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Athermal elastic moduli of soft-sphere packings are known to exhibit universal scaling properties near the
unjamming point, most notably the vanishing of the shear-to-bulk moduli ratio G/B upon decompression.
Interestingly, the smallness of G/B stems from the large nonaffinity of deformation-induced displacements
under shear strains, compared to insignificant nonaffinity of displacements under compressive strains. In this
work, we show using numerical simulations that the relative weights of the affine and nonaffine contributions
to the bulk modulus, and their dependence on the proximity to the unjamming point, can differ qualitatively
between different models that feature the same generic unjamming phenomenology. In canonical models of
unjamming, we observe that the ratio of the nonaffine to total bulk moduli B,,/B approaches a constant upon
decompression, while in other, less well-studied models, it vanishes. We show that the vanishing of B,,/B in
noncanonical models stems from the emergence of an invariance of net (zero) forces on the constituent particles
to compressive strains at the onset of unjamming. We provide a theoretical scaling analysis that fully explains
our numerical observations, and allows us to predict the scaling behavior of B,,/B upon unjamming, given the

functional form of the pairwise interaction potential.

DOI: 10.1103/PhysRevE.100.042609

I. INTRODUCTION

Many disordered substances, such as foams, emulsions,
suspensions, and granular materials, can jam into a solidlike
state, or rather display fluidlike behavior, depending on their
confining volume or pressure [1-3]. This diverse class of
systems, which exhibit a continuous but abrupt transition be-
tween solid and fluid states by decompression, are often mod-
eled theoretically and computationally by assemblies of soft
repulsive particles [1]. Using these models, it has been shown
that the unjamming transition is accompanied by a number of
intriguing phenomena, such as the emergence of an excess of
low-frequency vibrational modes [1], diverging length scales
[4-6], and scaling laws of elastic moduli [1,7]. One of the
hallmarks of the unjamming transition of soft-sphere packings
is the eventual loss of their shear rigidity—reflected by the
vanishing shear-to-bulk moduli ratio G/B—upon decompres-
sion [7]. Mean-field approaches, such as the effective-medium
theory [8,9] or rigidity percolation of random networks [10],
are unable to capture the self-organizational processes that
determine the scaling behavior of G/B [7].

Previous work [11] has shown that athermal elastic moduli
of disordered solids consist of two contributions with different
physical origins: an affine term (also referred to often as
the “Born” term [12]), which captures the stiffness of the
material with respect to imposed affine deformations, and a
nonaffine term that accounts for additional (nonaffine) dis-
placements of the internal degrees of freedom, which are re-
quired in order to preserve mechanical equilibrium under the
imposed deformation. Thus, we decompose the shear and bulk
moduli as

G=G,— Gy, B=B;,—B,, (1)
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where the subscripts “a” and “na” stand for the affine and
nonaffine terms, respectively. The aforementioned vanishing
of G/B upon unjamming is seen as the near cancellation of
G, and G, as the unjamming point is approached, while the
nonaffine term of the bulk modulus always remains signifi-
cantly smaller than the affine term [13,14].

In this work, we examine the degree of universality of
the unjamming point of soft repulsive spheres from the per-
spective of the relation between the affine and nonaffine
terms of the bulk modulus. Importantly, it has been suggested
that the unjamming transition represents a nonequilibrium
critical point [15] for which the upper critical dimension is
2 [16]. Notwithstanding, as we shall demonstrate in what
follows, the relative smallness of the nonaffine term of the
bulk modulus B,,/B upon approaching the unjamming point
features nonuniversal scaling laws across different model
systems of purely repulsive soft spheres in two dimensions
(2D). In addition, our work indicates the existence of a
connection between some model systems that undergo an
unjamming transition, and the isomorph theory put forward
by Dyre and co-workers [17,18], which studies the impli-
cations of strong correlations between energy and pressure
fluctuations.

Here we focus on understanding the physical origin of
the scaling properties of the ratio B,,/B; these have been
previously explained in terms of excluded volume correlations
[14,19], and in terms of the behavior of states of self-stress
[7,20]. Here we put forward a different perspective on this
problem; below we show that the relative smallness of B,
stems from two key ingredients: (i) the approximate propor-
tionality between pairwise forces and pairwise stiffnesses,
that can be directly inferred from the pairwise interaction
potential, and (ii) that the net force acting on each particle

©2019 American Physical Society
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vanishes—this is the mechanical equilibrium condition, also
invoked in the argumentation of [7,20].

In what follows, we study the canonical unjamming model
[1]: soft spheres that interact via a ¢ ~ §" interaction, where
8 denotes the overlap between neighboring spheres, and for
most of our study we focus on n =2 and 3. We find that,
in these models, the ratio B,,/B approaches a constant in
the limit of zero pressure, at the onset of the unjamming
transition. We also study two other models that feature the
same loss of shear rigidity as observed in the canonical mod-
els, while at the same time exhibiting qualitatively different
scaling behavior of the ratio B,,/B; upon approaching the
unjamming point, B,,/B gradually vanishes, in contrast with
its behavior in the canonical models.

This paper is organized as follows: In Sec. II, we provide
descriptions of the different models that we explore and the
employed numerical methods. In Sec. III, we present the
results from our numerical simulations regarding the unjam-
ming phenomenology of the different models, with particular
focus devoted to the ratio B,,/B. In Sec. IV, we construct a
string of scaling arguments, validated by our numerical sim-
ulations, that culminate in a scaling theory that fully explains
the observed scaling laws of the ratio B,,/B as unjamming is
approached. In Sec. V, we summarize our findings and discuss
future work.

II. MODELS, METHODS, AND OBSERVABLES

In this section, we describe the numerical models and
methods employed in our work, and we define the observables
of interest.

A. Soft-sphere models

In this work, we make use of four different models of
soft, purely repulsive spheres in 2D. Disordered packings
were generated for all models by a short high-temperature
equilibration, followed by a minimization of the potential
energy by means of the FIRE algorithm [21]. In all models
except the EXP (introduced below) model, we incorporated
the Berendsen barostat [22] into our minimization algorithm,
allowing us to generate packings at any desired target pres-
sures, as explained in [23]. For the EXP model, we employed
128-bit numerics for obtaining packings at extremely small
densities. For all models, at all investigated state points, we
employed 1000 independent packings of N = 1600 particles.
Plots of the employed pairwise potentials with a finite-range
cutoff are presented in Fig. 1.

1. Harmonic and cubic spheres

We employed the canonical model of unjamming [1], in
which spheres of radii R; and R; interact via the pairwise
potential,

=R +R;) —rijI",  rij <Ri+Rj,
0, rij >Ri+Rj,
2

with ¢ and A denoting microscopic units of energy and length,
respectively, and r;; is the pairwise distance between the
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FIG. 1. Plotted are the harmonic, cubic, and bump pairwise
potentials as a function of the overlap (R; + R;) — r;; of particles i
and j. Potentials have been factored for visualization purposes.

centers of particles i and j. In this work, we mainly focus
on models with n = 2 and 3, referred to in what follows as
the harmonic and cubic models, respectively. We chose the
radii of half the particles to be 71/5, and the other half’s
radius is A. This model undergoes an unjamming transition at
a packing fraction ¢ = V/V, & 0.84, where V = L? denotes
the volume (in 2D), and V,, = ), JTR[2 is the volume occupied
by the particles.

2. Exponential spheres

The third model we employed is a binary mixture of
particles that interact via an exponentially decaying pairwise
potential

pexp(rij) = &/, 3)

where the parameters £;; and ¢;; depend on the species of the
pair i, j, and they can be found in [24]. As shown in [24],
this model undergoes an unjamming transition at vanishing
densities p = N/V — 0. We refer to this model in what
follows as the EXP model.

3. The “bump” model

The fourth model we employed is a binary mixture in
which pairs of particles interact via the “bump” pairwise
potential,

i \21
86_[1_(Rf+jR/) ] . ry<Ri+R;
0, rij = Ri + Rj,

“4)

where ¢ denotes the microscopic units of energy. As in the
case for the harmonic and cubic systems, half of the particles
are of size 70/5 and the other half are of size A, where A
denotes the microscopic units of length. We refer to this model
as the “bump” model. As far as we know, it has not been
studied before in the context of the unjamming transition.

eBump(7ij, Ri, Rj) =

B. Observables

Athermal elastic moduli were calculated following the
formalism put forward in [11]; the key principle in deriving
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expressions for the athermal elastic modulus is that the system
remains in mechanical equilibrium under imposed deforma-
tions. We employed the definitions

1 d*U
V dn?
for the shear and bulk modulus, respectively, where U is the
potential energy, V is the volume, y is the simple shear strain,

and 7 is the expansive strain. The latter two parametrize the
imposed affine transformation of coordinates x — H - X in

2D as
I+n 14
H= . 6
( 0 l+n> ©

(&)

= ——— an B =
14

Using this transformation, the strain tensor € is given by

1 1/2 2
e=—(HT-H—I>=—("+" T 2), )
y+vn 2n+n+y

2 2
where Z represents the identity tensor. In the athermal
limit, the potential energy density variation §U/V = [U(e) —
U (0)]/V can be approximated by a Taylor expansion in terms
of the strain tensor € and the general elastic coefficients C,,
and Cy ¢, of the form

1
8U/V ~ ZCKXEKX + 5 Z CK)(HTEKX€91~ 3

KX kx0T

In terms of the general coefficients C,, and Cy ¢, our defini-
tions of shear and bulk moduli given by Eq. (5) read

G=Cp+ Cony ©)
and
B = Cxxxx + nyyy + 2Cxxyy~ (10)

We note importantly that our definition of the bulk modulus B
as given by Eq. (5), chosen for the sake of simplicity, differs
slightly from the conventional definition of the bulk modulus

= —Vdp/dV, with p = —dU/dV denoting the pressure.
The two definitions are related via B = (K — p)d”, where d
denotes the spatial dimension. As we shall show below, in the
unjamming limit p/B — 0, the two definitions agree (up to an
unimportant factor of d).

In our models, the potential energy is given by a sum
over pairwise radially symmetric interactions, namely U =
i ;i ;(rij); the atomistic expression for the bulk modulus
reads

(1)

[1]
=

1 y 2 — —1
B=g D= D B M
k,l

i<j

where <pl’; = Bzgoij/arfi, M, = PU_ and

ox;0x; >

azU " ij
“= Grax = D elrid, (12)

i<j

is the force (linear) response to an imposed expansive strain,
written as a weighted sum over dipole vectors,

ii Brl-A
d/ = B_xZ = 8k — Sinij, 13)

with n;; the unit vector pointing from particle i toward particle
Jj. Following the decomposition of B as spelled out in Eq. (1),
we identify the affine and nonaffine contributions to the bulk
modulus as

1 v o2 1 - 1 =
B, = v Z‘pijrij and By, = V; Er- My - B (14)

i<j

III. NONUNIVERSALITY OF NONAFFINITY
UNDER COMPRESSIVE STRAIN

One of the key characteristics of the unjamming transition
in soft-sphere packings is the loss of shear rigidity captured
by the vanishing of the shear-to-bulk modulus ratio G/B upon
approaching the transition. In Fig. 2(a), we plot the ratio G/B
as a function of p/B. The latter will serve in what follows as
our central dimensionless control parameter of the unjamming
transition, which occurs when p/B — 0. Our data for all four
investigated models are consistent with previous results for
the canonical models [2,3], namely that G/B ~ /p/B. In
previous work, we have also observed this scaling for soft-
sphere packings with inverse-power-law pairwise interactions
[24], strongly supporting its universality.

In Fig. 2(b) we plot the ratio of the nonaffine to total bulk
modulus B,,/B against p/B; while the scaling of the shear
rigidity G/B ~ 4/p/B appears to be universal for soft-sphere
packings, B,,/B displays very different behavior between our
different models: the canonical models (harmonic and cubic)
show an initial slight increase of B,,/B upon decompression,
after which the ratio saturates to an n-dependent constant upon
approaching the unjamming point as p/B — O.

Remarkably, the EXP and bump models show opposite
trends; as p/B — 0, the fraction B,,/B vanishes instead
of converging to a constant, with scalings consistent with
~(p/B)?* for the EXP model, and ~p/B for the bump model.
Moreover, at the same high p/B the nonaffine term is rel-
atively much smaller for the EXP model compared to the
canonical models, by several orders of magnitude.

In the next section, we will build a string of scaling
arguments and present supporting data from our numerical
tests, which will fully explain the various scalings of B,,/B
versus p/B, as shown in Fig. 2.

IV. SCALING THEORY FOR B,,/B
A. What makes B,,,/B small?

To explain the scaling of B,,/B upon approaching the
unjamming transition, we first go back to Eq. (14) for the
nonaffine term of the bulk modulus, B,,; we define & = |E|
and £ = £/, and then B, /B can be trivially written in the
form

B,. E?

B VB

[

ML

[

(15)

This form makes it clear that the smallness of B,,/B can stem
either from the smallness of E alone, or by weak coupling
between the eigenfunctions ¥, of M and Z.

Let us therefore first consider the quadratic form
- M. &, using the spectral decomposition of the

[y
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FIG. 2. (a) The shear-to-bulk modulus ratio, G/B, vs p/B for all investigated models of soft repulsive spheres. The scaling G/B ~ /p/B
appears to universally hold across all studied models. (b) The relative nonaffine contribution to the bulk modulus, B,,/B, plotted against the
key dimensionless control parameter p/B. The harmonic and cubic systems show a saturation as p/B — 0, while in stark contrast with these
canonical models, the EXP and bump models feature a vanishing B,,/B as p/B — 0, with different scaling laws.

dynamical matrix M =) ®*W¥, ® W, it can be written as

(¥, - £
=y

It has been shown [13,20] that modes near unjamming project
onto pairwise directors as d - W, ~ w/wy, where d is a local
dipole vector as defined in Eq. (13), and wy ~ /@” is the
square root of a characteristic pairwise stiffness. Since E is a
weighted sum of dipoles [see Eq. (12)], and is normalized (i.e.,
E.E= 1), we expect that (¥, - @)2 ~ (w/wy)?/V . The sum
in Eq. (16) thus follows:

v, E)Y 1 (=
Z % ~— D(w)dw,
w ab W,

[xp

M (16)

a7

w

where D(w) is the density of states, and w, is the well-studied
frequency scale above which a plateau appears in D(w) in
unjamming systems [1-3,13,20], known to universally follow
ws/wy ~ 4/p/B in decompressed soft-sphere packings near
unjamming. Equation (17) is also supported by the direct
numerical measurements presented in [25].

The main support of the density of states D(w) near unjam-
ming is between w, and wy > w,, implying that, to leading
order, f:f“ D(w)dw ~ O(1). Finally, as long as B > B,,, then

in 2D wy ~ +/B (ignoring the unimportant units of mass) and
therefore Eqgs. (16) and (17) imply that

E- M. E~1/B (18)
Combining Egs. (18) and (15), we conclude that
B B2
g . 19
B VB2 (19)

In Fig. 3 we test this prediction; we find that not only are
B.../B and 22 /(V B?) proportional to each other, but they also

share the same proportionality constant across all investigated
systems, which we find to be 5/2. The conclusion from
this analysis is that the smallness of B,,/B must stem from
the smallness of the rescaled compression-induced forces

E/(BVV).

B. The roles of mechanical equilibrium and pairwise potential

We continue the discussion by explaining how the condi-
tion of mechanical equilibrium, together with the functional
form of the pairwise potential, affects the magnitude E of
compression-induced forces E, and therefore controls the

scaling of B,,,/B near unjamming. Comparing the mechanical

10%+
10—1_
10724
Q 1
\g 1[)73A
)
1074? o g e  harmonic
] Vad v Cubic
10775 EXP
124 A bump
1076 U T T T T
1% 10 107 107 1072 107 10
=2/(VB?)

FIG. 3. B,./B vs B%/(VB?) for all investigated models. The
dashed line represents the fit B,,/B =5 E*/(2 VB?), validating
Eq. (19).
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equilibrium equation and the definition of Z [see Eq. (14)],

ou i -
F E_a_xk:_z(pgjdka()’ B =) ¢ind),

i<j i<j

(20)

we see that they have similar structures; both forces F and
E are given by a weighted sum of dipoles d, where the
weight factors are the pairwise forces ¢’ in the case of F, and
they are the products of the pairwise stiffnesses and distances
¢"r for the case of E. Therefore, in the special case ¢’ =
¢ ¢”r—with a dimensionless proportionally coefficient ¢ that
is independent of the pairwise distance r, as holds for widely
employed inverse-power-law (IPL) pairwise potentials, of the
form gppy. ~ rf [24]—we expect E = 0 by virtue of me-
chanical equilibrium.
For other pairwise potentials different from ¢ypy ,

c(ry=¢'/¢"r (21)

is generally a function of the pairwise distance r, and will thus
fluctuate between different pairs of interacting particles (due
to fluctuations of pairwise distances), resulting in a nonzero
E. Nevertheless, when approaching the unjamming point,
spatial fluctuations in pairwise distances between interacting
particles are known to decrease [1,26], in some cases (depend-
ing on the form of the interacting potential, see below) giving
rise to an approximate proportionality between ¢’ and ¢”r that
renders E small.

The emergence of an approximate proportionality between
¢’ and ¢” as unjamming is approached can be directly ob-
served in our simulations. Before discussing the data, we note
that characteristic pairwise forces scale as ¢’ ~ p7 (in 2D)
with 7 = 1/,/p a characteristic pairwise distance, and, sim-
ilarly, characteristic pairwise stiffnesses scale as @"7 ~ BF.
We thus expect that characteristic proportionality coefficients
¢ = @'/@"7 ~ p/B. This expectation is validated in Fig. 4, in
which the probability distributions p(c) are plotted against the
rescaled variable ¢/(p/B), for the EXP [panel (a)] and cubic
[panel (b)] models, as the unjamming transition is approached
(i.e., p = 0and p — 0 for the two models, respectively). For
the EXP model, there is a clear narrowing of the distribution,
showing that correlations between ¢’ and ¢”r increase as
unjamming is approached, while for the cubic model the
distributions approach a limit form as p — 0. The bump and
harmonic models show similar behavior (i.e., the distributions
narrow for the bump model, but approach a limit form for the
harmonic model) and are therefore not shown here.

To quantify the reduction of relative fluctuations of the pro-
portionality coefficients ¢ near unjamming, we determined the
full width at half-maximum (denoted in what follows by A) of
their distributions for all investigated models and pressures.
The modes of the distributions are close to the value 2, which
simply originates from the factor 1/d in the expression for the
pressure. In Fig. 5 we show that A? has the same scaling as
B,,/B in terms of p/B, supporting that it is controlled by the
reduction of fluctuations of the proportionality coefficients c.

—
&
N

EXP — p=5.6x1072

407 — p=56x10"%°
—_— p=56x10"3

3§ —— p=56x10"%5
207 \ p=5.6x10"4

p=5.6x10745

0.75- cubic —_ p=10"

—_—p=10"2

— p=107"°

oy 0.50 1 — p=10""

= i

3, — p=10"

p=10"6

0.254 p=10-7
0,002 : : : =

0 1 2 3 4

¢/(p/B)

FIG. 4. Probability distribution functions of the proportionality
coefficients ¢ = ¢'/¢"r for the EXP [panel (a)] and cubic [panel
(b)] models, plotted against the rescaled variables c/(p/B). We see a
clear narrowing of the distributions in the EXP model, whereas they
approach a limit form in the case of the cubic model. We note that for
the EXP model, only interactions within the first coordination shell
were considered in this analysis.

C. Scaling theory for B, /B

To deduce the scaling of B,,/B in terms of p/B directly
from the functional form of the pairwise potential, let us
first express the compression-induced forces Z—that we have
shown to control B, /B in Sec. IV A—in terms of the propor-
tionality coefficients ¢ = ¢'/¢"r as

= ij -1 7 gij
By = Zfﬂ Tijdy Zcij i,

i<j i<j
=D (e = Meid + (Y el
i<j i<j
dc_1
— D (i = ) ejdy, (22)
i<j

assuming that fluctuations of the proportionality coefficients
¢ around their mean are small, as seen in Figs. 4 and 5. The
procedure followed in Eq. (22) is akin to projecting out the
so-called “states of self-stress” [27] from the weighted sum
over dipoles, which bears a similarity to the arguments of [20]
regarding the behavior of the bulk modulus near unjamming.
19¢ and denoting Ar;; = rij — (r),

cZdr
the squared compression -induced force follows,

de\? ,
22 = Z_k 4<d—r> Y (Aryg,  (23)

i<j
where we neglected subleading off-diagonal contributions.

[I]
~
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(a) (b)
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o /VB) 107°9 ¢ =/vey
[ ] Bn,a/B v Bna/B
*  A?/5 1 % A?/10
10_2 T T oo 10_3 LA LI B ] B ] RN |
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107° 3 — —
1073 1072 107!
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FIG. 5. Plots of B,,/B vs p/B (closed symbols) and E2/(V B?) vs p/B (open symbols), plus the squared full width at half maximum (A?) of
the distributions of ¢/(p/B) (stars); see Fig. 4 for examples of these distributions. Panels (a) and (b) show the harmonic and cubic interactions,
with a putative line of constant B,,,/B. Panels (c) and (d) show the EXP and bump models, respectively. The data make clear that all three
quantities—B,,, /B, E%/(V B?), and A>—all share the same scaling (per model) with respect to p/B.

At this point, we exploit the observation that pairwise force
fluctuations scale with the mean pairwise force, namely ¢’ ~
A¢' = ¢’ — (¢), as demonstrated for all four investigated
models in Fig. 6. Since A¢’ ~ ¢” Ar, then as long as ¢” — 0
near unjamming, A¢’ < Ar (and A¢’ ~ Ar in the harmonic
model for which ¢” is constant). We can thus neglect fluctu-

Jcubic

10°1 harmonic p p

P Yk

100 EXP %
10714 j N

probability density
= =
=] [l
| |
V) —_
s A

—_
[an)
|
w
"

H
9

ensity

é 1072<
E
21073
104 . ) A — Al
104 102 10 01 02 100
fv/e/p IV/plp

FIG. 6. Rescaled force distributions for the different potentials.
Clearly the distributions obtain a constant shape as the unjamming
transition is approached. This can be used to determine the scaling of
Ar as a function of the control parameter.

ations of ¢/ ; in Eq. (23), and we only keep the leading-order
contribution, which reads

2 1 (de ’ ) 2
~a E) (@) Z(Arij)~

i<j

]

(24)

Since ¢ ~ p/B, ' ~ pF¥, and N/V ~ 1/7* (in 2D), together
with Eq. (19), we obtain

B. B B (dc 2<(A o
~ ~—|— r)).
B vB: p\dr

(25)

As discussed above, characteristic fluctuations of pair-
wise distances follow Ar ~ Ag¢’/¢" ~ ¢'/¢” ~ F p/B, which
leads us to our key result for 2D packings,

B dc\?
~|lr— ) =11

B dr

Our observation that A> ~ B,,/B, as seen in Fig. 5, is now

readily explained; A should scale as a characteristic fluctua-
tion of ¢, rescaled by p/B, namely

g0/(('0///’,_’_«7//) 2
S e

a A ey | EAr  de  [Bu
p/B - p/B p/B rdr B’
27)

in agreement with our observation.
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FIG. 7. B,,/B at low pressures for the canonical models with
different exponents n. The continuous line represents a fit to the form
1/(n — 1)? as predicted by Eq. (28).

D. Model-dependent scaling laws for B,,/B

Now we can readily explain the measured scaling laws of
B,,/B in terms of p/B for the different models, as presented
in Fig. 5, using Eq. (26). The harmonic and cubic interactions
employ a pairwise potential of the form given by Eq. (2).
Using Eq. (26) we see that near unjamming,

Bna 1
B (n—1)2

in agreement with our data of Figs. 2 and 5. Interestingly,
this also shows that the nonaffine contribution to the bulk
modulus near unjamming decreases for higher exponents n,
as also shown in [28]. Figure 7 shows B,,,/B near unjamming
for systems with increasing n, confirming once more the
predicted scaling.

For the EXP model, we make use of the relation p/B ~ ,/p
as derived in [24] for the EXP model in 2D to predict that

By, 1 <p>2 (29)
B P B/’
in agreement with our data of Figs. 2 and 5.

Finally, it can be shown that for the bump model near the
unjamming transition, dc/dr ~ /¢’ /¢"r, leading to

— const, (28)

B p
~Z, 30
2 "3 (30)

in agreement with our data of Figs. 2 and 5.

V. DISCUSSION AND OUTLOOK

In this work, we investigated the relative contribution of
the nonaffine term to the bulk modulus, B,,/B, across four
different models of soft-sphere packings in 2D, near their
respective unjamming points. We find that as the critical point
is approached, the relative contribution of the nonaffine term
to the bulk modulus is nonuniversal: it can either saturate to
a constant or vanish, depending on the form of the pairwise
interaction potential.

To explain the nonuniversality in the observed scaling laws,
we first established that the smallness of B,,/B stems from
the relative smallness of the compression-induced forces E =

82U /dndx, which are a key component of B, [see Eq. (14)].
This was done by arguing that B,,/B ~ 82/V B2, which was
also verified numerically. Interestingly, we found that not only
does this scaling relation hold for all investigated systems,
but also that the dimensionless proportionality coefficient of
this scaling law appears to be universal across all investigated
models, suggesting that it might be amenable to an exact
calculation in future work.

In two of the four investigated models, namely the EXP and
bump models, the compression-induced forces E are shown
to vanish as the unjamming point is approached. This implies
that at the critical point, the net (zero) force becomes invariant
to compressive or expansive strains. We speculate that a
close connection exists between this emergent property of
the EXP and bump models, and the approximate “isomorph-
invariance” put forward by Dyre and co-workers [17,18]. It
has been argued that high-dimensional soft-sphere packings
are isomorph-invariant [29], which might have implications
on the dimensionality dependence of nonaffinity upon com-
pression as studied here. The detailed investigation of these
connections is left for future work.

We next proceeded to construct a string of scaling argu-
ments that lead to our key result given by Eq. (26), namely that
Byu/B ~ (rdc/dr)?, where c(r) = ¢’ /¢"r is the proportion-
ality coefficient between the pairwise force ¢’ and the product
¢"r, where ¢” and r are the pairwise stiffness and distance
between interacting particles, respectively. We showed that
the derived scaling relation fully explains the behavior of
B, /B near unjamming in all four investigated models.

Our scaling argument is based on the observation, pre-
sented in Fig. 6, that the distribution of pairwise (contact)
forces, rescaled by p/p'/d, universally assumes a finite width
near the unjamming point, independent of model details,
as also seen in hard-sphere packings [30], and in colloidal
glasses near jamming [31]. At this point, we cannot argue
why this must always be the case. An interesting result of
this observation, however, is that fluctuations in pairwise dis-
tances follow Ar ~ 7p/B, where 7 is a characteristic pairwise
distance. In the EXP model, 7 ~ B/p [24], indicating that, in
this particular model, pairwise fluctuations are independent of
density.

In two of the four investigated models, namely the EXP and
bump models, the finite width of the rescaled pairwise forces
translates to a vanishing width of the rescaled dimensionless
proportionality coefficients ¢/(p/B) ~ c¢/{c). This implies,
remarkably, that while pairwise force fluctuations scale as
the mean pairwise force, namely Ag’ ~ (¢’), this is not the
case for the proportionality coefficients ¢, whose fluctuations
to mean ratio Ac/(c) — 0 as unjamming is approached. In
future work, the implications of these reduced fluctuations
might be explored.
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