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There is growing evidence that relaxation in glassy materials, both spontaneous and externally driven, is
mediated by localized soft spots. Recent progress made it possible to identify the soft spots inside glassy
structures and to quantify their degree of softness. These softness measures, however, are typically scalars, not
taking into account the tensorial, anisotropic nature of soft spots, which implies orientation-dependent coupling
to external deformation. Here, we derive from first principles the linear response coupling between the local
heat capacity of glasses, previously shown to provide a measure of glassy softness, and external deformation in
different directions. We first show that this linear response quantity follows an anomalous, fat-tailed distribution
related to the universal ω4 density of states of quasilocalized, nonphononic excitations in glasses. We then
construct a structural predictor as the product of the local heat capacity and its linear response to external
deformation, and show that it offers an enhanced predictability of plastic rearrangements under deformation
in different directions, compared to the purely scalar predictor.

DOI: 10.1103/PhysRevE.99.060601

Introduction. At the heart of resolving the glass mystery re-
sides the need to quantify the disordered structures inherently
associated with glasses and to relate them to glass properties
and dynamics, most notably spontaneous and driven structural
relaxation [1,2]. Numerous attempts to address and meet this
grand challenge have been made [3–20], aiming at defining
structural indicators with predictive powers. Achieving this
goal would constitute major progress in understanding glassi-
ness and would provide invaluable insight for developing
macroscopic theories of deformation and flow of glasses.

Recently accumulated evidence suggests that spatially lo-
calized soft spots are the loci of glassy relaxation, and hence
are highly relevant for glass dynamics. These localized soft
spots have been related to quasilocalized, nonphononic exci-
tations in glasses [4–6], whose universal ω4 density of states
(ω is the vibrational frequency) has been also established
recently [21–24]. Among the structural predictors proposed,
most relevant here is the normalized local thermal energy [6],
which quantifies the interparticle interaction contribution to
the zero-temperature heat capacity, termed hereafter the local
heat capacity (LHC) cα (α is the interaction index).

The LHC cα is a general (system- and model-independent),
first-principles statistical mechanical quantity that reveals soft
spots in glassy materials [6]. Yet, the LHC is a scalar that
quantifies the resistance to motion in some unknown direction.
That is, as previously proposed structural predictors in glasses
(with the exception of Refs. [15–18]), the LHC misses impor-
tant tensorial, anisotropic information about the coupling to
deformation in a certain direction. For example, an extremely
soft spot can be completely decoupled from external forces
applied in a certain direction and hence irrelevant for the glass
response in this direction.

In this Rapid Communication, we develop and quantita-
tively test a theory that allows us to identify particularly soft
glassy structures, explicitly revealing their anisotropic nature

and their intrinsic coupling to the direction of externally
applied forces. The theory is developed in two steps; First, the
linear response coupling of cα to external deformation tensors
H(γ ), parametrized by a strain amplitude γ , is derived. The
resulting quantity dcα/dγ is shown to follow an anomalous,
fat-tailed distribution related to the universal ω4 density of
states of quasilocalized, nonphononic excitations in glasses.
Second, a structural predictor in the product form cα dcα/dγ

is physically motivated and shown to filter out soft spots that
are not coupled to the external deformation of interest. Finally,
a metric for quantifying the predictive power of structural
predictors is proposed and extensive computer simulations are
used to show that cα dcα/dγ offers an enhanced predictabil-
ity of plastic rearrangements under deformation in different
directions, compared to the LHC cα alone.

Linear response coupling of the LHC to external defor-
mation. The starting point for our development is the zero-
temperature local heat capacity [6,25]

cα ≡ 1
1
2 kB

∂〈ϕα〉T

∂T

∣∣∣∣∣
T =0

, (1)

where 〈ϕα〉T = ∫
ϕα (x) exp (−U (x)

kBT )dx/
∫

exp (−U (x)
kBT )dx, x is

a vector of the positions of all particles, ϕα is the potential
energy of any pair of interacting particles, U (x) = ∑

α ϕα ,
and kB is Boltzmann’s constant. The sum over the LHC,
1
2 kB

∑
α cα = ∂〈U〉

T
/∂T |T =0, is the thermodynamic, zero-

temperature heat capacity CV.
An analytic low-temperature expansion of 〈ϕα〉T allows us

to explicitly calculate cα [6], which takes the form cα = ϕ′′
α :

M−1 − f α · M−1 · U ′′′ : M−1, where · denotes a contrac-
tion over a single index of the relevant tensors and : over two
indices. A prime, here and hereafter, denotes a partial deriva-
tive with respect to x, f α = ϕ′

α are frustration-induced inter-
nal forces, and M ≡ ∂2U/∂x∂x is the Hessian matrix whose
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FIG. 1. The local heat capacity (LHC) cα [cf. Eq. (1)] for a glass
composed of N = 10 000 particles [27]. The magnitude of cα is
represented by the thickness of the lines connecting particles and
black (red) correspond to positive (negative) values (see Ref. [27]
for details about the thresholding procedure employed). Regions with
anomalously large |cα|, i.e., soft spots, are clearly observed. The right
(left) triangles correspond to the first plastic events under positive
(negative) simple shear AQS deformation and the up (down) ones
to the first plastic events under positive (negative) pure shear AQS
deformation.

eigenvalues are ω2, where ω is a vibrational (normal mode)
frequency. The low-frequency vibrational spectra of glasses
feature, in addition to extended phononic excitations (long-
wavelength plane waves), also quasilocalized nonphononic
excitations, sometimes termed soft glassy modes [21–23]. The
latter follow a universal density of states (DOS) DG(ω) ∼ ω4

that is different from Debye’s theory [26].
The LHC cα is far more sensitive to soft quasilocalized

modes than to extended phonons, i.e., it filters out the effect of
phonons, and is dominated by its second contribution, which
is proportional to the frustration-induced internal forces f α

and to (M−1)2 (scalingwise) [6]. The spatial distribution of
cα reveals soft spots (see Fig. 1) which are highly correlated
with the loci of plastic rearrangements under external driving
(marked by the superimposed triangles, to be further discussed
below).

The soft spots are characterized by a degree of softness
determined by the typical magnitude of cα , |cα|, in its vicinity

(note that the local stiffness ω2 of the potential energy land-
scape scales as c−1/2

α ), which quantifies the collective potential
energy barrier that should be overcome in order to induce a
structural rearrangement (the barrier is proportional to ω6 in
the cubic approximation [19,28]). The LHC cα , however, con-
tains no information whatsoever about the direction, neither in
the potential energy landscape of the glass nor in real space, in
which the barrier is lowest. Consequently, an external driving
force applied in a certain direction or a spontaneous thermal
fluctuation that generates a local force in a certain direction,
may or may not push a soft spot towards its activation barrier.
In short, soft spots are expected to be tensorial, anisotropic
objects that cannot be comprehensively described by scalar
measures.

To demonstrate the tensorial, anisotropic nature of soft
spots, let us focus again on Fig. 1, where four plastic re-
arrangement events are presented (triangles). Each of these
correspond to the first plastic event of the same glass under
external deformation applied in four different directions. In
particular, we applied athermal quasistatic (AQS) [27,29,30]
simple and pure shear

Hsimple =
(

1 ±γ

0 1

)
and Hpure =

(
1 ± γ /2 0

0 1 ∓ γ /2

)
,

respectively, in both the positive and negative (+ and −)
directions, where γ quantifies the amplitude of deformation.
All four plastic events occurred at soft spots, i.e., regions of
abnormally large LHC, but at four different ones. This clearly
demonstrates that soft spots are tensorial, anisotropic objects
that feature different coupling to deformation in different
directions.

To develop a theory that goes beyond the scalar LHC as a
structural predictor in glasses, we set out to calculate the linear
response coupling of the LHC to external deformation. That
is, given a certain globally imposed deformation H(γ ), we
aim at calculating analytically dcα[H(γ )]/dγ associated with
H(γ ). The structure of the differential operator d/dγ reflects
the intrinsically disordered nature of glasses; it is composed of
two contributions [31], one representing the affine response
of ordered systems ∂/∂γ and the other representing the ad-
ditional nonaffine motions associated with disorder-induced
forces, −Uγ ′ · M−1 · ∂/∂x, where the superscript γ is short-
hand notation for ∂/∂γ and Uγ ′ are the mismatch forces
(that drive the nonaffine motions). Operating with d/dγ =
∂/∂γ − Uγ ′ · M−1 · ∂/∂x on cα , we obtain two terms to the
same leading order in M−1 (the complete and exact result,
including all orders in M−1, is presented in Ref. [27]),

dcαdγ � −Uγ ′ · M−1 · (U ′′′ · M−1 · U ′′′ : M−1) · ( f α · M−1)

− (Uγ ′ · M−1 · U ′′′ · M−1) : (M−1 · U ′′′ · M−1 · f α ). (2)

Equation (2), valid for the largest values of dcα/dγ , shows
that these emerge from a fourth power of M−1 ∼ ω−2 (scal-
ingwise), coupled to the energy anharmonicity tensor U ′′′,
to the internal force vector f α and to the mismatch force
vector Uγ ′. Note that similarly to cα (see the expression

above), the existence of frustration-induced internal forces
f α—an intrinsic signature of glassy disorder—is essential for
the emergence of abnormally large values of dcα/dγ . While
the expression for dcα/dγ [in Eq. (2) or its exact counterpart
in Ref. [27]] is universal, the specific information regarding
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FIG. 2. The probability distribution functions (a) p(dcα/dγ ) and
(b) p(cα dcα/dγ ) for both simple (squares) and pure (circles) shear
deformation. The curves in each panel are vertically shifted one with
respect to the other for visual clarity, while in fact they perfectly
overlap, as expected from the initial glass isotropy. The theoretical
power-law predictions are marked by the solid lines and the triangles
(see text for details).

the applied deformation H(γ ) for which the linear response
is calculated is encapsulated in the partial derivative ∂/∂γ

[27], here through the mismatch force Uγ ′. The validity of
the analytic expression for dcα/dγ has been directly verified
using numerical simulations [27].

Universal anomalous statistics. To further establish the
linear responses dcα/dγ as a fundamental physical quantity
that is intrinsically related to quasilocalized soft glassy modes,
we consider next the large tail of its statistical distribution. The
latter can be predicted based on Eq. (2) and the universal DOS
of soft glassy modes, DG(ω) ∼ ω4. Considering the eigenrep-
resentation of dcα/dγ and invoking the same considerations
as in Ref. [6], one can show that objects such as those appear-
ing on the right-hand side of Eq. (2) are far more sensitive
to quasilocalized glassy modes than to extended phonons as
ω → 0 and that the ω dependence emerges only from M−1 ∼
ω−2. Consequently, we have dcα/dγ ∼ ω−8 and p(dcα/dγ )
is predicted to satisfy p(dcα/dγ ) = DG(ω)dω/d (dcα/dγ ) ∼
(dcα/dγ )−13/8 in the large dcα/dγ limit.

To test this prediction, we performed extensive numerical
simulations of a conventional computer glass former for both
simple and pure shear [27] and extracted the statistics of
dcα/dγ . The results are presented in Fig. 2(a) and are in
great quantitative agreement with the theoretical prediction.
We thus conclude that dcα/dγ attains anomalously large
values described by universal fat-tailed statistics related to the
universal DOS of soft quasilocalized glassy modes, DG(ω) ∼
ω4. The relation between dcα/dγ and quasilocalized modes
suggests that the spatial distribution of the former features
localized structures, which will be used next to construct a
generalized structural predictor in glasses.

A structural predictor. We have at hand two quantities
that appear to capture the essential physical properties of soft
spots in glassy materials. First, the LHC cα is a signed scalar
whose magnitude |cα| quantifies the degree of softness of soft
spots, i.e., it provides a measure for how small the activation
barrier for irreversible rearrangements is in some unknown
direction. Second, the linear response coupling of the LHC to
deformation in a certain direction dcα/dγ is a signed quantity
that provides a measure for the degree by which externally
applied forces affect the activation barrier in the direction in

which they are applied. How do the two quantities combine to
form a generalized anisotropic structural predictor in glasses?
As both cα and dcα/dγ are signed quantities and as both are
predicted to attain anomalously large values at the loci of soft
quasilocalized modes, we expect large positive values of the
product cα dcα/dγ to single out a subpopulation of the soft
spots (previously defined by |cα|) that is most relevant for the
imposed deformation in a certain direction. Consequently, we
propose it as a generalized anisotropic structural predictor in
glasses.

As a first test of this idea, we invoke it to predict the
large tail statistics of cα dcα/dγ . As we have cα ∼ ω−4

and dcα/dγ ∼ ω−8 in the small ω limit, the spatial over-
lap prediction implies cα dcα/dγ ∼ ω−12, which leads to
p(cα dcα/dγ ) ∼ (cα dcα/dγ )−17/12 in the large dcα/dγ limit
[using DG(ω) ∼ ω4]. This prediction is quantitatively verified
in Fig. 2(b) for both simple and pure shear, lending strong
support to the idea that the product cα dcα/dγ indeed charac-
terizes well-defined soft spots.

We next turn to the spatial properties of cα dcα/dγ , and
first consider the glass realization shown in Fig. 1, which
is shown again in Fig. 3(a). The product cα dcα/dγ under
both simple and pure shear in the positive direction is shown
in Figs. 3(b) and 3(c). Here, black and red correspond re-
spectively to positive and negative values of cα dcα/dγ (the
thickness of the lines quantifies their magnitude). Two major
observations can be made: (i) Soft spots that are revealed by
cα dcα/dγ indeed overlap those revealed by cα alone, and in
fact they are more pronounced. (ii) There exist two subspecies
of soft spots, one that is positively coupled to deformation in
a given direction (black) and one that is negatively coupled
to it (red), and these subspecies depend on the direction of
the deformation [cf. Figs. 3(b) and 3(c)]. Consequently, the
product cα dcα/dγ reveals orientation-dependent soft spots
that offer enhanced predictive power compared to scalar in-
dicators, which will be tested next.

Quantifying the predictive power of the structural predictor.
We first demonstrate the predictive power of cα dcα/dγ using
the example in Fig. 3; we expect plastic events to occur at
one of the softest black (red) spots in Fig. 3(b) when the glass
undergoes simple shear deformation in the positive (negative)
directions, and similarly for Fig. 3(c) in relation to pure shear
in the positive and negative directions. This expectation is
fully supported by the results of AQS deformation simulations
[27] in the four different directions, as shown by the triangles
in Figs. 3(b) and 3(c).

To systematically quantify the predictive power of the
proposed structural predictor, we performed extensive com-
puter simulations of a large ensemble of glass realizations
deformed in the four different directions and tracked the
location of the first plastic event in each one of them. To
quantify the degree of predictability, we used the following
metric: The system is divided into bins of linear size ξ =
5 particle diameters, comparable to the localization length
of soft quasilocalized modes [21,23], and assigned a value
obtained from the average of the structural indicator inside
the bin and all of its neighboring bins (implying that the
actual coarse-graining length is in fact larger than ξ ). A plastic
event is assigned a rank λ that corresponds to the fraction of
the bins with a higher value than that of the bin in which it
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(a) (b) (c)

FIG. 3. (a) The same as Fig. 1. (b) cα dcα/dγ [black (red) corresponds to positive (negative) values, and the line thickness represents the
magnitude] for simple shear in the positive direction [the right (left) triangles correspond to the first plastic events under positive (negative)
simple shear AQS deformation]. (c) The same as (b), but for pure shear in the positive direction [the up (down) triangles correspond to the first
plastic events under positive (negative) pure shear AQS deformation].

actually occurred. The best prediction corresponds to λ = 0
(the event occurred in the highest value bin) and the worst one
corresponds to λ → 1 (the event occurred in the lowest value
bin). When considering the cumulative distribution function
C(λ), with 0 � λ < 1, perfect predictability corresponds to
C(λ) = θ (λ) (Heaviside step function) and no predictability
(random guess) corresponds to C(λ) = λ. This metric depends
on a single, physically motivated parameter ξ (the quantitative
dependence of the results on ξ is discussed in Ref. [27]).

The results are presented in Fig. 4, where C(λ) for the
absolute value of the LHC |cα| serves as a reference (circles).
In Fig. 4(a) we consider simple shear in the positive direction,
and plot C(λ) (diamonds) for positive values of cα dcα/dγ

(the negative ones are set to zero). It is observed that the
predictive power of cα dcα/dγ is significantly larger than that
of |cα|. C(λ) for negative values of cα dcα/dγ (the positive
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FIG. 4. Quantifying the predictive power of structural indicators
with respect to plastic events under AQS deformation through the
function C(λ) (see text for definitions), where C(λ) = θ (λ) (Heavi-
side step function) corresponds to perfect predictability and C(λ) =
λ to no predictability. (a) Results for positive values (negative ones
are set to zero) of cα dcα/dγ (diamonds), for negative values (pos-
itive ones are set to zero) of it (squares) and for |cα| (circles) under
simple shear AQS deformation in the positive direction. (b) The
same as (a), but under simple shear AQS deformation in the negative
direction.

ones are set to zero) is also shown (squares), exhibiting
essentially no predictive power, i.e., the curve is quite close
to C(λ) = λ. Negative values of cα dcα/dγ provide excellent
predictions for plastic events once the deformation direction
is reversed (that is, simple shear in the negative direction is
applied), as shown in Fig. 4(b). In fact, when the deformation
direction is reversed, the black and red soft spots simply
reverse their roles (while |cα| remains the same, as it is
independent of the direction of the driving force), as shown
in Fig. 4(b). Essentially the same results are obtained for pure
shear [27], as expected from symmetry, further demonstrating
the superior predictive power of cα dcα/dγ .

Concluding remarks. The results presented above show
that cα dcα/dγ is a promising structural predictor in glasses.
It is a first-principles, model- and system-independent phys-
ical quantity that reveals and highlights the orientation de-
pendence of soft spots inside disordered glass states. The
transparent analytic structure of cα dcα/dγ , and its relation to
quasilocalized soft excitations [6], allows us to gain physical
insight into the origin of localized soft spots in glasses and
their universal statistical properties. Our structural predictor
involves only snapshots of nondeformed glasses and the in-
terparticle interactions. The emerging properties of soft spots
strongly echo the original Falk-Langer concept of shear trans-
formation zones (STZs) [32] and should help advancing the
development of predictive elastoplastic models. Finally, we
believe that our results offer a tool to probe the basic physics
of glasses including structural relaxation, aging, memory ef-
fects, and nonlinear yielding transitions.
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