has
been before. With both motions there is a zone in the middle of the map
with a high dose. Although the radiation dose is similar in both cases,
there are more zones where the radiation overpasses the required dose
when the spiral is applied.
14
6. Conclusions and future works

In this paper we have developed a simulation model to test CCPP
algorithms for UV-C disinfection. It includes a novel control architec-
ture that combines GBNN for discretizing the map, a motion strategy to
improve path planning in the presence of obstacles, a UV-C radiation
dose estimation in conjunction with a speed controller that adjusts the
robot speed to get the proper radiation dose, and finally, a pure pursuit
controller to ensure the mobile robot moves correctly.

To address deadlock issues, an original preventive deadlock process-
ing approach is proposed with the ERGA. The robot is able to anticipate
deadlocks by evaluating the surrounding cells and to react so to avoid
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getting stuck. When a deadlock is estimated, the method generates the
best escape route to the nearest non-disinfected zone using the ERGA.

Two motion techniques were tested to see how they influence the
algorithm performance: boustrophedon and spiral movements. Spiral
motion reduces deadlocks and allows the robot to move with less
control effort. The boustrophedon movement, on the other hand, brings
the cells closer to the appropriate dosage and reduces the extra radia-
tion. As a result, we conclude that no motion is superior to another.
One excels at some metrics while the other stands out at others. The
technique to be used will be determined by the metrics we want to
prioritize.

When the PDPA is used, the radiation diagram becomes more
regular, and the values better approach the necessary dose. When only
GBNN is applied, certain zones have extremely low radiation values
(zones near unvisited cells), while others have very high radiation
levels (zones near the deadlocks). It is worth noting that excessive UV-C
radiation can wear out the environment and shorten the useful life of
goods.

As future work lines we may highlight to test the proposal with a
real robot, the use of machine learning techniques to predict earlier
the deadlock situations, and to incorporate reinforcement learning to
improve the escape route generator.
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