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1 Introduction

Recent developments have shed new light on the question whether the formation and
evaporation of black holes happen in a unitary fashion. This problem, known as the black
hole information problem, boils down to reproducing the Page curve: to save unitarity,
the von Neumann entropy of the collected Hawking radiation should initially rise during
evaporation, but start decreasing after reaching a halfway point known as the Page time [1,
2]. However, a semiclassical gravity approach gives an ever-increasing entropy, usually
called the Hawking curve. This tension has a formal resolution in holography: replacing the
black hole by its dual representation, it is clear that the process must be unitary. One would
like to find the analogous statement from the gravity point of view, e.g. using holographic
entropy tools such as the Ryu-Takayanagi formula and its covariant extension [3, 4]. The
recent progress was initiated by two groups [5, 6] that used the minimal Quantum Extremal
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Surface (QES) [7], the surface that minimizes the generalized entropy, to monitor the
evolution of the entropy of the evaporating black hole.

It was found that the QES undergoes a transition at the Page time and jumps from
being the empty surface to a surface just inside the black hole horizon. This reproduces a
Page curve for the black hole in geometric terms, but not for the radiation. Using a doubly
holographic model, i.e. considering a black hole in a gravitational theory with matter that
itself has a holographic dual, the authors of [8] showed that in this setup one can simply use
the RT/HRT formula in the higher-dimensional dual. This ensures that in the evaporating
black hole picture the minimal surface of the radiation and the black hole coincide, thus
obtaining a Page curve for the radiation as well. The higher-dimensional geometry connects
the radiation to the black hole interior, such that (at late times) the black hole interior
becomes part of the entanglement wedge of the radiation or ‘bath’. This led to a new rule
for computing the entropy in gravitational systems, now known as the “Island Rule”:

S[Rad]QG = min
I

{
ext
I

[
S[Rad ∪ I]SCG + Area[∂I]

4G

]}
. (1.1)

The prescription tells us that to compute the entropy of Hawking radiation in quantum
gravity, we should include “quantum extremal islands” in our semi-classical entropy cal-
culation. These islands can minimize the entropy, e.g. an island just inside the black hole
horizon will include Hawking partners of the radiation. The price to pay is the area of the
island. Finally, one has to extremize and minimize over all possible islands.

Most of the recent work takes place in two spacetime dimensions and in Anti-de Sitter
space, which makes the calculation of entanglement entropy more tractable.1 For example,
in [6], the specific model considered was that of two-dimensional JT gravity coupled to a
bath. In the doubly-holographic model of [8], JT gravity was coupled to conformal matter
(a CFT2), which played the role of the bath. This CFT is then itself the boundary theory of
a dual AdS3 bulk. The JT gravity lives on a Planck brane, which in the three-dimensional
picture can be thought of as a Randall-Sundrum or End-of-the-World (EOW) brane. These
doubly-holographic models, and the closely related BCFT models, have proven successful
in other setups as well [12–19].

The natural environment to study the information paradox consists of evaporating
black holes. However, a version of the Page curve can also be found for eternal black holes.
In [13], a transition in the entanglement entropy was shown to occur also for the case of
thermal equilibrium between black hole and bath: even though the black hole does not
evaporate, it does “radiate” information away. In a related paper [20], the authors use
the language of islands to study a version of the information paradox. Interestingly, they
show that the island that resolves the paradox lies outside of the horizon. In this paper we
like to add to this exciting line of research by combining some of the previous techniques.
We present a model of evaporation of a two-dimensional black hole that is coupled to a

1There is no reason to believe the general arguments should fail in higher dimensions, and some explicit
extensions to higher-dimensional systems exist, see e.g. [9] for a numerical example, also following the
doubly-holographic route, and [10] for an exact example. Extensions to black holes in asymptotically flat
space also exist, see e.g. [11, 12].
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heat bath consisting of a thermal CFT. Microscopically we represent the black hole by a
one-dimensional quantum mechanical model that lives on the boundary of the CFT. We
will choose a quantum mechanical model that has a dual description in terms of JT gravity
with an asymptotically AdS2 geometry. Since the quantum mechanical model has a finite
temperature (it is in an excited state), its dual is given by a two-dimensional AdS black hole.

Our goal is to shed light on the origin of the Page curve and the island phenomenon
by geometrizing both these concepts in this very simple setting. To simplify things even
further, we will implement the original argument of Page: he envisaged the evaporation
process by considering the pure state of the total system and by modeling the evaporation
as a time evolution of the way that the total pure state is divided up in into a black hole
and radiation part. This version of the Page argument is most direct if one thinks of the
total state as a given pure state that itself does not evolve in time. To make this concrete,
we identify the pure state of the total system with the final state of the radiation system
at the end of the evaporation process. In our context the final state describes an excited
CFT state, and hence is dual to the full BTZ geometry. The evolution of the system is
then represented in the Heisenberg picture by evolving the operators in time. Initially all
operators are associated with the black hole system, while as time progresses more and
more operators become associated with the thermal bath of the radiation.

This idea can be concretely implemented in our model by viewing the 2D black hole
in JT gravity as the dimensional reduction of part of the 3D BTZ geometry. In this
representation, the angular metric component takes on the role of the dilaton. Instead of
applying a full dimensional reduction, we will reduce over part of the range of the angular
coordinate; thereby, we effectively split the geometry into two parts: a JT black hole, and
a 2D CFT dual to the remainder of the 3D geometry. See figures 1 and 2 for a schematic
depiction of the setup. The 2D CFT will model a ‘bath’, and we can now compute the
entanglement entropy of an interval in the bath system using RT surfaces.

We can introduce dynamics into the finite temperature JT black hole system by giving
time-dependence to the parameter that controls the dimensional reduction. In this way,
we can let the black hole ‘geometrically’ evaporate. From the BTZ perspective, we simply
move the dividing line between the degrees of freedom that are ‘in’ and ‘out’ of the black
hole. From the JT perspective, the mass decreases linearly and the temperature is fixed.
Exploiting a map of BTZ parameters discussed in [21], we can equivalently view this
evaporation as adiabatically decreasing the mass of the BTZ black hole, such that we can
consider it to be in thermal equilibrium at each instant of time. On the JT gravity side, this
gives us a more standard exponential evaporation, where the temperature depends on time.
Finally, computing the entropy of the entire bath system for the ‘geometric evaporation’,
we obtain a Page curve for the radiation entropy.

This paper is organized as follows. In section 2 we briefly review black holes in JT
gravity, and discuss how to obtain both extremal and non-extremal black holes from AdS3
by dimensional reduction. In section 3, we compute the generalized entropy for intervals
in the black hole plus bath systems from a three-dimensional point of view. Then, we will
introduce dynamics in section 4, and allow the non-extremal black hole to slowly evaporate.
Finally, we obtain a Page curve for the entropy of the radiation.
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2 JT gravity from AdS3 black holes

After a brief reminder on extremal and non-extremal black holes in JT gravity, we show
how to obtain these black holes from AdS3 by dimensional reduction. We end with some
comments on retrieving the boundary action from the dimensional reduction.

2.1 Review: black holes in JT gravity

Jackiw-Teitelboim (JT) gravity is a two-dimensional dilaton gravitational theory (see [22,
23] for the original model, and [24, 25] for compact reviews). If we require the classical
background metric to be given by AdS2 with AdS radius `, we find the following action:

S = 1
16πG

[∫
d2x
√
−gΦ0R +

∫
d2x
√
−gΦ

(
R+ 2

`2

)]
+ Smatter . (2.1)

The first term (with Φ0 a constant) is topological and determines the extremal entropy;
after adding the appropriate boundary term it gives the Euler characteristic of the manifold.
The second term is the JT term and the equation of motion for Φ sets R = − 2

`2 , i.e. it
forces the spacetime to be asymptotically AdS2. Smatter is some arbitrary matter system
that couples to the metric but not to the dilaton. The general solution for the metric is

ds2 = −4`2 dX+ dX−

(X+ −X−)2 , (2.2)

where X+(u) and X−(v) are general monotonic functions of the lightcone coordinates
(u, v). The AdS2 boundary is located at X+(u) = X−(v).

The action (2.1) admits black hole solutions, dynamically formed by throwing in matter
from the boundary. The vacuum equations of motion are solved by the dilaton profile

Φ = Φ0 + 2Φr
1− κEX+X−

X+ −X−
, (2.3)

where E = M is the mass of the black hole and Φr = 4πG
κ is an integration constant

that specifies the asymptotic boundary conditions of the dilaton field (notice that Φ is
dimensionless, but Φr has dimensions of length2). In particular, close to the boundary
g = `2

ε2 and Φ− Φ0 = Φr
ε , with ε the UV cutoff. Through the substitution

X+(u) = 1√
κE

tanh
(√

κEu
)
, X−(v) = 1√

κE
tanh

(√
κEv

)
, (2.4)

we find that the metric and dilaton are periodic in imaginary time with period

β = π/
√
κE ⇒ TH = 1

π

√
8πGE
2Φr

. (2.5)

2In some references, e.g. [26, 27], the action is derived from a four-dimensional parent theory, such that
the Newton’s constant has dimension (length)2. This gives the dilaton Φ dimensions of (length)2 and the
interpretation of an area. In (2.1), however, we work directly in two dimensions such that G is dimensionless.
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In terms of the lightcone coordinates (u, v), the metric and dilaton profile are

ds2 = −4π2`2

β2
du dv

sinh2 π
β (u− v)

, Φ = Φ0 + 2πΦr

β

1
tanh π

β (u− v) . (2.6)

The future and past horizons are at u = ∞ and v = −∞. Note that if we take the
limit E → 0 we recover the AdS2 geometry in Poincaré coordinates and the corresponding
dilaton profile:

ds2 = −4`2 dX+ dX−

(X+ −X−)2 , Φ = Φ0 + 2Φr

(X+ −X−) . (2.7)

Since E → 0 sets also the Hawking temperature TH → 0, we will interpret this solution as
the extremal AdS2 black hole. In the following sections, we will see how to obtain these
black holes from three dimensional Anti-de Sitter space.

2.2 Dimensional reduction from 3D Einstein to JT gravity

Consider the three-dimensional action

S = 1
16πG(3)

∫
d3x
√
−g(R(3) − 2Λ) , (2.8)

with negative cosmological constant Λ < 0. Solutions are asymptotically AdS3 with the
AdS radius given by Λ = − 1

`23
, and include the BTZ solution. Suppose that we have a

solution for which the metric field is independent of one coordinate, which we will call ϕ,
and that it can be written as

ds2 = gµν dxµ dxν = hij(xi) dxi dxj + φ2(xi)`23 dϕ2 , (2.9)

where the indices µ, ν = 0, 1, 2 and i, j = 0, 1. Then the action (2.8) reduces to

S = 2πα`3
16πG(3)

∫
d2x
√
−hφ(R(2) − 2Λ) , (2.10)

See also [28]. Here, we accounted for a partial reduction controlled by the parameter
α ∈ (0, 1] for reasons that will become clear later. We see that we retrieved the JT
action (2.1) (ignoring the topological piece) for Λ = − 1

`2 , the cosmological constant for
AdS2 gravity. If we identify `3 = ` and G(3) = `G(2) then we are led to conclude that the
dilaton in (2.1) is given by

Φ = 2παφ . (2.11)

Since the three-dimensional Newton’s constant has dimensions of length, from this reduc-
tion we again inherit a dimensionless dilaton (remember that in (2.1), the two-dimensional
Newton’s constant is dimensionless, and therefore the dilaton as well). Note that we do
not obtain the topological part of the JT action. Since we are interested in the fluctuations
away from extremality, this will not pose a problem. Thus, we will define the boundary
condition to be

Φ|bdy = Φr

ε
. (2.12)

– 5 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
2

Taken to the boundary we have
φ|bdy = `

ε
, (2.13)

such that we should interpret
Φr = 2π`α ≡ Φ0

rα . (2.14)

In what follows we will therefore use

Φ = Φr

√
gϕϕ

`2
= Φr

φ

`
. (2.15)

We will now apply this procedure to Poincaré AdS3 and the BTZ black hole.

2.3 Extremal AdS2 black hole from AdS3

The metric of AdS3 in Poincaré coordinates is given by:

ds2 = `2

z2 (− dt2 + dz2 + dx2) . (2.16)

We would like to reproduce (2.7). First, note that we can use the coordinate transformation
z = `2

r and x = `ϕ to rewrite the above as

ds2 = −r
2

`2
dt2 + `2

r2 dr2 + r2 dϕ2 . (2.17)

This is exactly of the form (2.9), with φ` = r. Hence we arrive immediately at the
conclusion that AdS3 in Poincaré coordinates reduces to a solution of JT gravity. To
get exactly (2.7), we can instead use lightcone coordinates X± = t ± z, in which the
metric (2.16) becomes

ds2 = −4`2 dX+ dX−

(X+ −X−)2 + 4`4 dϕ2

(X+ −X−)2 . (2.18)

Therefore, comparing to (2.7) we obtain precisely the AdS2 Poincaré metric if we identify
the dilaton:

Φ = Φr

√
gϕϕ

`2
= 2Φr

X+ −X−
. (2.19)

Note that this matches the dilaton in [20] up to the extremal part of the dilaton Φ0.

2.4 Finite temperature AdS2 black hole from BTZ

We can follow a similar procedure for the finite temperature case. Now, we start from the
BTZ geometry,

ds2 = −
(
r2 −R2

`2

)
dt2 +

(
r2 −R2

`2

)−1

dr2 + r2 dϕ2 , (2.20)

where R2 = 8GM`2 is the horizon radius and the inverse temperature is β = 2π`2
R . The

BTZ metric (2.20) is also of the form (2.9) and hence we could immediately identify again
φ` = r. To make contact with our earlier description of the non-extremal black hole in

– 6 –
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JT gravity, we change coordinates to u = t + r∗, v = t − r∗. Here r∗ is the usual tortoise
coordinate, defined through

dr∗ =
(
r2 −R2

`2

)−1

dr . (2.21)

Outside the horizon, the metric takes the form

ds2 = −4π2`2

β2
du dv

sinh2 π
β (u− v)

+ 4π2`4

β2
1

tanh2 π
β (u− v)

dϕ2 . (2.22)

In the first part we recognize precisely the AdS2 black hole metric (2.6). Furthermore we
can identify again the dilaton profile

Φ = Φr

√
gϕϕ

`2
= 2πΦr

β

1
tanh π

β (u− v) . (2.23)

Again, this matches the dilaton in [20] up to the extremal contribution Φ0.

2.5 Boundary action

In JT gravity, the boundary term in the action famously leads to the Schwarzian action.
We wish to reproduce the Schwarzian action from the three-dimensional point of view. The
Gibbons-Hawking term is

SGH = 1
8πG(3)

∫
d2x
√
−h

(
K(3) + 2

`

)
= 2πα`

8πG(3)

∫
dt
√
−htt φb

(
K(3) + 2

`

)
, (2.24)

where φb is the boundary value of φ. The trace of the extrinsic curvature splits into two
parts:

K(3) = hµνKµν = K(2) + hϕϕKϕϕ . (2.25)

We evaluate the two-dimensional K(2) below and first focus on the contribution hϕϕKϕϕ.
To perform the dimensional reduction, we initially choose the boundary to be at a fixed
value of z. We find both in Poincaré as well as in BTZ

hϕϕKϕϕ = −1
`
, (2.26)

which is expected for the curvature of a circle. Thus, the boundary term in the action is
(using Φ = 2παφ)

SGH = 1
8πG

∫
dt
√
−htt Φb

(
K(2) + 1

`

)
. (2.27)

We will use this action to describe the dynamics. We will denote the boundary time
coordinate with t, which becomes a parameter for the dynamical boundary trajectory(
τ(t), z(t)

)
[24–26]. Here, τ and z are (fixed) coordinates on the AdS2 boundary; we will

choose them to be the Poincaré coordinates. We then require that the boundary of AdS2,
i.e. the surface u = v ≡ t, coincides with the general boundary X+(u) = X−(v). This
defines the dynamical boundary time to be

X+(t) = X−(t) ≡ τ(t) . (2.28)

– 7 –
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QM

CFT2

JT

AdS3

2πα

b b

Figure 1. AdS3-Poincaré, partially reduced over the angle 2πα. The purple region is the 2D JT
extremal black hole, and the green region is dual to the bath 2D CFT. The blue geodesic computes
the entropy of the region [0, b] in the CFT, including the quantum mechanical system.

We demand that the induced metric satisfies g|bdy = htt = − `2

ε2 , which then implies that
z = ε

√
(τ ′)2 − (z′)2 = ετ ′ +O(ε3). The normal to the boundary z = z(t(τ)) is

na = `

z

1√
τ ′2 − z′2

(−z′, τ ′) . (2.29)

This gives K(2) ≈ −1
` + ε2

` {τ, t}, with {τ, t} = τ ′′′

τ ′ − 3
2

(
τ ′′

τ ′

)2
the Schwarzian derivative.

Thus, the Gibbons-Hawking term evaluates to

SGH = 1
8πG

∫ dt `
ε

Φb

(
K(2) + 1

`

)
= 1

8πG

∫
dtΦr{τ(t), t} , (2.30)

where we defined Φb = Φr
ε . As before, Φ is dimensionless such that Φr has dimensions of

length.

3 Generalized entropy of JT black holes

In this section we compute the generalized entropy for intervals in the extremal and finite
temperature black hole plus bath systems. We do so from the higher-dimensional point of
view discussed in the previous section, i.e. we will use geodesics.

3.1 Extremal AdS2 black hole

In [20], the generalized entropy for an interval in the extremal black hole + bath system
was computed from the two-dimensional point of view. Here, instead, we want to compute
the generalized entropy from the point of view of AdS3. The setup that we have in mind is
depicted in figure 1. Here, we have done a partial dimensional reduction of the ϕ-direction,
i.e. instead of integrating the coordinate ϕ in (2.17) over 2π we integrated over some angle
2πα with α ∈ (0, 1]. The result is that the spacetime has been split into two parts: one is the
JT black hole, the other is dual to the CFT/bath system. Now, if we consider an interval

– 8 –
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2πα

QM

CFT2

JT

BTZ

(a) t < tPage

2πα

QM

CFT2

JT

BTZ

(b) t > tPage

Figure 2. We have done a partial reduction over the angle 2πα. The value of α determines if the
black hole is before (a) or after (b) the Page time.

[0, b] in the CFT/bath system — which also includes the quantum mechanical degrees of
freedom — its entropy will be given by the length of the blue geodesic in figure 1. This
can be easily computed using embedding coordinates. The details are in appendix A.1.
The entropy of an interval of which the endpoints lie at the same radial distance r and
separated by an angular interval ∆ϕ is given by

S = 1
2G arcsinhr∆ϕ2` . (3.1)

Here and in what follows G = G(2). If we take the endpoints to lie on the boundary, as is
the case for the geodesic in figure 1, one can expand to get

S = 1
4G

(
2 log Φr + 2b

`

)
, (3.2)

where we used Φr = 2π`α and dropped the (constant) UV cutoff, as we will be interested
in comparing different entropies.

3.2 Finite temperature AdS2 black hole

For the BTZ case, the setup is as in figure 2. Again, we have done a partial dimensional
reduction over the ϕ-coordinate up to 2πα ∈ (0, 2π]. The corresponding region in the BTZ
black hole now reduces to a black hole in JT gravity (purple region). The remainder (green
region) we view as dual to the bath (2D CFT) degrees of freedom. By decreasing the value
of α from 1 to 0, we can geometrically ‘evaporate’ the black hole. We will comment more
on this in the next section, in which we discuss the dynamics of our model. For now, we
will distinguish two cases: ‘before’ and ‘after’ the Page time or the half-way evaporation
point (figure 2a and 2b, respectively). In both cases, the entropy of an interval [0, b] in

– 9 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
2

b b

(a) t < tPage

b b

(b) t > tPage

Figure 3. To find the entropy of the double interval [0, b], including the quantum mechanical
degrees of freedom, we need to compute the length of the blue geodesics.

the CFT, which also includes the quantum mechanical degrees of freedom, is given by the
length of a geodesic in BTZ of which the endpoints lie at the boundary (on a fixed time
slice). The details are in appendix A.2. Before taking the endpoints to the boundary, the
entropy of such an interval is given by

S = 1
2G arcsinh2π`2r

β
sinh π

β
`∆ϕ , (3.3)

where ∆ϕ is the angular separation of the two points. For the geodesic in figure 3a, i.e.
before the Page time, we then find (expanding for r →∞)

S = 1
4G

(
2 log sinh π

β

(
2π`(1− α)− 2b

))
, (3.4)

where again we dropped the UV cutoff. After the Page time, the geodesic ‘jumps’ and
crosses the purple region (see figure 3b). Thus the entropy is now given by

S = 1
4G

(
2 log sinh π

β
(2π`α+ 2b)

)
. (3.5)

Eventually, we are interested in the entropy of the entire bath of radiation, i.e. we wish to
take b→ 0. We will do so in section 4.5.

Notice that we are viewing the full black hole + bath geometry as being in a pure
state: we think of the BTZ black hole as the result of some collapsing matter, i.e. the re-
sulting three-dimensional geometry is still describing a pure state. Since we are interested
in obtaining a Page curve, this is also the natural state to consider. If we instead consider
the geometry to be in the thermal state, we have to add a second, disconnected contri-
bution (the BTZ black hole area) to the entropy if the angular interval grows larger than
some critical angle [29]. In that case, the transition occurs much later than the halfway
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evaporation point and one would not reproduce the Page curve. In fact, the inclusion of
the black hole entropy would lead to an entanglement entropy that is more reminiscient of
the Hawking curve.

4 Dynamical evaporation

The black holes we have discussed so far will not dynamically evaporate, because the
black hole is in thermal equilibrium with the CFT. This means that the in- and out-flux of
energy are equal. If we allow instead for particles to escape, we can simulate an evaporation
process. Our model is somewhat similar to the recent models [5, 6, 8] (see also e.g. [30, 31],
in which Hawking radiation is allowed to escape to the ‘bath’ consisting of a 2D CFT on the
half-line). Note that in some other models, such as [20, 32], the black hole is in equilibrium
with the bath. In that case, the black hole does not evaporate and an island appears outside
of the horizon. The model we propose lies somewhere in between. For the purposes of
discussing the evaporation process, we will only consider the finite temperature black hole.

In our model, the JT gravity theory is obtained by a dimensional reduction of the
three-dimensional AdS gravity theory on the BTZ background. One can also view the JT
gravity theory as being the induced theory on a tensionless end-of-the-world (EOW) brane
that bounds the BTZ geometry. Note that, unlike in other brane world scenarios, there is
no explicit gravitational action added on the boundary. In this sense, the 2D JT gravity
can be seen as being equivalent to the bulk theory that has been removed from the BTZ
geometry. Indeed, in the microscopic description we identified the AdS2 black hole as being
represented by the removed part of the full quantum state of the boundary theory (i.e. the
purple part of the boundary in figures 2 and 3). Note that this part is not sufficient to
describe the entire integrated-out bulk region, but only describes the entanglement wedge
bounded by the geodesic in figure 3. The remaining part is described by the bath.

The induced JT gravity theory couples at the boundary to the CFT bath. To model the
evaporation process we allow a small amount of energy to leak in to the CFT bath. From
the microscopic perspective there is no mystery in this evaporation process: by adjusting
the temperature of the bath to be slightly below that of the QM system, there will always
be a net heat flow into the bath. In the gravity dual this energy flux is interpreted as
Hawking radiation that has escaped the black hole. Note that for this process to occur it is
not essential that the dual theory contains local matter fields. Even the pure gravitational
degrees of freedom are capable of transferring energy from the black hole to the boundary.

In the preceding sections, we stated that we can consider different phases of evap-
oration by means of the parameter α, which controls the dimensional reduction (and is
closely related to the dilaton). So far, we did not discuss a dynamical way of changing
Φr ∼ α. In this section, we will add explicit time-dependence to the renormalized dilaton
Φr(t) = 2π`α(t) and see that this indeed results in an evaporating black hole. Then, we
will map this to a more standard evaporation protocol in which the dilaton is fixed, but
the temperature (and mass) of the black hole decrease. To do so, we will use a mapping
between two BTZ geometries with different parameters. We will first briefly discuss this
mapping, and then proceed to compare the two perspectives on evaporation.
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4.1 Mapping two BTZ geometries

We consider a map between two BTZ geometries with different parameters introduced
in [21]:

BTZ(Mλ2; 2π) ≡ BTZ(M ; 2πλ) . (4.1)

On the left hand side we have a BTZ geometry with a mass that can vary; on the right
hand side we have a BTZ geometry with a varying conical deficit. We start from the usual
BTZ metric

ds2 = −
(
r2

`2
− 4π2`2

β2

)
dt2 +

(
r2

`2
− 4π2`2

β2

)−1

dr2 + r2 dϕ2 , (4.2)

where ` is the AdS length, the horizon is at R2 = 8GM`2 and ϕ ∼ ϕ + 2π is identified.
The inverse temperature is β = 2π`2

R . Now, consider the transformation

r = λr̃, R = λR̃, t = λ−1t̃, ϕ = λ−1ϕ̃ . (4.3)

This keeps the form of the metric invariant as in (4.2), but the periodicity in ϕ̃ is now 2πλ.
Under this λ-transformation, the entropy S = 2πR

4G(3) remains invariant, but the Hawking
temperature TH = R

2π`2 gets scaled by λ−1. If we pick λ = 2π`
β and leave R (or equivalently

β) fixed, we find

ds2 = −
(
r̃2

`2
− 1

)
dt̃2 +

(
r̃2

`2
− 1

)−1

dr̃2 + r̃2 dϕ̃2 . (4.4)

In what follows, we will use tilded coordinates to describe the BTZ geometry on which we
performed a partial reduction in section 3.2. Indeed, in this case the temperature is fixed
and the periodicity of ϕ̃ leads us to identify α with λ = 2π`

β . We will study the dynamics
of this model in the next section. We will then use the above map in section 4.3 to find
untilded coordinates in which the black hole energy decays exponentially.

4.2 Black hole evaporation using boundary dynamics

To study the dynamics of our model, consider again the Schwarzian action

S = 1
8πG

∫
dtΦr{τ, t} , (4.5)

where we will allow for Φr to be time-dependent. Varying with respect to τ(t) gives the
equation of motion (in the absence of matter terms)

1
τ ′

(
Φr{τ, t}′ + 2Φ′r{τ, t}+ Φ′′′r

)
= 0 , (4.6)

where primes denote t-derivatives. If Φr is constant, this reduces to the more familiar

1
τ ′
{τ, t}′ = 0 , (4.7)
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i.e. we are looking for non-constant functions τ(t) with constant Schwarzian. This leads to
the solution for the non-evaporating black hole, where

τ = β

π
tanh π

β
t , (4.8)

with constant inverse temperature β and (constant) ADM energy

E = − Φr

8πG{τ, t} = 2π2

β2
Φ0
r

8πG ≡ E0 . (4.9)

Now we will restore time-dependence and use tilded quantities to distinguish from the
above case. Remember that in the model at hand, we have done a partial reduction of the
BTZ geometry, resulting in a JT gravity part with dilaton

Φ̃r = 2π`α(t̃) ≡ Φ0
rα(t̃) , (4.10)

where we defined Φ0
r ≡ 2π` and α(t̃) decreases from 1 to 0. We interpret the remaining part

as holographically dual to a 2D CFT. Now, the decreasing α does not affect the temperature
of the 2D black hole, which is directly inherited from the BTZ black hole. Therefore, we
will consider this temperature to be fixed and we will keep τ = β

π tanh π
β t̃. To represent

the interaction with the bath, we add an extra term to the equation of motion (4.6), equal
to the incoming minus the outgoing energy flux (cf. [6, 25]).

− 1
8πG

(
Φ̃r{τ, t̃}′ + 2Φ̃′r{τ, t̃}+ Φ̃′′′r

)
= T̃vv(t̃)− T̃uu(t̃) = : T̃vv(t̃) : − : T̃uu(t̃) : . (4.11)

Initially, we are in thermal equilibrium and the right hand side vanishes. At t̃ = 0 we
break thermal equilibrium, such that there is a net outgoing energy-momentum flux on the
boundary for t > 0,

: T̃uu(t̃) : = − c

24π{τ, t̃} ,
: T̃vv(t̃) : = −(1− ε) c

24π{τ, t̃} . (4.12)

Note that perfect absorbing boundary conditions mean ε = 1, such that : T̃vv(t̃) := 0; here,
we are interested in ε � 1, such that the evaporation is adiabatic. One can think of this
net flux as simply the effect of moving the dividing line between the JT gravity and CFT
part of our BTZ black hole, as in figure 2: we are relabeling which degrees of freedom are
‘in’ and which are ‘out’ of the black hole. Then, since {τ, t̃} = −2π2

β2 = cst, (4.11) gives

− 1
4πGΦ′r = ε

c

24π , (4.13)

which we can solve to find

Φ̃r = Φ0
r α(t̃) = Φ0

r

(
1− A

2 t̃
)
, where A

2 = ε
c

6
G

Φ0
r

. (4.14)

We think of A2 as an evaporation rate (we pick the factor 1
2 for later convenience). In terms

of this evaporation rate, the energy in this coordinate system decreases as

dẼ

dt̃
= T̃vv − T̃uu = −ε c

24π
2π2

β2 = −E0
A

2 . (4.15)

Here and below, β should be interpreted as a constant, unless explicitly written as β(t).
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4.3 From linear to exponential evaporation

In many models of black hole evaporation, the energy decreases exponentially in time (see
e.g. [6, 25, 30, 31]). In those models, the two-dimensional JT black hole is put into contact
with an external bath. We will now show how our model relates to this type of evaporation,
in which the temperature depends on time and the dilaton is fixed. To do so, we will exploit
the mapping discussed in section 4.1.

As a first step, we need to find t̃(t). A simple solution comes from considering again
the Schwarzian action with constant dilaton and changing t→ t̃(t):

S = 1
8πG

∫
dtΦ0

r{τ, t} = 1
8πG

∫
dtΦ0

r

[(
dt

dt̃

)−2

{τ, t̃} − {t̃, t}
]

= 1
8πG

∫
dt̃Φ0

r

(
dt̃

dt

)
{τ, t̃} = 1

8πG

∫
dt̃ Φ̃r(t){τ, t̃}

(4.16)

where in the second line we assumed that {t̃, t} is constant, as we will later confirm. Then
requiring that the action is invariant leads us to conclude that Φ̃r(t) = Φ0

r
dt̃
dt , i.e.

dt̃

dt
= α(t̃) = 1− A

2 t̃ . (4.17)

Solving (4.17), we find that t and t̃ are related by

t̃(t) = 2
A

(1− e−At/2) ⇒ dt̃

dt
= e−At/2 , {t̃, t} = −1

2

(
A

2

)2

. (4.18)

For a similar discussion on exponential evaporation with a more complicated solution for
t̃(t), see [30–32]. We expect that our solution is a good approximation to these more general
models in the limit of slow evaporation.

4.4 Exponentially evaporating black hole

We are now ready to connect the linear/geometric evaporation presented in section 4.2 to
the more common exponential decay. As before, we start from the energy flux equation,
which for constant dilaton reduces to

− 1
8πGΦ0

r{τ, t}′ = : Tvv(t) : − : Tuu(t) : . (4.19)

A priori we do not know the energy flux on the right hand side. However, transform-
ing (4.11) gives information on this. Since the right hand side is manifestly a tensor (T̃t̃t̃)
both the left and right hand side should transform as a tensor. Indeed we find that under
t̃→ t̃(t) we get

−
(
dt̃

dt

)−2 (
Φr{τ, t}′ + 2Φ′r{τ, t}+ Φ′′′r

)
=
(
dt̃

dt

)−2

8πG(Tvv − Tuu) (4.20)

Here, we have not yet assumed that Φr = cst; we only assumed that it transforms as a
vector, i.e. Φ̃r(t̃) = dt̃

dtΦr(t). Hence we conclude

Tvv − Tuu =
(
dt̃

dt

)2

(T̃vv − T̃uu) =
(
dt̃

dt

)2

ε
c

24π{τ, t̃} . (4.21)
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Thus, where we previously had a constant net energy flux, this time we have an exponen-
tially decreasing net flux. Therefore, we conclude that the ADM energy decreases as

E = − Φr

8πG{τ, t} = E0e
−At + 1

2

(
A

2

)2 Φ0
r

8πG , (4.22)

and
dE

dt
= − Φr

8πG{τ, t}
′ = − c

24π
2π2

β2 e
−At . (4.23)

Finally, from the map discussed in section 4.1 we know that

dt̃

dt
= 2π`
β(t) ⇒ β(t) = 2π` e

A
2 t . (4.24)

As also noted in [25], for low evaporation rates, i.e. in the regime A� 1
` , the evaporation

is adiabatic. The length scale Φ0
r
c ε sets the evaporation time of the black hole.

4.5 Obtaining the Page curve

From the Hawking temperature (2.5) we see that the entropy and energy are related via

SBH = 2π

√
EΦr

4πG . (4.25)

Consider this formula in the tilded coordinate system discussed in section 4.2. We have

S̃BH(t̃) = 2π

√
Ẽ(t̃)Φ̃r(t̃)

4πG = 2π
β

Φ0
r

4G

(
1− A

2 t̃
)
, where A

2 = ε
cG

6Φ0
r

. (4.26)

Hence this entropy decreases linearly in time t̃ (remember that β is fixed). Note that also
via this method, we do not obtain the extremal entropy S0 = 1

4GΦ0, consistent with our
earlier statement that the topological piece Φ0 is not relevant for our model. In the untilded
coordinate system discussed in 4.4, we find

SBH(t) = 2π

√
E(t)Φr

4πG = Φ0
r

4G

√
A2

4 + 4π2

β2 e
−At . (4.27)

Next, we would like to make contact with our entropy calculations performed in section 3.
The comparison is most natural in the tilded coordinates. In section 3.2 we found (3.4)
and (3.5) before and after the Page time, respectively. We are now interested in the entropy
of the entire bath, i.e. we wish to take b→ 0. Then before the Page time we find

S t̃<t̃Page = 1
4G

(
2 log sinh π

β
Φ0
r

A

2 t̃
)
. (4.28)

After the Page time we get

S t̃>t̃Page = 1
4G

2 log sinh π
β

Φ0
r

(
1− A

2 t̃
) . (4.29)
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t̃

S
1

4G
2πΦ0

r

β

2/A

S
t<tPage
rad

S
t>tPage
rad , SBH

Srad

Figure 4. The entropy of the radiation follows a Page curve (red line).

For high temperatures Φ0
r � β we can approximate this with

S ≈


1

4G

(
Φ0
r

2π
β
A
2 t̃
)

if t̃ < t̃Page
1

4G

(
Φ0
r

2π
β (1− A

2 t̃)
)

if t̃ > t̃Page
. (4.30)

Notice that for t̃ > t̃Page = A−1 the entropy of the radiation is equal to the entropy of the
black hole in (4.26). The latter is the coarse-grained entropy and follows a Hawking curve.
From (4.30) it is clear that we indeed reproduce a Page curve for the radiation entropy;
see figure 4.

If we do not expand for large cutoff, and without zooming in on the regime Φ0
r � β,

we can study the qualitative behavior of the entropy using

S = 1
2G arcsinhr∞

R
sinh R2 ∆ϕ , (4.31)

where R = 2π`2
β is the BTZ radius, r∞ is the cutoff surface, and ∆ϕ = 2πA2 t̃ before and

∆ϕ = 2π
(
1− A

2 t̃
)
after the Page time. This gives figure 5.

5 Discussion

In this paper, we investigated JT black holes of zero and finite temperature coupled to
a bath (a 2D CFT) from a higher-dimensional, geometrical perspective. By performing
a partial dimensional reduction from Poincaré AdS3 and the BTZ geometry, respectively,
we effectively split the three-dimensional spacetime into a two-dimensional black hole and
a remainder, of which the holographic dual takes on the role of the bath. The boundary
conditions on the dilaton lead us to identify the renormalized value of the dilaton with the
parameter α controlling the dimensional reduction: Φr = 2π`α. This procedure allowed us
to compute the entropy of an interval in the bath/radiation by simply computing geodesic
lengths in the three-dimensional spacetime.
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S

t̃

S

t̃

Figure 5. The qualitative behavior of the entropy for ∆ϕ = 2πA2 t̃ (blue) and ∆ϕ = 2π(1 − A
2 t̃)

(orange) shows that it follows the Page curve (red line). To plot we set ` = G = 1, r∞ = 10100.000,
the evaporation rate A = 5 and R = 2` on the left, R = 10` on the right. The dashed green line
indicates the UV cutoff.

By making the dimensional reduction parameter α time-dependent, we could model
the dynamics of the BTZ system and allowed the finite temperature JT black hole to
evaporate. From a boundary analysis we showed that the energy decreases linearly in
time. The renormalized dilaton is time-dependent and the temperature is fixed. Then,
we exploited a mapping of BTZ parameters to connect this linear evaporation to a more
canonical (exponential) evaporation of the energy, in which the renormalized dilaton takes
on a constant value, and the temperature is time-dependent. Finally, we demonstrated
that the entropy of the radiation/bath system follows a Page curve.

We included the extremal black hole mostly as a toy model to study the dimensional
reduction and demonstrate the entropy calculations. We did not include time dependence
for the extremal black hole, because this black hole (which has TH = 0) does not evaporate.

A few comments are in place. First, the connection between the dilaton and the black
hole entropy naturally arises from our description in a geometrical fashion. This is best
seen for the finite temperature case. From (4.26) we see that the black hole entropy is
given by the value of the dilaton (2.23) at the horizon:

S = 1
4GΦ

∣∣∣
hor

= 1
4G

(
2π
β

Φr

)
. (5.1)

Note that the entropy (4.26) is a thermal and coarse-grained entropy; indeed, inserting
Φr(t̃) = 2π`(1 − A

2 t̃) does not lead to the Page curve, but instead a linearly decreasing
(Hawking) curve. Since we wish to consider the full geometry to be in a pure state, the
fine-grained entropy of the JT black hole is equal to that of the radiation (its complement)
and thus follows a Page curve as well.

As a second comment on our results, note that we did not have to make use of the island
formula to reproduce the Page curve for the radiation. Instead, we naturally find the Page
curve from the RT prescription, which instructs us to take the minimal length geodesic in
the BTZ geometry. As the interval on the boundary corresponding to the radiation grows,
the geodesic ‘jumps’ and its length starts to decrease. In the two-dimensional theory, this
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is mirrored by a jump of the quantum extremal surface, thereby including an island in the
generalized entropy calculation. One might like to interpret the region in figure 3b bounded
by the geodesic and the division between the purple and green regions as the island. This
island lies outside of the horizon, as expected for our adiabatic evaporation. It would be
interesting to make this connection more precise.

Finally, we would like to point out that the method we have described in this pa-
per, i.e. using a partial dimensional reduction to create a black hole and bath within
the same higher-dimensional system, could in principle be applied to other spacetimes as
well. In particular, it could be worthwhile to apply this procedure to a three-dimensional
Schwarzschild-de Sitter black hole, reducing it to a pure dS2 spacetime connected to a bath,
to see if we can learn more about the (pure) de Sitter horizon and a possible information
paradox. So far, the literature has not been conclusive on the existence of islands in pure
de Sitter (see e.g. [33–37]), leaving the matter of both the existence as well as the inter-
pretation of a Page curve for the de Sitter entropy open for discussion. It could therefore
prove useful to employ our method — that needs neither quantum extremal surfaces nor
islands — to add to this discussion.
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A Entropy calculations

In this appendix we provide a detailed computation of the entropies (3.2) and (3.4)/(3.5)
using the formula for the geodesic distance ∆s between two points s1, s2 in terms of em-
bedding coordinates:

− `2 cosh
(
∆s/`

)
= Xµ(s1)Xµ(s2) . (A.1)

The computations are standard [3, 38]; we added them for completeness.

A.1 Extremal AdS2 black hole

For the Poincaré metric, the embedding coordinates are

X0 = z

2 + 1
2z (`2 + x2 − t2) ,

X1 = `2

z
t ,

X2 = `2

z
x ,

X3 = z

2 −
1
2z (`2 − x2 + t2) ,

(A.2)
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where X0 and X1 are timelike, i.e. −(X0)2 − (X1)2 + (X2)2 + (X3)2 = −`2. The geodesic
distance between two points s1 = (t1, z1, x1) and s2 = (t2, z2, x2) is then given by

cosh
(
∆s/`

)
= 1

2z1z2

(
−(t2 − t1)2 + (x2 − x1)2 + z2

1 + z2
2

)
. (A.3)

For a fixed time slice, the geodesic distance depends only on z1, z2 and ∆x. If the endpoints
lie at the same radial distance z1 = z2 = z we find

cosh
(
∆s/`

)
= 1 + 1

2

(
∆x
z

)2

⇒ ∆s = 2` arcsinh∆x
2z . (A.4)

For z → ε` with ε→ 0 (i.e. points close to the boundary) we can approximate

∆s = 2` log ∆x
2` + UV cutoff . (A.5)

Mapping the Poincaré patch to the cylinder using x = `ϕ, z = `2

r , as in the discussion
around (2.17), we find the entropy of an angular interval ∆ϕ to be

S = 1
4G (2 log ∆ϕ) , (A.6)

where we used G(3) = `G(2) and dropped the UV cutoff. For the angular interval in figure 1,
we have ∆ϕ = 2πα+ 2b

` . Then we can distinguish two regimes b� Φr and b� Φr, leading
to

S =


1

4G
(
2 log Φr/`

)
if b� Φr

1
4G
(
2 log 2b/`

)
if b� Φr

, (A.7)

where we used Φr = 2π`α.

A.2 Finite temperature AdS2 black hole

For the BTZ metric (2.20) and (2.22) the embedding coordinates are

X0 = `

R

√
r2 −R2 sinh Rt

`2
= `

sinh π
β (u+ v)

sinh π
β (u− v) ,

X1 = r`

R
cosh Rϕ

`
=

cosh 2π`ϕ
β

tanh π
β (u− v) ,

X2 = r`

R
sinh Rϕ

`
=

sinh 2π`ϕ
β

tanh π
β (u− v) ,

X3 = `

R

√
r2 −R2 cosh Rt

`2
= `

cosh π
β (u+ v)

sinh π
β (u− v) ,

(A.8)

where again X0 and X1 are timelike directions. For two points s1 = (t1, r1, ϕ1) and
s2 = (t2, r2, ϕ2) the geodesic distance is

cosh
(
∆s/`

)
= r1r2

R2 cosh R
`

(ϕ1 − ϕ2)−

√√√√( r2
1
R2 − 1

)(
r2

2
R2 − 1

)
cosh R

`
(t1 − t2) , (A.9)

– 19 –



J
H
E
P
1
1
(
2
0
2
1
)
0
9
2

such that for a fixed time slice and for two points at the same radius r1 = r2 = r one finds

1− cosh
(
∆s/`

)
= r2

R2

(
1− cosh R∆ϕ

`

)
⇒ ∆s = 2` arcsinh r

R
sinh R∆ϕ

2` . (A.10)

Now, for r →∞ we can expand to find

∆s = 2` log sinh R∆ϕ
2` + UV cutoff , (A.11)

leading to an entropy

S = 1
4G(2)

(
2 log sinh π

β
`∆ϕ

)
, (A.12)

where we used G(3) = `G(2), R = 2π`2
β and dropped the UV cutoff.
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