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The Search for Causality: A Comparison of Different Techniques for
Causal Inference Graphs

Jolanda J. Kossakowski, Lourens J. Waldorp, and Han L. J. van der Maas
Department of Psychology, University of Amsterdam

Abstract
Estimating causal relations between two or more variables is an important topic in psychology.
Establishing a causal relation between two variables can help us in answering that question of why some-
thing happens. However, using solely observational data are insufficient to get the complete causal pic-
ture. The combination of observational and experimental data may give adequate information to properly
estimate causal relations. In this study, we consider the conditions where estimating causal relations might
work and we show how well different algorithms, namely the Peter and Clark algorithm, the Downward
Ranking of Feed-Forward Loops algorithm, the Transitive Reduction for Weighted Signed Digraphs algo-
rithm, the Invariant Causal Prediction (ICP) algorithm and the Hidden Invariant Causal Prediction (HICP)
algorithm, determine causal relations in a simulation study. Results showed that the ICP and the HICP
algorithms perform best in most simulation conditions. We also apply every algorithm to an empirical
example to show the similarities and differences between the algorithms. We believe that the combination
of the ICP and the HICP algorithm may be suitable to be used in future research.

Translational Abstract
Psychologists study the (possible) causal relation between psychological constructs, like sleep, concen-
tration, and feelings of guilt. For example, does sleep deprivation lead to concentration problems? And
could sleep deprivation be caused by increased feelings of guilt? Knowing what the cause is of some-
thing so intrusive as sleep problems may in turn lead to finding the solution to help an individual with
sleep problems. If we know what causes a problem, we can help to solve it. The type of data that is
most often used to estimate causal relations between variables are observational data. These are (empiri-
cal) data in which no manipulations have taken place. Although one can use observational data to esti-
mate some causal relations, this alone is not enough to properly estimate all relationships between
variables. We also need so-called experimental data to estimate causal relations. These are (empirical)
data where some perturbation or manipulation has taken place. Here, we provide an overview of a set of
algorithms, namely the Peter and Clark algorithm, the Downward Ranking of Feed-Forward Loops algo-
rithm, the Transitive Reduction for Weighted Signed Digraphs algorithm, the Invariant Causal
Prediction (ICP) algorithm and the Hidden Invariant Causal Prediction (HICP) algorithm, and investi-
gate how well each of these algorithms estimates causal relations by means of a simulation study. We
also apply these algorithms to an empirical dataset. Our results showed that two algorithms, the ICP and
the HICP-algorithms, perform best in most simulation conditions. We expect that the combination of
these algorithms may be suitable to be used in future research.

Keywords: causal inference, perturbation, transitive reduction, invariant causal prediction, experimental
design

Supplemental materials: https://doi.org/10.1037/met0000390.supp

Some tens of thousands of years ago, humans began to realize that cer-

tain things cause other things and that tinkering with the former can

change the latter. No other species grasps this, certainly not to the

extent that we do. From this discovery came organized societies, then

towns and cities, and eventually the science- and technology-based

civilization we enjoy today. All because we asked a simple question:

Why? (Pearl & Mackenzie, 2018).

The quest for causality is one that people have been striving for
decades. Establishing a causal relation between two phenomena or
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variables can help us in answering that big question of why some-
thing happens. In psychology, we study the (possible) causal rela-
tion between psychological constructs, like sleep, concentration,
or feelings of guilt. For example, does sleep deprivation lead to
concentration problems? And could sleep deprivation be caused
by increased feelings of guilt? Knowing what the cause is of some-
thing so intrusive as sleep problems may in turn lead to finding the
solution to help an individual with sleep problems. If we know
what causes a problem, we can help to solve it.
What is a causal relation? We confine ourselves here to an inter-

ventional (or, equivalently, a counterfactual) definition of causality.
The idea is that, if one changes (perturbs) variable X, then this
should have effects only on variables Y with which X has a causal
relation. For instance, if we consider the structure X ! Y / Z, then
we expect that changing X will change Y, but this change in X will
not change Z. Therefore, we use the following definition of a unidir-
ectional causal relation: “a relation between two variables (X ! Y)
where, when one changes one variable (X), one observes a change
in the other variable (Y), and if we change variable Y we observe no
change in variable X. In general, when more than three variables
are involved, we require that conditioned on all other variables, a
direct cause X is one that changes the distribution of Y. If we go
back to the example of sleep, our definition of a causal relation
states that, when there is an increase in sleep problems, there should
be a change in the level of concentration as well, or any other aspect
of the distribution of the effect variable. The definition of a causal
relation that we use here is also a counterfactual relationship (Pearl,
2009; Peters et al., 2017). It may be argued that our definition is not
sufficient to capture all aspects of a causal relation. For instance, we
ignore the question of what kinds of events could have a causal
relation; thereby, interpreting the causal relations.
To infer causal relations from the data (and hence the probabil-

ity distribution obtained from the data) we require that any change
in a causal relation in the graph implies a corresponding change in
the probability distribution. This is known as the causal Markov
assumption. Reversely, a change in the probability distribution
implies a change in the graph, known as the faithfulness assump-
tion. The relations between variables in the graph are referred to as
d-separation (Pearl, 2009). Two variables are d-separated if the
path between the variables in the graph is blocked by a third vari-
able. The causal Markov assumption then implies that the set of
d-separations in the graph implies a set of conditional independ-
ence relations in the probability distribution. The faithfulness
assumption implies that a change in the conditional independen-
cies implies a change in the set of d-separations. To illustrate, con-
sider Figure 1 In the left panel we observe a chain structure
X ! Z ! Y, where X and Y are d-separated if we block (or condi-
tion on) Z. The causal Markov assumption then implies that we
should find variables X and Y conditionally independent given
variable Z. Conversely, the faithfulness assumption implies that if
X and Y are conditionally independent given Z in the probability
distribution, then X and Y should also be d-separated in the graph.
The type of data that is most often used to estimate causal rela-

tions between variables are observational data. These are (empiri-
cal) data in which no perturbations have taken place. Observational
data includes cross-sectional data that one collects with question-
naires for example. The most widely used technique to estimate
causal relations with observational data are the algorithm developed

by Pearl (2009) and Spirtes et al. (2000) or variations thereof. Pearl
uses the notion of (conditional) dependence and independence
between sets of three variables to determine a causal relation. The
ideas from Pearl and Verma (1991) and Spirtes et al. (2000) indi-
cate that, if one were to solely use multivariate normal observatio-
nal data, we can infer causal relations using the notion of
conditional (in)dependence. Based on the raw (simple, Pearson)
and partial correlations, four different causal structures can be
obtained for an example with three variables, as shown in Figure 1
In the first three situations (the two chain structures and the com-
mon cause structure), nodes X and Y have a nonzero correlation, but
their partial correlation is zero when conditioning on node Z. Nodes
X and Y are then said to be separated in the graph by Z. In the fourth
structure (collider structure), nodes X and Y have zero correlation,
but a nonzero partial correlation when conditioning on node Z. The
set of conditional independence relations in the probability distribu-
tion is different for the collider structure in the right panel of Figure
1 in comparison with the other three structures. The three structures
in the left three panels in Figure 1 (two chains and a common cause
structure) cannot be distinguished in terms of their conditional inde-
pendence, nor in terms of their d-separations; they are Markov
equivalent (see, e.g., Peters et al., 2017, p. 102).

As the rules for conditional independence are equal for the first
three causal structures, they are statistically equivalent and one
cannot distinguish them from one another. It is only possible to
identify the fourth (collider) structure from the other three (Pearl,
2000; but see Mooij et al., 2016, for some interesting cases). These
ideas have been used in different methods to obtain causal rela-
tions. Tetrad (Glymour & Scheines, 1986) applied a conditional
independence test to each possible alternative path, an implemen-
tation in R called ggm (short for Gaussian Graphical Models;
Drton & Richardson, 2004) uses a likelihood based method for a
complete set of conditional independencies. Temporal ordering
has also been used (Hamaker et al., 2015; Usami et al., 2019;
Zyphur et al., 2019). However, using observational data exclu-
sively will not resolve all causal relations.

This led Granger (1980) to state that an “observed relationship
does not allow one to say anything about causation between the
variables,” and Holland (1986) argued that there can be “no causa-
tion without manipulation.” Although one can use observational
data to estimate some causal relations, this alone is not enough to
properly estimate all relationships between variables. As implied
by our definition of a causal relation, one needs to perturb one
variable and observe its effect to establish causal relations between
variables. This means that we also need so-called experimental

Figure 1
The Different Causal Structures That Can be Detected With the
Peter and Clark (PC)-Algorithm

Note. The chain structures and the common cause structure are statisti-
cally equivalent, whereas the collider structure is statistically unique.
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data to estimate causal relations. These are (empirical) data where
some perturbation has taken place. Real-world examples include a
pre-posttest comparison with therapy as a perturbation (see, e.g.,
Kossakowski et al., 2021), or experimental designs in which par-
ticipants are presented with hypothetical scenarios to change their
attitude toward a construct (see Hoekstra et al., 2018, for an empir-
ical example).
In an experimental study, one needs a control and an experimen-

tal condition to see if a manipulation significantly changes an out-
come variable. Just like an experiment, to estimate causal
relations, we need both observational data that serves as a baseline
measurement, and experimental data that may show us which
causal relations survive the manipulation and which ones change.
We assume here that a perturbation does not alter the underlying
causal structure. Thus, the combination of observational and ex-
perimental data gives us a complete picture of the causal relations
between variables, which in turn may be used to set up a treatment
plan where the causes of constructs like concentration problems
are intervened upon, instead of the effect. We need both observa-
tional and experimental data to determine the difference after
some perturbation compared with a baseline (observation, without
some perturbation).
We selected four algorithms for this study that are potentially

suitable for psychological data using both observational and exper-
imental data. Two of these assume a variable-specific perturbation,
meaning that a perturbation take place on each variable individu-
ally. Although this approach may work in theory, in practice it is
difficult to single out symptoms of psychological disorders and
perturb them accordingly. It is more likely that perturbations in
psychology occur in a “fat finger” fashion, which means that mul-
tiple variables or symptoms are perturbed simultaneously. The two
other algorithms do not assume that only a single variable can be
perturbed at a time and so may be more useful in psychology. For
comparison we also considered an algorithm that uses only obser-
vational data.
The goal of this article is threefold: (a), we want to provide an

overview of a set of algorithms that stem from different fields,
describing and illustrating each algorithm using both observational
and experimental data; (b) we want to investigate how well each
of these algorithms can estimate causal relations by means of a
simulation study; and (c) we want to show how these algorithms
perform when empirical data are used. First, we will describe the
algorithms that can be used to estimate causal relations. For each
algorithm we use a simulated dataset as an illustration. Then we
will describe the simulation study that we have set up to test not
only the performance of these techniques individually, but also in
comparison to one another. Lastly, we will apply each algorithm
to an empirical example to show how the algorithms work in
practice.

Methods of Causal Inference

The goal of this study is to compare different algorithms for infer-
ring causal graphs. The algorithms we use all work nodewise, that
is, we consider each variable (node associated with that variable) in
turn and determine the variables directly connected to it; a regression
basically. Within each regression we assume that if nodes are sepa-
rated in the graph then this corresponds to a conditional independ-
ence in the probability distribution (Markov condition). Also, we

assume that a conditional independence (partial correlation for mul-
tivariate normal data) translates to a separation of nodes in the graph
(faithfulness condition). See introduction above and Appendix A for
more details on this.

Identifying causal relations is not an easy task. Take for exam-
ple the causal graph shown in Figure 2, where one can see that
there is no direct relation between variables 2 and 5 due to the
chain structures 2 ! 3 ! 5 and 2 ! 4 ! 5. So, there are three
possible paths when one does not know the true graph. The trick is
then to remove the path 2 ! 5 in this case. Here, we focus on two
different types of methods. The first is called transitive reduction
(Klamt et al., 2010; Pinna et al., 2013). Here, a causal graph is set
up, and direct connections are removed if there is enough evidence
to suggest that two variables are not directly connected. When
there is a direct causal relation between two variables, any alterna-
tive path between these variables should be removed with transi-
tive reduction. However, when a direct causal relation is small,
algorithms that use transitive reduction may erroneously remove
the direct connection in favor of the alternative paths. Transitive
reduction may not always work in practice. We expand on this
more in the section where we discuss the Down-Ranking of Feed-
Forward Loops algorithm and the Transitive Reduction for
Weighted Signed Digraphs algorithm as well as Appendix B.

The second method is by conditioning on the remaining varia-
bles (Meinshausen et al., 2016; Peters et al., 2017). In our example
shown in Figure 2 this is guaranteed to work, since conditioning
on both 3 and 4 will remove the correlation between variables 2
and 5. Note that even if we were to perturb the variable associated
with node 2, then conditioning on nodes 3 and 4 would still lead
to no change in the variable associated with node 5, allowing the
correct inference that there is no direct relation from node 2 to
node 5.

To explain these algorithms, we will use one simulated causal
graph and associated dataset that contains five variables, visualized
in Figure 2. For illustration purposes we simulated data for 1,000

Figure 2
Visualization of the Causal Graph That We Use
to Illustrate the Different Algorithms

Note. Arrows represent causal relations between individ-
ual variables, which are depicted as circles.
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measurements. We will compare five algorithms: the Peter and
Clark algorithm (PC; Kalisch & Bühlmann, 2007); the Down-
Ranking of Feed-Forward Loops algorithm (DR-FFL; Pinna et al.,
2013), the Transitive Reduction for Weighted Signed Digraphs
algorithm (TRANSWESD; Klamt et al., 2010); the Invariant
Causal Prediction algorithm (ICP; Meinshausen et al., 2016) and
the Hidden Invariant Causal Prediction algorithm (HICP; Peters
et al., 2017). We chose to include the PC-algorithm, even though
it only uses observational data, to compare its results to algorithms
that include experimental data next to observational data. Other
algorithms that use observational data include a directional de-
pendence model using copulas (Sungur, 2005), a linear causal acy-
clic model (Shimizu et al., 2006), or a directional dependence
analysis with possible confounding variables (Wiedermann &
Sebastian, 2019). We chose to restrict our study to these algo-
rithms because we were interested in combining observational and
experimental data and different types of perturbations.
The data used to illustrate the different algorithms are publicly

available, so that the reader may use the data to replicate our
examples. Throughout this section we use the example graph in
Figure 2 with p = 5 variables and n = 1,000 observations (inde-
pendent and identically distributed). Edge eij denotes a directed
edge i ! j. Symbols that are associated with specific algorithms
will be explained when we introduce the symbol for the first time.
At the end of this section, we provide a summary table (see Table
1) that gives an overview of the algorithms that are discussed here,
and their properties.

PC-Algorithm

The PC-algorithm (Spirtes et al., 2000) has a two-step proce-
dure that solely uses observational data. We used the R-package
pcalg (Version 2.6-2; Kalisch et al., 2012) to run the PC-algo-
rithm. The first step in the PC-algorithm is to find the skeleton of
the causal graph: an undirected graph that shows all possible
causal relations. For each node individually, we look at every pos-
sible relation with every other node in the graph. The raw correla-
tion between each pair of nodes is calculated (matrix r in (1)).
Then the partial correlations are calculated between every pair of
nodes (matrix rp in (1)), conditioning on subsets of the remaining
variables, increasing in size of the subsets. All possible partial cor-
relations are calculated until either the algorithm has calculated
the partial correlation for all possible subsets, or until a partial cor-
relation returns zero when conditioning on a specific subset. In the
latter case the correlation in r is explained away by another vari-
able. This can be seen, for instance, in the partial correlation ma-
trix rp below where the partial correlation between nodes 2 and 5
drops from .723 to .038 when conditioning on the remaining three
nodes.
In the second step of the PC-algorithm, the direction of the rela-

tion is determined by considering collider structures (fourth panel,
Figure 1). Because the correlational pattern for a collider (nonzero
partial correlation between nodes X and Y) is different from the
chain and common cause structure (zero partial correlation
between nodes X and Y), the collider structure can be distin-
guished, and hence gives information about the direction of the
causal relations. This can be seen from the partial correlation ma-
trix rp below where the partial correlation between nodes 1 and 3
is �.468 (conditioning on all three remaining nodes), while T

ab
le

1
O
ve
rv
ie
w
of

th
e
A
lg
or
it
hm

s

A
lg
or
ith

m
O
bs
er
va
tio

na
l

da
ta

E
xp
er
im

en
ta
l

da
ta

N
=
1

N
.

1
W
ith

in
-

su
bj
ec
ts

B
et
w
ee
n-

su
bj
ec
ts

C
or
re
ct
io
n
fo
r

m
ul
tip

le
te
st
in
g

C
yc
lic

gr
ap
hs

L
im

ita
tio

ns
Se
ns
iti
vi
ty

Sp
ec
if
ic
ity

PC
H

—
—

H
H

H
—

—
U
se
s
on
ly

ob
se
rv
at
io
na
ld

at
a

Pa
rt
ia
lly

hi
gh

H
ig
h

D
R
-F
FL

H
H

H
H

H
—

—
—

R
es
ul
tin

g
gr
ap
h
is
un
w
ei
gh
te
d
an
d
un
si
gn
ed

L
ow

H
ig
h

T
R
A
N
SW

E
SD

H
H

—
H

—
H

—
—

U
se
s
ar
bi
tr
ar
y
th
re
sh
ol
d

L
ow

H
ig
h

IC
P

H
H

H
H

H
H

H
B
on
fe
rr
on
i

C
om

pu
ta
tio

na
lly

sl
ow

w
ith

m
an
y
va
ri
ab
le
s

Pa
rt
ia
lly

hi
gh

H
ig
h

H
IC
P

H
H

H
H

H
H

H
B
on
fe
rr
on
i

C
on
ta
in
s
sp
ur
io
us

re
la
tio

ns
H
ig
h

Pa
rt
ia
lly

hi
gh

N
ot
e.

PC
=
Pe
te
r
an
d
C
la
rk
;
D
R
-F
FL

=
D
ow

n-
R
an
ki
ng

of
Fe
ed
-F
or
w
ar
d
L
oo
ps
;
T
R
A
N
SW

E
SD

=
T
ra
ns
iti
ve

R
ed
uc
tio

n
fo
r
W
ei
gh
te
d
Si
gn
ed

D
ig
ra
ph
s;
IC
P
=
In
va
ri
an
t
C
au
sa
l
Pr
ed
ic
tio

n;
H
IC
P
=

H
id
de
n
In
va
ri
an
tC

au
sa
lP

re
di
ct
io
n;

N
=
nu
m
be
r
of

pa
rt
ic
ip
an
ts
;H

=
al
go
ri
th
m

ca
n
ha
nd
le
th
at
sp
ec
if
ic
pr
op
er
ty
;—

=
al
go
ri
th
m

ca
nn
ot

ha
nd
le
th
at
sp
ec
if
ic
pr
op
er
ty
.P

ar
tia
lly

hi
gh

m
ea
ns

th
at
th
e
se
n-

si
tiv

ity
/s
pe
ci
fi
ci
ty

is
hi
gh

de
pe
nd
in
g
on

ce
rt
ai
n
co
nd
iti
on
s.

722 KOSSAKOWSKI, WALDORP, AND VAN DER MAAS

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



without conditioning, the (Pearson) correlation is �.019. The fact
that there is no or a very small correlation without conditioning,
but a large partial correlation when conditioning implies that there
must be a collider structure (see Figure 2). Note that the PC-algo-
rithm does not automatically correct for multiple testing.

r ¼

1:000
�0:028 1:000
�0:019 0:711 1:000
�0:073 0:717 0:517 1:000
0:298 0:723 0:759 0:748 1:000

0
BBBB@

1
CCCCA

rp ¼

1:000
�0:006 1:000
�0:468 0:389 1:000
�0:515 0:392 �0:467 1:000
0:686 0:038 0:685 0:693 1:000

0
BBBB@

1
CCCCA (1)

Figure 3 (left panel) shows the skeleton based on our illustration
data, using a significance level of .05. The right panel of Figure 3
shows the final result of our illustration. Four out of six edges that
are present are correctly identified. What is interesting in this
example is the edge e23. This edge is undirected, the PC-algorithm
could not determine a direction. This makes sense when we look
at the causal structure in Figure 2 that is formed between nodes 2,
3, and 5, and between nodes 3, 2, and 4. No matter the direction of
the edge between nodes 2 and 3, the causal structures between
nodes 2, 3, and 5, and between nodes 3, 2, and 4 will remain statis-
tically equivalent. It is impossible for the PC-algorithm to deter-
mine a direction. This illustration shows one of the prime
disadvantages of the PC-algorithm, in that it obtains an equiva-
lence class of graphs that are all equally likely to be true, and so
some directions of edges cannot be resolved. The other edge that
stands out is e14. In this case the correlation between the variables
associated with nodes 1 and 4 exists because of the induced path 4
� 3 � 1 when conditioning on node 5. Hence it shows up in the
skeleton and in the final graph. Overall, in this illustration the PC-
algorithm performs reasonably well, only one edge is incorrectly
estimated, and one edge is left undirected. Most of the edges that
are present in the true causal graph are correctly estimated.

DR-FFL-Algorithm

The Downward-Ranking of Feed-Forward Loops algorithm (DR-
FFL; Pinna et al., 2013) has an advantage over de PC-algorithm in
that it uses both observational data and experimental data to esti-
mate a causal graph. The DR-FFL-algorithm (Pinna et al., 2013)
originates from the field of gene biology and estimates unweighted
(no edge weights), unsigned (edge can be positive or negative, there
is no information on this) causal graphs for single subjects and sin-
gle measurements (where each node was perturbed once). The DR-
FFL-algorithm uses a two-step procedure. In the first step, the algo-
rithm compares the effect of perturbing a node to the average effect
that includes the observational data as well to create a perturbation
graph (PG). In the second step, the DR-FFL-algorithm applies tran-
sitive reduction to remove direct causal relations from the perturba-
tion graph where indirect effects are in order.

The DR-FFL-algorithm needs two components to infer the causal
graph: observational data for each of the nodes (Gwt; also known
as wild-type data) and experimental data (Gko; also called knock-
out data) where each node in the data are perturbed. The observatio-
nal data are given in (3) for the example data based on Figure 2.
The experimental data in (3) consists of results of a particular node
being perturbed. For example, row 1 of the matrix in (3) depicts the
new values that the nodes in the graph have after perturbing node 1.

Gwt ¼ ð�0:015; 0:025;�0:001; 0:013; 0:015Þ (2)

Gko ¼

�0:018 0:115 �0:003 0:064 0:072
�0:070 �0:012 �0:004 0:063 0:073
�0:079 0:128 0:134 0:067 0:075
�0:073 0:108 �0:004 0:082 0:080
�0:093 0:105 �0:003 0:079 �0:032

0
BBBB@

1
CCCCA

(3)

The first step is to obtain a PG where an effect is determined by
normalizing and comparing the perturbed effect using a z-score:

jzijj ¼
����G

ko
ij � lj
rj

���� (4)

Figure 3
Visualization of the Skeleton (Left Panel), and the Causal Graph (Right Panel)
Estimated With the Peter and Clark (PC)-Algorithm (Kalisch et al., 2012)
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where mj is the mean, and rj the standard deviation of node j
across different perturbations.
Both include the observation for node j. The PG is then gener-

ated by selecting those edges whose jzj-score (shown in (5)) is
larger than a prespecified threshold b . The resulting PG with the
edges that survive a threshold of b = .60 is seen in the left panel
of Figure 4. This threshold b = .60 is arbitrary in that no heuristic
is known for sensible values. Note the we averaged over the sam-
ple to highlight the differences between the DR-FFL and the
TRANSWESD-algorithm (discussed in the next section).

jzj ¼

0:000 0:651 0:405 0:090 0:542
0:370 0:000 0:425 0:072 0:567
0:641 0:872 0:000 0:233 0:611
0:452 0:513 0:423 0:000 0:718
1:047 0:463 0:416 0:693 0:000

0
BBBB@

1
CCCCA (5)

The second step of the DR-FFL-algorithm is transitive reduc-
tion. In this step, the algorithm narrows its search to edges that
connect strongly connected components. A strongly connected
component is a (sub)set of nodes where any node can be reached
(i.e., there must be a directed path) from any other node in the
component. Such a subset is called transitive. The DR-FFL-algo-
rithm only focuses on edges between strongly connected compo-
nents because cycles exists between the nodes within a strongly
connected component. For each edge eij that connects two strongly
connected components, the DR-FFL-algorithm searches for alter-
native paths, and removes the direct edge eij if the alternative path
satisfies two criteria (1), edge eij can only be removed when eij
connects different strongly connected components in the PG and
(2), edge eij can only be removed when there is an alternative route
from node i to node j without using eij.
In this illustration based on the example graph in Figure 2, four

strongly connected components exist (see the middle panel of Fig-
ure 4): nodes 4 and 5 form a strongly connected component (com-
ponent A), and nodes 1, 2, and 3 each from their own individual
component (components B, C, and D, respectively). There are

only five edges that connect these strongly connected components,
shown by the middle panel in Figure 4. For each of these five
edges, the DR-FFL-algorithm determines whether an alternative
path exists to connect these two components. There are no alterna-
tive paths between components A and B, components A and C, and
components A and D. There is an alternative path between compo-
nents D and B (D ! A ! B) and components D and C (D ! A !
B ! C). Thus, the edges that directly connect components D and
B (e31) and components D and C (e32) are removed from the causal
graph, resulting in the graph shown in Figure 4 (right panel).

Overall, the DR-FFL-algorithm does not perform well in this
illustration. Only two edges that exist in the true causal graph (see
Figure 2) are also estimated here. Two edges are estimated in the
wrong direction, one edge is incorrectly estimated and one edge is
incorrectly absent from the graph.

Transitive Reduction for Weighted Signed Digraphs

The TRANSitive reduction for WEighted Signed Digraphs
(TRANSWESD; Klamt et al., 2010; Pinna et al., 2013) returns a
causal graph with weighted edges that indicate a positive or a nega-
tive relationship, while applying transitive reduction to estimate a
causal graph at the same time. Furthermore, where the DR-FFL
algorithm mostly handles single-subjects data, the TRANSWESD-
algorithm can be solely applied to between-subjects data.

As a first step, we generate the PG. Like the DR-FFL-algorithm,
we calculate |z|-scores. In addition to the jzj-score, we calculate an
absolute change score c (shown in (6)) between Gwt and Gko that
shows the absolute effect of perturbing a node. Edges are retained
in the PG when their associated jcj-scores exceed a prespecified
threshold c. Each edge in the PG gets a sign sij that reflects the
direction of the change that node j has made after node i was per-
turbed: if the change score is positive, then the edge will be blue,
and when the change score is negative, the edge will be red. Each
edge also has a weight wij that reflects the uncertainty of the causal
relation, where a higher weight indicates a lower certainty. The
weight wij is determined by 1 � jqijj, where qij is the conditional

Figure 4
Visualization of the Down-Ranking of Feed-Forward Loops (DR-FFL) Process

Note. The left panel denotes the perturbation graph in which present edges represent potential causal relations whose effect where strong enough. The
middle panel depicts the edges that can be removed in the transitive reduction step of the DR-FFL-algorithm. The black boxes around the nodes in the
left panel indicate the strongly connected components. The right panel depicts the final causal graph that results from the DR-FFL-algorithm.
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correlation (Rice et al., 2005). The idea of a conditional correla-
tion is that a variable is influenced by another if it is similar (in
terms of correlation) in both the observational and experimental
condition. Upon perturbation of one variable the other variable
behaves similarly and so the correlation will be high. The assump-
tion is, of course, that the causal relations remain the same in the
observed and experimental conditions. A conditional correlation is
a correlation between two nodes i and j, given that node i was per-
turbed, and is calculated as follows:

jcj ¼

0:000 0:131 0:013 0:079 0:087
0:096 0:000 0:029 0:038 0:048
0:079 0:129 0:000 0:068 0:076
0:086 0:094 0:017 0:000 0:067
0:108 0:090 0:018 0:064 0:000

0
BBBB@

1
CCCCA (6)

qij ¼
X2n

a¼1
xi;a � xið Þ xj;a � xjð ÞX2n

a¼1
xi;a � xi½ �2

� �1=2 X2n

a¼1
xj;a � xj½ �2

� �1=2
(7)

For nodes i and j Equation (7) only uses the observational data
and the experimental data where node i was perturbed. This gives
us two vectors, xi and xj, each of length 2n, assuming the same
number of data points for observational and experimental data. Pa-
rameters x�i and x�j represent the means of these two vectors. To
illustrate, row 3 in (8) states that the first node is not really influ-
enced by node 3 as evidenced by the small conditional correlation
of �.029. In contrast, the second node has a conditional correla-
tion of .965, suggesting that it is very much influenced by node 3.
Due to the design of the conditional correlation, the resulting ma-
trix, is not symmetric. The resulting PG is shown in Figure 5 (with
b = .60 and c = .05).

q ¼

0:000 �0:015 �0:034 �0:008 0:032
�0:039 0:000 0:068 0:108 0:087
�0:029 0:965 0:000 0:695 0:707
�0:034 0:953 0:676 0:000 0:700
0:344 0:755 0:788 0:804 0:000

0
BBBB@

1
CCCCA (8)

In the second step of the TRANSWESD-algorithm, the algo-
rithm removes an edge eij when there is an alternative path
between nodes i and j and when that alternative path satisfies the
following four conditions: (1) the alternative path must not contain
a cycle, (2) the alternative path cannot contain the edge eij that is
under consideration, (3) the overall sign of the alternative path
must be equal to that of the edge eij under consideration (obtained
by multiplying the signs of all edges on the alternative path) and
(4), the maximum weight of all edges on the alternative path must
be lower than the weight of the edge eij under consideration multi-
plied by a prespecified threshold a. For all analyses, we set a =
.95, the default value used by Klamt et al. (2010). All edges that
exist in the PG are sorted based on their edge weight. The transi-
tive reduction starts with the edge that has the highest weight (and
the lowest certainty).
In the PG in Figure 5 that is based on the example graph in Fig-

ure 2, four edges have no alternative path (e15, e51, e45, and e54),
and of the remaining five edges, two edges contain a cycle on their

alternative paths (condition 1). With three edges left, two of these
satisfied the third condition (the product of the signs of the alterna-
tive path must match the sign of the edge eij that is under consider-
ation). Both of these edges did not meet the final requirement that
states that the maximum weight of all edges on the alternative path
cannot exceed the weight of the edge eij under consideration multi-
plied by a. This means that no edges are removed from the causal
graph, and that the perturbation graph in Figure 5 will not change
after the transitive reduction step.

Similar to the DR-FFL-algorithm, the performance of the
TRANSWESD-algorithm seems subpar. Three edges that exist in
the true causal graph (see Figure 2) are correctly estimated, two
edges are estimated in the wrong direction, two edges are incor-
rectly estimated and two edges are incorrectly deemed absent from
the graph.

Invariant Causal Prediction

The ICP-algorithm (Meinshausen et al., 2016) combines both
the advantage of the PC-algorithm in that it considers a multivari-
ate system, and uses both observational and experimental data in a
single analysis. Another advantage of the ICP-algorithm is that the
perturbations inflicted on the data do not have to be node-specific:
perturbations can be nonspecific and generic for subsets of nodes.
The idea of the ICP is somewhat similar to that of the conditional
correlation, used in the TRANSWESD-algorithm. If one variable
is causally related to another variable, then the correlation in both
the observational and the perturbation conditions will be similar.
The ICP generalizes this idea to more conditions (called environ-
ments here) and uses the distribution of the residuals instead of
considering the correlation. Then in a multivariate system, if the
direct causes are obtained and conditioned on, then perturbing one
of the variables will not lead to a change (is invariant) in the

Figure 5
Visualization of the Perturbation Graph Generation

Note. Blue edges indicate positive causal relations, and
red edges denote negative causal relations. The thick-
ness and saturation of the edge color indicate the
strength of the causal relation. See the online article for
the color version of this figure.
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residuals. Hence, the core assumption of the ICP-algorithm is that
the conditional distribution of an individual node, controlling for
its direct causes, does not change across perturbations (Peters et
al., 2016). In other words, a causal relation between two nodes
only exists when the residuals do not change when a perturbation
has taken place on any node, except for the dependent node in the
regression, called the target node here. Recall that we use a node-
wise procedure where each node is the dependent variable in turn.
The ICP-algorithm needs two components: the observational

and experimental data, and an instrumental variable e that distin-
guishes between different perturbations, which we call environ-
ments, following Peters et al. (2016). This is similar to the
experimental data matrix used in the DR-FFL and TRANSWESD-
algorithms, where the rows indicate each separate perturbation.
Another example of a situation where multiple environments exist
is in data sets where every participant is measured on two or more
time points. Every time point is then a unique environment. The
minimal requirement is that the data must have at least two envi-
ronments. Typically, one environment consists of observational
data.
The ICP-algorithm first select a target node and then uses the

remaining nodes to identify all possible subsets, similar to the PC-
algorithm. Subsets can range from an empty subset (where the tar-
get node had no cause) to a subset that contains all remaining
nodes. Figure 6 shows all possible subsets for a regression when
node 5 is the target node; the true graph from Figure 2 is shown at
the top. The ICP-algorithm regresses the target node onto each
subset separately, and obtains its associated residual distribution.
For the correct subset (indicated by the black square in Figure 6)
the conditional residual distribution (given the predictors) will be
the same for any change on one of the other nodes. For if the dis-
tribution were to change, then it is clear that an incorrect subset of
direct causes is obtained. The residual distribution is tested against
the residuals of all remaining environments using a Kolmogor-
ov–Smirnov test. Subsets whose residual distribution is equal
across environments are called “invariant”; only those nodes that
are part of each invariant subset (intersection) are said to be causes
of the target node, and edges are drawn from those nodes to the
target node.
To illustrate, Figure 7 shows the residual distribution of two

subsets, the empty subset (left panel) and the true subset (right
panel). The residual data for the two environments is separated
by a dashed vertical line. It is obvious that the residual distribu-
tions for the empty subset are not equal (using a significance
level of .05). In contrast, the residual distributions of the true
subset (right panel) do not show a visual difference between the
two environments. Based on this illustration, we conclude that
the empty subset holds the incorrect subset of direct causes,
while the true subset is “invariant” across environments. In the
situation where more than one subset is accepted, the ICP-algo-
rithm will only select the nodes that appear in all accepted sub-
sets (the intersection of the subsets) and will return that set as the
set of nodes that have a causal relation for which the target node
is on the receiving end. The ICP-algorithm is then repeated for
each node in the data, ensuring that every node is the target node
once. Because the null hypothesis of the distribution of the resid-
uals must hold for all subsets and all environments, the probabil-
ity of obtaining a spurious connection is extremely small. This is
only true if the test (an F-test on the residuals) is a level-alpha

test (see Peters et al., 2016; Theorem 1 for details). In our current
set-up this implies that the data should be approximately nor-
mally distributed. Using the example graph in Figure 2, we end
up with the same graph shown in the top row of Figure 6. It is
important to note that the direct causes of a target node and its
associated residuals must be independent of each other. This
assumption guarantees that in this set-up there are no confound-
ing variables. The next section will describe a solution when this
assumption cannot be satisfied.

An assumption of the ICP and the HICP-algorithm (discussed
in the next section) is that the target node cannot be intervened
upon. Depending on the type of research this may or may not
hold in practice. We provide two examples to clarify this point.
First, suppose that a researcher has data from a therapeutic inter-
vention with only sleep medication. Then it seems reasonable
that a target variable like lack of concentration is not intervened
upon directly; but is of course affected by sleep indirectly, as is
investigated. As a second example, consider a treatment where
therapy sessions are guided by psychoanalytical principles.
While many aspects are intervened upon at once, it may be diffi-
cult to find target variables that satisfy the assumption of the (H)
ICP-algorithm. In the empirical data analysis we provide an
example where we believe the that ICP and HICP-algorithm are
valid.

In constructing a graph with the causal relations obtained from
different interventions, we may encounter cycles. Similar to Mein-
shausen et al. (2016), we assume in that case that the interventions
were in terms of a shift where the parameters in the cycle are not
too large (see Rothenhäusler et al., 2015, for more details). This
assumption entails that the causal relation is a solution to a differ-
ence equation and so the causal relations are not to be interpreted
as being simultaneous.

The data we used to illustrate the ICP-algorithm contains six
unique environments: one environment that contains the observa-
tional data, and five environments in which we perturbed all nodes
except node 5 (see the section on data simulation for a more
detailed description). We only select these two environments
because one of the main assumptions of the ICP-algorithm states
that perturbations can take place at all nodes but the target node
(Peters et al., 2016). We use the R-package InvariantCausalPredic-
tion (Version .7-2, Meinshausen, 2018) to run the ICP and the
HICP-algorithm.

Overall, the ICP-algorithm performs exceptionally well in this
illustration. All edges that exist in the true causal graph (see Figure
2) are correctly estimated, and there are no edges that are incor-
rectly estimated or determined to be absent from the graph.

Hidden Invariant Causal Prediction

The HICP-algorithm (Peters et al., 2017) is similar to the ICP-
algorithm discussed previously. The major difference between
the two algorithms is that the HICP-algorithm controls for hid-
den variables, variables that are unobserved, but may affect the
observed variables. Where the ICP-algorithm assumes that a tar-
get node’s direct causes and its residuals are independent, this
assumption can no longer be satisfied when hidden variables
exist. To illustrate, see Figure 8, after Peters et al. (2017). Here,
Y denotes the target node, X its direct cause, H the hidden vari-
able, and Z the instrumental variable. As seen in Figure 8, the
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Figure 6
The True Causal Graph (Most Upper Panel) and All Possible Subsets That May Potentially Cause the Target Node 5

Note. The set in the black box indicates the subset that captures the true causal relation with the target node.
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hidden variable affects both the target node and its direct cause.
Thus, H is a confounding variable. If one were to use the ICP-
algorithm, where hidden variables are not accounted for, the cor-
relation between the target node Y and its direct cause X will be
inflated due to the influence of the hidden variable H. It is impossi-
ble to infer the unique influence between X and Y in this illustration.
Consider the setup in Figure 8. For explanatory purposes, the
HICP-algorithm implements an instrumental variable Z to remove
the effect of the hidden variable on X ! Y. This instrumental vari-
able is assumed not to directly influence the target node Y. Here, the
environmental variable e is used as the instrumental variable, as the
division of the data into two separate environments does not
directly influence the target node Y. By using the environmental
variable e as the instrumental variable Z, the regression of the target
node onto the remaining variables will be split for the different time
points, and the difference between these time points is used to esti-
mate the causal effect.
For explanatory purposes, we name the causal effect from X to

Y to be a (as shown in Figure 8 and as described by Peters et al.,
2017). The variables X and Y are defined as follows:

X ¼ bZ þ cH þ Nx

Y ¼ aX þ dH þ Ny
(9)

which follows directly from Figure 8. The terms Nx and Ny denote
the error terms (here we assume normally distributed variables
with mean 0 and variance r). The estimate of the causal effect
from X to Y, â is defined as follows:

â ¼ cov½X; Y�
var½X� ¼ aþ dc var½H�

var½X� (10)

where a denotes the causal effect from X to Y, and dc var½H�
var½X� the bias

term to account for the hidden variable. When there are no hidden
variables, d equals 0, and the bias term will disappear as a result of
this. When hidden variables exist but not accounted for, one ends
up with a biased estimate for the causal effect from X to Y. This
shows that, in this situation, the estimate for the causal effect is
not representative of the true causal effect. The HICP-algorithm
follows a two-step regression to estimate a. It first regresses X on

Z to estimate b, where the estimate is denoted by b̂. Then, this
coefficient is used to estimate a:

â ¼ cov½b̂Z;Y�
b2var½Z� ¼ ab̂2var½Z�

b2var½Z� (11)

When the sample size becomes large, b̂ and b will be arbitrarily
close. Equation (11) shows that, in the limit, the estimate for â
will be equal to the true causal effect. See Appendix C for a
more detailed description. It is important to note that the HICP-
algorithm assumes that the hidden variable H and the instrumen-
tal variable Z (the environmental variable e) are independent of
one another. The ICP-algorithm has to satisfy the assumption
that the causes of a target node and its associated residuals are
uncorrelated. In contrast, the HICP-algorithm frees up this
assumption. Another difference between the HICP and the ICP-
algorithm is that the HICP-algorithm does not create subsets of
the set of nodes that remain after selecting a target node. To
speed up computations, all variables are simultaneously tested to
see if they are a cause of the target node.

When we select node 5 as our target node, the correct subset of
direct causes is depicted in Figure 6. The causal coefficients a are
estimated as follows. Let X be a n 3 (p � 1) matrix that contains
the raw data (both observational and experimental data) for all var-
iables but the target node:

Figure 8
Illustration of the Hidden Invariant Causal Prediction (HICP)-
Algorithm

Note. Figure is adapted from Peters et al. (2017).

Figure 7
Visualization of the Residual Distribution for the Empty Subset (Left Panel) and the True Subset (Right Panel)

Note. The vertical dashed line indicates the partition of the residuals according to the different environments that we used for this illustration.
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â ¼ X0Xð Þ�1
X0y

¼
�8:204 0:171 0:194 0:866
0:171 �4:056 �5:138 �5:955
0:194 �5:138 �12:874 �7:624
0:866 �5:955 �7:624 �16:888

0
BB@

1
CCA

�1 �7:124
�10:961
�20:295
�23:772

0
BB@

1
CCA

(12)

â ¼
0:998
0:009
0:991
1:009

0
BB@

1
CCA (13)

One can immediately see that nodes 1, 3, and 4 have a causal
coefficient that is very close to 1 and that node 2 has an almost
nonexistent causal coefficient. The causal coefficients in a are then
tested for significance. When we repeat the HICP-algorithm for
each node in our illustration data (that does not contain any hidden
variables), we end up with the causal graph depicted in Figure 9. It
is noticeable that, next to the edges that are present in the true
causal graph (shown in Figure 2), many spurious edges exist.
Because the HICP-algorithm tests all variables in the data simulta-
neously, spurious edges can arise as a result of partialing out the
effect of the hidden variables. With a large sample size (like the
sample size of the illustration data), these spurious edges are easier
deemed as significant causal relations.
We have added a detailed description of the entire estimation

part as it occurs in the R-package for the interested reader in Ap-
pendix C. We use the R-package InvariantCausalPrediction (Ver-
sion .7-2; Meinshausen, 2018) to run the HICP-algorithm. We
programmed a wrapper function so that both the ICP and the
HICP-algorithm are repeated for every variable in the data, and
then combined into a single adjacency matrix, which is publicly
available at https://osf.io/n8gxh/. Overall, the HICP-algorithm
does not seem to perform too well in this illustration. All edges

that exist in the true causal graph (see Figure 2) are correctly esti-
mated, but there are many edges (6) that are incorrectly estimated.

Table 1 gives an overview of the algorithms discussed in this
section. In this overview, one can see which of the five algorithms
is most suitable for a specific dataset. For example, all algorithms
can be used to estimate a within-subjects causal graph with the
exception of the TRANSWESD-algorithm, and the DR-FFL-algo-
rithm is unsuitable for a between-subjects analysis. Table 1 also
shows every algorithm’s limitations. Based on the criteria that we
set for possible application to psychological data, the ICP and the
HICP-algorithms seem the most suitable and the most versatile.

Data Simulation

To study the accuracy of the algorithms that we described in the
previous section, we simulate data according to a DAG, and apply
each of the five algorithms to estimate a causal graph. In this sec-
tion, we first discuss how we constructed the DAGs, after which
we show how we simulated data based on these DAGs.

We start out with a p 3 p adjacency matrix that consists of
solely 0s. Then, we randomly select k cells and set them to 1s: a 0
indicates the absence of an edge, and a 1 the presence of an edge.
The parameter k here denotes the number of edges that is depend-
ent on the prespecified density d (d · p2 � p = k). The diagonal of
the matrix is always 0, as self-loops are not permitted at this point
in time. All graphs were constructed such that the number of edges
in the graph must equal k, (2) each node in the graph must have at
least one connection, (3) all edge weights in the graph must equal
1, (4) all nodes in G must be connected in one component and (5),
the graph cannot contain any cycles. This process may result in the
following adjacency matrix:

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA !

0 0 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 0
0 0 1 0 0

0
BBBB@

1
CCCCA

!

0 0 1 0 0
0 0 0 0 1
0 0 0 1 1
0 1 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA

Figure 10 shows the visualization of the graph after the initia-
tion process (left panel) and after all criteria are satisfied (right
panel). After the graph is finalized, its adjacency matrix is ordered
so that all nonzero elements are in the lower-diagonal part of the
matrix. This process does not alter the graph itself, solely its
representation.

Based on the adjacency matrix of the simulated DAG that we
call B, we simulate data in which some sort of perturbation has
taken place. We create an n 3 p matrix (X) that we fill with num-
bers drawn from a normal distribution with a mean of 0 and a
standard deviation of .5. We then select a node (called the target
node), and we create n error terms called u drawn from a normal
distribution with a mean of 0 and a standard deviation of .5. We
then create observational data in a following manner:

Figure 9
Illustration of the Hidden Invariant Causal Prediction
(HICP)-Algorithm
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y ¼ bXb þ u (14)

where b contains the coefficient for the selected target node, and
Xb the column in X corresponding with the target node. The next
step is to create perturbation data. For each node independently,
we select all data from our original matrix X, excluding the target
node. This n3 (p � 1) matrix is then multiplied with p � 1 values
(called a) drawn from a normal distribution with a predetermined
mean (m) and standard deviation (SD), creating a new matrix Xper.
We then create experimental data similar to the previous step:

yper ¼ b aXperð Þ þ u (15)

We repeat this process for all nodes in the graph. We also simu-
late data in which we added hidden variables, following Peters et
al. (2017). The equations for the simulation of data with hidden
variables are similar to the regular data simulation (shown in (14)
and (15)) with the following addition. We create hidden variables
by drawing n values from a normal distribution (with a mean of 1
and a standard deviation of 1). These n values are then multiplied
by a parameter h that we have set to be 5. We then take the outer
product of h and a vector of 1s of length p, and add this to our ma-
trix X. This matrix is then used in a similar manner as described
above.

Numerical Evaluation of Causal Inference Algorithms

In this simulation study we evaluated the performance of five
methods of causal inference. We simulated six DAGs: three with
p = 5 nodes, and three with p = 10 nodes. We varied the density of
the graphs (the proportion of edges present in the graph) d [ {.1,
.25, .5}. Figure 11 depicts all causal graphs that were created for
this simulation study. We varied the number of participants n [
{50, 100, 500, 1000; 5000} and the mean of the perturbation dis-
tribution m [ {1, 5}. These values correspond to a small and large
perturbation effect. The standard deviation of the perturbation dis-
tribution varied SD [ {.5, 5}. These values correspond to an

effective and a noisy perturbation. For the DR-FFL and the
TRANSWESD-algorithms, we varied b [ {.5, 1, 1.64, 1.96, 2.58},
and c was set to 0. We simulated data with and without hidden
variables to see how the addition of hidden variables affected the
performance of the algorithms. We ran each simulation condition
100 times for each combination of parameters. We set the signifi-
cance level for the PC, ICP, and HICP-algorithm to be .05. All
simulated data, as well as the used R-code are publicly available at
https://osf.io/n8gxh/ and the online supplemental materials.

In the numerical evaluation we focus on Matthew’s correlation
coefficient (MCC; Powers, 2011). The MCC takes both true and
false positives and negatives into account and gives a good over-
view of the overall performance of the different algorithms. The
MCC is calculated as follows:

MCC ¼ TP3TN � FP3FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞp (16)

where TP represents the number of true positives, TN the number of
true negatives, FP the number of false positives and FN the number
of false negatives. The MCC can be interpreted the same way as a
regular correlation coefficient (Matthews, 1975). The more positive
the MCC, the better the correspondence between simulated and esti-
mated edges. We also calculated other metrics (e.g., positive/negative
predictive rate, false negative/positive rate), but we chose not to pres-
ent these here. Results for all metrics can be found online at https://
osf.io/n8gxh/ and the online supplemental materials.

Figure 12 shows the MCC for the different algorithms. For
clarity of presentation, we only show results for p = 10 nodes,
with a graph density d = .25. All other results can be found online.
Overall, the ICP and HICP-algorithms have the highest MCC. The
MCC of the PC-algorithm is generally low. The PC-algorithm
seems to benefit from a density that is not too high. The MCC
increases when the graph density d increases from .1 to .25, but
decreases again when d is increased to .5. Also, the size of the
graph (reflected by p) has an impact on the MCC: when p is
increased from 5 to 10, the MCC decreases from on average .55 to

Figure 10
Visualization of the Directed Acyclic Graph (DAG) Simulation

Note. The left panel depicts a graph after the initiation process, and the right panel depicts a graph after it satis-
fies all conditions.
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.23. The PC-algorithm can have issues determining the direction of
directed edges. In around 18.75% of the simulations, the PC-algo-
rithm returned an undirected graph. It turns out that the MCC is
almost always higher when we do not take the direction of the edges
into account. This effect is especially present when the density of the

graphs is low. To illustrate, when d = .1, the average MCC increases
from .47 to .87 when we do not take the direction of the edges into
account, but when d = .5, the difference in average MCC is only .05
on average. These results indicate that the PC-algorithm can be use-
ful in determining the pairs of variables between which a causal

Figure 11
Directed Acyclic Graphs (DAGs) That Were Used to Simulate Data

Note. p = number of nodes in the graph; d = the percentage of edges present in the graph.

Figure 12
Matthew’s Correlation Coefficient (MCC) for p = 10 Nodes With a Network Density of d = 0.25
When No Hidden Variables Were Simulated

Note. Top left ¼ m ¼ 1, SD = 0.5, top right ¼ m ¼ 1, SD = 5, bottom left ¼ m ¼ 5, SD = 0.5,
bottom right ¼ m ¼ 5, SD = 5. DR-FFL= Down-Ranking of Feed-Forward Loops; HICP = Hidden Invariant
Causal Prediction; ICP = Invariant Causal Prediction; PC = Peter and Clark; TRANSWESD = Transitive
Reduction for Weighted Signed Digraphs.
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relation exists, but that it may not be the appropriate algorithm to
determine the direction of these causal relations.
In general, both the DR-FFL and the TRANSWESD-algorithms

perform badly, as seen in Figure 12 Both the mean of the perturba-
tion distribution (m) and its standard deviation (SD) do not have
an effect on their performances. When p = 5, both algorithms
seem to perform a little better, but the difference in MCC is only
about .1 between the two network sizes. The root cause of this
seems to lie in the first step of the transitive reduction scheme that
the two algorithms apply. Where on average each simulated graph
had about 13.45 edges, both the DR-FFL and the TRANSWESD-
algorithms returned on average 2.95. When there are only a few
edges present in the graph, transitive reduction works sub opti-
mally, as even fewer edges can be removed from the graph. Our
findings indicate that transitive reduction may not be the best way
to go when estimating a causal graph. We tried a different
approach in the data simulation, but we found similar results. We
also simulated data with an extremely large perturbation mean
(m ¼ 100), but the MCC hardly improved.
The ICP-algorithm seems to do a better job at correctly estimat-

ing the causal graphs in some cases. Overall, the ICP-algorithm
works best at d = .25. The MCC when the network density is lower
(or higher) is much lower. In general, when p = 5, the ICP-algo-
rithm performs best (at d = .25). In that situation, the mean and
standard deviation of the perturbation distribution do not have an
effect on the MCC. In contrast, when p = 10, the influence of these
two parameters is much bigger. As shown in Figure 12, only when
m ¼ 5 and SD = .5 is the MCC high, in all other cases it is medio-
cre at best. The ICP-algorithm can be conservative: of all the edges
that it finds, the algorithm will only take the intersection as the
(sub)set of causes of a target node. The results shown here suggest
that the ICP-algorithm can estimate causal graphs pretty accurately
when there are not too few or too many edges in the graph, and
when the perturbation effect is strong and precise enough.
Lastly, the HICP-algorithm displays a mixed performance.

When p = 5, we see a similar pattern as with the ICP-algorithm,
but less extreme. With a graph density d = .25, the HICP-algo-
rithm has a high MCC, but for the other two graph densities, the
MCC is smaller. The declining effect that we observe in Figure
12 returns for other graph sizes and densities as well: when the
sample size n increases, the MCC decreases. The cause of the
decrease can be found in the number of false positives. Like we
saw in the illustration in the previous section, the causal graph
that is the result of the HICP-algorithm often contains spurious
edges. This is likely due to the fact that the HICP-algorithm only
investigates the entire set of remaining nodes in the graph to
determine the causes of the target node, in contrast to the ICP-
algorithm that investigates each possible subset separately.
Because of this set-up, spurious edges can occur, which become
significant more easily with a larger sample size. This indicates
that the HICP-algorithm does not need a large sample to estimate
a causal graph.
Figure 13 gives a more detailed insight into the strengths and

weaknesses of each algorithm. To increase readability of the
causal graphs, we chose to display the results for p = 5 and d =
.25. These graphs are publicly available for all simulation condi-
tions. The number of false positives (red edges) for the DR-
FFL, TRANSWESD, and HICP-algorithm immediately stand
out. The HICP-algorithm stands out from the DR-FFL and the

TRANSWESD-algorithm because it also has a high number of
true positives, indicated by the thickness and saturation of the
blue edges. The conservativeness of the ICP-algorithm is less
visible, but present nonetheless. Where the HICP and the PC-
algorithm correctly identified the present edges (as shown in the
true graph) in either 99�100% of the simulations, the ICP-algo-
rithm’s rate lies around 90�96%, which is still very high. The
PC-algorithm’s struggle with determining the direction of the
edges is also depicted in Figure 13. The direction of two edges
here (e42 and e32) are just as often correctly as incorrectly
identified.

We also ran the simulation study using data that contained hid-
den variables. The results are very similar to the results using data
without hidden variables. See Appendix D for the results using
data with hidden variables.

Application to Empirical Perturbation Data

The dataset used here is a dataset collected by Hoekstra et al.
(2018) and comprises 30 participants who completed a question-
naire that measures their attitude toward meat consumption. The
questionnaire consists of 11 items that focused on the cognitive
(six items) and affect (five items) side of one’s attitude toward
meat consumption. Responses were measured on a 6-point Likert
scale ranging from 1 (completely disagree) to 6 (completely
agree). The experiment started with the questionnaire serving as a
baseline measure, after which a hypothetical scenario was pre-
sented intended to perturb a participant’s response to a single item.
For example, if a participant responded to the item “animals are in-
ferior to humans” with “completely agree,” this participant would
get the hypothetical scenario “imagine animals are not inferior to
humans. How does this influence your attitude toward the con-
sumption of meat?.” Participants then completed the same ques-
tionnaire. This process was repeated for every item in the
questionnaire. This resulted in 12 questionnaires for each partici-
pant. All participants (N = 30) were included in the analyses. We
removed four missing measurements of three participants as one
item was missing from these measurements. Participants had a
mean age of 23.63 years (SD = 9.01 years) and 70% identified
themselves as female. Table 2 gives an overview of the items,
including the means, standard deviation and the mean change
between the baseline and the perturbation environment. All raw
data, including the questionnaire and hypothetical scenarios, are
published online (Hoekstra et al., 2018).

Similar to the simulation, we only used the observational data to
run the PC-algorithm. In the illustration of the DR-FFL-algorithm,
we averaged the data across the sample to create a between-subjects
graph. We arbitrarily set b to be 1.3 for both the DR-FFL and the
TRANSWESD-algorithm and c to be 1. For the ICP and HICP-
algorithms, we followed a similar approach to that used in Kossa-
kowski et al. (2021). We compare every combination of environ-
ments (one observational and 11 perturbation environments,
resulting in 66 pairs of environments) and combine these results
into a single causal graph. The thicker and more saturated an edge
between two nodes, the more often this causal relation is found and
the more confident we can be in the true existence of that causal
relation. For the PC, the ICP and the HICP-algorithms, we set a =
.01. Similar to Meinshausen et al. (2016), combining the separate
graphs from the different combinations of interventions may result
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in cycles. These cycles do not invalidate the causal interpretation
only if the parameters in the cycle are not too large (i.e., the product
of the parameters in the cycle is smaller than 1; see Rothenhäusler
et al., 2015, for further details).
Figure 14 shows the results for each algorithm. We standardized

the layout to improve visual inspection. The results follow the sim-
ulation results with a small sample size. The PC-algorithm only

found two edges, but could not determine their causal direction
due to a lack of information that is needed for this; more edges are
needed to determine the causal direction. The DR-FFL-algorithm
removed four edges from the perturbation graph that is initially
formed (using b; = 1.3), while the TRANSWESD-algorithm did
not remove any edges (using b; = 1.3 and c = 1). The ICP-algo-
rithm returned many edges due to the low number of participants.

Table 2
Items of the Attitude Toward Meat Consumption Questionnaire With Their Assigned Item Label, Means (SD) Across Measurements, and
M (SD) Changes Between the Baseline Measurement and the Perturbation Measurement

Item Item label M (SD) Mean perturbation effect (SD)

Eating is morally wrong c_moral 3.73 (1.95) �1.27 (3.73)
Meat contains important nutrients for your body c_nutrients 3.66 (1.73) 0.43 (1.87)
The production of meat if harmful for the environment c_environment 3.66 (1.83) 2.50 (1.76)
Animals are inferior to people c_inferior 3.05 (1.89) �0.83 (1.32)
By consuming meat you contribute to animal suffering c_suffering 3.68 (1.79) 1.63 (1.88)
There should be a tax on meat c_tax 3.65 (1.87) 1.70 (2.39)
I like the taste of meat a_taste 3.65 (2.02) 3.90 (1.56)
Meat reminds me of death and suffering of animals a_death 3.29 (1.88) �1.50 (1.66)
If I had to stop eating meat I would feel sad a_sad 3.86 (1.90) �1.83 (2.79)
If I eat meat I feel guilty a_guilty 3.38 (1.95) �2.50 (2.32)
If I eat meat I feel disgust a_disgust 3.12 (1.98) �0.03 (1.3)

Note. The mean perturbation effect was measured by taking the mean of the difference between the baseline measurement and the measurement in which
the specific item was perturbed.

Figure 13
Visualization of the Number of True Positives and False Positives for p = 5, d = 0.25, n = 5,000,
m ¼ 5SD = 0.5, and b = 0.5 Without the Addition of Hidden Variables

Note. Blue edges indicate true positives, and red edges indicate false negatives. The saturation and thickness of
the edge represents how often that edge was (in)correctly estimated. Upper left = true graph; upper middle =
Peter and Clark (PC); upper right = Down-Ranking of Feed-Forward Loops (DR-FFL); lower left = Transitive
Reduction for Weighted Signed Digraphs (TRANSWESD); lower middle = Invariant Causal Prediction (ICP);
lower right = HICP. See the online article for the color version of this figure.
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The graph returned by the HICP-algorithm is very promising
and interpretable. The edge a_taste ! c_suffering is often found.
This means that, when a participant’s taste in meat changes, a
change in their opinion on the contribution to animal suffering
when eating meat changes as well. The reverse relation c_suffer-
ing ! a_taste was found as well, but to a lesser extent. The
results for the HICP-algorithm also appear to be quite stable.
The graph does not change when changing a from .05 to .01. All
in all, this empirical example suggests that especially the HICP-
algorithm is suitable for psychological data of this size.

Discussion

The present study compared five different algorithms that are
used for causal inference. We provided a simulation study in
which we showed how well each algorithm is able to estimate the
causal graph under which the data were simulated. We simulated
data from causal graphs with different properties to assess the
effect of the number of nodes and the density of the graph on the
estimation of the graph itself. The results that we showed did not

present us with a clear winner: only under specific circumstances
did each algorithm perform well. The exception to this are the DR-
FFL and TRANSWESD-algorithms that never showed a good per-
formance, contrary to earlier studies on these algorithms (Pinna et
al., 2013). We also applied the various algorithms to empirical
data that measured participants’ attitude toward meat consump-
tion. The HICP-algorithm seemed to perform best for this dataset,
and provided a clear and interpretable graph.

Every algorithm that is discussed here had its own advantages
and disadvantages. The PC-algorithm only uses observational data
to estimate the causal relations between variables. Although this
implies that less data are needed to run the algorithm, we did see
that the MCC of the PC-algorithm is never higher than .8. Further-
more, we found that the PC-algorithm often has the location of a
causal relation correctly identified, but not its direction. This may
suggest that the PC-algorithm is useful to find the location of the
causal relations, but that some other algorithm is needed to iden-
tify the direction of that relation.

It is quite noticeable that the DR-FFL and the TRANSWESD-
algorithms do not perform as well as the ICP and HICP-algorithm.

Figure 14
Results for Every Algorithm

Note. White nodes signify cognitive items, whereas gray items signify affective items regarding participants’ attitude towards meat consumption. DR-
FFL= Down-Ranking of Feed-Forward Loops; HICP = Hidden Invariant Causal Prediction; ICP = Invariant Causal Prediction; PC = Peter and Clark;
TRANSWESD = Transitive Reduction for Weighted Signed Digraphs. See the online article for the color version of this figure.
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In nearly 75% of all simulations 10% or less of the number of pos-
sible edges survived the first step of these algorithms. This is why
the MCC for both the DR-FFL and the TRANSWESD is so low
across simulation conditions.
We performed a similar simulation study where we only select 1

node (instead of p � 1) that was perturbed and used to create our ex-
perimental data. However, results from this design are similar to the
results presented here. We also varied the b; and c; values to obtain
better results, but there was no clear picture for the settings in our
simulations. It is possible that a different data simulation design
might give different results, but this remains to be investigated.
The ICP-algorithm has proven to be able to correctly identify edges

that are present in the true graphs in our simulations. It also often
makes the correct decision when edges are absent in the true graphs.
However, the ICP-algorithm will only perform well when specific
conditions are satisfied with respect to the data. The high MCC was
obtained in this study when the mean of the perturbation distribution
was strong, and its associated standard deviation small. In all other
conditions, the MCC was mediocre and in some cases poor. The ICP-
algorithm has a low false positive rate at the cost of a relatively low
true positive rate. A conservative attitude is not necessarily a disad-
vantage of an algorithm, but when it is applied to empirical data, the
resulting graph may be sparser than one would hope for when the
sample size is large (see Kossakowski et al., 2021, for an example),
or more dense when the sample size is small. Also, the ICP-algorithm
investigates every possible subset of the variables that remain after
selecting a target variable. This step leads to computational issues
when graphs with a large number of nodes are studied. When a graph
has p = 5 nodes, the number of subsets per target variable is 16.
When a graph has p = 10 nodes, the number of subset grows to 516,
and for p = 15 nodes, the number of subsets equals 16,384. In the
future we hope to develop an adaptation for the ICP-algorithm where
a subset selection is made in such a way that the computation time
decreases while maintaining similar specificity and sensitivity values.
Lastly, the HICP-algorithm outperforms the other algorithms in

terms of the MCC in many simulation conditions. However, as is
clearly shown in Figure 13, many edges are incorrectly seen as
present (false positives; red edges) next to the correctly identified
edges (true positives; blue edges). This phenomenon most likely
occurs because not every possible subset is investigated separately,
as is the case in the ICP-algorithm. This approach was imple-
mented because of computational issues.
Both the ICP and the HICP-algorithm have a nodewise approach

where each variable in the graph is the target node in turn. This
implies that a reciprocal relation between two variables (X ! Y and
Y ! X) is possible, as each variable is the target node during the
analyses. When one wants to estimate reciprocal causal relations,
more environments are needed to accurately estimate these relations.
We chose to exclude reciprocal causal relations from our study due
to the fact that the other algorithms that are discussed are not able to
estimate these. In future research, reciprocal causal relations could be
investigated by adding them to the graph in a simulation study.
Next to the disadvantages that we discussed previously, we

made some arbitrary decisions for the algorithms in this study.
The PC, ICP, and HICP-algorithm all require a significance level
that we set to be .05. The DR-FFL and the TRANSWESD-algo-
rithms have one or two threshold parameters that need to be set
before the analysis. We chose to use different values to evaluate
the effect of these parameters. Results of our simulation study

showed that the value of these thresholds impact the MCC of the
algorithm: the higher the threshold, the fewer edges are returned
after the first step of these two algorithms and the fewer edges can
be reduced from the graph. Choosing a value for these threshold
parameters is not trivial. Ideally, one would want to set these pa-
rameters in such a way that the false and true positive rate are bal-
anced. It remains that, with the DR-FFL and the TRANSWESD-
algorithm, setting the threshold parameter(s) is no trivial matter
and confounds the results tremendously. Future research could
look into the possibility of using maximum likelihood estimation
to obtain a reasonable threshold parameter based on the data.

We simulated data without and with the addition of hidden vari-
ables. Although they are present, it is hard to find differences
between the results for data without, and data with hidden varia-
bles. Due to the high number of simulation conditions that we al-
ready have, we chose not to add any by varying the strength of the
hidden variable. It is possible that a hidden variable with a stronger
effect may result in larger differences in specificity and sensitivity.
In a future extension of this study, one can vary the hidden vari-
able to investigate the effect of a hidden variable on the results.

As every algorithm has its own advantages and disadvantages, a
possible combination of two or more algorithm may be the solu-
tion. For instance, one can use the PC-algorithm to determine the
skeleton of a causal graph, and use that input for the ICP-algo-
rithm. In this combination, the number of subsets decreases sub-
stantially. Another option would be to copy the subset design of
the ICP-algorithm, and use in with the HICP-algorithm. Investigat-
ing multiple subsets may result in a lower number of false posi-
tives and a more accurate depiction of the true causal graph.

The set of algorithms discussed in this study is not complete.
Other algorithms exist in the literature that are potentially interest-
ing to further explore. However, these algorithms do not combine
observational and perturbation data but only use observational
data. Algorithms that use observational data include a directional
dependence model using copulas (Sungur, 2005), a linear causal
acyclic model (Shimizu et al., 2006), or a directional dependence
analysis with possible confounding variables (Wiedermann &
Sebastian, 2019), and general cyclic linear models (Drton et al.,
2019). One could even extend the existing simulation study to
include algorithms that estimate causal relations between latent
variables (e.g., Shimizu et al., 2009), or estimate nonlinear causal
relations (e.g., Heinze-Deml et al., 2018) instead of just linear
causal relations, or use those nonlinearity algorithms to resolve
causal relations (Mooij et al., 2011). The HICP-algorithm is a suit-
able option when variables and their residuals are correlated,
which is an indication of hidden or confounding variables.

Measurement error will often, if not always be present in psy-
chological research. In our simulation study we added measure-
ment error to reflect this. Because the basic elements in our study
were regressions, naturally, with increasing amounts of measure-
ment error, the power will decrease. In our study, we found mea-
surement error, but no systematic errors like spurious edges that
appear in every simulation result. It is possible to add a SEM
(latent variable) model to model the measurement error. This
would entail several indicator variables per construct; thus, model-
ing the measurement error more explicitly, and then creating the
network between the latent variables of the SEM model. A differ-
ent option would be the model presented by Zhang et al. (2018)
that can also manage measurement error.
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To our knowledge, this is the first study that compared different
algorithms for causal inference based on experimental data. Based
on the simulation results, we gain more insight into the accuracy
of each algorithm, and how suited they are for empirical (psycho-
logical) data. The ICP and HICP-algorithm are the top candidates
to be used in psychological research. As hidden variables are a
common problem in psychological research, a possible combina-
tion of the ICP and HICP-algorithm may be the best plan of attack
to estimate causal relations between psychological variables.
Results from the empirical application demonstrated that the ICP
and the HICP-algorithms have the most potential to be suitable for
psychological data.
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Appendix A

D-Separation in a DAG

Earlier we described the four different causal structures that
can exist in a causal graph (see Figure 1). By determining the
conditional (in)dependencies between sets of variables,
the PC-algorithm estimates a directed acyclic graph (DAG).
The notion of conditional independencies can be extended to
the idea of directed (d) separation). D-separation generalizes
a separation in a graph between two variables. Consider the
graph in Figure 1, where we have a path from variable X to
variable Y (Figure 1, left panel). Variables X and Y are d-sepa-
rated in graph G (denoted by X ╨ GY j Z) given a variable Z
if Z blocks the path from any node in X to any node in Y. D-sepa-
ration is relatively easy in the case of a chain or a common cause
structure (Figure 1, three left panels). With these specific struc-
ture, X and Y are d-separated given Z when Z is observed. When
Z is observed, it “blocks” the path from X to Y. The reverse is
true for the collider structure (Figure 1, right panel): X and Y are
d-separated as long as Z, or any of its descendants are not condi-
tioned on. For a disjoint set of random variables X, Y, and Z with
joint probability distribution P, we note that X is conditionally
independent of Y given Z by X ╨ PY j Z. The notion of d-sepa-
ration is used in the following assumption:
Assumption 1: We assume that for disjoint sets of variables X,
Y, and Z the causal Markov condition is satisfied, which speci-
fies that

X╨ GY jZ ) X╨ P
Y jZ (17)

This assumption guarantees that, when we find that two var-
iables are d-separated, in the graph G these two variables are
conditionally independent given a third variable in the proba-
bility distribution P. While the Markov assumption allows to
move from the graph to the distribution, the reverse is not guar-
anteed. To be able to infer from conditional independencies
obtained from the probability distribution that certain causal
relations are valid, we also require that any conditional inde-
pendence in the probability distribution implies a d-separation
in the graph. This is entailed in the following assumption:
Assumption 2: We assume that for disjoint sets of variables X,
Y, and Z the causal faithfulness condition is satisfied, which
specifies that

X╨ P
Y jZ ) X╨ GY jZ (18)

This assumption ensures that, when two variables are con-
ditionally independent given a third in the probability distribu-
tion P, they are also d-separated in the graph G given that third
variable. The Markov and faithfulness assumptions allow for
consistent inference for a causal graph. See Pearl (2009) or
Peters et al. (2017) for more details.

(Appendices continue)

SEARCH FOR CAUSALITY 737

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1177/1094428119847278


Appendix B

Theory of Transitive Reduction

Both the DR-FFL and the TRANSWESD-algorithm use
transitive reduction to estimate a causal graph. Both algorithms
first draw up a perturbation graph in which causal relations
between variables exist that exceed a prespecified threshold.
Often (but not always), the correlation between two variables is
used. The idea here is that, when a correlation between two var-
iables is nonzero, then there must be either a direct or an indi-
rect relation between these two variables. Transitive reduction
aims to remove direct effects where there should not be one, by
considering alternative paths between two variables.
To illustrate transitive reduction, we have set up two exam-

ples, visualized in Figure B1. Here, we consider the causal rela-
tion between variablesW and Y. Wright (1921) showed that the
correlation between W and Y is sum of the product of the path
coefficients, denoted by bij. In the first example, shown in the
left panel of Figure B1, two paths exist fromW to Y: W! X!
Y and W ! Z ! Y. The correlation qWY then becomes (�.20)
(�.20) þ (�.20)(�.20) = .08. The following criterion is used
to remove a direct effect from the perturbation graph:

min
���qf;;sgWX1

���; . . . ; ���qf;;sgXkY

���� �
>

���qf;;sgWY

��� (19)

where {;, s} denote the observational environment in which no
perturbations have taken place (;), and the experimental envi-
ronment in which perturbations have taken place on variable s.
The variables X1 . . . Xk denote the variables that lie on the path
from W to Y. In other words, (19) states that if the smallest
absolute path coefficient is larger than the direct effect between
two variables, then the direct effect is to be removed from the
perturbation graph. In our illustration, the correlation between
W and Y (qWY = .08) is smaller than the smallest path coeffi-
cient on either path (all path coefficients are .20) and there

should not be a direct effect from W to Y. Therefore, the left
panel of Figure B1 shows that transitive reduction is able to
come to the right conclusion. However, the criterion in (19) is
necessary, but it turns that that it is not sufficient to find the
true causal graph. This is shown with the example in the right
panel of Figure B1. Here, there is a direct effect from W to Y.
Now qWY becomes �.02, which is still smaller than the small-
est path coefficient. Here, transitive reduction would errone-
ously remove the direct effect from W to Y. This shows that
transitive reduction may not reach the correct causal graph,
especially when the path coefficients are small. Specifically,
the criterion in (19) will not work when the sum of the direct
effect and qij is smaller than the smallest absolute path coeffi-
cient on any path between i and j.

Figure B1
Two Examples of Perturbation Graphs One for Which Transitive
Reduction is Appropriate (Left Panel) and One for Which it is
Not (Right Panel)

(Appendices continue)

738 KOSSAKOWSKI, WALDORP, AND VAN DER MAAS

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



Appendix C

Formal Description of the HICP-Algorithm

The HICP-algorithm controls for hidden variables by using
an instrumental variable Z. This instrumental variable cannot
directly influence the target node Y, as shown in Figure 8. By
using the instrumental variable Z, the regression of the target
node onto the remaining variables will be split for the different
time points, and the difference between these time points is
used to estimate the causal effect. The causal effect from X to
Y, denoted by â, is calculated as follows:

â ¼ cov½X;Y�
var½X� ¼ aþ dcvar½H�

var½X� (20)

â ¼ cov½X;Y�
var½X�

¼ cov½X;abZ þ ðacþ dÞH�
var½X�

¼ ab cov½X; Z� þ ðacþ dÞ cov½X;H�
var½X�

¼ ab cov½bZ þ cH;Z� þ ðacþ dÞ cov½bZ þ cH;H�
var½X�

¼ ab2 var½Z� þ cðacþ dÞ var½H�
b̂ var½Z� þ c2 var½H� þ var Nx½ �

¼ ab2 þ c2aþ dc

b2 þ c2 þ r2
x

¼ a b2 þ c2
� 	

þ dc

b2 þ c2
� 	

¼ aþ dc
var½X�

(21)

where a, b, d, and c represent relations between X, Y, H, and Z.
See Figure 8 for a visual representation. We can rewrite
Equation (21) as follows:

â ¼ cov½X; Y�
var½X�

¼ cov½X; aX� þ cov½X; dH�
var½X�

¼ a var½X� þ dc var½H�
var½X�

¼ aþ dc var½H�
var½X�

(22)

where the term dc var½H�
var ½X� will be 0 when there are no hidden

variables. To estimate â, the HICP-algorithm uses a two-step
procedure. It first estimates b̂ (the effect from the instrumental
variable Z to variable X) , after which b̂ is used to estimate â :

â ¼ cov½b̂Z;Y�
b2 var½Z�

¼ b̂ cov½Z; b̂Z þ e�
b2 var½Z�

¼ b̂2 var½Z�
b2 var½Z�

(23)

Note that the equations here are used after the target node is
selected. The computational steps that are taken to estimate all
the causal effects are described below for a target node. We
programmed a function that repeats these steps for every vari-
able in the data. The HICP-algorithm uses the instrumental
variable to divide the data into two subsets. The first subset
contains data from the first environment (often that part of the
data in which no perturbation has taken place). The second sub-
set consists of all the remaining data. We can rewrite Equation
21 to make it computationally appropriate:

â ¼ X0Xð Þ�1
X0y

¼ X0
1X1

n1
� X0

2X2

n2


 ��1

� X0
1Y1
n1

� X0
2Y2
n2


 �

¼ cov X1;Y½ � � cov X2;Y½ �
var X1½ � � var X2½ �

(24)

where X1 and X2 represent the predictor variables for the two
environments, and Y1 and Y2 denote the scores on the target
node for the two environments. The parameters n1 and n2
denote the number of participants that exist in the two environ-
ments. The result of Equation (24) is a p 3 1 matrix that holds
all the regression coefficients from every remaining node to the
target node. After calculating â we proceed with the calcula-
tion of Z-values for all participants per environment:

Zi;e ¼ �s �
XP
p¼1

s
X0
1Y1
n1

� X0
2Y2
n2


 �
þ Yi;es (25)

where s ¼ X0
1X1

n1
� X0

2X2

n2

h i�1
· Xi,e. The parameter s is created for

each participant i and environment e individually. The matrix
Xi,e is a 1 3 p vector that holds the observational data for par-
ticipant i and p variables. Two separate n 3 p matrices emerge
from this equation: one for the first environment, and one for
the second environment. The next step includes the calculation
of r:

(Appendices continue)
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r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag

s2 Z1ð Þ
n1

þ s2 Z2ð Þ
n2

� s
(26)

where s2(Z1) and s2(Z2) denote the covariance matrix of the

Z-values that we calculated previously for environments 1

and 2, and n1 and n2 the number of participants in the first

and second environment. The term diag here indicates that

we only take the diagonal of the result of s2 Z1ð Þ
n1

þ s2 Z2ð Þ
n2

. In

the last step we calculate the p-values associated with â.

These are calculated in the following manner:

p ¼ max 2K � 1� t jb̂j=max 10�10;r
� 	� �

1

(
(27)

where K is the number of environments (2 in this study). The
parameter t() denotes the critical value in a t-distribution for a

value of jb̂j
max 10�10;rð Þ, with degrees of freedom n – 1 (the total

sample size). To estimate the maximal effect for each variable,
we first determine the Z-value:

Z ¼ qnorm ½maxð0:5; 1� a=ð2KÞÞ�r (28)

which is then used in combination with â to calculate the maxi-
mal effect:

h ¼ ðb̂Þ �maxð0; jb̂j � ZÞ (29)

The maximal effects for insignificant variables is set to be 0
due to the max term that exists in h .

(Appendices continue)
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Appendix D

Numerical Evaluation of Causal Inference Algorithms With Hidden Variables

We also ran the simulation study using data that contained
hidden variables. Figure D1 shows the MCC for the five algo-
rithms that we investigated. The results are very similar to the
results using data without hidden variables. For the PC-algo-
rithm, we again see that the graph density d influences the MCC,
where it reaches the highest numbers when d = .25. This effect
only appears when the graph size p = 5. With p = 10, the MCC
is generally low (average MCC = .09) at d = .5 and will only
increase to mediocre (average MCC = .56) values when d = .1.

The picture we painted earlier for the DR-FFL and the
TRANSWESD-algorithms does not improve when hidden varia-
bles are included. When the graph size p = 5, the average MCC
lies around .15, whereas when p = 10, the average MCC is
around .03. The sample size n does not seem to influence the
performance of both algorithms. On the other hand, the threshold
parameter b has a big impact. The lower b, the higher the MCC
is. To illustrate, when b = .5, the average MCC is .50, whereas
when b = 2.58, the average MCC is close to zero. The threshold
parameter b influences how many edges are retained after the
first step in both the DR-FFL and the TRANSWESD-algorithm.
The higher the threshold, the lower the number of edges that are
present in the perturbation graph and the lower the MCC.

The ICP-algorithm has the best performance when there is
a medium number of edges in the graph (d = .25). As we saw
before, we observe high MCC values with the smaller graphs
(p = 5). When p is increased to 10, the ICP-algorithm becomes

more conservative, resulting in a lower MCC. Only when the
mean of the perturbation distribution (m�) is high and the stand-
ard deviation small can the ICP-algorithm accurately estimate
causal graphs. This indicates that the ICP-algorithm needs a
strong and effective perturbation to correctly identify causal
relations.

The mixed performance that we saw earlier with respect
to the HICP-algorithm is also present when we add hidden
variables to the data. This means that the HICP-algorithm
can accurately estimate causal graphs with a small sample
size. When the sample size increases, the accuracy
decreases. This effect is present in almost every simulation
condition. The only exception is when the graph density is
low (d = .1). In that case, the MCC increases when the sam-
ple size increases.

Figure D2 paints a similar picture that we saw in the previ-
ous section. The lack of accuracy of the DR-FFL and the
TRANSWESD-algorithm is clearly visible, as are the spurious
edges that are estimated by the HICP with a large sample size.
Even though hidden variables are added to these data, the ICP-
algorithm shows the highest number of true positives, com-
bined with the lowest number of false positives for this simula-
tion condition. Lastly, the PC-algorithm can have issues with
determining the direction of an edge. This problem emerges in-
dependent of the presence of hidden variables, as we have seen

Figure D1
Matthew’s Correlation Coefficient (MCC) for p = 10 Nodes With a Network Density of d = 0.25
With the Addition of Hidden Variables

Note. Top left ¼ m ¼ 1, SD = 0.5, top right ¼ m ¼ 1, SD = 5, bottom left ¼ m ¼ 5, SD = 0.5,
bottom right ¼ m ¼ 5, SD = 5. DR-FFL= Down-Ranking of Feed-Forward Loops; HICP = Hidden Invariant
Causal Prediction; ICP = Invariant Causal Prediction; PC = Peter and Clark; TRANSWESD = Transitive
Reduction for Weighted Signed Digraphs.

(Appendices continue)
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this in the previous section as well. All in all, these results may
suggest that the ICP-algorithm is the saver option when one
wants to estimate a causal graph.

Received August 27, 2019
Revision received September 6, 2020

Accepted December 4, 2020 n

Figure D2
Visualization of the Number of True Positives and False Positives for p = 5, d = 0.25, n = 5,000, m ¼ 5, SD =
0.5, and b = 0.5 With the Addition of Hidden Variables

Note. Blue edges indicate true positives, and red edges indicate false negatives. The saturation and thickness of the edge represents
how often that edge was (in)correctly estimated. Upper left = true graph; upper middle = Peter and Clark (PC); upper right = Down-
Ranking of Feed-Forward Loops (DR-FFL); lower left = Transitive Reduction for Weighted Signed Digraphs (TRANSWESD);
lower middle = Invariant Causal Prediction (ICP); lower right = Hidden Invariant Causal Prediction (HICP). See the online article
for the color version of this figure.
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