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Abstract: We study the task of recognizing named datasets in scientific articles as a Named Entity
Recognition (NER) problem. Noticing that available annotated datasets were not adequate for our
goals, we annotated 6000 sentences extracted from four major AI conferences, with roughly half
of them containing one or more named datasets. A distinguishing feature of this set is the many
sentences using enumerations, conjunctions and ellipses, resulting in long BI+ tag sequences. On all
measures, the SciBERT NER tagger performed best and most robustly. Our baseline rule based tagger
performed remarkably well and better than several state-of-the-art methods. The gold standard
dataset, with links and offsets from each sentence to the (open access available) articles together with
the annotation guidelines and all code used in the experiments, is available on GitHub.

Dataset: https://github.com/xjaeh/ner_dataset_recognition

Dataset License: This work is licensed under a Creative Commons Attribution 4.0 International
License CC BY 4.0.

Keywords: dataset extraction; scientific information extraction; named entity recognition; BERT;
SciBERT

1. Introduction

This paper contributes to the creation of a dataset citation network, a knowledge graph
linking datasets to scientific articles when used in an article. Unlike the citation network of
papers, the dataset citation infrastructure is still primitive, due to the limited referencing
of dataset usage in scientific articles [1–4]. The use and value of such a dataset citation
network is similar to that of the ordinary scientific citation network: realizing recognition
for dataset providers by computing the impact scores of datasets based on citations [2,4],
ranking datasets in dataset search engines by impact [1], creating a representation of a
dataset by its use instead of its metadata and content [4,5], studying cooccurrences of
datasets, etc. According to Kratz and Strasser [2], researchers believe that the citation count
is the most valuable way to measure the impact of a dataset.

Creating the dataset citation network from a collection of articles involves three main
steps: scientific PDF parsing, recognizing and extracting mentioned datasets, and cross
documenting the coreference resolution (“dataset name de-duplication”). This paper is
only concerned with the dataset extraction process, which we view as a Named Entity
Recognition (NER) task. When focusing on the articles that use a NER method for this
task, it becomes clear that almost every article uses another approach and another dataset.
Not only do these approaches differ, but they also deviate from the core dataset NER
task, as every approach has something extra added onto it [3,6–14]. This makes it hard
to compare which method or component fits a task best. According to Beltagy et al. [15],
SciBERT has shown state-of-the-art results on one of the datasets (SciERC), while other
methods have outperformed this score on a similar task and dataset [9,10]. To fully be able
to compare the performance and annotation costs of each (basic) model, we compare their
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performance with them all being trained and tested on the same dataset. This results in the
following research question:

RQ Which Named Entity Recognition model is best suited for the dataset name recognition
task in scientific articles, considering both performance and annotation costs?

The comparison of the performance of each method, when only run once, is not
sufficient enough to fully compare them, as [16] showed that annotation choices have an
irrefutable impact on the system’s performance. This effect was neglected in the aforemen-
tioned papers that focused on the dataset extraction task. However, not only can these
choices impact the models’ performances, but they can also impact the annotation costs.
We consider a number of factors that could influence the performance and annotation
costs of the models. First, domain transfer is considered, as this is shown to impact NER
performance [17–19]. This has become a trending topic in NER in an effort to reduce
the amount of training data needed [20]. Another factor that is taken into account is the
training set size, as multiple sources have shown that a small amount of training data
can lead to performance problems [7,21]. Next to the size of the training set, the effect
of the distribution of positive and negative samples is considered, as this, too, has been
shown to influence performance [22–25]. These choices all influence the amount of training
data that is needed to achieve the best performance, thus influencing the annotation costs
since adding ‘real examples’ is costly. In order to further reduce the annotation costs,
the effect of adding weakly supervised examples in the training data is investigated for the
best performing model. Summing up, we answer the following questions:

RQ1 What is the performance of rule-based, CRF, BiLSTM, BiLSTM-CRF [26–28], BERT [29]
and SciBERT [15] models on the dataset name recognition task?

RQ2 How well do the models perform when tested on a scientific (sub)domain that is not
included in the training data?

RQ3 How does the amount of training data impact the models’ performance?

RQ4 How are the models’ performance affected by the ratio of negative versus positive
examples in the training and test data?

RQ5 Does adding weakly supervised examples further improve the scores of the best
performing model? Additionally, how well does the best performing model perform
without any manually annotated labels?

RQ6 Is there a difference in the performance of NER models when predicting easy (short)
or hard (long) dataset mentions?

To answer these questions on realistic input data, we created a hand-annotated dataset
of 6000 sentences based on four sets of conferences in the fields of neural machine learning,
data mining, information retrieval and computer vision (see Section 3.1). NER can be
evaluated in many ways. We mostly use the most strict and realistic, that is, the exact
match on a zero shot test set. We note, however, that, due to enumerations and ellipses,
many NER hits contain several datasets, which makes the partial and B-match also useful
(as the found NER hits have to be post-processed anyway).

Our main findings are that SciBERT performs best, particularly on realistic test data
(with >90% sentences, not mentioning a dataset). Surprisingly our own developed rule
based system (using POS tags and keywords) performed almost as well, and all others,
except BERT, perform (much) worse than this rule-based system. SciBERT was also robust
when looking at the other tests performed, regarding domain adaptability, the negative
sample ratio and the train set size. However, nothing comes for free; we did not succeed
in training SciBERT to outperform the rule-based system when we gave it only weakly
supervised training examples (obtained without manual annotation).

All code and datasets used for this paper can be found at https://github.com/xjaeh/
ner_dataset_recognition.

https://github.com/xjaeh/ner_dataset_recognition
https://github.com/xjaeh/ner_dataset_recognition
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2. Related Work

The overwhelming volume of scientific papers have made extracting knowledge
from them an unmanageable task [30], making automatic IE especially relevant for this
domain [31]. Scientific IE has been of interest since the early 1990s [32]. Despite the growing
interest in the automatic extraction of scientific information, research on this topic is still
narrow even now [7]. The reason for the limited research in scientific IE in comparison to
the general domain is the specific set of challenges associated with the scientific domain.
The main challenge is the expertise that is needed for annotated data, making these data
costly and hard to obtain, resulting in very limited data available [7]. However, there is
a significant focus on this kind of research in the scientific sub-domains: medicine and
biology [30].

Where at the beginning of Scientific IE, the focus mainly laid upon citations and topic
analyses [13], now, the focus has become broader and has shifted toward scientific fact
extraction (for example, population statistics, variants of genomics, material properties,
etc.) [30]. Research on the dataset name extraction task uses a great variety of methods
throughout the NER spectrum, including, but not limited to, the following: rule-based,
BiLSTM-CRF and BERT [3,6–14].

For dataset extraction, it was found that verbs surrounding the dataset provide infor-
mation about the role or function; as such, the words, use, apply or adopt, indicate a ‘use’
function [10]. Nevertheless, not only these verbs surrounding it play an important role,
as for dataset detection, a wide range of context is needed [6], indicating that a model’s
ability to grasp context could play a significant role in the performance of that model.

We briefly go through the NER models that we tested for dataset extraction.
The rule-based approach was the most prominent one in the early stages of NER [33].

Despite the fact that most state-of-the-art results are now achieved by machine learning
methods, the rule-based model is still attractive to use, due to its transparency [34]. The au-
thors conclude that rule-based methods can achieve state-of-the-art extraction performance,
but note that the rule development is very time consuming and a manual task. Not only is
this method used as a stand-alone classification method, but it is also suitable as a form of
weak supervision [35] as an alternative to the manual labeling of data, providing training
examples for the other methods [36,37].

Conditional Random Fields (CRF) is a probabilistic model for labeling sequential data,
which has proven its effectiveness in NER, producing state-of-the-art results around the
year 2007 [38]. A dataset extraction model solely based on CRF is missing, but it was used
for other tasks in Scientific IE. A well-known example is the GROBID parser, which extracts
bibliographic data from scientific texts (such as the title, headers, references, etc.) [39].

The BiLSTM-CRF is a hybrid model, combining LSTM layers with a CRF layer on
top [40]. Using this combination, the advantages of both models can be joined. The ad-
vantage of BiLSTM is that it is better at predicting long sequences, predicting every word
individually [41], while CRF predicts based on the joint probability of the whole sentence,
making sure that the optimal sequence of tags is achieved [41–43]. To date, the BiLSTM-
CRF based model produces the best performance on the dataset extraction task, with an F1
score of 0.85 [8].

BERT produces state-of-the-art results in a range of NLP tasks [29]. It is based on
a transformer network, which is praised for its context-aware word representations, im-
proving the prediction ability [44]. BERT has revolutionized classical NLP. However, its
performance as a base for the dataset extraction tasks differs greatly, as one research study
found an F1 score of 0.68 [13], while another has found an F1 score of 0.79 [10]. Beltagy
et al. [15] developed the SciBERT model based on the BERT model. The big and only
difference between those models is that, unlike BERT, which is trained on general texts,
SciBERT is trained on 1.14 M scientific papers from Semantic Scholar, consisting of 18%
computer science papers, and the remaining 82% consisting of papers from the biomedical
domain. This model, which was specially created for knowledge extraction in the scientific
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domain, indeed achieves better performance, in comparison to BERT, in the computer
science domain.

3. Materials and Methods
3.1. Description of the Data

We describe the created manually annotated dataset. The annotation guidelines in
Appendix B contain many illuminating examples. Here, we simply give two examples
(annotated datasets are in marked in gray):

• The second collection (called ClueWeb) that we used is ClueWeb09 Category B , a large-scale
web collection . . .

• Tables 3 and 4 show the average precision of 20 categories and MAP on the PASCAL VOC
2007 and 2012 testing set , respectively.

3.1.1. Origins

The sentences in the dataset originate from published articles from four different
corpora within the computer science domain: the Conference on Neural Information Pro-
cessing Systems (NIPS, 2000–2019), SIAM International Conference on Data Mining (SDM,
2000–2019), ACM SIGIR conference (2007–2018), and papers from the main conferences
(ICCC, CVPR) participating in the Computer Vision foundation (VISION, 2017–2019).
These conferences were chosen because they are top tier A∗ venues that have existed for
an extensive period; all of them, except SIGIR, are freely available; they cover a wide range
of topics within the information sciences; and experimental evaluation is a key aspect
in these venues. Thus, we expected most articles to contain references to the datasets.
Papers from these conferences were collected in PDF format and parsed using GROBID
to extract the text [39]. The extraction of sentences using GROBID made it possible to
exclude references, titles and tables. This way, only ’real’ sentences from the main text
were selected. From these sentences occurring in the main text, we selected sentences that
likely contained a reference to a dataset for manual annotation. These selected sentences
had to contain one of the following phrases (including their plural form): dataset, data set,
database, data base, corpus, treebank, benchmark, test/validation/testing/training data
or train/test/validation/testing/training set. The regular expression in Appendix A was
used to implement this selection.

3.1.2. Annotation

The annotation scheme used for the annotation task is based on the ACL RD-TEC
Annotation Guidelines [45]. An example of a guideline is that generic nouns (e.g., dataset)
accompanying a term should be annotated. Another example is the ’ellipses rule’, which
states that when two noun phrases in a conjunction are linked through ellipses, the term
needs to be annotated as one. For the task of the dataset name annotation, this would mean
that the phrase PASCAL VOC 2006 and 2007 datasets are marked as one entity. Annotation
was done by four persons, each annotating 1500 sentences plus a part of the kappa calcula-
tion. The resulting Fleiss kappa of 0.72 representing a substantial agreement was calculated
based on fifty sentences [46]. The full annotation scheme is available in Appendix B.

3.1.3. Train and Test Sets

Each annotated sentence was given an ID, tokenized using the spaCy tokenizer [47],
and given POS-tags using the NLTK package [48]. The gold standard annotations them-
selves were transformed into the corresponding IOB-tags for each token.

The entire dataset contains a total of 6000 sentences, having an even distribution
between corpora, with 1500 sentences from each corpus. Slightly under half of them
contain a dataset mention. These 6000 sentences were split into a train set, test set and zero
shot test set. Sentences in the zero shot test set do not contain dataset names that occur in
the train set. All sets were created using stratified sampling, more or less keeping the equal
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distribution among the four conferences. The distribution of positive and negative samples
in these sub-sets is shown in Table 1.

Table 1. Distribution of positive and negative samples across the train, test and zero-shot set.

Containing a Dataset No Dataset Total

Training set 2168 2472 4640
Test set 543 617 1160
Zero-shot set 200 0 200

Total 2911 3089 6000

The number of sentences containing a dataset name is not equal to the number of
datasets being named, which is 4164. This leaves an average mention of 1.43 datasets in a
sentence containing at least one dataset mention and an average mention of 0.69 overall in
this dataset.

We ran the SciBERT tagger over the complete corpus of over 15,000 articles, and ob-
served that within the VISION papers, 5% of the papers did not mention a dataset. For the
other three conferences, this was remarkably similar between 20.2 and 22.4%. A manual
total scan of 30 random NIPS papers produced a slightly higher part of nine papers without
any dataset mention.

3.2. Experimental Setup

Full details of all experiments, including more detailed measurements, are available
on the GitHub repository. All methods were evaluated using seqeval [49] for the B- and
I-tags, and nervaluate [50] for the partial- and exact-match scores.

As a natural baseline, we created a rule-based system containing rules such as “If
the word is a proper-noun and one of the keywords follows: then mark the proper-noun including
its keyword as a dataset”, which were developed through careful consideration, following
the annotation guidelines. As developing a rule-based system takes time [34], the rule
development was an iterative process by trial and error, each time adding or adjusting
rules as deemed necessary. The rules were made machine readable, using spaCy’s rule-
based matching method [51]. This translated to 10 spaCy patterns; see the notebook
Rule-based.ipynb in the dataset belonging to this paper.

For the CRF, the sklearn_crfsuite from the scikit-learn library was used [52]. Both
BiLSTM methods are keras based. No parameter optimization was performed. The used
parameters were taken from the “Depends on the definition NER series” [53].

Both BERT models are based upon a scikit-learn wrapper [54]. This wrapper provides
multiple models that can be selected. The example of [29] is followed by choosing the
cased model for NER. While the uncased variant of the model generally performs better,
the choice was made to utilize a case-sensitive model, as capitalization can be indicative of
whether a phrase refers to a dataset: words referring to datasets are often capitalized. To
compare both models equally, the BERTbase model was chosen, just like [15], as SciBERT only
has a base model. For SciBERT, the scivocab was chosen, as this represents the frequently
used words in scientific papers. The model configuration and architecture are the same as
those in the SciBERT paper [15]. The following hyperparameters were used for the training
of the model: A learning rate of 5 × 10−6 for the Adam optimizer, with a batch size of 16.
Training lasted 15 epochs, and checkpoints were saved every 300 training steps. Gradient
clipping was used, with a max gradient of 1.

4. Results

We report the results grouped by the five subquestions. Appendix D contains ad-
ditional results (e.g., precision and recall scores, and scores for the B(eginning) and
I(nternal) tags.

https://github.com/xjaeh/ner_dataset_recognition/blob/master/code/Rule-based.ipynb
https://github.com/xjaeh/ner_dataset_recognition/blob/master/code/Rule-based.ipynb
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4.1. RQ1, Overall Performances

Table 2 contains the F1 performance scores for the six different NER models we tested.
This is the only experiment we conducted with (5-fold) cross validation on the complete set
of 6000 sentences. BERT and SciBERT perform almost the same on both scores and (much)
better than all the others, except that the rule-based system performs equally well on the
partial match score.

Notice that the partial and exact match scores are closest for SciBERT. Due to conjunc-
tions, ellipses and the used annotation guidelines, NER phrases can be quite long, so a
large difference between the two ways of scoring could be expected. An error analysis
shows that SciBERT is especially good in learning the beginning of a dataset mention.

The two most interesting systems seem to be SciBERT and the rule-based one, and thus
we will mostly report results on the other subquestions for these two.

Table 2. RQ1, Partial and exact match mean F1 scores for various NER models based on 5-fold
cross-validation, using the complete dataset of 6000 sentences (all standard deviations are between
0.01 and 0.03).

Partial Match Exact Match

Rule Based 0.81 0.72
CRF 0.75 0.72
BiLSTM 0.73 0.67
BiLSTM-CRF 0.77 0.72
BERT 0.81 0.77
SciBERT 0.82 0.78

4.2. RQ2, Domain Adaptability

The models’ ability to adapt to differences within the scientific domain is shown in
Table 3. These scores are achieved using one corpus as a test set, while training on the other
three corpora. The corpus on which it is tested can be found in the header. We expected
the scores to be lower than the cross validation scores, but we only found a small negative
effect when testing on the VISION conferences. We note that the VISION set is different
in that the sentences come from the last three years, while the others are from the last
two decades.

Table 3. RQ2, domain adaptability between corpora (F1 scores).

Models Evaluation NIPS SDM SIGIR VISION

Rule-based Partial-match 0.75 0.75 0.79 0.75
Exact-match 0.72 0.70 0.75 0.71

SciBERT Partial-match 0.81 0.83 0.80 0.78
Exact-match 0.76 0.80 0.76 0.71

4.3. RQ3, Amount of Training Data

Here, we look at the major cost factor: the size of the training set. Figure 1 shows
the exact match F1 score on the zero-shot set for varying amounts of training sentences,
ranging from 500 to 4500. We see a clear difference between CRF and the two BERT models
on the one hand and the two BiLSTM models on the other. We now zoom in on the most
stable behaving models, CRF and SciBERT. Figure 2 zooms in on both precision and recall,
also for the (supposedly easier) test set. Both models show remarkably robust behavior:
only a slight influence of the amount of training examples and hardly any difference in
performance for the test and zero-shot test set. It is noticeable that CRF can be seen as a
precision-oriented system, while for SciBERT, precision and recall are very similar. We see
this as evidence that these two systems learn the structure of a dataset mention well and
do not overfit on the dataset names themselves.
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Figure 1. RQ3, the influence of the amount of training data for all models tested on the zero-shot
test set.
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Figure 2. RQ3, the influence of the amount of training data for the CRF model (left) and for SciBERT (right).

4.4. RQ4, Negative/Positive Ratio

Recall that about half of the sentences in our dataset do not mention a dataset, while
containing one of the trigger words, such as dataset, corpus, collection, etc. We can decide
to use those in training or not. As noted in previous research, the ratio of positive and
negative sentences was found to be important for NER models trained on a dataset mention
extraction task [6]. We see a slight improvement in F1 scores for all models when adding
also negative training examples, but this is quite small.

What is more interesting is when we test on a set in which sentences mentioning a
dataset are very rare, just like in a real scientific article. Using the developed rule-based
system, we added sentences that most probably do not mention a dataset (i.e., they did not
contain any of the trigger words (more precisely, did not match the regex in Appendix A))
to the test set until we obtained a 1 in 100 ratio. Table 4 shows the results. We see that all
F1 scores drop, compared to those in Table 2. This is expected as the task becomes harder.
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However, note that the recall remains very high for the two BERT models, indicating that
the drop in F1 is caused mainly by extra false positives (of course, it might be that the
SciBERT model discovered genuine dataset mentions not containing one of the trigger
terms. We did not check for this).

Table 4. RQ4, testing on a real ratio (positive vs. negative) test set.

Model Evaluation Precision Recall F1

CRF Partial-match 0.72 0.66 0.69
Exact-match 0.69 0.63 0.66

BiLSTM Partial-match 0.37 0.19 0.26
Exact-match 0.29 0.15 0.20

BiLSTM-CRF Partial-match 0.49 0.29 0.37
Exact-match 0.38 0.23 0.29

BERT Partial-match 0.57 0.91 0.70
Exact-match 0.55 0.88 0.68

SciBERT Partial-match 0.65 0.91 0.76
Exact-match 0.63 0.88 0.73

4.5. RQ5, Weakly Annotated Data

We now see how much SciBERT can learn from positive training examples discovered
by the rule-based system. As these examples are not hand annotated, we call them weakly
supervised. We created a weakly supervised training set, SSC (for Silver Standard Corpus),
with the same number of positive and negative sentences as in the manually annotated train
set. Table 5 shows that the performance of SciBERT is substantially lower when trained on
those ‘cost-free’ training examples alone than when trained on the hand-annotated data
(train set). A reason for this is that the SSC can contain false negatives or false positives, and
learning from these false data will impact the model’s prediction ability, thus impacting
the scores.

Table 5. RQ5, differences between training on supervised or weakly supervised train data (F1 scores).

Training Set Evaluation Test Set Zero-Shot

Train set Partial 0.83 0.81
Exact 0.80 0.76

SSC Partial 0.73 0.73
Exact 0.67 0.67

According to [55], weakly supervised negative examples harm the performance.
To test this effect, SciBERT was also trained on a combination of the manually labeled
data and only the positive data from the SSC. The differences were very small: a 0.01
improvement for both partial and exact match on the zero-shot test, no difference for the
partial match, and a 0.02 decrease on the test set.

4.6. RQ6, Easy vs. Hard Sentences

Sentences enumerating a number of named datasets are common in scientific arti-
cles. According to the guidelines, these are tagged as one entity, leading to long BI+ tag
sequences. We wanted to test whether SciBERT is able to learn these more complex long
entities just as well as the easier ones. So we split both the train and the zero-shot test sets
into a hard and easy set, with sentences being hard if they contained a BI+ tag sequence
of a length of four or more. We then performed all four possible train on hard/easy, test
on hard/easy experiments. Only (we also saw a 6% drop in F1 when trained on hard and
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test on easy, but this may be due to much less training sentences) with train on easy, test
on hard did we see an expected but still remarkable difference in scores (a drop in F1 of
42%). This means that the network is also able to understand and interpret ellipses and
enumerations. These more complex rules and structures are not harder for the network to
identify than simple one- or two-word dataset mentions. These structures and patterns are
difficult, even for human annotators to consistently parse and classify correctly, making
the network’s ability to understand the nuances of the labeling task significant.

5. Discussion

We have created a large and varied annotated set of sentences likely to contain a
dataset name, with about half actually containing one or more datasets. We have shown
that extracting these datasets using traditional NER techniques is feasible but clearly not
straightforward or solved. We believe our results show that the created gold standard is a
valuable asset for the scientific document parsing community. The set stands out because
the sentences come from all sections in scientific articles, and come with exact links to the
articles. Except for those coming from SIGIR, all articles are openly available in PDF format.

Analysis of the errors of the NER systems and the disagreements among the annotators
revealed that dataset entity recognition from scientific articles is complicated through the
use of enumerations, conjunctions and ellipsis in sentences. This means that, for example,
in the sentence ‘We used the VOC 2007, 2008 and 2009 collections.’, the phrase ‘VOC 2007,
2008 and 2009 collections’ is tagged as one dataset entity mention, as individual elements
of the enumeration are nonsensical without the context provided by the other elements [7].
We think it is this aspect that makes the task exciting and different from standard NER.
Postprocessing the found mention, extracting all dataset entities, and completing the
information hidden by the use of ellipses is an NLP task needed on top of dataset NER
before we can create a dataset citation network. Of course, a cross-document coreference
resolution of the found dataset names is then needed for the obtained network to be
useful [56]. Expanding the provided set of sentences with this extra information, linking
every sentence to a set of unique dataset identifiers is not that much work and would make
the dataset also applicable for training the dataset reconciliation task.

We wanted to know which NER system performs well and at what cost. Not surpris-
ingly, the best performing systems were BERT and SciBERT. Unsupervised pretraining
also helps for this task. Both systems (and CRF) worked already almost optimally with
relatively few training examples. They were robust on our domain adaptation experiments,
and kept a high recall at the cost of some loss in precision when we diluted the test set to a
realistic 1 in 100 ratio of sentences with a dataset.

We found the performance of our quite simple rule-based system to be remarkable.
In fact, this system can be seen as a formalization of the annotation guidelines, and having
those carefully spelled out made it almost effortless to create; this is, in our opinion, the
reason for its strong performance. The experiment in which we trained SciBERT with
extra examples found by the rule-based system was inconclusive in that we saw hardly
any change in performance. However, there may be more clever ways to combine these
two models.

Future Directions

We think a gold standard dataset reminiscent of the end-to-end task of dataset mention
extraction from scientific PDFs could lead to a big step forward in this field. In particu-
lar, we could then train and test end-to-end systems, which would link dataset DOIs to
article DOIs.

Additionally, the articles from the four chosen ML/DM/IR/CV conferences are rela-
tively easy for the dataset extraction task, as they do not contain that many named entities.
The task is likely harder with papers from biological, chemical or medical domains.
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A different approach to this task is to start with a knowledge base of existing research
datasets containing their names and some metadata and then to use that in an informed
dataset mention extraction system.
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Appendix A. REGEX

The used regular expression was (
¯
D)
¯
, with D a isjunction of the following expres-

sions: (?:train|test|validation|testing|trainings?)\s*(?:set|data), bench-
marks?, data\s*(?:set|base)s?, corpus, corpora, tree\s*bank, collections?.

Appendix B. Annotation Guidelines

Appendix B.1. Introduction

The main idea of this task is to mark the dataset name(s) in sentences. The Oxford
dictionary defines name as follows: “a word or set of words by which a person or thing is
known, addressed, or referred to” [57]. A dataset is defined as a collection of data that is
treated as a single unit by a computer [58]; so mark the word or a set of words that refers
to a dataset. This leads to the following definition.

Dataset name: Term(s) that refers to a real (life) dataset.
The idea is to find the dataset name(s) in sentences and to mark them so that they

contain the needed information to find the dataset online (so that versions are included).
The sample sentences below are sentences from the NIPS papers [59].

The following are a few examples of sentences without a dataset name:

• First, let us remark that our training setup differs from those reported in previous works.
• Section 3 demonstrates the validity of our approach by evaluating and comparing the model on

a number of image datasets.
• This dataset consists of about 5000 trainval images and 5000 test images over 20 object

categories.

The following are a few annotated examples of sentences containing dataset names.

• Over two benchmark datasets, Standford Background and Sift Flow , the model outperforms
many state-of-the-art models in accuracy and efficiency.

• Imagenet : A large-scale hierarchical image database.

• For one, we trained on the standard WSJ training dataset .

• In all experiments, we used stack1 for testing, stack2 and stack3 for training, and stack4
as additional training data for recursive training.

https://github.com/xjaeh/ner_dataset_recognition


Data 2021, 6, 84 11 of 19

• We tested our formulation on three datasets of object detection: PASCAL VOC 2007 ,
PASCAL 2012 and Microsoft COCO .

Appendix B.2. Guidelines for Annotation

• Mark entire word (an—does not split a word).
• Mark a dataset name consisting of multiple words as one; when marked as individual

words, they will be seen as multiple names.
• Do not mark the reading signs/spaces before or after the name.

Appendix B.3. When to Annotate

• Datasets can be referred to in a number of different ways, including, but not limited
to the following: database, benchmark, collection, corpus, treebank, etc.

• Only mark a name when it is specific enough.

– This does not include the following:

* When talking about ‘a’ dataset.

· Our model performs 1.8 times better than the only published results on an
existing image QA dataset.

* When a dataset name is mentioned, but the data set is not talked about.

· It should be noted that our DAQUAR results are for the portion of the dataset
(98.3%) with single-word answers.

* When they only mention data.

· Analogous to HCP data, the second task dataset thus incorporated 1404 labeled,
gray-matter masked, and z-scored activity maps from 18 diverse tasks acquired
in 78 participants.

* When it is clear that they are talking about multiple datasets, if it is ambigu-
ous, do mark the dataset.

· However, the gain in accuracy is more substantial for the SQF datasets as

compared to the COMPAS and Adult datasets.
· In our experiments, we used two standard TREC collections: the first collection

(called Robust04 ) consists of over 500,000 news articles from different news
agencies, which are available in TREC Disks 4 and 5 (excluding Congres-
sional Records).

* When an abbreviation is introduced for the article only.

· The second collection (called ClueWeb) that we used is ClueWeb09 Category B ,
a large-scale web collection with over 50 million English documents, which is
considered a heterogeneous collection.

* When a dataset is made specifically for the article.

· We first consider modeling a segment of the pseudo periodic synthetic dataset.

* When no keywords (such as dataset, database, etc.) follow after a (set of)
word(s), but the sentence makes clear that the word(s) indeed does refer to
a dataset.

· We use the AOL query log [12] in our experiments and preprocess the dataset
following [8].

· We evaluate the FS-RNN on two character level language modeling data sets,
Penn Treebank and Hutter Prize Wikipedia , where we improve state-of-the-

art results to 1.19 and 1.25 bits-per-character (BPC), respectively.
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Appendix B.4. What to Annotate †:

• Mark as much information as possible, so include keywords, such as dataset, training
set, etc.

– This includes version numbers.
– However, do not include words such as ‘the’.

• When an abbreviation follows a dataset name or divides the name, mark this as one.
See examples below:

– Several recent image models were evaluated on small image patches sampled from the
Berkeley segmentation dataset (BSDS300) [25].

– Labeled Faces in the Wild (LFW) database [12] is widely used for face recognition and
verification benchmark.

• To determine whether an adjective is part of the dataset name, try to imagine if the
meaning of the term would change if the adjective was removed. If this is the case,
include the adjective; otherwise, do not include the adjective.

– Table 1: NLL scores in the test data for the binarized MNIST dataset .
– (b) Weights W (filters) learned by LeGrad when training an SBN with H = 200 units in

the full MNIST training set .

• If one term contains information that is needed for the other term (ellipses), mark
them as one.

– Tables 3 and 4 show the average precision of 20 categories and MAP on the
PASCAL VOC 2007 and 2012 testing set , respectively.

– State-of-the-art performance on the ASSISTments benchmark and Khan dataset .
– This is equivalent to finding a transport map φ from random noises with distribution

pX (e.g., Gaussian distribution or uniform distribution) to the underlying population
distribution pY of the genuine sample, e.g., the MNIST or the ImageNet dataset .

– For the Blizzard and Accent datasets , we process the data so that each sample duration
is 0.5 s (the sampling frequency used is 16 kHz.)

• If there is a preposition in the term, judge if it is a part of the term or if it splits terms.

– For conditional density estimation, we use the MNIST dataset of handwritten dig-
its [17] and the CIFAR-10 dataset of natural images [14].

– The Twitter Part of Speech dataset [4] contains 1827 tweets annotated with 25 POS tags.

• When the name is divided by references, mark the sentences as if the references are
not there.

– The Allstate Insurance Claim [27] and the Flight Delay [28] datasets both contain a
lot of one-hot coding features.

• If the marked part contains a spelling error, this has to be fixed (as this cannot be done
in the annotating environment, this has to be done after, so make sure to notate the
sentences that need to be adjusted). Mark the sentence as if there is no spelling error.

† Based on the ACL RD-TEC Annotation Guideline, version 2.6 [45].
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Appendix C. Rule-Based Score

Table A1. Rule-based score on train and zero-shot sets.

Set Evaluation Precision Recall F1

Test set

B-tags 0.81 0.75 0.77

I-tags 0.79 0.72 0.76

Partial-match 0.81 0.71 0.76

Exact-match 0.76 0.67 0.71

Zero-shot set

B-tags 0.90 0.76 0.82

I-tags 0.88 0.76 0.82

Partial-match 0.92 0.78 0.85

Exact-match 0.88 0.75 0.81

Appendix D. More in Depth Results

Table A2. RQ1, overall performances: cross-validation scores.

Models Evaluation
Precision Recall F1-Score

CV-Score SD CV-Score SD CV-Score SD

Rule-based

B-tags 0.82 0.01 0.72 0.01 0.77 0.01

I-tags 0.79 0.01 0.76 0.02 0.77 0.02

Partial-match 0.81 0.01 0.72 0.02 0.81 0.01

Exact-match 0.77 0.01 0.68 0.02 0.72 0.01

CRF

B-tags 0.89 0.00 0.65 0.03 0.75 0.02

I-tags 0.86 0.00 0.72 0.02 0.78 0.02

Partial-match 0.89 0.00 0.65 0.03 0.75 0.02

Exact-match 0.85 0.01 0.62 0.03 0.72 0.02

BiLSTM

B-tags 0.86 0.01 0.75 0.01 0.80 0.00

I-tags 0.72 0.01 0.74 0.01 0.73 0.01

Partial-match 0.73 0.01 0.72 0.01 0.73 0.00

Exact-match 0.67 0.01 0.66 0.01 0.67 0.01

BiLSTM-CRF

B-tags 0.82 0.02 0.79 0.03 0.80 0.02

I-tags 0.78 0.02 0.76 0.03 0.77 0.03

Partial-match 0.77 0.03 0.76 0.03 0.77 0.02

Exact-match 0.72 0.03 0.71 0.04 0.72 0.03

BERT

B-tags 0.82 0.01 0.85 0.02 0.84 0.01

I-tags 0.78 0.01 0.81 0.01 0.80 0.01

Partial-match 0.79 0.01 0.83 0.01 0.81 0.01

Exact-match 0.75 0.01 0.79 0.02 0.77 0.01

SciBERT

B-tags 0.83 0.01 0.85 0.02 0.84 0.01

I-tags 0.79 0.01 0.82 0.01 0.81 0.01

Partial-match 0.80 0.01 0.84 0.01 0.82 0.01

Exact-match 0.76 0.02 0.80 0.02 0.78 0.02
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Table A3. RQ2, domain adaptability between corpora.

Models Evaluation
NIPS SDM SIGIR VISION

P R F1 P R F1 P R F1 P R F1

Rule-based

B-tags 0.82 0.72 0.77 0.75 0.73 0.74 0.79 0.77 0.78 0.89 0.68 0.77

I-tags 0.80 0.75 0.77 0.75 0.75 0.75 0.78 0.77 0.78 0.83 0.75 0.79

Partial-match 0.81 0.71 0.75 0.77 0.74 0.75 0.80 0.78 0.79 0.86 0.67 0.75

Exact-match 0.77 0.67 0.72 0.71 0.69 0.70 0.76 0.74 0.75 0.82 0.63 0.71

CRF

B-tags 0.89 0.61 0.72 0.87 0.67 0.76 0.87 0.64 0.73 0.92 0.57 0.70

I-tags 0.86 0.66 0.74 0.85 0.74 0.79 0.90 0.65 0.76 0.94 0.69 0.79

Partial-match 0.89 0.61 0.72 0.88 0.67 0.76 0.87 0.64 0.74 0.94 0.58 0.71

Exact-match 0.84 0.57 0.68 0.84 0.64 0.73 0.83 0.61 0.71 0.90 0.55 0.68

BiLSTM

B-tags 0.86 0.67 0.75 0.86 0.67 0.75 0.85 0.68 0.75 0.85 0.67 0.75

I-tags 0.69 0.70 0.69 0.70 0.70 0.70 0.68 0.69 0.69 0.69 0.71 0.70

Partial-match 0.72 0.64 0.68 0.72 0.64 0.68 0.71 0.64 0.67 0.72 0.64 0.68

Exact-match 0.66 0.59 0.62 0.66 0.59 0.62 0.64 0.59 0.61 0.65 0.59 0.62

BiLSTM-CRF

B-tags 0.87 0.57 0.69 0.86 0.56 0.68 0.87 0.60 0.71 0.86 0.60 0.71

I-tags 0.67 0.57 0.62 0.66 0.56 0.61 0.67 0.62 0.64 0.66 0.63 0.64

Partial-match 0.69 0.53 0.60 0.68 0.53 0.59 0.71 0.57 0.64 0.70 0.58 0.63

Exact-match 0.61 0.47 0.53 0.60 0.46 0.52 0.63 0.51 0.57 0.63 0.52 0.57

BERT

B-tags 0.84 0.81 0.83 0.85 0.86 0.85 0.78 0.86 0.82 0.80 0.79 0.80

I-tags 0.78 0.78 0.78 0.81 0.84 0.82 0.78 0.83 0.80 0.74 0.74 0.74

Partial-match 0.80 0.80 0.80 0.81 0.84 0.83 0.74 0.84 0.79 0.77 0.76 0.77

Exact-match 0.76 0.75 0.75 0.78 0.80 0.79 0.71 0.81 0.76 0.70 0.71 0.71

SciBERT

B-tags 0.84 0.83 0.83 0.85 0.86 0.86 0.77 0.88 0.82 0.81 0.80 0.81

I-tags 0.78 0.79 0.78 0.81 0.85 0.83 0.77 0.84 0.80 0.73 0.75 0.74

Partial-match 0.80 0.82 0.81 0.82 0.85 0.83 0.74 0.86 0.80 0.77 0.78 0.78

Exact-match 0.76 0.77 0.76 0.78 0.82 0.80 0.71 0.83 0.76 0.71 0.72 0.71



Data 2021, 6, 84 15 of 19

Table A4. RQ4, testing on a real ratio (positive vs. negative) test set.

Model Evaluation Precision Recall F1

CRF

B-tags 0.72 0.66 0.69

I-tags 0.67 0.73 0.70

Partial-match 0.72 0.66 0.69

Exact-match 0.69 0.63 0.66

BiLSTM

B-tags 0.65 0.12 0.20

I-tags 0.39 0.23 0.29

Partial-match 0.37 0.19 0.26

Exact-match 0.29 0.15 0.20

BiLSTM-CRF

B-tags 0.57 0.12 0.20

I-tags 0.46 0.30 0.36

Partial-match 0.49 0.29 0.37

Exact-match 0.38 0.23 0.29

BERT

B-tags 0.59 0.91 0.72

I-tags 0.69 0.89 0.78

Partial-match 0.57 0.91 0.70

Exact-match 0.55 0.88 0.68

SciBERT

B-tags 0.66 0.91 0.77

I-tags 0.73 0.89 0.80

Partial-match 0.65 0.91 0.76

Exact-match 0.63 0.88 0.73

Table A5. RQ5, differences between training on the golden standard or the weakly annotated data.

Training Set Evaluation
Test Set Zero-Shot

P R F1 P R F1

Train set

B-tags 0.87 0.87 0.87 0.87 0.79 0.82

I-tags 0.82 0.84 0.83 0.84 0.78 0.81

Partial-match 0.82 0.84 0.83 0.84 0.78 0.81

Exact-match 0.79 0.82 0.80 0.79 0.74 0.76

SSC

B-tags 0.77 0.71 0.74 0.83 0.70 0.76

I-tags 0.74 0.73 0.73 0.80 0.69 0.74

Partial-match 0.76 0.71 0.73 0.79 0.69 0.73

Exact-match 0.70 0.65 0.67 0.72 0.63 0.67
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Table A6. RQ5, training on three different distributions of real and ‘weak’ examples.

Training Set Evaluation
Test Set Zero-Shot

P R F1 P R F1

Train + SSC

B-tags 0.84 0.83 0.84 0.84 0.77 0.80

I-tags 0.79 0.80 0.80 0.86 0.79 0.82

Partial-match 0.81 0.82 0.81 0.84 0.78 0.81

Exact-match 0.76 0.77 0.76 0.80 0.74 0.77

SSC + Train

B-tags 0.84 0.81 0.83 0.84 0.79 0.81

I-tags 0.78 0.79 0.78 0.85 0.79 0.82

Partial-match 0.81 0.81 0.81 0.82 0.78 0.80

Exact-match 0.76 0.75 0.76 0.77 0.74 0.75

SSC & Train
shuffled

B-tags 0.83 0.83 0.83 0.85 0.81 0.83

I-tags 0.77 0.81 0.79 0.84 0.81 0.83

Partial-match 0.79 0.82 0.80 0.84 0.81 0.83

Exact-match 0.74 0.77 0.75 0.79 0.76 0.78

Table A7. RQ5, adding only positive ‘weak’ examples.

Training Set Evaluation
Test Set Zero-Shot

P R F1 P R F1

Train set &
positive examples

B-tags 0.83 0.86 0.85 0.84 0.79 0.82

I-tags 0.78 0.83 0.80 0.83 0.80 0.82

Partial-match 0.80 0.85 0.83 0.84 0.81 0.82

Exact-match 0.76 0.81 0.78 0.78 0.76 0.77

Appendix E. From PDF to Machine Readable Format

We initially extracted the text from the PDFs using pdftotext, an open-source command-
line utility for converting PDF files to plain text files [60]. We later discovered a much
more powerful tool for preprocessing scientific papers for scientific information extraction,
named GROBID. GROBID is a machine learning library for extracting, parsing and re-
structuring raw documents, such as PDFs, into structured XML/TEI encoded documents
with a particular focus on technical and scientific publications [39]. The advantage of using
GROBID over pdf2text is that GROBID is able to extract more information than pdf2text.
The core features as described by GROBID include the following:

1. Header extraction and parsing (e.g., title, abstract, authors, affiliations, keywords, etc.);
2. References extraction and parsing (including DOI identifiers);
3. Citation contexts recognition and linking (including URL extraction);
4. Full text extraction and structuring (e.g., paragraph, section titles, reference callout,

figure, table, and foot notes).

For each conference, we parsed the publications available to us and extracted the
following information from the GROBID conversion output: article ID, conference, title of the
publication, raw text, sections (number, title and index of starting character), list of author names,
references and status of publication.
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