
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Qualifications of Instruction Sequence Failures, Faults and Defects: Dormant,
Effective, Detected, Temporary, and Permanent

Bergstra, J.A.
DOI
10.7561/SACS.2021.1.1
Publication date
2021
Document Version
Final published version
Published in
Scientific Annals of Computer Science
License
CC BY-ND

Link to publication

Citation for published version (APA):
Bergstra, J. A. (2021). Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent. Scientific Annals of Computer
Science, 31(1), 1-50. https://doi.org/10.7561/SACS.2021.1.1

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.7561/SACS.2021.1.1
https://dare.uva.nl/personal/pure/en/publications/qualifications-of-instruction-sequence-failures-faults-and-defects-dormant-effective-detected-temporary-and-permanent(7e47970e-6f00-4543-8c46-797c8c3d9e44).html
https://doi.org/10.7561/SACS.2021.1.1

Scientific Annals of Computer Science vol. 31 (1), 2021, pp. 1–50

doi: 10.7561/SACS.2021.1.1

Qualifications of Instruction Sequence Failures,

Faults and Defects: Dormant, Effective, Detected,

Temporary, and Permanent

Jan A. Bergstra1

Abstract

Starting out from the survey of instruction sequence faults from [6]
program faults are classified according to the conventional criteria of
being dormant, effective, detected, temporary, and permanent. Being
retrospectively approved is introduced as an additional qualification.
For this theoretical investigation the context is simplified by contem-
plating instruction sequences as a theoretical model for programs, and
by assuming that instruction sequences are supposed to compute total
transformations on finite bit sequences of a fixed length only.

The main conclusion which can be drawn from this work concerns
the notion of dormancy. First of all it is noticed that the unconven-
tional notion of a dormant failure is both plausible and amenable to a
straightforward and convincing definition. The conventional notion of
a dormant fault, however, is much harder to grasp and the definition
of a dormant fault which is provided in the paper may be disputed.

The notion of a dormant fault seems to admit no convincing intu-
ition. All faults are defects but not the other way around. The idea of
a fault exclusively depends on an instruction sequence and a specifi-
cation of which it is considered to be a candidate implementation. In
the presence of a design, however, in addition to faults, the notion of

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0
International License

1Informatics Institute, Faculty of Science, University of Amsterdam, Science
Park 904, 1098 XH Amsterdam, the Netherlands, email: J.A.Bergstra@uva.nl,

janaldertb@gmail.com.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

2 J.A. Bergstra

a deviation from design (DFD) defect arises, which constitutes a class
of defects many of which are not faults. For DFD defects the notion
of dormancy admits a straightforward and convincing definition.
Keywords: fault modality, Laski fault, MFJ fault, SRT fault, soft-
ware defect, change justification

1 Introduction

A systematic terminology for software faults, errors, failures, and mistakes
has been proposed by several authors. A recent survey of these notions
can be found in [1] and in [26]. A survey of formalised notions of software
faults can be found in [6]. I refer to that paper also for more references on
software faults.

The work in [6] was simplified by considering instruction sequences
as program notations only. The outcome of [6] in particular consists of a
plurality of so-called fault patterns, also called fault modalities.

There is no guarantee or proof that formal definitions of the most useful
kinds of faults were identified in [6] . Some fault patterns have numerical
parameters and thereby represent an infinite plurality of fault patterns.

In this paper I will extend [6] with fairly rigorous, though not always
formal, definitions of a plurality of predicates which are commonly used in
connection with software faults. In particular the following predicates will
be considered: dormant, effective, detected, temporary, and permanent. I
will refer to such predicates as fault qualifications. The description of such
qualifications is extended with qualifications for failures and with qualifica-
tion for a class of defects which may not be faults at the same time.

1.1 Summary of Results

As new outcomes of this work I mention the following conclusions:

(i) the notion of a dormant failure is very clear and is much more
self-evident than the traditionally used notion of a dormant fault,

(ii) introduction of the notion of a primary symptomatic failure for a
fault,

(iii) faults are supposed to be of three categories: Laski faults, MFJ
(for Milli, Frias and Jaoua) faults and SRT (for successful regression test)
faults (this is a limitation, and following [6] a plurality of other categories
of fault may be distinguished), each of these having BB (black box), GB
(grey box), and WB(white box) versions,

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 3

(iv) the notion of a dormant fault most plausibly applies to BB SRT
faults,

(v) the notion of a detected fault most plausibly applies to WB SRT
faults,

(vi) all faults are defects but not conversely. Defects which are not
necessarily faults allow the following ramification: TMO DFD defects, BB
DFD defects, and WB DFD defects where the latter two categories ramify
into Laski, MFJ and SRT subcategories,

(vii) an initial discussion of design flaws,

(viii) a characterisation of a bug as TMO DFD defects which admits
an obvious (easy to find and apply) resolution (so that bugs may not be
faults),

(ix) the claim that testing cannot (by itself) lead to the detection of
faults (because testing is insufficient to establish a causal link between a
fault and a failure), and also not to the detection of bugs (which are either
faults or, if not, are unrelated to failures), and

(x) A straightforward technical observation (in 3.9): if during the de-
bugging stage of a software process the database with production data for
a candidate implementation (say instruction sequence X) of a given specifi-
cation contains (perhaps among other detected faults) two (detected) WB
SRT faults, say A and B, with both faults pertaining to disjoint fragments
of X, and if the choice is made to resolve fault A by applying its proposed
change of a faulty fragment of X thereby obtaining X′, then the residual fault
for B is a candidate fault of X′ which may not be a fault proper because the
regression test for its proposed change has become unsuccessful. The latter
problem is due to the fact that the change proposed in B may fail on the in-
put for the primary symptomatic failure of A on which X′ (as opposed to X)
works correctly and which, upon having resolved fault A, has been included
in the regression test suite which is part of the database with production
data for the software process at hand.

As a consequence of this observation one may notice that a detected
fault may become “undetected” (I prefer to use discarded) during the soft-
ware process, without the underlying problem addressed by that particular
fault (i.e. its primary symptomatic failure) being resolved. What happens
instead is that the fault (the residual fault initially degraded to candidate
fault status) ceases to provide a satisfactory solution for its primary symp-
tomatic failure and therefore loses detected fault status.

(xi) A related observation (in 5.5) that if two disjoint defects are

4 J.A. Bergstra

present, upon repair of the first one the residue of the second defect may
not be a defect of the same modality anymore.

1.2 Simplifying Assumptions

In order to simplify the project at hand I will assume the following extensive
combination of simplifications:

1. As programs I will only consider instruction sequences in one of the
notations of PGA (program algebra) style instruction sequence theory.

In particular I will only consider so-called PGLB programs over
single bit services. I assume that the definitions given below can be
extended to many other instruction sequence notations and to many
other imperative program notations without significant problems. The
relevance of a focus to a single notation (in this case PGLB) with a
theoretical status is that all definitions become mathematically clear
and unambiguous. This clarity comes at the price of potentially lim-
ited generality, a price which I think is worth paying.

PGLB was introduced in [8], recent expositions are in [14, 4, 16].
A complete exposition of PGA style notations and concepts can be
found in [12]. The case of programs consisting of a plurality of instruc-
tion sequences (so-called polyadic instruction sequences) is discussed
in [10, 11]. All work done below on faults and defects carries over from
single instruction sequences to polyadic instruction sequences.

2. I will focus exclusively on programs which are supposed to compute a
total or partial function from {0, 1}n to {0, 1}m for certain (decimal)
natural numbers n and m. (For a justification of the phrase decimal
natural number I refer to [7].) Such functions will be denoted with
P,Q, .. below.

Bits are stored in single bit services named by foci. Focus method
notation f.m (as well as the tests +f.m and −f.m) is used for instruc-
tions: apply method m to the bit stored in the service named by focus f.

Clearly a (partial) function P is a finite object, simply a list of
pairs of tuples of bits.

3. Although a computation of an instruction sequence X over n bits may
take time exponential in n it is assumed that all computations can
be effectuated. This assumption restricts the collection of instruction

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 5

sequences which are considered candidate implementations of a given
specification.

4. A failure is a mere mismatch between what happens and what is sup-
posed to happen, there is no context in which adverse consequences
of failures are analysed or even suggested.

5. Assuming that P constitutes a (partial) function which is to be com-
puted. Then the oracle problem for P has been solved. This means
that checking that P (b1, . . . , bn) = (c1, . . . , cm) is considered easy, or
at least feasible.

6. For providing formal specifications for P , I will use first order expres-
sions over the structure of bits where the names of foci for bits serve
as variables. φ is then supposed to specify the graph of P , or at least
to constrain it. The use of quantifiers helps giving shorter formulae,
while removal is possible at the price of a combinatorial explosion:
∃b ∈ {0, 1}.φ ≡ [0/b]φ ∨ [1/b]φ.

7. Formally verifying that a candidate implementation X produces a par-
tial function P which satisfies specification φ is always possible in
principle although it may be prohibitively complex in practice.

8. I will assume that only a single agent A is using an instruction se-
quence, testing it, applying changes to it, and collecting information
about it. This single agent may be a team of software engineers, but
I won’t consider users who don’t acquire information from tests and
testers who don’t know how the instruction sequence looks like, and
programmers who are unaware of the statistics of use etc. Investigat-
ing the epistemic logic of instruction sequences for a heterogeneous
group of agents with different roles is intriguing but doing so is too
complex at this stage.

9. I will only consider single faults, that is faults consisting of a single
fragment of an instruction sequence. This leaves so-called multi hunk
faults and multiple faults untouched. In Bergstra [6] various other no-
tions of fault are distinguished: orthogonal multi-MFJ faults, essential
MFJ-faults, MFJ? faults (which allow a chain of MFJ faults leading
to a correct implementation), proper MFJ? faults.

10. Assessment of compliance of a given fragment in an instruction se-
quence X with the corresponding fragment of the design D on the basis

6 J.A. Bergstra

of which X has been constructed is supposed to be a matter of human
judgement.

Constrained by these formidable simplifications the paper contains theoret-
ical work only, but I hope that the insights obtained extend beyond these
narrow confinements. As it will turn out even under these severe restric-
tions providing formal definitions of fault qualifications is challenging, while
giving formal definitions of failure qualifications is straightforward.

I will assume that the number n of input bits is so large that testing
all 2n inputs is undoable in practice in spite of the fact that it is a computable
task. This is expressed with the following assertion, to be read against the
background of the listed simplifying assumptions.

Conceptual proposition 1.1 Verifying that X implements P by means of
exhaustive testing is unfeasible.

I will not commit to the idea that testing can only reveal failures: a sin-
gle test may for instance establish that a proposed factorisation program X

finds a factorisation for a natural number which could not be found by ear-
lier methods and thereby the test contributes to confidence in the quality
of X. For a factorisation program partial correctness may be trivial to prove
by formal means, but because the program that diverges always is partially
correct, proving mere partial correctness is insufficient to create confidence
in the usefulness of X for the purpose of factorization. Testing, however,
may well create such confidence.

1.3 Classical Informal Definitions of: Failure, Error, Fault
and Mistake

The four informal definitions listed in Definition 1.1 have become wide-
spread in software engineering. These definitions make sense under the sim-
plifying assumptions mentioned above just as well, be it that, admittedly, a
hypothetical practice of writing instruction sequences for bit sequence trans-
formations might probably not by itself give rise to such an introduction of
this kind of definitions.

Definition 1.1

Failure. If a program is executed and a result (an action, a state, or an
output) is produced which is contrary to one of its specifications,
that event is called a failure.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 7

Error. A failure is the externally visible part of an error, which is a
state in which a program and its related data happen to enter
during a computation, which, according to the specification, or
according to additional requirements is “forbidden”, i.e. it should
not happen.

Fault. A fault in a program is a fragment of it (which may itself con-
sist of different parts) which can be considered the cause of the
existence of a computation which leads to an error and which
externally shows up as a failure.

Mistake. A (programming) mistake is an action of a programmer which
causes the presence of a fault (in a program).

This terminology was introduced in Laprie [20], appearing in a more defini-
tive form in Avižienzis, Laprie & Randell [2] and later in Avižienzis, Laprie,
Randell, & Landwehr [3]. Persistency of faults apprears in Glass [19]. For
a discussion of this terminology I refer to [6].

Definition 1.2 (ALR fault) An ALR (for Avǐzienzis, Laprie & Randell)
fault is a program fragment which is a cause of an error which in turn is a
cause of a failure.

The concept of an ALR fault in a program X is a theoretical notion and it
does not matter whether or not its being a fault has actually been detected
either empirically or by other means.

Regarding the use of causality I understand the definition as follows:
for a fault there must be at least one particular failure of which the fault is
considered a cause. Taking a particular failure in focus matters as follows:
imagine an instruction sequence which supposedly solves a combinatorial
problem, and upon closer inspection it does so faster than a known lower
bound allows. For an example, one may consult the lower bound on instruc-
tion sequence size for parity checking as determined in [14]. In that case an
instruction sequence is provably too short for solving the problem of which
it is a candidate implementation for, there is also proof of the presence of a
failure, while there is no indication of the presence of a fault, nor is there a
clue on how to spot a particular failure.

As a theoretical notion ALR fault is an informal notion, because the
underlying notion of causality is in need of further explanation. As it turns
out such explanations may be provided in many different ways, none of
which is manifestly most plausible.

8 J.A. Bergstra

1.4 The Status of Errors

In the discussion below errors play a marginal role only. I will not intro-
duce any significant notion of error. For the rest of this paper an error is a
state of a computation, made up from an input and a program counter (the
number of the next instruction to be put into effect from that state of the
computation) with the property that either (i) the next step in the com-
putation will unavoidably give rise to an immediate failure (that is: wrong
output, or output where divergence was expected), or (ii) the computation
has entered in a loop from which it cannot escape while termination of the
computation is demanded by the specification.

Dealing with error this way turns error into a derived notion, which may
not comply with the intentions of the authors of [2]. By using this definition
of error (as a derived notion given the notion of a failure and the notion
of a diverging computation) one can eliminate “error” from the collection
of primitives required for giving an account of instruction sequences faults
based on the principles of [2]. It is an open problem how to incorporate a
convincing notion of error in the discussion of instruction sequence faults.

2 Instruction Sequence Failures

Following ALR it is common to speak of dormant faults rather than of dor-
mant failures. Nevertheless is much easier to provide a convincing definition
of a dormant fault than of a dormant fault. I will begin with contemplating
qualifications of failures.

I will assume that a function P : {0, 1}n → {0, 1}m is given as well
as an instruction sequence X which is considered to be a possibly faulty
implementation of P . I will use service family notation from [12]. Inputs are
encoded in a service family IN(b1, . . . , bm) = in:1.sbs(b1)⊕. . .⊕in:m.sbs(bm)
with bi bits in {0, 1} and sbs(−) a single bit service. Outputs o1, . . . , on, if
any are computed, i.e. if the computation of

X • (IN(b1, . . . , bm)⊕ AUX01,k(0, . . . , 0))

terminates, (with AUX01,k(c1, . . . , ck) = aux0:1.sbs(c1)⊕· · ·⊕aux0:k.sbs(ck)
a family of auxiliary registers) are encoded in a service family OUT0(o1, . . . , on)
= out0:1.sbs(o1)⊕ . . .⊕ out0:m.sbs(on), with bits oi ∈ {0, 1}.

A failure arises with inputs (b1, . . . , bm) if, with (o1, . . . , on) =
P(b1, . . . , bm) it is not the case that

∂{in:1,...,in:m}∪{aux0:1,...,aux0:k}(X • IN(b1, . . . , bm)⊕ AUX01,k(0, . . . , 0))

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 9

= OUT0(o1, . . . , on)

A failure is characterised by its inputs, which uniquely determine outputs
(if any).

2.1 Test/use Histories

A test/use history for X and P consists of a sequence (b1,1, . . . , bm,1)
v1 , . . . ,

(b1,k, . . . , bm,k)
vk of successive inputs, coupled with verdicts vi ∈ {pass, fail,

fail:temp, fail:perm, fail:rapd} where

vi = pass ⇐⇒ P (b1,i, . . . , bm,i) = X • (b1,i, . . . , bm,i)

A test on input ~b either passes, or it fails in which case the input is coupled
with one of the verdicts in {fail, fail:temp, fail:perm, fail:rapd}. The
use of an extension to fail is a matter of maintenance policy by the author
of X, and is not dictated in any manner by test outcomes. The assignment
of these qualifications is explained below.

2.2 Survey of Failure Qualifications

Failure qualifications regarding X when considered as a candidate implemen-
tation of specification P are given relative to failures as represented by the
inputs ~b = (b1, . . . , bm) on which fails to compute P (~b). I will say that in
such cases P (~b) features a failure of X, or simply that X fails on ~b.

These qualifications are given from the perspective of a single user A
who is also doing maintenance on X including software fault resolution.

1. dormant failure: ~b features a dormant failure if (i) ~b features a failure
and (ii) it is not known to A that ~b features a failure. (That is ~b is
not among the input tuples in the test/use history.)

2. detected failure (alternatively: effective failure, activated failure, latent
failure): ~b features a detected failure if (i) ~b features a failure and (ii) ~b
occurs in the listing of the test/use history. (A may have acquired this
knowledge by means of a test or during use or via theoretical analysis,
or by being promised to that extent by a trusted agent; an undetected
failure is the same as a dormant failure). A detected failure is available
in the database with verdict fail as long as it has not been provided
with one of the three possible extensions in {temp, perm, rapd}.

10 J.A. Bergstra

3. temporary failure: given a detected failure the plan may be made to
resolve the failure (i) finding one of its causes, in the form of a fault
paired with a proposed change, and (ii) changing the faulty fragment
accordingly. Once a plan to that extent has been made by A the
failure is temporary, i.e. its presence is temporarily tolerated only,
which is represented by means of a verdict fail:temp in the test/use
history.

4. permanent failure: given a detected failure, the plan may be made not
to resolve the failure by means of a modification of the instruction
sequence. Once the decision has been taken not to resolve the failure
featured by ~b that failure has become permanent (be it that it may
become resolved unintentionally, as a side-effect of resolving another
failure in a later stage). Permanence of a failure is indicated by means
of a verdict fail:perm.

5. retrospectively approved pass: A permanent failure may become ap-
proved behaviour of X part of the specification, i.e. it becomes nor-
mative, and its resolution involves a change of the specification rather
than to change of the instruction sequence. This condition is indicated
with the verdict fail:rapd. (Thus a test which is retrospectively ap-
proved passes w.r.t. a different specification.)

The qualifications for instruction sequence failures suggest a life-cycle model.
A failure always starts as dormant, then it may become detected and sub-
sequently it either becomes temporary or it is considered to become perma-
nent, in the latter case a subsequent transition to retrospectively approved
status may take place, with as an effect that it counts as a pass. Yet later
in the development process the status may be turned into pass, thereby
forgetting a part of the history of improvement of X and its specification.

3 Instruction Sequence Faults: Black box Faults,
Grey box Faults, and White box Faults

The above discussion of failure qualifications is unsurprising in the sense
that each of the qualifications is given a reasonably convincing definition.
Minor modifications of these particular definitions may be suggested but the
respective definitions are well-defined assuming that one admits the use of
any epistemic logic for A which allows A to speak of its knowledge about X

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 11

and P . In these definitions I use test/use histories as a vehicle for providing
the semantics of a trivialised epistemic logic. More sophistication in the
design of an epistemic logic about instruction sequence processing can be
imagined and the definitions can be adapted accordingly.

The primary motivation for writing this paper stems from the obser-
vation that the introduction of qualifications for faults, which is common in
the literature on software faults and failures, cannot be easily accomplished
in a convincing manner for any of the formal definitions of a fault as dis-
cussed in [6]. The difficulty with designing qualifications of faults is that
these come with a range of different information items and that even upon
choosing the simplest conceivable epistemic logic for speaking about the
various options for these items the necessity arises to make design choices
for which many alternatives can be imagined.

In order to make progress on the matter I will distinguish three cases
for faults in connection with the availability of additional information:

White box fault. A white box fault in an instruction sequence consists of
a fragment of it coupled with information sufficient to infer that it is
indeed a fault of a certain modality. These information items consist
of: (i) a primary symptomatic failure, (ii) a proposed change, (iii)
justification of the resolution of the primary symptomatic failure upon
effecting the change, and, (iv) justification of the change in accordance
with the modality of the fault.

Grey box fault. A grey box fault consists of a fragment coupled with a
part of the information required for a white box fault. For instance
only a primary symptomatic failure may be given. Or alternatively
only a change is given, but no justification of it and no primary symp-
tomatic failure is indicated.

Black box fault. A black box fault consists of a fragment together with
the claim that it can be equipped with additional information items
so that a white box fault is obtained.

3.1 Terminology: Fault, Fault Location, Fault Size, Change,
Change Justification

A fault in an instruction sequence is a fragment of it, i.e. a subsequence,
perhaps equipped with additional information. The fault location is the

12 J.A. Bergstra

number of the first instruction of the fault and the fault size is its number
of instructions.

In advance of qualifying a fragment as a fault, I will speak of a candi-
date fault with candidate fault location and candidate fault size. So-called
spectrum based fault localisation ([25, 27] and [28]) when applied to instruc-
tion sequences, is about finding candidate fault locations, from the statistics
of positions in the instruction sequence which were visited during compu-
tations leading to failure. If many computations leading to a failure visit
the same instruction, that provides an indication of the presence of a faulty
fragment which contains said instruction.

A (candidate) multi-hunk fault consists of a collection of fragments,
called the parts of the multi-hunk fault. The location of a multi-hunk fault
consist of the list of locations of the respective fragments, working from
left to right, and instead of a length a multi-hunk fault has a sequence of
lengths, and the size of a multi-hunk faulty is the sum of the lengths of its
parts. For simplicity of the discussion I will not discuss multi-hunk faults
in this paper.

A fault pattern indicates what information is to be provided in addition
to a fault locality and a fault length. This involves information about (i)
the maximum length of a fault, (ii) the maximal length of the change,
(iii) restrictions on the instruction set of a change, (iv) the criterion for
justification of a change, (v) the mechanism of justification of change, (vi)
naming of the pattern.

The principal idea of a fault is that a change can be found (i.e. another
fragment) so that replacing the fault by its change leads to an improved
implementation of the required specification. Replacing the fault by its
change is supposed to remove (solve, resolve, repair) the fault. In addition
this change must remove a failure (referred to as the primary symptomatic
failure) so that a causal chain between the fault and at least one failure
becomes apparent.

A fault pattern instance is a fault complemented with the information
which is required by the fault pattern. Fault patterns comprise a perspective
on causality. The ALR notion of fault (see 1.2 above) depends on a notion
of causality. When understanding causality as the possibility of finding a
change which brings about an improvement, defining causality is reduced
to defining a notion of improvement.

Following [6] among several other options the following three different
notions of improvement are distinguished, each of which may be ramified

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 13

with parameters for the maximum number of instructions which a fault may
contain and the maximal number of additional instructions for a change.
Moreover fault patterns provide an indication on the criterion according to
which the validity of the change is justified.

Laski fault: by applying the change at least one failure is resolved, and
moreover it is required that after the change has been made a correct
implementation is obtained,

MFJ (Mili, Frias & Jaoua) fault: improved correctness after change is
required; in other words failure resolution for at least one failure must
be obtained in addition to preservation of correctness of outputs for
all inputs,

SRT fault: a fault whose change is merely justified using a successful re-
gression test (SRT), which is a weaker criterion than required for
an EC MFJ fault, (after the change at least one failure is removed,
thereby introducing a new test, and in addition successful completion
of the current regression test suite is required; the regression test ac-
cumulates all tests which have been completed during earlier phases
of the design of the system).

These three kinds of faults differ in quality of improvement as well as in the
work that needs to be done in order to detect a fault of that kind, i.e. to
confirm that a candidate fault complies with the pattern. I will phrase this
matter in the form of conceptual propositions.

For the use of the names of Laski, Mili, Frias and Jaoua in the context
of fault patterns I refer to [6]. The relevant key references to their work
are: [21] and [23] respectively (additional explanation is given for the latter
in [17]). Both papers contribute essential ideas about how to interpret the
notion of causality which underlies the intuition of a program fault. SRT
faults were introduced as a variation on MFJ faults in [6]. Rather than to
offer a convincing interpretation of causality SRT allows to compromise the
idea of causality while achieving computational feasibility in return.

For a justification of the use of the notion of a test I refer to the work
surveyed in [22]. In any case I will use testing in a more narrow sense than
a broad interpretation comprising both validation and verification.

Conceptual proposition 3.1 Detecting a Laski fault (i.e validating that
a candidate Laski fault is in fact a Laski fault) requires formal verification,
because correctness needs to be verified for all inputs.

14 J.A. Bergstra

This proposition holds under the assumption that the number of input bits
is so large that exhaustive testing is unfeasible. There is no guarantee that
an attractive, i.e. short, proof can be found.

Conceptual proposition 3.2 Validating that a candidate MFJ fault is an
MFJ fault requires the check that for all inputs if the outcome is valid before
application of the change it remains valid after application of the change.
This check is of a complexity comparable to (formal) verification.

This conceptual proposition is valid only if the number of inputs is suffi-
ciently large and if the number of input sequences on which the original
instruction sequence computes a correct result is sufficiently large.

Conceptual proposition 3.3 Validating that a candidate SRT fault is an
SRT fault requires performing a test for each element of the current test
suite. For this to be feasible it is needed that: (i) computations on inputs of
the test suite do not take too much time and space, (ii) that the current test
suite is not too long, and (iii) that the oracle problem has been solved in a
practically computable manner.

Now faults and localisation of faults mainly occurs in circumstances
where verification is either too hard or too costly so that both Laski faults
and MFJ faults are probably remote from practical intuitions of fault.

Conceptual proposition 3.4 On the approximation of programmer intu-
ition of faults:

(i) SRT faults are closer to conventional programmer’s intuitions than
both Laski faults and MFJ faults.

(ii) BB faults are closer to programmer intuitions than GB faults and WB
faults.

(iii) Programmer intuition of a fault is closer to a DFD defect (to be defined
later), than to an ALR fault. In particular the archaic notion of a bug
refers to a special case of DFD defects rather than to an ALR fault.

(iv) Programmers may often not have an intuitive grasp of the degree to
which Laski faults, MFJ faults and SRT faults, each of which are in-
stances of ALR faults, together cover the idea of an ALR fault.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 15

3.2 Justification Modalities of Changes

Justifications of change for Laski faults and for MFJ faults require proofs
(including model checking, and including, if possible also exhaustive test-
ing). I will distinguish the following modalities of proof:

1. MPG/MPC: manual proof generation combined with manual proof
checking (MPC, where: manual = performed by a human agent),

2. MPGas/MPC: manual proof generation with automated support com-
bined with MPC,

3. MPG/APC: manual proof generation combined with automated proof
checking,

4. MPGas/APC: MPGas combined with automated proof checking,

5. APG: automated proof generation, as a matter of course combined
with automated proof checking.

I will append the envisaged method of change justification for Laski faults
and for MFJ faults as a postfix in brackets: Laski(MPG/MPC), Laski(APG),
MFJ(MPGas, APC), etc.

For instance a Laski(MPGas/APC) fault is one for which a change
exists which meets the requirements for a Laski fault and for which the
corresponding correctness proof can be found by hand (with automatic sup-
port) and can then be proof checked automatically.

An MFJ(APG) fault is an MFJ fault for which a change can be found
such that the restricted correctness which is supposed to hold after appli-
cation of the change can be demonstrated by means of automatic proof
generation.

3.3 Size Bounds for Faults and Corresponding Changes

A complication with any notion of instruction sequence fault is that without
any quantification an entire instruction sequence may be considered a fault
with a complete replacement of the given instruction sequence by a wholly
different instruction sequence as a corresponding change. Only by imposing
some numerical bounds on the sizes of faults and changes these notions
are plausible. The introduction of such bounds, however, complicates the
notation in an unfortunate manner. In the world of cars one speaks of total
loss, and when dealing with airplanes one speaks of hull loss in order to

16 J.A. Bergstra

“do away with” circumstances where local improvements will be of no help.
In programming one might work under the assumption that the instruction
sequence at hand (considered as a stage in a development process) is not a
lost case, i.e. moving forward from there, there will be no stage at which
all of it is simply thrown away, and replaced by the result of a different
development process. In the absence of a workable terminology concerning
lost cases and avoidance of these I will make use of numerical bounds which,
when sufficiently small, imply the plausibility of the case (for the relevance
of the instruction sequence at hand in spite of it being faulty) not being lost.

A n-Laski(JM) fault with n ∈ N∪{∞} and JM a justification modality
is a Laski(JM) fault (of say X) where the (candidate) faulty fragment Y has
a size (LLOC for logical lines of code) of less than n instructions.

An n/m-Laski/(JM) fault with m ∈ N ∪ {∞} is an n-Laski(JM) defect
where the (candidate) change Z has size less than LLOC(Y) + m.

Similar definitions apply for MFJ(JM) instead of Laski(JM) and for
SRT instead of Laski(JM).

The 2/1 changes constitute a special case for PGA notations: only a
single instruction is modified, which is a significant restriction. 2/1 can be
made more expressive, however, by including the unit instruction operator
of [24] in the instruction sequence notation.

3.4 Conventional Vagueness of the Intuitive Notion of
Program Fault

With the terminology at hand which has been discussed above it becomes
clear that one may hardly speak of an intuitive notion of an instruction se-
quence fault. It is like the idea of a “not well-informed person”, an appealing
notion at first sight but highly context dependant, so much that only within
a specific context this notion may be given a useful meaning. Just as “in-
struction sequence fault”, involves quantification (over change, over means
of justification of change, over a symptomatic failure to be resolved, and over
its actual resolution upon change), also the notion of a “not well-informed
person” involves implicit existential quantification. Considering the matter
of a not well-informed person, say A, in more detail, the following questions,
some of which take the form of an existential quantification arise:

1. about which topic is A supposedly not well-informed (the scope of
content at hand),

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 17

2. in comparison with whom is A considered to be not well-informed,

3. is external validation of the judgement “not well-informed” required
in the context where that judgement about A is put forward or is used,

4. is there an example of a detailed question in the scope of content at
hand about which A produces unwarranted judgements which validate
the judgement (of being not well-informed),

5. is it merely the case that A has not been actively informed about the
current situation, or is it meant that A maintains wrong judgements
about the subject matter.

Now these questions which arise for agent B upon being told that “A is
not well-informed” are universally known among human agents so that it
is unlikely that (human agent) B draws wrong conclusions from being told
that “A is not well-informed”.

In the case of instruction sequence faults it is also the case that merely
being informed that a program fragment is faulty raises several subsequent
questions, which, however merit being made explicit.

Conceptual proposition 3.5 If B is being told by C that instruction se-
quence X contains one or more faults, then A only knows that replacing X

by some locally engineered modification of it would constitute a step forward
in the perception of C, including the resolution of at least one symptomatic
failure.

In particular in order to acquire any intuition about the fault being local,
its existence amounting to more than merely conveying the incorrectness
of X, A needs to obtain answers to a plurality of questions including:

(localization) precisely which fragment of X is considered faulty,

(proposed change) which change can resolve the fault,

(symptomatic failures) which failures are caused by the fault (and for that
reason are supposedly done away by its resolution),

(primary symptomatic failure) which symptomatic failure is marked as a
symptom of the fault according to C, and must be tested for being
done away by its resolution, the test being included in the regression
test history, and

(adequacy) how is it argued for that the change is likely to do more good
than harm?

18 J.A. Bergstra

3.5 BB, GB, and WB Versions of Laski Faults, of MFJ
Faults, and of SRT Faults

Let X be a candidate implementation of specification φ. I will explain BB,
GB, and WB as additional aspects of fault modalities via an example, for
other modalities it works similarly. Consider for instance the fault modality
6/3 MFJ(APG).

3.5.1 WB Faults by Example

Now a WB 6/3 MFJ(APG) fault of X is a fragment Y of X such that
LLOC(Y) < 6 together with 5 further pieces of information, labeled with
L, C, PSF, SR, and P/E respectively.

(i) locality (L): i.e. the coordinate n of the first instruction of Y in X,
paired with the size LLOC(Y), i.e. the pair (n, LLOC(Y)) where it must
be the case that LLOC(Y) < 6,

(ii) change (C): an instruction sequence Z (written in the same instruction
sequence notation as X) constrained by LLOC(Z) < LLOC(Y) + 3, (here
X[Y/Z] results from replacing Y, that is the occurrence of Y starting at
instruction number n in X, by Z in X).,

(iii) failure (PSF): an input α on which X fails (the primary symptomatic
failure),

(iv) successful repair (SR): confirmation of a test run providing evidence
that X[Y/Z] succeeds on the primary symptomatic failure (of X w.r.t.
the fault at hand), so that indeed the change resolves the failure,

(v) proof or evidence (P/E): an automatically generated proof that X[Y/Z]
succeeds on each input where X succeeds.

Next consider the fault modality 5/∞ SRT. Now a WB 5/∞ SRT fault of X is
a fragment Y of X (without a size bound on LLOC(Y)) together with 5 further
pieces of information, labeled with L, C, PSF, SR, and P/E respectively.

L, C, PSF, and RS are as in the previous case. P/E consists of a
report of the successful regression tests which have been carried out. For
the generation of this report it is needed that a software process database
is available with a history of successful past tests each of which will be in-
cluded in the regression test. The possibility of carrying out regression tests
depends on the ability to solve the oracle problem, which as been “secured”
as one (nr. 5) of the simplifying assumptions made in Subsection 1.2.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 19

3.5.2 BB Faults

Having clarified WB faults of various modalities, I now turn to BB and GB
versions of these. BB fault modalities are WB fault modalities stripped
from 4 of the 5 additional information items listed above, leaving locality
(L) made public only. However, a BB fault comes with the claim that
additional information items for C, PSF, RS and P/E can be found, and
that the BB fault is merely an abstraction of a corresponding WB fault.
The BB fault may, however, be the result of abstraction from a plurality
of different WB faults. Indeed different changes, different choices for the
primary symptomatic failure, different choices for the proof methods or
evidence gathering may all correspond to the same BB fault.

A BB 6/10 MFJ(APG) fault of X is a fragment Y of X (as aa fragment
it is equipped with unique locality information L) for which additional in-
formation can be found so that (as a fault) it can be extended to a WB
6/10 MFJ(APG) fault of X. Thus, none of the additional information (on
C, PSF, RS and P/E) is made available but it is all claimed to exist by the
agent claiming that “Y is a BB 6/10 MFJ(APG) fault of X”.

A BB 4/3 Laski(MPG/APC) fault of X is a fragment Y of X together
with a location (L) for it, under the constraint that a change (C), a pri-
mary symptomatic failure (PSF), a successful test for the PSF upon having
brought about the change, and a manually generated proof (P/E), with
automated check of it (also P/E), that the change will produce a correct
inplementation of the specification at hand.

3.5.3 GB Faults

GB faults come with additional information which positions these in be-
tween of BB faults and WB faults. The notation for GB faults is as follows:
a GB(C) 2/1 MFJ(MPGas-APC) fault comes with a (proposed) change but
omits information about a PSF, as successful test (RS) that that PSF is
resolved upon bringing about the proposed change, and an (MPCas/APC
style) proof (or corresponding evidence) that the change complies with the
MFJ requirement that on all inputs where X does not fail, the changed
version of X does not fail either.

Similarly a GB(C,PSF) 2/1 MFJ(MPGas-APC) fault consists of an
GB(C) 2/1 MFJ(MPGas-APC) fault together with a PSF (and the test
report showing a failure of X). A GB(PSF) 2/1 SRT fault contains the
claim that the PSF can be resolved by making a local change at the loca-

20 J.A. Bergstra

tion L where only a single instruction is replaced and for which evidence
that the change is reasonable can (could) be obtained from a successful
regression test.

3.6 Fault Modalities in General

Summarizing the above one finds an extensive family of notions of fault,
which I will refer to as fault modalities. I will not try to provide any
structure theory for fault modalities. Most of these options are probably
devoid of practical significance and not worthy of systematic investigation.
Eventually a subset of significant fault modalities may emerge which merits
being investigated with an eye towards generality.

I will merely list some modalities as a definition by example: BB 5/10
MFJ(APG), BB 6/25 Laski(MPG/MPC), BB 2/∞ SRT, WB 10/10 SRT,
GB(PSF) 6/10 SRT, GB(C,P/E) 6/10 SRT, and GB(C,PSF, RS,P/E) 6/10
SRT (which is the same as WB 6/10 SRT as all information items are
actually exposed).

When pointing out to a fragment Y of instruction sequence X and claim-
ing that it is faulty without providing further information this amounts to
opt for of one of the following BB modalities: BB LLOC(Y)+1/∞ Laski(PM),
BB LLOC(Y) + 1/∞ MPJ(JM), and BB LLOC(Y) + 1/∞ SRT, with JM any
of the justification modalities listed above in 3.2.

3.7 An Implicit SRT Bias?

I notice that of these modalities only SRT based modalities come without
any appeal to verification (including exhaustive testing and model checking).

Conceptual proposition 3.6 Pointing at instruction sequence faults is
most plausibly done in an engineering context where verification is con-
sidered a remote option.

Assuming that in the majority of cases where reference to faults is made
the idea of verification is considered remote BB LLOC(Y)/∞ SRT remains
as the most plausible interpretation (within the context of this paper) of
what is meant when a particular fragment Y in an instruction sequence is
claimed to be faulty (without providing further information, and assuming
that faults are required to be ALR faults).

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 21

3.8 Some Observations on Faults

I have collected some elementary facts about fault existence for instruction
sequences, while adopting the simplifying assumptions as listed in Subsec-
tion 1.2. I assume that φ specifies a single valued total function. X is
considered a candidate implementation of φ and failures of X are supposed
to be deviations of the behaviour of X from computing the function specified
by φ.

I will use output registers out0:1, out0:2, .. here the 0 indicates the
initial value of the register (while out0:1, out0:2, .. denote single bit registers
initialised to 1).

Example 3.1 The instruction sequence X is considered a candidate imple-
mentation of specification φ which requires that the function constant (1, 0)
is computed on 2 input bits accessible under focus in:1 and in:2 writing
outputs in single bit services accessible under out0:1 and out0:2:

X = −in:1.i/i; #4; out0:1.1/1; out0:2.1/1; !

Now X features the following faults:

1. a WB 2/1-Laski fault with L = (1, 1), C = #2, PSF = (1) (i.e. the
input for the PSF), RS done by hand, P/E trivial for an empty re-
gression test suite,

2. a GB(C) 2/1-Laski fault with L = (1, 1), C = #2 (immediate conse-
quence of item 1),

3. a BB 2/1-Laski fault with L = 1, (immediate consequence of item 2),

4. a GB(C) 2/1-MFJ fault with L = (2, 1), C = #1,

5. a BB 2/1-MFJ fault (immediate consequence of item 4),

6. a GB(C) 3/1-Laski fault with L = (1, 2), C = #1,

7. a BB 3/1-Laski fault with L = (1, 2), (immediate consequence of
item 6).

Example 3.2 In the same context as Example 3.1

X = −in:1.i/i; out0:1.1/1;−in:2.i/i; out0:2.1/1; !

Now X features the following faults:

1. a WB 2/1-MFJ fault with L = (1, 1), C = #1,

22 J.A. Bergstra

2. a WB 2/1-MFJ fault with L = (3, 1), C = #1,

3. a WB 4/1-Laski fault with L = (1, 3), C = out0:1.1/1,

4. a WB 2/1-Laski fault with L = (1, 1), C = out0:2.1/1.

Fault injection is the introduction of modifications which are likely to be
faults in a program. Fault injection can be helpful for understanding the
probability of the presence of faults in the original program. In the case of
instruction sequences the simplest form of fault injection arises if a single
instruction is modified without taking any care of preservation of semantics.
The following three observations can be made concerning the latter form of
fault injection.

Proposition 3.1 (Fault injection reversal.) Let X be a correct implementa-
tion of φ and let X′ result from X by replacing its k-th instruction by another
instruction. Then, if X′ is not a correct implementation of φ it is the case
that X′ contains a BB 2/1 Laski fault.

Proof: A 2 satisfactory change is to reverse the replacement of the k-th
instruction, i.e. to undo the fault injection.

Proposition 3.2 (Simultaneous fault injection I) Let X be a correct imple-
mentation of φ and let X′ result from X by simultaneously replacing its k-th
instruction uk by another instruction u′k and its replacing its l-th instruc-
tion ul by another instruction u′l. Then, if X′ is not a correct implemen-
tation of φ it need not be the case that X′ contains a WB 2/1 Laski fault
at position k or at position l with the respective changes undoing the fault
injection (i.e.restoring the instruction of X at the relevant position).

Proof: φ represents the function constant 1 on a single bit. In the in-
struction sequence notation below %1,%2,... are not part of the instruction
sequence but are merely comments for the reader indicating the number in
X of the first instruction on its line.
X =
%1 out0:1/1;−in:1.i/i;
%3 out0:1.1/1; +in:1.i/i;
%5 out0:1.1/1; !

Then using the notation of the statement of the proposition take k = 3

and l = 5, u′3 = out0:1.1/0 and u′5 = out0:1.1/0, thus obtaining after si-
multaneous fault injection:

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 23

X′ =
%1 out0:1/1;−in:1.i/i;
%3 out0:1.1/0; +in:1.i/i;
%5 out0:1.1/0; !

Reversing either fault injection provides a change which turns either
u′3 or u′5 into a WB 2/1-MJF fault of X′, and for that reason into a WB
2/1-SRT fault for the empty set of regression tests.

However other changes (from X′) are possible and the possibility of
changing u′3 into #2 demonstrates that u′3 is a BB 2/1-Laski fault of X′. 2

Proposition 3.3 (Simultaneous fault injection II) Under the same as-
sumptions as Proposition 3.2. If X′ is not a correct implementation of φ
it need not be the case that X′ contains a WB 2/1 MFJ fault at position k

or at position l with the respective changes undoing the fault injection (i.e.
restoring the instruction of X at the relevant position).

Proof: Let φ represent the function constant 1 on a single bit. It is
immediate that X implements φ:

X =
%1 #1;
%2 #1;
%3 out0:1.1/1; !

Then using the notation of the statement of the proposition take k = 1

and l = 2, u′1 = ! and u′2 = !, thus obtaining after simultaneous fault injec-
tion:
X′ =
%1 !;
%2 !;
%3 out0:1.1/1; !

Reversing either fault injection does not provide a change which turns
either u′2 or u′3 into a WB 2/1-MJF fault of X′.

One may notice that u′1 constitutes a BB 2/1-MJF fault of X′ because
of the option to make use of change #2 while u′1 is not a fault of any of the
forms considered above. However change is made to the second instruction,
it will not overcome the “damage” which has been inflicted by injecting
termination at the first position of X. 2

24 J.A. Bergstra

Proposition 3.4 If X features a failure then X contains a BB ∞/∞-Laski
fault.

Proof: The entire instruction sequence X can be taken for a fragment
to be replaced by a correct implementation of X. The existence of such
implementations is discussed in detail in [4]. 2

Proposition 3.5 If X features a failure then X contains a BB 1/(2n + 1)-
MFJ fault.

Proof: This is a simple rewording of Proposition 3.6 in [6]. 2

Proposition 3.6 Given natural n, there is an instruction sequence X which
features a failure but which does not feature any BB 1/n-MFJ fault.

Proof: Take k > 2n and let φ be the function with 0 arguments and k

0-initialized output registers which sets each output to 1. Then take X ≡ !.
Now any change which turns ! into a correct implementation must contain at
least n instructions for setting outputs equal to 1, apart from the termination
instruction. 2

3.9 Discarding Residual Faults upon Resolution of Another
Fault

We assume that X is an instruction sequence under construction (meant to
implement specification P) which has arrived in a phase of quality control
involving the spotting and resolution of faults. The (relevant part of the)
software process database for X consists of the following three components:

(1) (successful test suite) a collection Vsts containing the tests which have
been performed on X and on which X has succeeded, (i.e. those test
inputs on which the computation of X has a result compliant with P).

(2) (detected failures) a collection Vfts containing the tests which have
been performed on X and on which X has failed.

(3) (detected faults) a collection Faultdet of (descriptions of) WB n/m
SRT faults for various n, m. Here it is assumed that the regression test
suite used for the justification of SRT faults equals Vsts.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 25

It is assumed as an invariant for the software process (at least in the final
stage of successive fault removal, the so-called debugging phase) that the (i)
all tests in Vsts when applied once more end up successfully for X), (ii) the
successful test suite is increasing during the design stages of X, while (iii) the
collection of detected failures may both decrease (when a fault is resolved
and its symptomatic failures disappear) and increase (upon performing a
novel test thereby detecting a dormant failure).

The dynamics of the collection of detected faults is somewhat com-
plicated. Clearly the collection increases if a new fault is detected. The
collection of detected faults decreases first of all by resolving a fault. How-
ever, the collection of detected failures may decrease also, if, upon resolving
a fault, its primary symptomatic failure constitutes a new test which is taken
as an addition to the successful test suite. It may then happen that one ore
more known (detected) faults cease to be valid faults (are “undetected” so
to speak) because the proposed change fails on the new test. Assuming that
a fault was invented (located and change proposed) in order to remedy its
(detected) primary symptomatic failure the removal of the fault from the set
of detected faults must be considered disappointing rather than reassuring
because the search for a cause of its primary symptomatic failure may have
to start again.

Given a stage of the software process including a collection pairwise
disjoint detected faults (WB or GB with at least L and P made explicit),
upon choosing one of the faults and resolving that fault according to the
suggested change al other faults have the status of residual faults. Resid-
ual faults are candidate faults which may or may not on closer inspection
qualify as (proper) faults. What has been argued in principle above is that
upon resolving one of the faults another fault may turn into a residual fault
which fails the (updated) regression test and for that reason does not qual-
ify as a fault. In that case the residual fault is said to have been discarded
as a consequence of the resolving another fault. Discarding a fault upon
resolution of another fault is not a merely hypothetical phenomenon, as is
illustrated by the following example.

Example 3.3 The instruction sequence X below, considered as a candidate
implementation of specification φ, features two disjoint GB(C) 2/1-SRT
faults such that after improving X according to the first fault the second fault
does not pass the new regression test.

For this example I will assume that φ requires that the function constant 1
is computed on a single input bit available under focus in:1 and the output

26 J.A. Bergstra

is delivered under focus out0:1. Assume that Vsts = ∅ and take X as follows:

%1 + in1.i/i;
%2 out0:1.1/1;
%3 #2;
%4 + out0:1.0/1; !; +in:1.i/i; +out0:1.1/0; !

Now out0:1.1/1 is a WB 2/1-SRT fault with location 2, change out0:1.1/0
and PSF on input 1, moreover #2 is a WB 2/1-SRT fault with location 3

and change #1 and a PSF on input 0. Then upon resolution of the first
fault (i.e. the one at position 2) by effecting its change one obtains X′ as
the instruction sequence under construction in the subsequent stage of the
software process: Vsts = {1}.

The second fault then returns in the next stage of the software process
with the status of a candidate fault: the PSF 0 is still valid because X′ fails
on it, while subsequently changing according to the candidate fault (thereby
obtaining X′′ resolves that particular failure. However, the regression test
fails for X′′ on its (only) test at input 1.

The disappearance of the second fault is no step forward from an engi-
neering point of view because its primary symptomatic failure persists and
another change, i.e. another GB(C) 2/1-SRT fault for the same location
should be found for its resolution (for which changing the 4th instruction
to +out:.0/1 suffices in this particular case).

Problem 3.1 Is there an instruction sequence X which, when considered as
a candidate implementation of a specification φ, features two disjoint BB
2/1-SRT faults F and G for which it is the case that upon refining fault F
to a WB 2/1-SRT fault F ′, independently of how this is done (there may be
several options), and after resolving fault F ′, fault G has lost its status of
a detected fault because it has then become impossible to enrich it to a WB
2/1-SRT fault (for the modified version of X).

The class of 2/1 changes (that is replacing a single instruction by another
single instruction) can be restricted by requiring that only parameters of
an instruction are modified but the type of the instruction (termination,
forward jump, backward jump, positive test, void, negative test) is left
the same. I will refer to such changes as 2/1[pco] changes (for parameter
change only).

Now the following is easily checked:

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 27

Proposition 3.7 For X and φ as in Example 3.3 both faults disjoint and
are GB(L) 2/1[pco]-SRT faults and upon resolving the first of both faults
an instruction sequence results in which the second (now candidate fault) is
not a GB(L) 2/1[pco]-SRT fault anymore.

4 Fault Qualification for SRT Based Fault
Modalities

I will consider fault qualifications only for the case of SRT based fault modal-
ities, which I consider to best connected to the original intuitions regarding
these qualifications.

4.1 Qualification of GB(L,C,P) SRT Based Faults:
Preliminary Remarks

WB fault modalities are the simplest among WB, GB, and BB because both
CB and BB modalities involve non-trivial existential quantification and it
is not immediately clear how to deal with those in a (rudimentary model of
the) software process database.

Besides using the WB n/m-SRT fault modalities for various n and m for
the formalisation of detected faults, I will consider the BB n/m-SRT fault
modalities for modelling dormant faults. I hold that a BB n/m-SRT fault
comes close to what a practitioner may have in mind when thinking of a yet
undetected software fault (when specialised to instruction sequences), while
a WB n/m-SRT fault is a fruitful approximation of what a practitioner may
have in mind when contemplating a detected fault.

If one hopes to detect a treasure of coins in a backyard, then upon
actually digging up the treasure, additional information about it becomes
available. The notion of a dormant treasure is intuitively clear and so is
the idea that upon detecting a treasure additional information about is
discovered. In other words: the BB to WB transition which (given the
definitions of dormant fault and of detected fault as presented below) takes
place when detecting a fault, is to be expected rather than to be rejected.

4.2 Qualifications for BB/WB SRT Faults

The following qualifications apply at some stage s in the debugging phase
of the software process for X understood as a candidate implementation of

28 J.A. Bergstra

specification φ and with regression test set Vssts, collection of detected faults
Vsfts, and a collection Faultsdet of WB n/m-SRT faults (for ′X relative to φ)
for various natural numbers n > 1, m > 0.

1. non-detected fault: a non-detected SRT fault is a BB n/m-SRT fault
such that for no n′ < n, a WB n′/m-SRT fault with the same location
is contained in Faultsdet. (In other words: no WB version of the fault,
or of any fault prior to such a fault, is included in the collection of
detected faults.)

2. effective fault: A BB n/m-SRT fault F is said to be effective (i.e. to
have been activated) if some enrichment F ′ of it to a GB(C) n/m-SRT
fault exists with the property that at least one of the failed tests in Vsfts
counts as a symptom for F ′ (i.e upon effectuation of the change of F ′

that particular failure, which had been detected already, is resolved).

3. dormant fault: a BB n/m-SRT fault F is dormant if it is both non-
detected and not effective.

4. detected fault: a WB n/m-SRT fault is detected if either it is included
in Faultsdet or a fault prior to it is included in Faultsdet. It is assumed
that only effective faults are considered to be detected (i.e. detec-
tion requires a test which demonstrates that the input of the primary
symptomatic failure of the fault indeeds leads to a failure).

5. temporary fault: given a detected fault, the plan may be made to
resolve the fault by making an appropriate change. If such a plan has
been made the fault is considered temporary.

6. permanent fault: given a detected fault, the plan may be made not
to resolve the fault by means of a modification of the instruction se-
quence. Once the decision has been taken not to resolve the fault one
either acknowledges that the fault is permanent, or otherwise that the
fault will be discarded, i.e. that the specification is updated rather
than its candidate implementation.

7. retrospectively discarded fault: A permanent fault may become in-
cluded in the approved form of X by changing the specification and
the design design in hindsight accordingly.

These qualifications are given in the absence of any explanation of how fault
detection actually works. In fact fault detection is unlikely to be primarily
based on the above definitions.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 29

Claim 4.1 Fault detection is the process of finding WB n/m-SRT faults
which are qualified as detected (in the sense of the descriptions just given).
Fault detection will need to make use of some higher level of description than
mere instruction sequences (that is, of some form of design or specification),
and either specifications (formalisations) of φ or designs (for X) or both will
play a critical role in the process of fault detection.

All instruction sequence faults are instruction sequence defects, but not
the other way around. I will next proceed to complement the discussion of
defects which are faults with a discussion of defects which may not qualify
as faults, that is defects which may but need not cause one or more failures.
For so-called deviation from design defects (DFD defects), a particular class
of defects which is elaborated below, useful heuristics concerning the design
of defect resolution methods can be obtained. Faults which are DFD defects
at the same time admit promising detection strategies.

5 Potentially Non-Faulty Instruction Sequence
Defects; DFD-defects

Given a specification φ which determines a unique partial function Pφ, and
a candidate implementation X of it. A defect of X is any feature (property)
of it which can be held against in its intended quality of being an instruction
sequence which computes the partial function Pφ. Clearly the presence of
failures indicates the existence of one or more defects. In fact “the existence
of failures” itself constitutes a defect. However, “the existence of failures”
does not qualify as a fault because there is no causal relation between such
a general claim and the occurrence of any particular failure.

I will assume that X has been constructed with a design Dφ as an in-
termediate stage. Dφ may have many forms, among which a pseudocode in
some high level specification notation. Now it may be the case that it is
obvious upon inspection of X and Dφ and given an instruction counter n that
some fragment Y of length k of X beginning with the n-th instruction un of X
is “problematic” in the following sense: Y does not reflect the intentions
embodied in Dφ to such an extent that it is clear how to change X by replac-
ing the fragment Y = un; . . . ; un+k of X by a fragment Y′ = vn; . . . ; vn+k′ in
such a manner that this particular mismatch between X and its purported
design Dφ does not occur anymore after the change has been made.

Here it is understood that given instruction counter n (i.e. a location
in X) a corresponding location in Dφ is easily spotted and moreover that a

30 J.A. Bergstra

mere inspection of X and Dφ at the respective locations provides the insight
that something is wrong for which a local fix in the form of a change Y′ is
easy to find.

The fragment X constitutes, or contains, a defect which, however, need
not necessarily be the cause of a failure. This type of defect may arise even
when the candidate implementation is correct. For that reason the defect
is not necessarily a fault, though it may well be. I will refer to a defect as
mentioned above as a DFD defect (deviation from design defect).

Definition 5.1 A BB DFD defect of an instruction sequence X w.r.t. a
design Dφ is a fragment Y of X which causes the presence of a deviation
of X understood as a candidate implementation of Dφ from the construction
requirements as embodied in Dφ. Here causality is understood in terms of
allowing a remedy by enacting a change of the fragment.

If in addition to the fragment which is considered non-compliant with
the design a proposed change is available which resolves that particular
instance of non-compliance I will speak of a WB DFD defect. Both BB
DFD defects and WB DFD defects come in three flavours: Laski, MFJ, and
SRT.

To emphasise that the BB DFD defect is apparent even without con-
templating options for change or improvement it may be referred to as a
TMO DFD defect (TMO for textual mismatch, with the design, only).

5.1 Design Notations

Design notations exist in many forms, with UML diagrams as a famous
example which admits many dialects and versions. Close to the instruction
sequence I am using are flow-charts, and algorithms as understood in [13].
I will comment on both options.

5.1.1 Flow-charts as a Design Notation

Flow-charts may contain basic instructions f.m with a single outgoing arrow,
in case the returned Boolean value is not made use of, or with two outgoing
arrows labeled with + and − respectively. Termination is a box with ! in it
and arrows represent jumps.

A flow-chart may be turned into a PGLB instruction sequence in many
different ways. The textual order of basic instructions provides a degree of
freedom, and so does the sign used for test instructions. Given a PGLB

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 31

instruction sequence X it is straightforward to assign a unique flow-chart DX
to it. Given a design D in the form of a flow-chart I will say that X imple-
ments D if D ∼= DX. Important aspects of this example of a design format
are: (i) there are many ways to implement a design, (ii) if an instruction se-
quence does not implement a design then an instruction can be found which
does not implement the corresponding fragment of the flow-chart, (ii) in
some cases a local change may resolve the problem, in part (MFJ style or
SRT style) or completely (Laski style).

5.1.2 Algorithm Documenting Instruction Sequences

In [13] the same assumptions are made as in 1.2 above, except that auxiliary
single bit registers may be used. Consider two instruction sequences X and Y

which compute the same functions from bit sequences to bit sequences. Now
it is claimed in [13] that if after appropriate renaming of auxiliary registers
of X, and after swopping the content of one or more of the auxiliaries, an
instruction sequence X′ is obtained so that |X′| = |Y|, i.e. X′ and Y determine
the same thread then X and Y may be considered algorithmically equivalent.

In this case it may be appropriate to consider Y a design for X in
the sense that it documents an algorithm for which X is supposed to be
an implementation. It would be too optimistic to regard this definition
of algorithmic equivalence as the last word on that matter, because, quite
obviously this equivalence relation is too coarse to capture the intuition
of algorithmic equivalence (whatever that intuition may be, it will be too
coarse for anyone).

Suppose that X1 and X2 are candidate implementations of the design Y.
Now it is not yet assumed that these instruction sequences compute the same
function. The following notion of improvement is plausible in this setting.
(1) find X′1 using renaming and content swapping of auxiliary single bit
service so that in for as large as possible n (if not for all n) πn(|X′1|) = πn(|Y|),
and do the same for and X2. Now if for some k, say πk(|X′2|) = πk(|Y|)
while not πk(|X′1|) = πk(|Y|) then X1 constitutes an improvement (as an
implementation of the design Y) than X2. I will say that the improvement
is an improvement of DOAA (depth of algorithmic approximation). Thus
DOAA is a notion of improvement for implementations of a certain class of
designs.

DOAA is by no means the only notion of improvement available, and
contemplating these matters in more general terms makes sense.

Claim 5.1 Each notion IMPR of improvement for implementations of de-

32 J.A. Bergstra

signs comes with a corresponding notion of BB n/m-IMPR DFD defect: a
fragment of a candidate implementation X of the design with at most length
n where a change can be applied, introducing at most m additional instruc-
tions, so that the resulting candidate implementation X′ is an improvement
in the sense of IMPR of X.

So one is led to contemplate BB n/m-IMPR DFD defects. Apart from the
technical merits of this defect modality, about which one can only say that it
remains to be seen, its very existence and plausibility indicates that IMPR
is a parameter of defect modalities which can hardly be left implicit.

5.2 Classification of Functional Improvement Based DFD
Defects

Repair in case of Laski faults, MFJ faults and SRT faults consider improve-
ment in terms of achieving an improved input output behaviour. When
repairing an SRT fault the improvement may be merely observed by lack
of a sufficiently extensive regression test suite, but the objective to achieve
better input output behaviour is present in the removal (resolution) of at
least the primary symptomatic failure. I will label such improvements as
functional. DOAA in contrast is an algorithmic notion of improvement.

For various DFD defects the question arises how the validity of changes
is confirmed, in excess of the change providing better compliance with the
given design. I will distinguish three options, the naming of which follows
the naming of fault modalities mentioned above:

TMO DFD defect: a TMO DFD defect merely consists of a fragment of
an instruction sequence for which it is considered implausible that it
constitutes a proper implementation of the corresponding part of the
design. The implausibility is, however, not argued for by the proposal
of a change.

WB Laski DFD defect: a WB Laski DFD defect comes with a change
(C) which is supposed to be inferred in a straightforward manner
from the design, and which when applied, in addition to removing
the known DFD defect, creates a correct implementation of the given
specification (where the component (P/E) informs about the inference
method).

WB MFJ DFD defect: a WB MJF DFD defect comes with a change
(easily inferred from the design and the location and size of the defect)

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 33

such that, in addition to removing the known DFD defect, the changed
instruction sequence computes a correct output whenever the original
instruction sequence does so (where again the P/E component of the
fault informs about the inference method).

WB SRT DFD defect: A WB SRT DFD defect comes with a change
(easily inferred from the design and the location and size of the defect)
which, in addition to removing the known DFD defect, passes all tests
in the current regression test suite.

In addition a WB SRT DFD comes with a new test, which is added to
the test suite, the computation of which passes through the modified
instruction(s).

BB Laski DFD defect: a BB Laski DFD defect results from a WB Laski
DFD defect by forgetting/hiding the change and related P/E. A BB
Laski DFD defect comes with the claim that its enrichment to a WB
Laski DFD defect is possible.

BB MFJ DFD defect: a BB MFJ DFD defect results from a WB MFJ
DFD defect by forgetting/hiding the change and related P/E. A BB
MFJ DFD defect comes with the claim that its enrichment to a WB
MFJ DFD defect is possible.

BB SRT DFD defect: a BB SRT DFD defect results from a WB SRT
DFD defect by forgetting/hiding the change and related P/E. A BB
SRT DFD defect comes with the claim that its enrichment to a WB
SRT DFD defect is possible.

I will assume that information about how to resolve a defect is not essential
for confirmation of a defect. This assumption indicates a huge difference
with faults where any fault must allow an improvement by definition.

Assumption 5.1 Each BB or WB (Laski or MFJ or SRT) DFD defect
from the above listing contains an underlying TMO DFD defect.

5.3 Size Bounds for Defects and Corresponding Changes

Parameter for bounds on the size of a defect and of a change for its resolution
are indicated just as for faults. Thus a WB 5/5-SRT DFD defect has size
at most 5 and involves a change of length at most 5 instructions more than
the defect.

34 J.A. Bergstra

An n-Laski/MFJ/SRT DFD defect with n ∈ N ∪ {∞} is a defect (of
say X) where the (candidate) defective fragment Y has a size (LLOC for logical
lines of code) of less than n instructions.

An n/m-Laski/MFJ/SRT DFD defect with m ∈ N ∪ {∞} is an n-
Laski/MFJ/SRT defect where the proposed change Z has size less than
LLOC(Y) + m.

5.4 Commented Examples

A vast space of defects modalities now arises, I will give some examples.

• an WB∞/10-Laski(MPG/MPC) DFD defect is: a deviation from the
design of arbitrary length for which a change is known (and can be
inferred from its location and the design) which is at most 10 instruc-
tions longer, and which resolves the design fault and which in addition
turns the instruction sequence at hand to a correct implementation the
latter fact being supported by a manually generated proof which has
been checked manually as well.

• A BB 10/10-SRT DFD defect is: a fragment of size k < 10 with
a known but undisclosed change of size below k + 10, where after
application of the change regression testing confirms compliance with
the current regression test suite. Moreover it is required that given
the location of the defect the change was found from inspection of the
design with a reasonable effort.

• A TMO 10-DFD defect is: a fragment of size below 10 which mani-
festly does not comply with the corresponding fragment in the design.

An algorithmic improvement need not be a functional improvement. Let
Y = out0:1.1/1; out0:1.1/0; ! be a documenting instruction sequence serving
as a design with X = +out0:1.0/1; out:.1/1; ! as a candidate implementation
for it.

Consider X′ = out0:1.1/1; out:.1/1; ! which results by replacing the first
instruction of X thereby obtaining X′. This situation features a WB 2/1-
DOAA DFD defect (the first instruction as the fragment and out0:1.1/1 as
its change) but the same fragment and change do not provide a a WB 2/1-
SRT DFD defect for any non-empty regression test set. Clearly X contains
a WB 3/2-SRT DFD defect, the change of which consists of replacing the
first two instructions of X by the first two instructions of Y.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 35

One may take an interest in WB n/m-SRT DFD defects which are WB
n/m-DOAA DFD defects at the same time (w.r.t. the same change). Such
defects belong to yet another fault modality: WB n/m-SRT/DOAA defect

5.5 Impact of Functional DFD Defect Resolution on Other
DFD Defects

Performing a change in an instruction sequence may have upgrading of de-
fects as a consequence. A defect is upgraded if a more conclusive resolution
is possible, where resolving a Laski defect is the most conclusive resolution
because it leads to a correct implementation of the given specification.

Proposition 5.1 Given design D and a candidate implementation X of it
which contains no overlapping TMO DFD defects and assuming that X con-
tains an TMO DFD defect d, then upon making the change which removes d
each of the following side-effects on another defect may take place:

(i) another TMO DFD defect becomes upgraded to BB SRT DFD defect
status (or to BB MFJ DFD defect status or to BB Laski DFD defect
status),

(ii) a BB SRT DFD defect is upgraded to a BB MFJ DFD defect status
or to BB Laski DFD defect, or

(iii) a BB MFJ DFD defect is upgraded to a BB Laski DFD defect.

Proof: I will assume that the design notation extends the instruction
sequence notation so that an instruction sequence can be considered to be
a design of itself. Consider a situation where the constant function 1 is
computed on a single input bit placed in in:1. Let this requirement be
formalised with specification φ. Let X =!; +in:1.0/i; out0:1.1/1; !. I notice
that X does not implement φ because it fails on input 1. Now consider D =
#1; +in:1.1/i; out0:1.1/1; ! which is taken for a design for implementations
of φ, and X is contemplated as a candidate implementation for it. Manifestly
the first instruction ! of X constitutes an TMO DFD defect in X. At the
same time none of the other instructions constitute faults of X, as no change
undoes the initial termination instruction. The obvious resolution of the
TMO DFD defect results by replacing it by #1 thus following exactly the
given specification, thereby obtaining X′ = #1; +in:1.0/i; out0:1.1/1; !. X′

fails even on both inputs. However, given φ it is now the case that the
instruction +in:1.0/i has become a BB Laski DFD defect because it can

36 J.A. Bergstra

be changed to +in:1.1/i upon which the resulting instruction sequence
computes both outputs correctly.

One may also hold that +in:1.0/i has become an MFJ DFD defect
because it can be improved to +in:1.i/i which computes one of the outputs
correctly (i.e. for input 1) which is better than nothing, and which does not
introduce any new failures in comparison to X′. 2 The following question
depends on the details of the notion of SRT DFD at hand.

Question 5.1 Let V be a given regression test suite. Suppose that X is a
candidate implementation of design D for specification φ which contains (at
least) two disjoint WB 2/1-SRT DFD defects (w.r.t. V). Can it be the case
that upon changing X according to one of the two defects, the other defect
ceases to be a WB 2/1-SRT DFD defect (i.e. upon performing the second
change, compliance with the design will be improved, but nevertheless the
regression test then fails on the new test which was included in the test suite
upon repairing the first defect)?

One may take instruction sequences for designs (trivial designs in fact) which
are preferably to be implemented by the same instruction sequence. Better
implementations are identical (with the instruction sequence as the designs)
on more positions and have the same number of instructions (the difference
in length is counted as different instructions). I will refer to this notion of
improvement as TRIV-DES. Consider design Y as follows:
Y =
%1 #1; aux0:1.1/1;−in:1.i/i; #3; out0:1.1/1; !;
%6 + aux0:1.i/i;
%7 !; !
Y computes the identity function: in:1 is copied into out0:1. For Y consider
as a candidate implementation X with:
X =
%1 #2; aux0:1.1/1;−in:1.i/i; #3; out0:1.1/1; !;
%6 − aux0:1.i/i;
%7 out0:1.1/0; !
and regression test set {1}. Now X contains three WB 2/1-SRT/TRIV-DES
DFD defects:
d1 on the 1-th instruction with change #1,
d2 on the 6-th instruction with change −aux0:1.1/1,and
d3 on the 7-th instruction with change !,

After the change according to d1, the residue of d2 is not a WB 2/1-
SRT/TRIV-DEFS DFD defect anymore because it will fail on input 1.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 37

The third defect is necessary for the example because after two repairs
there must still be a failure on input 1, which can only be the case if there
are still one or more TMP TRIV-DES DFD faults left.

5.6 Bugs are Defects Which May be Faults

Causation of failures is a curious matter. If a programmer makes a mistake
while constructing an instruction sequence, thereby creating an instruction
sequence which contains a fault which in turn (and by definition of fault)
causes a failure, said mistake is also a cause of the failure, provided one
agrees that causation is transitive. It appears that not all causes of fail-
ures are faults. Instruction sequence faults are a feature of an instruction
sequence proper, not of the way it has come about.

Conceptual proposition 5.1 An instruction sequence fault is an instruc-
tion sequence defect which causes at least one failure.

Dijkstra famously wrote in 1970 [18] (p7):

Program testing can be used to show the presence of bugs, but
never to show their absence.

I will first turn this quote into a claim which is supported by the definition
of failure.

Claim 5.2 Instruction sequence testing can be used to show the presence of
failures, but almost never provides a feasible method to show their absence.

That testing may demonstrate the presence of a failure, assuming that the
oracle problem has been solved is obvious, and the second part of the claim
states that what is unfeasible because of a combinatorial explosion of dif-
ferent inputs is qualified as impossible. Most programs are written in order
to process so many different inputs that exhaustive testing is out of the
question.

Returning to Dijkstra’s quote, I notice that the notion of a bug comes
with the intuition of locality: the bug is somewhere in an instruction se-
quence. I will assume that bugs are defects, i.e. that the informal notion
of a bug is made precise by the somewhat less informal notion of a (DFD)
defect. The following claim simply defines bugs as faults.

Claim 5.3 (Bug) (i) All instruction sequence bugs are instruction sequence
defects, (ii) some bugs are faults as well, (iii) once a bug has been spotted

38 J.A. Bergstra

its resolution is easy (so bugs areTMO DFD defects with strong guidance
on how to improve design compliance).

For bugs which are not faults (i.e. do not cause a failure, a state of affairs
for which a resolution by way of a local change can be found) testing is
uninformative about presence or absence.

For bugs which are faults at the same time, however, the plausibility
of detection via testing is highly debatable too. Following idea of an ALR
fault, it is a critical feature of a fault that it causes a failure. Now it
is far from clear how to demonstrate causation by means of testing. At
first sight that cannot be done: evidence for causation of a specific failure
by a fault is obtained by demonstrating that a resolution of the fault can
remove the failure while doing not much harm to the processing of other
inputs. Implicitly assuming the ALR ideology about faults the following
claim results:

Claim 5.4 The claim that instruction sequence testing can demonstrate the
presence of instruction sequence faults requires a perspective on testing which
involves mechanisms for the following tasks:

1. spotting a failure (called the symptomatic failure),

2. finding a change for resolving a fault in case the fault does not come
with a proposed change,

3. fault resolution by applying the change at hand, including obtaining
confirmation of the fact that the symptomatic failure has been dealt
with adequately (i.e. has been removed), and,

4. obtaining satisfactory validation for the changed instruction sequence
for inputs different from the input for the symptomatic failure.

The literature on program testing is insufficiently uniform to find out whether
or not it is reasonable to give testing the scope and breath as indicated in
Claim 5.4. Some authors subsume all activity focused on asserting or im-
proving program quality under testing, some authors consider the software
process rather than the delivered software as the target of improvement for
testing. I will provide a definition for a brand of testing which may be far
to limited for the taste of some, and perhaps even too liberal for the taste
of others.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 39

Definition 5.2 (White box [for instruction counting] output oriented test-
ing) Instruction sequence testing as applied to a candidate implementation X

of specification φ consists of putting X into effect on a family of inputs and
finding out (i) whether or not the resulting computation complies with the
given requirements, (ii) whether or not during the run a certain instruction
in X has been reached.

Using white box [for instruction counting] output oriented testing amounts
to (i) generating testsuites. (ii) experimenting with the various tests in the
test suites, (iii) finding and including additional tests in order to obtain suf-
ficient coverage (that requires some white box permission), and (iv) drawing
conclusions (either about X, or about its construction process) on the basis
of the results thus obtained.

Now finding a change, applying the change to an instruction sequence,
and testing the changed instruction sequence to the point of obtaining vali-
dation for results outside the symptomatic failure each constitute activities
which arre not subsumed under testing as defined in Definition 5.2. Under
these assumptions, in contrast with Dijkstra’s quote, the following claim
has become plausible:

Claim 5.5 White box [for instruction counting] output oriented testing can-
not, in general, be used to demonstrate the presence of instruction sequence
faults.

5.7 DFD Defect Qualifications for Instruction Sequences

Defect qualifications regarding X as a candidate implementation of the func-
tion P are given relative to a design D for such implementations. Defects
are about knowledge of a designer/programmer rather than about mathe-
matical fact. Just as for failures and for faults a very simple model of a
knowledge base is helpful. For each of the kinds of defects listed above one
one may imagine a format for the description of such defects. I will assume
that defects are collected about an instruction sequence with name X. I also
restrict attention to SRT modalities, just as was done in the case of faults

As stage s of the software proces for the construction of X the software
process database is supposed to a collection Defectsd of textual descriptions
text(d) of WB n/m-DFD SRT defects d for various n, m. Moreover the
database contains a collection Vssts of (inputs for) successful test which will
serve as the regression test suite. It is assumed that it can be and has been

40 J.A. Bergstra

confirmed in each case that d describes an TMO DFD defect of X. It is
possible that defects overlap in which case resolving one defect by changing
a fragment of X may or may not resolve (or do away with in another manner)
the other defect as well.

Definition 5.3 Given two defects d1 and d2 where d1 is an TMO n1-DFD
defect of X and d2 is an TMO n2-DFD defect of X with n1 < n2 then defect d1
is said to be prior to defect d2 if the corresponding fragments of X have the
same initial position.

These qualifications are given from the perspective of a single user A
who is also doing maintenance on X including defect resolution. Let X be
the ISuc.

1. dormant defect: a dormant TMO DFD defect is an TMO DFD defect
which is not the TMO version of a WB SRT DFD defect that is
contained in Defectsdet, and such that no TMO version of a WB SRT
DFD defect in Defectsdet is prior to it.

2. detected defect: a detected WB n/m-SRT DFD defect is an WB n/m-
SRT DFD defect which either is contained in X in Defectsdet or for
which another defects which is prior to d is contained inDefectsdet.

3. temporary defect: given a detected defect the plan may be made to
resolve the defect by making an appropriate change. If that happens
the defect is considered temporary.

4. permanent defect: given a detected defect, the plan may be made not
to resolve the defect by means of a modification of the instruction
sequence. In this case the defect is permanent.

5. retrospectively approved permanent defect: A permanent defect may
become part of the approved form of X by changing the design in
hindsight accordingly.

I refrain from defining qualifications for DFD defects with either explicit
or implicit change information. For instance it is far from clear what a
dormant BB 5/10-DFD Laski (MPG/MPC) defect might be. This notion
introduces an existential quantifier over changes and over the existence of
corresponding proofs of the MFJ property and checks of such proofs, all
carried out manually.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 41

6 Design Related Aspects of the Software Process

I imagine an instruction sequence X which is in the proces of being con-
structed. Once a first complete version of X has been completed, i.e. a
candidate implementation of the given specification has been developed,
the process of finding and repairing changes and defects begins. Changes
modify candidate implementations step by step to better candidate imple-
mentations until the construction project is either abandoned or is finalised
with a first version of a product ready for use, with the understanding that
the proces of fault/defect finding and resolution will be continued during
use of the software product at hand.

It may be so that a programmer has technical design at hand. Oth-
erwise it is reasonable to suppose that the programmer avails of a mental
design, that is a design which has not been constructed as an independent
artefact and yet exists in the mind of the programmer. DFD defects can be
imagined with respect to a mental design as well.

A plausible way for a programmer to find a (functional) SRT DFD
defect as well as a suitable proposed change for it is as follows:

(i) Use some method to spot one or more locations where a defect or
a fault may be found. For instance code walk-through may help to
spot locations of DFD defects and so may automated detection of code
smells. If a failure has been observed the computation may be followed
step by step (so-called debugging) and one or more locations visited
by the computation may be considered candidates for the location of
defects or of faults. Instead of looking through the entire computation
for a single failure, spectrum based fault localisation may be used to
focus more quickly on “promising” locations for candidate faults,

(ii) Then one expects to find a TMO DFD defect at or briefly after the
first of the spotted (candidate) locations. (If, unexpectedly, a TMO
DFD defect is not spotted, the design may be called into question
depending on the evidence of the presence of a fault on or near that
location).

(iii) Subsequently the design is used to derive a change which remedies
the DFD defect, so that a candidate WB SRT DFD defect has been
found,

(iv) Finally to run the regression test suite on the changed version of X

42 J.A. Bergstra

in order to confirm that the candidate defect is a proper WB SRT
DFD defect.

6.1 Syntactical/Grammatical Faults Treated as
Ordinary Faults

The situation with semantic faults differs from syntactic (grammatical)
faults as follows: for a text which is considered to be syntactically faulty it
is usually possible to determine one or more smallest fragments which are
(syntactically) incorrect by any standards, i.e. in no context said fragment
would be part of a correct expression. Unlike semantical faults grammatical
faults are very serious problems which persist in each context. Speaking of
a grammatical fault rather than a grammatical defect is justified if one as-
sumes that running a program with a grammatical fault simply terminates
with an error message, say by setting a designated bit to 1 leaving all others
unchanged.

6.2 Inadequate Designs and Local Design Inadequacies

I will not be specific about a syntax or form of designs, but merely assume
the existence of designs for instruction sequences, which are human readable
texts from which human software engineers may construction instruction
sequences, possibly with the help of various software tools. The notion of a
design enters the discussion of faults because DFD defects, a notion which
requires some idea of design, play a key role in the detection and resolution
of faults.

An inadequate design is a design from which a correct implementation
cannot be obtained, where an implementation of a design is understood as
follows:

Definition 6.1 (Implementation of design) Given a design D, an imple-
mentation of D is an instruction sequence X which has been constructed ac-
cording to design D in such a manner that X contains no TMO DFD defects
(w.r.t. D).

A design need not uniquely determine its implementations. However, I will
assume that the existence if implementations of designs is given by the
syntax of designs. Existence of implementations of designs is independent
of any notion of specification, and merely indicates that by construction
expressions in the design language which is used are consistent.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 43

Conceptual proposition 6.1 Every design has at least one implementa-
tion. A professional software engineer (team of engineers) is always able to
construct an implementation of a given design.

I recall that, under the simplifying conditions as listed in Paragraph 1.2
above, a specification is supposed to determine a relation which specifies
a class of partial functions (maximal functional relations contained in φ)
one of which is to be computed by any implementation of φ. I think of a
specification as a formal specification, for instance a first order formula over
the two-element structure of bits, perhaps making use of expressive power
brought about by admitting auxiliary sorts for various parametrised data
types.

Definition 6.2 (Adequate design.) Given a specification φ, a design Dφ for
an implementation of φ is adequate if there is an instruction sequence X

which (i) is an implementation of Dφ and (ii) X computes Pφ.

Definition 6.3 (Complete design) A design Dφ is a complete design if all
implementations of it compute the same partial function, as specified by Pφ.

In practice it is implausible for a design to be complete. In particular if a
design focuses on architecture while leaving the details of various compo-
nents for being worked out in the stage of instruction sequence construction,
then completeness is not to be expected.

Definition 6.4 (Inadequate design) Given a specification φ, the design Dφ
is inadequate if there is no instruction sequence X which (i) is an implemen-
tation of Dφ and (ii) X computes Pφ.

Definition 6.5 (Local design inadequacy.) Given a specification φ, and an
inadequate design Dφ for an implementation of it, a local inadequacy in the
design Dφ is a fragment of it which can be replaced by another fragment in
such a manner that the resulting design is not flawed anymore.

From a practical perspective the notion of an informal specification is miss-
ing from our discussion. One may think of that omission as being of marginal
importance. However, we were definitely unable to find a role for informal
specifications in addition to this account of artefacts which enter the process
of instruction sequence construction.

Problem 6.1 How to include the notion of an informal specification in the
account of (formal) specifications, designs, and implementations.

44 J.A. Bergstra

The difficulty seems to be connected with the observation that coexistence
of formal specifications and informal specifications is uncommon, so that
the introduction of informal specifications would plausibly go hand in hand
with forgetting about formal specifications. But in the absence of formal
specifications and of derived formal semantics, the various notions of fault
and defect as discussed in this paper cannot be defined. Notions of design
adequacy and inadequacy as introduced above also depend on the availabil-
ity of formal semantics.

I will refer to the activity of constructing an instruction sequence as
instruction sequencing. Upon constructing an implementation of the design
a local design inadequacy can give rise to (cause the existence of) a fault
in the resulting instruction sequence. The act of faithfully implementing
the (locally inadequate) design is a mistake which causes the presence of a
fault. The mistake itself is caused by the presence of said local inadequacy
in the design. In other words:

Conceptual proposition 6.2 Faithfully following a locally inadequate de-
sign during instruction sequencing may lead to making a mistake (of in-
struction sequencing), which in turn may cause the presence of a fault in
the resulting instruction sequence.

Qualifications of local inadequacy admit convincing informal definitions.
Indeed any specific local inadequacy of a design D can be qualified as follows:

1. dormant: the designer is unaware of the specific local inadequacy of
the design.

2. detected: the designer is aware of the specific inadequacy of the design,
which will be argued for by fairly informal arguments,

3. temporary: the designer knows about the local inadequacy and has
made the plan to locally modify the design in such a manner that said
local inadequacy disappears,

4. permanent: the designer accepts the local design inadequacy as a fact
of life for the future,

5. retrospectively approved: the designer concludes that after all it would
be better to modify the formal specification in such a manner that
what was a local design inadequacy, is not anymore an inadequacy.

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 45

6.3 Design Correctness and Design Defects

In the absence of a notation for designs and a definition of refinement which
explains how design and implementation are to be related it seems to be
impossible to provide valid definitions of: design correctness, and design de-
fect. At the same time these notions seem to make perfect sense intuitively,
perhaps these notions are meaningful for all artefacts with an instrumen-
tal status.

Nevertheless given a notion of correctness some notion of a Laski defect
for a design may be proposed (a local change leading to a correct design),
and given a notion of improvement for designs some notion of an MFJ
defect can be proposed (a local change leads to an improved design), while
SRT errors make sense only if the design is executable itself. An informal
definition of a design defects which provides no explanation of the notion of
causation reads as follows:

Definition 6.6 (ALR style design defect) A design defect is a fragment of
a design which, upon implementation of the design causes a mistake to be
made, that is it causes a fault to come about in its implementation. (This
definition requires that a specification is available which implementations of
the design are supposed to comply with, and which allows to speak of faults
in candidate implementations.)

However, this paper relies on the following simplifying assumption.

Conceptual proposition 6.3 It is possible and plausible to develop a the-
ory of instruction sequence faults and defects making use of a notion of
design that is equipped with a notion of local design compliance which ap-
plies to fragments of an instruction sequence serving as a candidate imple-
mentation of the design, as on that basis one may speak of a TMO DFD
defect.

However, for the stated purpose (that is: developing a theory of in-
struction sequences faults and defects), it is not required that the notion of
design is itself equipped with notions of correctness and defect.

7 Concluding Remarks

In the words of one of the reviewers: “..often we think of some instruction
as a fault because we think we know the programmer’s intention, and we
recognize that what is written does not reflect the programmer’s intention.

46 J.A. Bergstra

Such a definition is only as good as our ability to second-guess the program-
mer.” By consequence there is no way around a more rigid approach to the
notion of a faulty instruction. I made some progress in that direction in the
paper.

The relation between instruction sequence faults and design methods
requires further attention. A classical idea is top-down design, and this idea
directly relates to the concept of fault. Indeed one may hold that top-down
design and systematic use of software architecture give rise to the intuition
of a fault. If one knows that refining a certain architecture must do the
job, and as a matter of fact it does not, then local changes must suffice
to obtain a correct program. In other words, structured programming and
top-down design, nowadays cast in terms of designing on the basis of an
architecture, so to say create the concept of a fault (understood as a local
option for solving the occurrence of one or more failures) by giving rise
to ever smaller units within which changes ought to suffice to obtain a
program (instruction sequence) which meets the given requirements. The
relation between structured programming and “debugging” (understood as
removal of faults) may turn out to be quite strong after all, a perspective
which merits further work.

I assume that in principle the definitions of notions given for the special
case of instruction sequences can be carried over to high level program
notations. Doing so may yet be non-trivial in the case of a conventional
program notation and it remains to be seen to what extent the results of
this paper admit generalisation to practical context.

I do not know whether or not the notion of a BB SRT fault provides
a satisfactory interpretation of the intuitive notion of a dormant fault and
whether or not the notion of a WB SRT fault provides a satisfactory inter-
pretation of the notion of a detected fault. For both questions the choice
of a methodology for making progress on the respective issue constitutes a
challenge.

7.1 Options for Further Work

It is non-trivial to describe a rationale of the use of the concept of program
fault in software development. In the absence of a design it is hard to un-
derstand how a human programmer can find changes which resolve failures
and are compliant with extensive regression test suites. It is plausible to use
spectrum based testing to find locations for candidate TMO DFD defects
which are candidate SRT faults at the same time. Actually spotting a TMO

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 47

DFD defect, however, requires inspection of a design, and upon recognition
of a TMO DFD defect the design provides subsequent heuristics or design-
ing a suitable change. What makes these matters hard to grasp, however,
is that on the one hand the design must be sufficiently detailed to allow
determination of a TMO DFD defect for each fault which is to be detected
and resolved, while on the other hand the distance between the design and
its candidate implementation apparently is so large that an automatic check
of compliance (which would render spectrum based techniques useless) can-
not be done, or does not compete with the undeniably significant efforts
required for spectrum based fault localisation.

Developing a theoretical account of software processes with a proper
role of faults, defects, bugs, as well as (regression) testing and verification
is still a challenge.

One may imagine that instruction sequences are designed and con-
structed against the background of a large database of past work. Then
given an instruction sequence X one may extract from the database prior
odds for the probability that an instruction sequence of a given length con-
tains a fault of a given modality M . Upon obtaining the information that a
failure has been detected the subjective probability of the presence of a fault
of modality M will increase and likelihood ratio transfer mediated reasoning
comes into play (see e.g. [5]). Legal reasoning in court about the presence
of faults in programs may be grounded in part on statistical information
about program construction. It is an intriguing challenge to work out the
“laws” of legal reasoning about software faults from first principles.

References

[1] H. Mushtaq, Z. Al-Ars, K. Bertels. Survey of Fault Tolerance Tech-
niques for Shared Memory Multicore/Multiprocessor Systems. 6th
IEEE International Design and Test Workshop (IDT 2011), 12–17,
(2011). doi:10.1109/IDT.2011.6123094.

[2] A. Avižienzis, J.C. Laprie, B. Randell. Fundamental Concepts of De-
pendability. In Workshop on Robot Dependability: Technological Chal-
lenge of Dependable Robots in Human Environments, Seoul, 2001.

[3] A. Avižienzis, J.C. Laprie, B. Randell, C. Landwehr. Basic Con-
cepts and Taxonomy of Dependable and Secure Computing. IEEE

http://dx.doi.org/10.1109/IDT.2011.6123094

48 J.A. Bergstra

Transactions on Dependable and Secure Computing, 1 (1), 1–23, 2004.
doi:10.1109/TDSC.2004.2.

[4] J.A. Bergstra. Quantitative Expressiveness of Instruction Sequence
Classes for Computation on Single Bit Registers.. Computer Sci-
ence Journal of Moldova 27 (2), 131-161, 2019. http://www.math.md/
publications/csjm/issues/v27-n2/12969/.

[5] J.A. Bergstra. Adams Conditioning and Likelihood Ratio Transfer Me-
diated Inference. Scientific Annals of Computer Science 29 (1), 1–58,
2019. doi:10.7561/sacs.2019.1.1.

[6] J.A. Bergstra. Instruction Sequence Faults with Formal Change Justi-
fication. Scientific Annals of Computer Science 30 (2), 105–166, 2020.
doi:10.7561/SACS.2020.2.105.

[7] J.A. Bergstra. Sumterms, summands, sumtuples, and sums and the
meta-arithmetic of summation. Scientific Annals of Computer Science
30 (2), 167–203 (2020). doi:10.7561/SACS.2020.2.167.

[8] J.A. Bergstra, M.E. Loots. Program Algebra for Sequential Code.
Journal of Logic and Algebraic Programming 51 (2), 125–156, 2002.
doi:10.1016/s1567-8326(02)00018-8.

[9] J.A. Bergstra, C.A. Middelburg. Thread Algebra for Strategic Inter-
leaving. Formal Aspects of Computing 19 (4), 445–474, 2007. doi:

10.1007/s00165-007-0024-9.

[10] J.A. Bergstra, C.A. Middelburg. Thread Extraction for Polyadic In-
struction Sequences. Scientific Annals of Computer Science 21 (2),
283–310, 2011.

[11] J.A. Bergstra, C.A. Middelburg. Thread Algebra for Poly-Threading.
Formal Aspects of Computing 23 (4), 567–583, 2011. doi:10.1007/

s00165-011-0178-3.

[12] J.A. Bergstra, C.A. Middelburg. Instruction Sequence Processing Op-
erators. Acta Informatica 49 (3), 139–172, 2012. doi:10.1007/

s00236-012-0154-2.

[13] J.A. Bergstra, C.A. Middelburg. On Algorithmic Equivalence of In-
struction Sequences for Computing Bit String Functions. Fundamenta
Informaticae 138 (4), 411–434, 2014. doi:10.3233/FI-2015-1219.

http://dx.doi.org/10.1109/TDSC.2004.2
http://www.math.md/publications/csjm/issues/v27-n2/12969/
http://www.math.md/publications/csjm/issues/v27-n2/12969/
http://dx.doi.org/10.7561/sacs.2019.1.1
http://dx.doi.org/10.7561/SACS.2020.2.105
http://dx.doi.org/10.7561/SACS.2020.2.167
http://dx.doi.org/10.1016/s1567-8326(02)00018-8
http://dx.doi.org/10.1007/s00165-007-0024-9
http://dx.doi.org/10.1007/s00165-007-0024-9
http://dx.doi.org/10.1007/s00165-011-0178-3
http://dx.doi.org/10.1007/s00165-011-0178-3
http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.3233/FI-2015-1219

Qualifications of Instruction Sequence Failures, Faults and Defects:
Dormant, Effective, Detected, Temporary, and Permanent 49

[14] J.A. Bergstra, C.A. Middelburg. On Instruction Sets for Boolean Regis-
ters in Program Algebra. Scientific Annals of Computer Science 26 (1),
1–26, 2016. doi:10.7561/sacs.2016.1.1.

[15] J.A. Bergstra, C.A. Middelburg. Instruction Sequence Size Complexity
of Parity. Fundamenta Informaticae 149 (3), 411–434, 2014. doi:

10.3233/FI-2016-1450.

[16] J.A. Bergstra, C.A. Middelburg. A Short Introduction to Program Al-
gebra with Instructions for Boolean Registers. Computer Science Jour-
nal of Moldova 26 (3), 199–232, 2019. http://www.math.md/files/
csjm/v26-n3/v26-n3-(pp199-232).pdf

[17] N. Diallo, W. Ghardallou, A. Mili. Relative Correctness: A Bridge Be-
tween Testing and Proving. 10th Workshop on Verification and Evalua-
tion of Computer and Communication System (VECoS 2016), 141–156,
2016. CEUR-WS:Vol-1689/paper11.

[18] E.W. Dijkstra. Notes on Structure Programming. Technological Uni-
versity Eindhoven, Department of Mathematics and Computing Sci-
ence. Vol. 70-WSK-03, 1970. TUE-TR:EWD249.

[19] R.L. Glass. Persistent Software Errors. IEEE Transactions on Software
Engineering 7 (2), 162–168, 1981. doi:10.1109/tse.1981.230831.

[20] J.C. Laprie. Dependable Computing and Fault Tolerance: Concepts
and Terminology. In Twenty-Fifth International Symposium on Fault-
Tolerant Computing, Highlights from Twenty-Five Years, 2–11, 1995.
doi:10.1109/FTCSH.1995.532603.

[21] J. Laski. Programming Faults and Errors: Towards a Theory of Soft-
ware Incorrectness. Annals of Software Engineering 4, 79–114, 1997.
doi:10.1023/A:1018966827888.

[22] C.A. Middelburg. Searching Publications on Software Testing. 2010.
arxiv:1008.2647v1.

[23] A. Mili, M.F. Frias, A. Jaoua. On Faults and Faulty Programs.
In: P. Höfner, P. Jipsen, W. Kahl, M.E. Müller (Eds.), Relational
and Algebraic Methods in Computer Science (RAMICS 2014), Lec-
ture Notes in Computer Science 8428, 191–207, 2014. doi:10.1007/

978-3-319-06251-8_12.

http://dx.doi.org/10.7561/sacs.2016.1.1
http://dx.doi.org/10.3233/FI-2016-1450
http://dx.doi.org/10.3233/FI-2016-1450
http://www.math.md/files/csjm/v26-n3/v26-n3-(pp199-232).pdf
http://www.math.md/files/csjm/v26-n3/v26-n3-(pp199-232).pdf
http://ceur-ws.org/Vol-1689/paper11.pdf
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://dx.doi.org/10.1109/tse.1981.230831
http://dx.doi.org/10.1109/FTCSH.1995.532603
http://dx.doi.org/10.1023/A:1018966827888
https://arxiv.org/abs/1008.2647v1
http://dx.doi.org/10.1007/978-3-319-06251-8_12
http://dx.doi.org/10.1007/978-3-319-06251-8_12

50 J.A. Bergstra

[24] A. Ponse. Program Algebra with Unit Instruction Operators. Journal
of Logic and Algebraic Programming 51 (2), 157–174, 2002. doi:10.

1016/S1567-8326(02)00019-X.

[25] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa. A Survey on Soft-
ware Fault Localization. IEEE Transactions on Software Engineering
42 (8), 707–740, 2016. doi:10.1109/tse.2016.2521368.

[26] L. Xiaojian, J. Ting, D. Xiaofeng. Formal Definition of Program
Faults and Hierarchy of Program Fault-Tolerant Abilities. 4th Inter-
national Conference on Information Science and Control Engineering
(ICISCE), 2017. doi:10.1109/ICISCE.2017.78.

[27] X. Xie, T.Y. Chen, F.C. Kuo, B. Xu. A Theoretical Analysis of the Risk
Evaluation Formulas for Spectrum-Based Fault Localization. ACM
Transactions on Software Engineering and Methodology 22 (4), article
no. 31, 2013. doi:10.1145/2522920.2522924.

[28] A. Zakari, S.P. Lee, C.Y. Chong. Simultaneous Localization of Software
Faults Based on Complex Network Theory. IEEE Access 6, 23990–
24002, 2018. doi:10.1109/access.2018.2829541.

© Scientific Annals of Computer Science 2021

http://dx.doi.org/10.1016/S1567-8326(02)00019-X
http://dx.doi.org/10.1016/S1567-8326(02)00019-X
http://dx.doi.org/10.1109/tse.2016.2521368
http://dx.doi.org/10.1109/ICISCE.2017.78
http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1109/access.2018.2829541

	Introduction
	Summary of Results
	Simplifying Assumptions
	Classical Informal Definitions of: Failure, Error, Fault and Mistake
	The Status of Errors

	Instruction Sequence Failures
	Test/use Histories
	Survey of Failure Qualifications

	Instruction Sequence Faults: Black box Faults, Grey box Faults, and White box Faults
	Terminology: Fault, Fault Location, Fault Size, Change, Change Justification
	Justification Modalities of Changes
	Size Bounds for Faults and Corresponding Changes
	Conventional Vagueness of the Intuitive Notion of Program Fault
	BB, GB, and WB Versions of Laski Faults, of MFJ Faults, and of SRT Faults
	WB Faults by Example
	BB Faults
	GB Faults

	Fault Modalities in General
	An Implicit SRT Bias?
	Some Observations on Faults
	Discarding Residual Faults upon Resolution of Another Fault

	Fault Qualification for SRT Based Fault Modalities
	Qualification of GB(L,C,P) SRT Based Faults: Preliminary Remarks
	Qualifications for BB/WB SRT Faults

	Potentially Non-Faulty Instruction Sequence Defects; DFD-defects
	Design Notations
	Flow-charts as a Design Notation
	Algorithm Documenting Instruction Sequences

	Classification of Functional Improvement Based DFD Defects
	Size Bounds for Defects and Corresponding Changes
	Commented Examples
	Impact of Functional DFD Defect Resolution on Other DFD Defects
	Bugs are Defects Which May be Faults
	DFD Defect Qualifications for Instruction Sequences

	Design Related Aspects of the Software Process
	Syntactical/Grammatical Faults Treated as Ordinary Faults
	Inadequate Designs and Local Design Inadequacies
	Design Correctness and Design Defects

	Concluding Remarks
	Options for Further Work

