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The objectivity of science is its crowning and distin-
guishing feature. Its stock-in-trade are experimental facts,
observations and theories which do not depend on who
reports them but rather on the notion that the same
findings would be obtained by anyone else performing
similar procedures. This is what is meant by scientific
reproducibility. That, at least, is the aspiration. In
practice, things are often less clear cut. Theories are built
on observations and experimental data. They involve
a process of logical thought based on mathematical
methods. These can sometimes be found to be in
error because the empirical data they depend on are
subsequently shown to be wrong; or there were errors
in the logical development of the theory propounded.
And then there are the many differences between a given
experimental set up and others used to measure the same
thing, so error and uncertainty are inevitable.

In the modern era of science, computers have
come to play a central role. Computer simulation is
a way of extracting useful information from theories
and the models built using them. Such models are

2021 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 F

eb
ru

ar
y 

20
22

 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2020.0409&domain=pdf&date_stamp=2021-03-29
https://doi.org/10.1098/rsta/379/2197
mailto:p.v.coveney@ucl.ac.uk
http://orcid.org/0000-0002-8787-7256
http://orcid.org/0000-0001-7463-3765
http://orcid.org/0000-0002-3955-2449


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200409

...............................................................

typically impossible to analyse without computers. They produce results which may be designed
for comparison against existing experimental measurements; but they are also capable of
making predictions for which no experimental data are available. Owing to the sophistication
of modern science, such calculations often require powerful computers if results of any kind
are to be forthcoming. And for situations in which it is thought that the theories and models
are sufficiently accurate, one would like to use computer-based simulation in order to make
actionable predictions—predictions whose credibility is sufficiently great that we can use them
to make important decisions. Examples of actionable predictions occur in weather forecasts,
environmental disasters, climate science, the design of advanced materials, drug discovery and
clinical decision making. Are the methods we use today of sufficient reliability that they can
generate actionable results?

That question is what this theme issue is about. Three notions inform the assessment of such
reliability. First, validation: confirmation that the results are in agreement with experiment, the
litmus test for whether a simulation is credible. Second, verification: that the software does what
it is supposed to do, and does not contain any errors arising from an incorrect implementation or
incorrect numerical methods. Third, uncertainty quantification: identification of the provenance
of errors within the model, which stem from two distinct sources, one being systematic errors
due to parameter estimation, the other arising from random errors which come from the use of
random number generators in the code.

The purpose of the present theme issue is to survey the state of the art in this domain. The
emphasis is on seeking to obtain reproducible scientific findings using computers, and to quantify
the level of uncertainty in the codes and procedures used in contemporary scientific research.
The issue contains a total of fourteen papers, ranging from research articles and opinion pieces
to reviews of aspects of the domain. The diversity of the topics underlines its trans-disciplinary
character. There are papers by computer and computational scientists, alongside or together with
contributions from authors from established scientific domains.

While uncertainty quantification is a well-established field so far as engineers and applied
mathematicians are concerned, it is relatively uncommon in other branches of science such
as physics and chemistry, life and medical sciences. Within this theme issue, there are papers
which look at single-scale modelling and simulation methods such as the well-known molecular
dynamics approach, while others are concerned with uncertainty quantification within a
multiscale context, in which multiple different single-scale methods are connected in order
to bridge spatial and temporal domains. This is currently a research frontier in uncertainty
quantification; unlike single-scale approaches, which can be implemented in an unobtrusive
manner, quantifying uncertainty within multiscale models frequently requires semi-intrusive or
more fully intrusive modifications to the existing modelling code base.

The practicalities of reproducing results from computational studies are made evident in the
work presented by Krafczyk et al. [1]. They examine over three hundred computational studies
and attempt to access the code used and recreate the results presented in the articles. Within their
self-imposed time limits, they could not fully reproduce the results from any of these papers.
In response to this, the authors propose a set of Reproducibility Principles and Guidelines to
assist researchers in making their computational results reproducible. Complementing these, the
authors outline the structure of a Reproduction Package as a set of documentation and files to
allow a simulation code to be reproduced in a straightforward manner. They provide several
vignettes describing their efforts to reproduce results from published articles in order to highlight
issues that may be overlooked or neglected when reporting on computational research.

A prime example of good practice in both evaluating the performance of a numerical model
and adherence to reproducibility standards is provided by Clementi & Barba [2] in the field of
nanoscale electrostatics. They commence by attempting to replicate the results for the resonance
modes of silicon carbide obtained from two studies in the literature and extend this to validation
of their model against experimental data presented in one of the studies. They successfully
achieve replication up to fundamental differences between their modelling approach and those
in the comparison papers; validation was also successful. The application of reproducibility
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packages provides readers with access to all the digital artefacts needed to create the results
presented in the study—including source code, input files and post-processing scripts.

Numerical simulations have become a cornerstone of research in many fields of science
and engineering. With this prevalence, ensuring the reproducibility of simulation studies is
key to maintaining confidence in such work. Although many such models are deterministic,
understanding the sensitivity of outputs to input variation is of central importance. Volodina &
Challenor [3] seek to overcome the computational expense of gaining such insight through
multiple (i.e. ensemble) simulations by capturing the characteristics of a complex model with a
cheaper Gaussian process emulator. Through demonstration of their methodology using a simple
one-dimensional function and a climate model of cloud behaviour, they illustrate how uncertainty
characteristics of complex deterministic models can be assessed and interpreted.

In ‘Towards validated multiscale simulations for fusion’ [4], Luk et al. apply uncertainty
quantification to modelling nuclear fusion for energy production using coupled multiscale
simulations. Time-scale bridging requires standardized procedures to determine scale separation
and the existence of a steady state within the fastest evolving model. In the case of nuclear fusion,
the turbulence model associated with the plasma instabilities needs to reach a steady state. The
authors discuss and compare existing and newly introduced time-scale bridging methods by
means of sensitivity analysis. Furthermore, quantitative probabilistic metrics are used to assess
the validity of the predictions of the multiscale model by comparison with experimental data
using the Hellinger distance, Jensen-Shannon divergence and Wasserstein metric.

Wan et al. [5] discuss the quantification of uncertainty in simulations that are based on classical
molecular dynamics. The paper addresses simulations in a wide range of applications from
binding affinity calculations for drug discovery to properties prediction within condensed matter
and materials. Valuable insights are provided concerning the intrinsic stochasticity of molecular
systems due to their chaotic nature, whose resulting uncertainty is a dominant factor contributing
to the uncertainty of individual trajectories. The authors show that ensemble methods provide
statistically reliable results and that the distributions predicted from such simulations are often
non-Gaussian in nature.

Suleimenova et al. [6] investigate how human migration modelling depends on reliable
handling of the many parameters which pervade such computer-based studies. They integrate the
use of sensitivity analysis into the development of new simulation rule sets. Based on an agent-
based simulation of migration, they use Sobol’s method for sensitivity analysis to identify the
most sensitive assumptions. They refine the rule set with the aim of making these assumptions
more detailed (e.g. through parameter splitting) and are able to reduce the sensitivity of these
assumptions. Their development approach is potentially more robust than conventional ones as
developers do not directly aim for error reduction but instead optimize for balanced sensitivity
across the assumptions made within the models.

In ‘Uncertainty Quantification Patterns for Multiscale Models’, Ye et al. [7] present a conceptual
framework of computing patterns that support the analysis of uncertainty in coupled models,
irrespective of their source domain. The paper presents the basic templates for each uncertainty
quantification pattern (UQP) and introduces the notion of semi-intrusive UQ, where sub-models
are treated as black boxes but UQ algorithms are applied to the coupling between the individual
sub-models. They showcase their implementation through two applications, each of which has
been coupled using the Multiscale Coupling Library and Environment (MUSCLE3).

Daub et al. [8] provide a form of tutorial which introduces a surrogate-model based uncertainty
quantification approach applied to an earthquake rupture simulator. It uses the mogp_emulator
package to perform model calibrations, combining it with the FabSim3 automation toolkit to
automatically execute and curate the large number of surrogate model executions required on
remote resources. The tutorial has been successfully performed in various workshops, is fully
open, and can be readily undertaken by readers within a matter of hours.

Jansson et al. [9] in ‘Assessing uncertainties from physical parameters and modelling choices in
an atmospheric LES model’ apply a range of modern UQ methods to investigate uncertainties in a
large eddy simulation. To do this, they use the stochastic collocation scheme with the EasyVVUQ
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package to calculate the Sobol indices for a range of parameters. They identify uncertainties
caused by small random initial state perturbations and find that the chosen advection scheme
has a major influence on the resulting quantities of interest.

Coveney & Highfield [10] discuss the importance of reproducibility in science and more
particularly computational science. They assess where this can impact data analysis and
simulation. The paper describes existing initiatives as well as new suggestions for ensuring
increased trust in computer-based predictions. The authors draw attention to various limits in the
applicability of computer simulation methods and raise concerns about the lack of transparency
of many artificial intelligence methods which are often applied as ‘black boxes’ to solve complex
problems without a clear understanding of their inherent limitations.

Fursin presents a new framework (collective knowledge, or CK) to decompose projects
into reusable components [11]. Among other things, the approach facilitates the assembly of
portable workflows, and helps to reproduce, compare and reuse research techniques from existing
publications. To showcase the added value and generality of CK, the author applies it to six
exemplary use cases, many of which are directly informed by industrial needs.

In the paper entitled ‘VECMAtk: A Scalable Verification, Validation and Uncertainty
Quantification toolkit for Scientific Simulations’, Groen et al. [12] introduce a toolkit that helps
users to gain access to a wide range of methods by means of which to scrutinize and assess
all kinds of scientific simulations. It facilitates the efficient and straightforward execution of
substantial sensitivity analysis and uncertainty quantification (UQ) investigations using remote
supercomputers. The authors present applications across six different scientific domains, each
of which highlight different aspects of the toolkit in terms of advanced UQ algorithm support,
code coupling with uncertainty taken into account, efficient execution of tens of thousands of
ensemble-based simulation jobs, and the automated calculation of key sensitivity and uncertainty
measures.

In ‘The case for free and open source software in research and scholarship’, Fortunato and
Galassi [13] explore the close relation between Free and Open Software (FOSS) and academia at
large. They resolve a range of common misconceptions among academics about free software and
open source software, and introduce a primer to FOSS suitable for researchers in any field. The
paper includes a case study about the GNU Scientific Library project which demonstrates among
other things how seemingly minor misconceptions about the openness of underlying libraries can
give rise to existential and far-reaching problems in reproducing scientific results.

In his paper entitled ‘A Fundamental View on Reproducibility’ Odd Erik Gundersen provides
a survey of the literature on reproducibility and a clarification on its meaning in a computer
science context [14]. Through the use of the scientific method, Gundersen identifies four
types of transparency that enable reproducible software and distinguishes between two types
of reproducibility: output reproducible and analysis reproducible. Overall, transparency and
openness are identified as key drivers for reproducibility, which in turn promotes more fast-paced
and assured scientific progress.
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