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We theoretically study the dynamics of a trapped ion that is immersed in an ultracold gas of weakly bound
atomic dimers created by a Feshbach resonance. Using quasiclassical simulations, we find a crossover from
dimer dissociation to molecular ion formation depending on the binding energy of the dimers. The location of
the crossover strongly depends on the collision energy and the time-dependent fields of the Paul trap. Deeply
bound dimers lead to fast molecular ion formation, with rates approaching the Langevin collision rate �′

L ≈
4.8 × 10−9 cm3 s−1. The kinetic energies of the created molecular ions have a median below 1 mK, such that
they will stay confined in the ion trap. We conclude that interacting ions and Feshbach molecules may provide an
alternative approach towards the creation of ultracold molecular ions with applications in precision spectroscopy
and quantum chemistry.

DOI: 10.1103/PhysRevResearch.2.033232

I. INTRODUCTION

Recently, trapped ions have been combined with ultracold
atomic gases [1–8]. These systems are of particular interest
to study charged impurity physics in a quantum bath. The
well-controlled ionic impurities may be used to probe prop-
erties of the atomic bath, or to study the decoherence of
internal states and motion while interacting with a quantum
environment [4,9–15]. Notably, the charge-dipole interactions
are longer ranged than those found in neutral systems [7,16].
This could lead to larger polaronic effects [17] and it has been
suggested that many atoms can become weakly bound to a
single ion [18]. The system is experimentally attractive as both
the motion and internal states of individual trapped ions can
be accurately controlled and measured [19,20]. Furthermore,
the interactions within the atomic bath can be tuned with
Feshbach resonances and these even allow for transforming
the bath into a gas of molecules [21]. However, the long-
range interactions tend to translate into a higher reactivity,
as has been shown, for instance, for Rydberg impurities in
an atomic gas [22]. Therefore, understanding the chemistry
of the species involved is fundamental to develop models for
charged impurities in ultracold gases.

In this paper, we present a theoretical study of a single
ion impurity in a bath of ultracold diatomic molecules whose
binding energy can be controlled with a Feshbach resonance.
We show that a crossover exists in the system, depending
on the molecular binding energy Eb and the ion-molecule
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Creative Commons Attribution 4.0 International license. Further
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collision energy Ecol. We find that a charged impurity reacts
with a molecule of the bath leading, as the main reaction
channel, to the formation of molecular ions, which can be
viewed as a charged-molecular impurity. However, as soon as
Ecol � Eb, the impurity predominantly induces the dissocia-
tion of the dimer, and the molecular ion creation rate drops
significantly. In other words, by tuning the binding energy it
is possible to control the nature of a charged impurity. Our
results open another avenue towards the creation of ultracold
molecular ions with applications in quantum chemistry and
precision spectroscopy [8,23–26].

As a prime example, we study the 6Li2-Yb+ system inside
the radio-frequency electric fields of a Paul trap as sketched
in Fig. 1. The large mass ratio is appealing to study chemical
reactions experimentally, as Yb+ and LiYb+ can be confined
simultaneously despite the Paul trap acting as a mass filter.
Furthermore, the mass ratio mitigates adverse heating effects
from the Paul trap [27,28], which allowed one to reach ul-
tracold atom-ion collision energies on the order of 10 μK
[14]. For the reported collision energies the full crossover
regime is within experimental reach. The 6Li atoms feature
a broad Feshbach resonance around 832 G between the two
lowest-energy spin states [29]. On the repulsive side of this
resonance, long-lived Li2 dimers are produced by three-body
recombination once the atoms are sufficiently cold [30]. The
binding energy of these weakly bound dimers lies in the μK
range and can be straightforwardly tuned using an external
magnetic field.

II. THEORY

We simulate the dynamics of the colliding ions and
molecules using the quasiclassical trajectory (QCT) method.
This approach has been used to treat scattering problems in
the chemical physics community since the pioneering work
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FIG. 1. Left: Schematics of the atom-ion system investigated. A single ion (blue) trapped in the radio-frequency blades of a Paul trap (gray)
combined with a cloud of ultracold molecules (red). Inset: Sketch of a single simulation run. A Yb+ ion (blue) oscillating in the trapping field
of the Paul trap collides with a Li2 dimer (red, orange), whereby the Li2 is dissociated. Right: Classical turning point rct , binding energy Eb,
and scattering length a as a function of the magnetic field strength B for Li2 dimers created close to the Feshbach resonance.

of Karplus et al. [31] and it has recently been applied to
the study of cold chemical reactions between molecular ions
and neutrals [32]. The QCT method calculates the trajec-
tories classically but the initial conditions of the colliding
partners are selected according to the quantum state of the
reactants through the celebrated Wentzel, Kramers, and Bril-
louin (WKB) or semiclassical approximation [33,34]. QCT
is applied in scattering problems where many partial waves
contribute [32] or when the problem is too complex for a full
quantum treatment. The latter is the case when we consider the
electric fields of a Paul trap, which have a massive impact on
atom-ion scattering [28,35,36], but severely complicate calcu-
lations due to its asymmetry and explicit time dependence.

The potential of a Paul trap is given by

V (�r, t ) = Udc

2

3∑
j=1

α j r
2
i j

+ Urf

2
cos(�t )

3∑
j=1

α′
j r

2
i j
, (1)

with �ri = �0 the center of the trap, Udc and Urf curvatures of
static and radio-frequency fields, respectively, and geometry
factors α

(′)
j . For the linear Paul trap considered here, −2α1 =

−2α2 = α3 = 1 and α
(′)
1 = −α

(′)
2 = 1, α

(′)
3 = 0. The motion

of the ion in the transverse directions can be described by
a slow (secular) motion with a frequency ω⊥ ≈ �q/

√
8 and

q = 2eUrf/(mYb+�2) superimposed on a fast micromotion
with frequency � [20]. The motion along the axial z direction
is purely harmonic with frequency ω3 = √

eUdc/mYb+ .
The atom-ion potential consists of a characteristic long-

range term Cai
4 /r4

ai which is a consequence of the charge-
induced dipole interaction. Cai

4 is the attractive interaction co-
efficient and rai the atom-ion distance. Two atom-ion collision
types can be distinguished: Large impact parameters b lead to
elastic scattering (glancing collisions), whereas for b < bc =
(2Cai

4 /Ecol )1/4 spiraling Langevin collisions occur in which
large momentum and energy transfer is possible [37]. The
Langevin collision rate �L = 2πρa

√
Cai

4 /μai is independent
of the collision energy. Here, ρa is the cloud density and μai is
the atom-ion reduced mass. We model the atom-ion potential
with

Vai(rai ) = − Cai
4

2r4
ai

+ Cai
6

r6
ai

, rai = |�ra − �ri|, (2)

where �ra and �ri are the atom and ion position, respectively, and
Cai

6 is the repulsion coefficient [28].
Li atoms can be paired into Li2 dimers on the repulsive side

of the Feshbach resonance. These molecules are formed by a
weak admixture of the highly excited vibrational bound state
X 1�+

g (ν = 38), with ν the vibrational quantum number [38].
Their binding energy Eb = h̄2/(mLia2) depends on the scatter-
ing length a = abg(1 + 
B

B−B0
)[1 + α(B − B0)] and thus on the

magnetic field strength B, with mLi mass, h̄ Planck’s reduced
constant, B0 = 834.15 G, abg = −1405a0, 
B = 300 G, and
α = 4 × 10−5 G−1, with Bohr radius a0 [39].

For the atom-atom interactions, we use a Lennard-Jones
potential

VLi2 (raa) = −Caa
6

r6
aa

+ Caa
12

r12
aa

, raa = ∣∣�ra1 − �ra2

∣∣, (3)

where �ra1,2 are the atom positions and Caa
6 and Caa

12 the attrac-
tion and repulsion coefficients, respectively.

For each scattering event, we initialize the molecule on a
sphere with radius rstart = 0.5 μm, large enough to account
for potentially large ion orbits. The ion is initialized in the
center of the Paul trap and both ion and molecule velocities
are diced from thermal distributions. Also the orientation of
the molecule axis is randomized. The Li atoms are initialized
in the outer classical turning point of the molecular potential
rct (see Fig. 1), where kinetic energy stems from center-of-
mass motion alone. Initially, the molecules do not rotate.
The particles are propagated using a fourth-order adaptive
Runge-Kutta method until one of the particles leaves a sphere
of radius rend ≈ 1.3rstart [28].

We identify three scattering channels:
(i) molecular ion formation: Li2 + Yb+ → Li + LiYb+;
(ii) dissociation: Li2 + Yb+ → Li + Li + Yb+;
(iii) quenching: Li2(ν) + Yb+ → Li2(ν ′) + Yb+.
The reaction products are discriminated by calculating the

energy of the possible subsystems Li2 and LiYb+ at the end of
the each simulation. The probability for one of the scattering
channels χ is obtained from Monte Carlo sampling of the
starting conditions,

Pχ = Nχ

N
± δNχ

, δNχ
=

√
Nχ (N − Nχ )

N3
, (4)
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(a)

(b)

FIG. 2. Reaction rates for molecular ion formation (markers,
solid lines) and dissociation (dotted lines). (a) Binding energy de-
pendence for Ēcol/kB ≈ 11 μK (gray dashed line), corresponding to
TLi2 = 2 μK and TYb+ = 100 μK. In blue the Paul trap (PT) and in
orange the time-independent secular approximation (SA). The green
dashed line is the Langevin collision rate for Li-Yb+. (b) Collision
energy dependence with fixed binding energy Eb/kB = 8.6 μK for
TLi2 = 2 μK and TYb+ = 12.5–100 μK in the Paul trap.

where Nχ and δNχ
denote the number and standard deviation

of the trajectories associated with channel χ and N the total
number of trajectories.

The reaction rate is

�′
χ = κ

√
TLi2

(
Pχ ± δNχ

)
, (5)

with TLi2 the molecule temperature and κ ≈ 3.29 × 10−11

m3 s−1 K− 1
2 (Appendix A). For each parameter setting we

propagate 2 × 104 trajectories and use temperature distri-
butions around TLi2 = 2 μK and TYb+ = 100 μK (Ēcol/kB ≈
11 μK), if not stated otherwise. The average collision energy
of the system is calculated with

Ēcol = μ

mYb+

5

2
kBTYb+ + μ

mLi2

3

2
kBTLi2 , (6)

where μ is the ion-molecule reduced mass, and kB is the
Boltzmann constant. Note that we account for the intrinsic
micromotion of the ion in the Paul trap by counting five
degrees of freedom [40] in Eq. (6).

III. RESULTS

We investigate the reaction rates as a function of the Li2

binding energy Eb, as shown in Fig. 2(a). We compare the
reaction rates for molecular ion formation �′

LiYb+ and Li2 dis-
sociation �′

diss in the Paul trap (PT) and in a time-independent
harmonic trap with the same trap frequencies ω⊥ and ω3

corresponding to the so-called secular approximation (SA).

FIG. 3. Reaction rate dependence on the ratio of average col-
lision energy to binding energy in the Paul trap. Molecular ion
formation LiYb+ (markers) and dissociation rates (dotted lines) for
six different collision energies. The broad blue line is the analytic
model described in the text and the horizontal green dashed line
indicates the Langevin rate. Error bars (�0.3 × 10−9 cm3 s−1) are
omitted for visibility.

We find two different regimes. For tightly bound molecules
(Eb � Ēcol) molecular ion formation is the dominant chan-
nel, with �′

LiYb+ close to the Langevin collision rate �′
L ≈

4.8 × 10−9 cm3 s−1, while �′
diss is negligible. Approaching

the Feshbach resonance (Eb 	 Ēcol), dissociation becomes
the dominant process, while �′

LiYb+ decreases to a roughly
constant rate below 1.5 × 10−9 cm3 s−1. The rate for breaking
up Li2 dimers is approximately constant �′

diss + �′
LiYb+ ≈ �′

L
for Eb/kB � 1 μK. Here, we find that <5% of the Li2 dimers
do not break up in a Langevin collision (Appendix A). Close
to the Feshbach resonance we find �′

diss > �′
L, as even glanc-

ing collisions can dissociate the very weakly bound molecules
(Appendix A). The location of the crossover strongly depends
on the collision energy Ēcol as can be seen in Fig. 2(b).
With a fixed binding energy Ēb/kB = 8.6 μK and Tmol =
2 μK we vary the TYb+ between 12.5 and 100 μK. For small
collision energies we find �′

diss < �′
LiYb+ . With increasing Ēcol

more tightly bound molecules can be dissociated. Hence, the
crossover occurs at larger binding energies.

We investigate the reaction rate dependence on the ratio
of collision to binding energy for various ion and atom tem-
perature distributions. As shown in Fig. 3, all simulations can
be roughly explained by the ratio ξ = Ēcol/Eb. For ξ 	 1 the
system is in the molecular ion formation regime. At ξ ≈ 1
the dissociation channel opens and �′

LiYb+ decreases until
dissociation becomes the dominant process for ξ � 1.

To explain this behavior we develop a simple model. The
reaction rate for product χ can be separated into events
from Langevin (L) and non-Langevin (non-L) collisions �′

χ =
�′

L,χ + �′
non-L,χ . However, to form LiYb+ the minimum atom-

ion distance must become small and therefore only Langevin
collisions can contribute. The reaction rate is thus given by

�′
L,LiYb+ (ξ ) = �′

L − �′
L,Li2 − �′

L,diss(ξ ). (7)
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FIG. 4. Effect of excess micromotion on the reaction rates for
Ēcol = 11 μK. Molecular ion formation (markers, solid lines) and
Li2 dissociation (dotted lines) for additional electric fields of (blue)
0 Vm−1, (orange) 0.3 V m−1, and (green) 0.6 V m−1.

The dissociation channel opens for Ēcol > c × Eb. Here, the
factor c takes into account the unknown interchange of the
reaction channels as well as the possibility of energy transfer
from the oscillating field of the Paul trap. We therefore obtain
the ratio of LiYb+ events by integrating the collision energies,
which we assume to be Maxwell-Boltzmann distributed, up to
c × Eb,

FLiYb+ (ξ ) = 2
∫ c×Eb

0

√
E ′

col

Ē3
colπ

exp

(
−E ′

col

Ēcol

)
dE ′

col

= −2e−c/ξ
√

c

πξ
+ erf (

√
c/ξ ). (8)

The reaction rate is then �′
LiYb+ (ξ ) = a + b × FLiYb+ (ξ ),

where a is the molecular ion formation rate for Ēcol � Eb

and b = �′
L − �′

L,Li2 − a relates the model to the Langevin
collision rate.

Fitting our model to the numerical results, we find good
agreement, as can be seen in Fig. 3, and we extract a ≈ 0.7 ×
10−9 cm3 s−1, b ≈ 3.9 × 10−9 cm3 s−1, and c ≈ 3.1. We ob-
tain �′

L − �′
L,Li2 ≈ 4.6 × 10−9 cm3 s−1 ≈ 0.95�′

L, indicating
that in only very few Langevin collisions the Li2 dimers do
not break up.

IV. INFLUENCE OF THE PAUL TRAP

As shown in Fig. 2(a), the reaction rates show a significant
difference between the PT and the SA. In the PT the dissocia-
tion channel opens up at larger binding energies compared to
the SA. The time-dependent fields change the dynamics of the
molecule-ion collisions, such that the PT has the effect of an
increased collision energy, compared to the SA.

Moreover, the PT can suffer from imperfections that cause
so-called excess micromotion (EMM) which leads to sig-
nificantly higher ion kinetic energies. In an experiment, a
common cause of EMM are stray electric fields that push
the ion away from the trap center such that it experiences a
nonzero oscillating field. In Fig. 4 we present reaction rates
for a PT with additional stray electric fields up to 0.6 V m−1

in the transverse direction. We see that introducing EMM

FIG. 5. Properties of the created LiYb+ as function of Li2

binding energy. (a) LiYb+ (center-of-mass) kinetic energy and (b)
LiYb+ binding energy. Blue squares show medians to number of
occurrences in the numerical simulation and orange lines are linear
fits.

has the same effect as scattering with a higher collision
energy. In state-of-the-art Paul traps, stray electric fields can
be eliminated down to ∼0.1 V m−1 [3,14,41]. We conclude
that the crossover regime to molecular ion formation should
remain observable at realistic EMM levels. At the same time,
applying well-controlled electric fields will allow us to tune
the collision energy without influencing the molecule density
or the trap depth of the Paul trap as has been demonstrated for
atom-ion collisions [3,14].

V. KINETIC AND BINDING ENERGY OF LiYb+

We study the (center-of-mass) kinetic energy and binding
energy of the created molecular ions for the simulations pre-
sented in Fig. 2(a) (PT). Therefore, we extract the median of
the created LiYb+ energies (see Appendix B for more details).
Figure 5(a) shows the kinetic energies of the created LiYb+ as
a function of the initial Li2 binding energy. The numerical data
are described well by the linear correlation

Ekin,LiYb+ ≈ 0.1 mK + 2.9Eb,Li2 . (9)

With energies below 1 mK the presented method indicates its
potential for creating ultracold molecular ions.

In Fig. 5(b) the resulting LiYb+ binding energies are shown
as a function of the initial Li2 binding energy. The molecular
ions are weakly bound with binding energies in the mK
regime. We find the linear correlation

Eb,LiYb+ ≈ 0.01 mK − 12.3Eb,Li2 . (10)

VI. DISCUSSION AND CONCLUSION

Our simulations reveal the existence of a crossover regime
from Li2 dissociation to LiYb+ formation in collisions of
a trapped ion with Feshbach dimers. Importantly, the full
crossover is within experimental reach as the required colli-
sion energies and magnetic field strengths have been reported

033232-4



CONTROLLING THE NATURE OF A CHARGED IMPURITY … PHYSICAL REVIEW RESEARCH 2, 033232 (2020)

[14]. We find that the created molecular ions have kinetic en-
ergies with a median below 1 mK and thus are easily trapped
for typical Paul trap depths �10 K. The created LiYb+ are
weakly bound with binding energies on the order of mK. From
comparing to BaRb+, a radiative lifetime on the order of 2 ms
for a binding energy of about 1 mK can be expected [8].

It is appealing to study both theoretically and experimen-
tally how quantum effects will appear as deviations from our
model. In particular, the crossover to the quantum regime for
atom-ion collisions occurs for Ēcol ≈ E∗ = h̄2/[2μai(R∗)2],
with R∗ =

√
2μaiCai

4 /h̄2. For 171Yb+ - 6Li we find E∗/kB =
8.6 μK, which becomes equal to the molecular binding en-
ergy for B ≈ 705 G. A significant increase in richness can be
expected once the collision energy of the atoms and ion reach
deep in the quantum regime, where Feshbach resonances
between these particles can play a role as well [42].

Our results point to another method for creating ultracold
molecular ions. It will be interesting to study buffer gas cool-
ing of the formed molecular ion with the atomic gas or ultra-
cold collisions of molecular ions with Feshbach dimers. The
LiYb+ molecular ion has a large permanent electric dipole
[42,43] and may allow the study of dipole-dipole interactions.
By cotrapping an atomic Yb+ ion, the molecular ion can be
straightforwardly identified by mass spectrometry using, e.g.,
the collective modes of ion motion. These techniques can also
be used to perform quantum logic spectroscopy and to study
the properties of the molecular ion [24–26].
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APPENDIX A: MODEL CHECKS

We present additional information for controlling the na-
ture of a charged impurity in a bath of Feshbach dimers. The
parameters used for the numerical simulations are presented
in Table I, if not stated differently. For the Paul trap the
values correspond to the experimental ones from Ref. [14]
and the atom-ion coefficients are taken from Ref. [28]. For
the Feshbach molecules we used Ref. [39], with this, the
magnetic fields deviate <1% from recent measurements [29].
First, we explain how the reaction rates are obtained from
individual collisions and we compare the Langevin collision
rate from our numerical simulation with the analytically ex-
pected Langevin rate. We look at Langevin and non-Langevin
collisions and study their reaction rates separately. The Li2

model potential is discussed and a convergence check is
presented for the chosen potential depth. Finally, we do an
energy conservation check and investigate the tolerance of our
fourth-order Runge-Kutta stepper method.

TABLE I. Parameters used in the simulations if not stated
differently.

Coefficient Description Value

fz Axial trap frequency 130.037 kHz
frf rf-drive frequency 1.85 MHz
qx,y Rad. q parameter ±0.5
qz Ax. q parameter 0
Tion Initial ion temp. 5–250 μK
Tmol Mol. temp. 2–20 μK
rstart Mol. start radius 0.5 μm
rend Mol. escape radius 0.655 μm
ptol Rel. num. tolerance 10−10

Cai
4 Attractive 5.607 × 10−57 J m4

Cai
6 Repulsive 5 × 10−19 m2 × C4

Cmol
6 Attractive 1.3 × 10−76 J m6

Cmol
12 Repulsive 3.2 × 10−128 J m12

B Magn.-field strength 600–830 G
Eb/kB Mol. binding energy 0.003–187 μK

1. Extracting rates from the numerical simulations

In the numerical model we simulate single ion-molecule
collisions and count the different reaction products. To extract
a rate from these results, we do a projection onto an atomic
(molecular) density by using

Vs
〈v〉s

〈s〉s
= κ

√
TLi2 , (A1)

where the average velocity from a Maxwell-Boltzmann distri-
bution is given by

〈v〉s =
√

8kBTLi2

πmLi2
, (A2)

with molecule temperature TLi2 and Boltzmann constant kB.
For a sphere of volume Vs = 4

3πr3
start with radius rstart the

average distance for two points on the surface is 〈s〉s = 4
3 rstart .

We obtain

κ =
√

8πkB

mLi2
r2

start. (A3)

For rstart = 0.5 μm used in all simulations presented in the
main text we obtain κ ≈ 3.29 × 10−5 cm3 s−1 K− 1

2 . Then, the
reaction rates are obtained with Eq. (5) of the main text.

For a consistency check, we compare the Langevin colli-
sion rate from our simulation with one obtained analytically.
We simulate about 1.2 × 106 atom-ion collisions with rstart =
0.3 μm. We monitor the minimal atom-ion distance rmin

during the entire propagation and label a collision Langevin
if rmin < 5 × 10−9 m. Note that due to the spiraling character
of the Langevin collisions the exact value for the discrimi-
nation has no significant influence. We find about 0.24 × 106

Langevin collision. Using Eq. (A3) [and Eq. (5) from the main
text], we extract the numerical Langevin (L, n) rate of

�′
L,n = 4.71 ± 0.01 × 10−9 cm3 s−1. (A4)
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The analytical (a) Langevin collision rate is calculated from

�′
L,a = 2π

√
C4

μ
≈ 4.80 × 10−9 cm3 s−1. (A5)

The two rates agree within ∼2%, showing that the simulations
are consistent with the analytical model.

2. Langevin and non-Langevin collisions

In the main text we find for large binding energies, that
the reaction rates for breaking up a Li2 dimer are similar to
the Langevin collision rate. However, close to the Feshbach
resonance, the dissociation rate even exceeds the Langevin
rate, as can be seen in Fig. 2(a) (and Fig. 3) of the main
text. Here, we separate Langevin from non-Langevin colli-
sions to study their reaction rates independently. We label
a collision as Langevin if the minimal atom-ion distances
rmin < 5 × 10−9 m, for at least one of the two atoms. We run
2 × 104 collisions with (rstart = 0.5 μm) for 49.9, 1.58, and
0.0144 μK from which roughly 10% are Langevin collisions.
For the Langevin collisions the reaction rates are shown in
Fig. 6. The probability of an unbroken Li dimer from a
Langevin collision is roughly PL,Li2 = (0.14, 2.95, 0.81)% for
(49.9, 1.58, 0.0144) μK.

For non-Langevin collision (not shown) we find no dis-
sociation events for 49.9 and 1.58 μK. For weaker bound
molecules at 0.0144 μK we find Pnon-L,diss. ≈ 3%. Since about
90% of the simulation are non-Langevin collisions, this results
in a significant amount, such that �′

diss > �′
L for weakly bound

dimers.
We find that dissociation in non-Langevin collisions only

occurs close to the edge of the critical impact parameter
bc = (2Cai

4 /Ecol )1/4 (see main text). This is shown in Fig. 7.
There, the occurrences of rmin for dissociation (orange) and
unbroken Li dimers (blue) are shown for non-Langevin col-
lisions at 0.0144 μK. The collisions leading to dissociation
have small rmin around the Langevin impact parameter (center
gray line), indicating that glancing collisions contribute to the
dissociation rate at low binding energies.

FIG. 6. Percentage of reaction rates from Langevin collisions for
Eb/kB = 49.9, 1.58, and 0.0144 μK.

FIG. 7. Occurrences of minimal atom-ion distance for non-
Langevin collisions at Eb/kB = 0.0144 μK. Reactions with Li2

maintained (blue) and reactions with Li2 dissociated (orange).
Breakup occurs only close to the Langevin impact parameter (gray
line), where the linewidth of the shaded gray area indicates two times
the molecule size.

3. Molecule model potential

The model potential [Eq. (3) in the main text] for the
molecules was chosen to be rather shallow and we present
here a consistency check to verify that this does not influence
our results. The shallowness of the potential is important
to reduce the required computational effort: The ion moves
on length scales of �0.5 μm (Tion = 250 μK), and thus a
reasonably large simulation sphere has to be chosen. To avoid
the propagation of very quickly oscillating molecules over
these large distances, it is beneficial to use a very shallow
potential for the molecule. This is possible since the physical
behavior should be dominated by the long-range term. Here,

FIG. 8. Reaction probability dependence on impact parameter b
and without the Paul trap for different depths of the Li2 potential
Epd/kB = 1 μK–100 K. The molecule (purple lines) gets dissociated
or (green lines) survives the collision.
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1×10−6

1×10−8

1×10−10

1×10−12

FIG. 9. Reaction rates for various relative numerical tolerances
of the stepper method with TYb+ = 5 μK and TLi2 = 20 μK.

we choose the Caa
12 coefficient of Eq. (3) in the main text

to limit the potential depth to Epd/kB = 10 mK. We do a
convergence check without the Paul trap and with Tion/kB =
0 K. The binding energy is Eb/kB ≈ 0.1 μK. We launch the
molecules from a fixed starting position and only randomize
different molecule orientations towards the ion. The result is
shown in Fig. 8. We see no significant deviations in a range
from 100 μK to 100 K on the shown reaction rates.

4. Tolerance of the stepper method

We perform a convergence test to verify the numerical
tolerance used for the Runge-Kutta stepper method. There-
fore, we do a full simulation for different tolerances (see
Fig. 9). The reaction rates are independent of the tolerance
up to 10−8. Only for a tolerance of 10−6 do we see the rates

FIG. 10. Energy conservation for simulations without trapping
fields for different tolerances 10−12 (blue), 10−10 (orange), and 10−8

(green). Collisions 0–149 result in Li2 and 150–300 in LiYb+. The
step in accuracy likely stems from the large difference of energy
scales in the LiYb+ system.

FIG. 11. Angular momentum conservation for simulations with-
out trapping fields and for a tolerance of 10−10. Collisions 0–149
result in Li2 and 150–300 in LiYb+.

deviate, especially for higher B fields. We chose 10−10 for all
simulations.

5. Conservation of energy and angular momentum

Finally, we check the conservation of energy and angular
momentum. Since time-dependent fields can pump energy
into the system during a collision [27], we simulate collisions
without the ion trap.

The relative change in energy 
E/E is shown in Fig. 10
for different tolerances 10−8–10−12 of the stepper [28]. For
a tolerance of 10−10 we find 
E/E � 10−4 for collisions
that do not break up the Li2 dimer, while collisions leading
to LiYb+ have a lower accuracy. This we attribute to the
stiffness of the LiYb+ systems due to the different timescales
of the fast motion of the bound Li and the slow propagation

FIG. 12. LiYb+ binding energies for TYb+ = 100 μK, TLi2 =
2 μK, and Eb/kB = 187 μK. The red dashed line shows the median
for the observed occurrences.
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in the trap. For lower tolerances the accuracy increases by a
factor of roughly 10, at the cost of approximately doubling the
computation time.

Similarly, we compute the change in total angular momen-
tum 
l/l during the collisions, with l = |�l| = ∑

i �ri × �pi and
the sum over the three particles. The result is shown in Fig. 11
for a tolerance of 10−10. We find 
l/l < 10−8 for all recorded
events. As in the energy conservation test we see a step in
accuracy for the different reaction channels.

APPENDIX B: LiYb+ BINDING ENERGY

We look into the binding energies of the created LiYb+

for the system on the molecular ion creation side of the
crossover. Therefore, we use TYb+ = 100 μK, TLi2 = 2 μK,
and Eb/kB = 187 μK. The occurrences of the observed ener-
gies are summarized in Fig. 12. We find that for these settings
approximately 89% of LiYb+ have binding energies above
−10 mK and we extract a median (red dashed line) of about
−1.95 mK.
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