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Abstract

In this paper, we address the following two closely related questions. First, we complete
the classification of finite symmetry groups of type IIA string theory on K3 × R

6, where
Niemeier lattices play an important role. This extends earlier results by including points
in the moduli space with enhanced gauge symmetries in spacetime, or, equivalently,
where the world-sheet CFT becomes singular. After classifying the symmetries as
abstract groups, we study how they act on the BPS states of the theory. In particular, we
classify the conjugacy classes in the T-duality group O+(�4,20) which represent
physically distinct symmetries. Subsequently, we make two conjectures regarding the
connection between the corresponding twining genera of K3 CFTs and Conway and
umbral moonshine, building upon earlier work on the relation between moonshine
and the K3 elliptic genus.
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1 Introduction
In this paper, we study discrete symmetry groups of K3 string theory and their action on
the BPS spectrum. K3 surfaces play an important role in various aspects of mathematics
and string theory. For instance, type II string compactifications on K3 × Td × R

5−d,1

preserve 16 supersymmetries, leading to various exact results regarding the spectrum of
BPS states from both the spacetime and world-sheet points of view. In addition, they pro-
vide some of the first instances of both holographic duality and a microscopic description
of black hole entropy. Geometrically, the Torelli theorem allows for an exact description
of the geometric moduli space and makes it possible to analyze the discrete groups of
symplectomorphisms in terms of lattices. In particular, there is an intriguing connec-
tion between K3 symmetries and sporadic groups which constitutes the first topic of the
current work.
Recall that the sporadic groups are the 26finite simple groups that donot belong to anyof

the infinite families of finite simple groups.Their exceptional character raises the following
questions:Why do they exist?What geometrical and physical objects do they naturally act
on? This is one of the reasons why the discovery of (monstrous) moonshine—relating the
representation theory of the largest sporadic simple group and a set of canonical modular
functions attached to a chiral 2d CFT—is such a fascinating and important chapter in the
study of sporadic groups. On the other hand, the relation of other sporadic groups to the
ubiquitous K3 surface is a surprising result that provides another hint about their true
raison d’être. In this work, we will relate two properties of sporadic groups: moonshine
and K3 symmetries.
The connection between K3 surfaces and sporadic groups first manifested itself in a

celebrated theorem by Mukai [73], which was further elucidated by Kondo [69]. Mukai’s
theorem established a close relation between the Mathieu group M23, one of the 26
sporadic groups, and the symmetries of K3 surfaces, in terms of a bijection between
(isomorphism classes of)M23 subgroups with at least five orbits and (isomorphism classes
of) finite groups of K3 symplectomorphisms. A generalization of this classical result to
“stringy K3 geometry” was initiated by Gaberdiel, Hohenegger and Volpato in [54], using
lattice techniques in a method closely following Kondo’s proof of the Mukai theorem.
More precisely, the symmetry groups of any nonlinear sigma model (NLSM) on K3,
corresponding to any point in the moduli space (2.2) excepting loci corresponding to
singularNLSMs, have been classified in [54]. From the spacetime (D-branes) point of view,
the results of [54] can be viewed as classifying symplectic autoequivalences (symmetries) of
derived categories onK3 surfaces [66]. See also [15] for relateddiscussionon symmetries of
appropriately definedmoduli spaces relevant for curve counting onK3. The embedding of
relevant sublattices of theK3 cohomology lattice into the Leech lattice plays an important
role in the analysis, and as a result the classification is phrased in terms of subgroups of
the automorphism group Co0 (“Conway zero”) of Leech lattice. Recall that there are 24
equivalence classes of 24-dimensional negative-definite even unimodular lattices, called
the 24 Niemeier lattices.1 All but one of them have root systems of rank 24; these are

1Note that this is different from the terminology used in [16], where the name “Niemeier lattice” is reserved for
the twenty-three 24-dimensional negative-definite even unimodular lattices with non-trivial root systems, and hence
excludes the Leech lattice.



Cheng et al. Res Math Sci (2018) 5:32 Page 3 of 45 32

generated by the lattice vectors of length squared two. The only exception is the Leech
lattice, which has no root vectors.
The first part of the results of the present paper, consisting in a corollary (Corollary 4)

of two mathematical theorems (Theorems 1 and 2), extends this classification to theories
corresponding to singular loci in the moduli space of K3 NLSMs. It is necessary to make
use ofNiemeier lattices other than theLeech lattice (conjecturally all 24 of them, in analogy
with [78]) in order to generalize the analysis to include these singular loci. Despite the
fact that the type IIA world-sheet theory behaves badly along these loci [5], the full type
IIA string theory is not only completely well defined but also possesses special physical
relevance in connection with non-Abelian gauge symmetries. Recall that the spacetime
gauge group is enhanced from U (1)24 to some non-abelian group at these loci, and the
ADE-type gauge group is given by the ADE-type singularity of the K3 surface [5,95]. The
existence of such loci with enhanced gauge symmetries in the moduli space, though not
immediately manifest from the world-sheet analysis in type IIA, is clear from the point
of view of the dual heterotic T 4 compactification. In this work, we are interested in finite
group symmetries which preserve the N = (1, 1) spacetime supersymmetry from the
point of view of type IIA compactifications.
Apart from these physical considerations, another important motivation to understand

the discrete symmetries of general type IIA compactifications onK3 surfaces is the follow-
ing. The K3 surface–sporadic group connection has recently entered the spotlight due to
the discovery of newmoonshine phenomena, initiated by anobservation of Eguchi,Ooguri
and Tachikawa (EOT) [46]. The K3 elliptic genus (3.1) is a function which counts BPS
states of K3 NLSMs and a loop-space index generalizing the Euler characteristic and the
A-roof genus, and the observation in [46] suggests that it encodes an infinite-dimensional
graded representation of the largest Mathieu sporadic group M24. (Note that the group
featured in Mukai’s theorem,M23, is a subgroup ofM24 as the name suggests.) The exis-
tence of a suitable M24-module has been eventually proved by Gannon [56], building on
previous work in [19,43,52,53]. On the other hand, a “natural” construction of this mod-
ule, in the context, for example, of conformal field theory, string theory or geometry, is
still an open problem. A natural guess is that there exists a K3 NLSM withM24 acting as
its symmetry group. However, the classification result of [54] precludes this solution, and
one must find an alternative way to explain Mathieu moonshine. See Sect. 5 for further
discussion on this point.
The observation of EOT was truly surprising and led to a surge in activity in the study

of (new)moonshine phenomena. Two of the subsequent developments, regarding umbral
and Conway moonshines and their relation to K3 NLSMs, motivated the second part of
our results which are encapsulated by two conjectures (Conjectures 5 and 6) and further
detailed in “Appendix D.”
The first development is the discovery of umbral moonshine and its proposed relation

to stringyK3 geometry. A succinct and arguably themost natural way to describeMathieu
moonshine is in terms of the relation between a certain set of mock modular forms and
M24. See, for instance, [28] for an introduction onmockmodular forms. StudyingMathieu
moonshine from this point of view [21], it was realized in [16,24] that it is but one case of
a larger structure, dubbed umbral moonshine. Umbral moonshine consists of a family of
23 moonshine relations corresponding to the 23 Niemeier latticesN with non-trivial root
systems: While the automorphism group of a Niemeier lattice dictates the relevant finite
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group GN (cf. (2.12)), the root system of the lattice helps determine a unique (vector-
valued) mock modular form associated with each conjugacy class of GN . See Sect. 3.3
for more detail. One of the umbral moonshine conjectures then states that there exists a
natural way to associate a graded infinite-dimensional module with the finite group GN
such that its graded character coincides with the specified mock modular forms. So far,
these modules have been shown to exist [38,56], although, with the exception of a special
case [39], a “natural” construction, providing an intuitive interpretation of this vector
space and of the action of the corresponding group, is still lacking. Although it is not yet
clear whether the structure of vertex operator algebra (VOA; or chiral CFT) is as relevant
here as in the classical case of monstrous moonshine, the existence of the generalized
umbral moonshine [13,55] suggests that certain key features of VOA should be present
in themodules underlying umbral moonshine. Subsequently, motivated by previous work
[78,79], the relation between all 23 instances of umbral moonshine and symmetries of K3
NLSMswas suggested in [22] in the form of a proposed relation (3.17) between the umbral
moonshine mock modular forms and the K3 elliptic genus twined by certain symmetries
(3.5).
The second important development, inspired by the close relation between the Conway

group Co0 and stringy K3 symmetries [54], relates Conway moonshine also to the twined
K3 elliptic genus [42]. The Conway moonshine module is a chiral superconformal field
theory with c = 12 and symmetry group Co0, which was first discussed in [49] and
further studied in [40,41]. Using the Conway module, the authors of [42] associate two
(possibly coinciding) Jacobi forms to each conjugacy class of Co0 and conjecture that
this set constitutes a complete list of possible K3 twining genera. In particular, it was
conjectured that one of the two such Jacobi forms arising from Conway moonshine is
attached to each symmetry of any non-singular K3 NLSM. Note that many, but not all, of
the functions arising from umbral moonshine [22] and Conway moonshine [42] coincide.
As the first part of our results establishes the importance of several (possibly all)

Niemeier lattices in the study of symmetries of K3 string theory, it is natural to sus-
pect that both umbral and Conway moonshine might play a role in describing the action
of these symmetry groups on the (BPS) spectrum of K3 string theory. Note that the CFT
is not well defined at the singular loci of the module space, and hence we restrict our
attention to the non-singular NLSMs when we discuss the (twined) elliptic genus. Moti-
vated by the connection between the stringy K3 symmetries and moonshine, our analysis
of world-sheet parity symmetries of NLSMs (see Sect. 3.2) and results regarding Landau–
Ginzburg orbifolds [17], in this paper we conjecture (Conjecture 5) that the proposed
twining genera arising from umbral and Conway moonshine as defined in [22] and [42]
capture all of the possible discrete stringy symmetries of any NLSM in the K3 CFT mod-
uli space. Moreover, we conjecture (Conjecture 6) that each of the umbral and Conway
moonshine functions satisfying certain basic assumptions (that the symmetry preserves at
least four planes in the defining 24-dimensional representation) is realized as the physical
twining genus of a certain K3 NLSM. These conjectures pass a few non-trivial tests. In
particular, in this paper we also obtain an almost complete classification of conjugacy
classes of the discrete T-duality group O+(�4,20), as well as a partial classification of the
twined K3 elliptic genus using methods independent of moonshine. These classification
results, summarized in Table 4, are not only of interest on their own but also provide
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strong evidence for these conjectures which consolidate our understanding of stringy K3
symmetries and the relation between K3 BPS states and moonshine.
Note that the computation of twined elliptic genus determines the twined BPS states

counting of black hole states in the 4d theory of type IIA string theory compactified
on K3 × T 2 via the second quantization formula [30,35,36,67,84,86]. The twined BPS
states counting functions uniquely determine the representations of the symmetry group
underlying the BPS indices. Indeed, the space of BPS states splits into a direct sum of
finite-dimensional representations and the twining functions provide the complete list of
characters for each such representation. In particular, the group action on the part of the
elliptic genus corresponding to the Ramond-Ramond ground states determines its action
on the BPS states of D2 branes wrapping cycles onK3 and hence its action on enumerative
K3 invariants [15]. Moreover, the twined elliptic genera also determine the BPS spectrum
of the corresponding CHL models [20,29–32,67].
The rest of the paper is organized as follows. In Sect. 2, we classify the symmetry

groups which arise in type IIA string theory on K3 × R
6 and preserve the world-sheet

N = (4, 4) superconformal algebra in terms of two theorems. This extends the result
of [54] to singular points in the moduli space of K3 NLSMs. In Sect. 3, we discuss how
these symmetry groups act on the BPS spectrum of the theory. In particular, we present
two conjectures relating the twining genera of NLSMs to the functions which feature in
umbral and Conwaymoonshine. In Sect. 4, we summarize all the computations of twining
genera in physical models that are known so far, including torus orbifolds and Landau–
Ginzburg orbifolds, and explain how these data provide evidence for our conjectures.
Finally, we conclude with a discussion in Sect. 5. A number of appendices include useful
information which complements the main text. In “Appendix A,” we summarize some
basic facts about lattice theory. The proofs of our main theorems discussed in Sect. 2 can
be found in “Appendix B.” In “Appendix C,” we present the arguments that we employ in
Sect. 3 to determine the modular properties of certain twining genera. In “Appendix D,”
we discuss the method we use to classify distinct O+(�4,20) conjugacy classes. The result
of the classification, as well as the data of the twining genera, is recorded in Table 4.

2 Symmetries
In this section, we classify subgroups ofO+(�4,20) that pointwise fix a positive four-plane, a
four-dimensional oriented positive-definite subspace of�4,20⊗ZR. They have the physical
interpretation as groups of supersymmetry-preserving discrete symmetries of type IIA
string theory on K3 × R

6. Alternatively, they can be viewed as the symmetry groups of
NLSMs on K3 surfaces that commute with the N = (4, 4) superconformal algebra and
leave invariant the four R-R ground states corresponding to the spectral flow generators.
We will say such G ⊂ O+(�4,20) is a subgroup of four-plane preserving type and denote

the corresponding invariant and co-invariant sublattices by

�G := {v ∈ �4,20 | g(v) = v for all g ∈ G} , �G := (�G)⊥ ∩ �4,20. (2.1)

Note that such a group of four-plane preserving type can in general preserve more than
just a four-plane, for instance the trivial group.
Our result extends [54] by allowing the co-invariant lattice to contain root vectors.

Namely, we include those subgroups of four-plane preserving type such that there exists a



32 Page 6 of 45 Cheng et al. ResMath Sci (2018) 5:32

v ∈ �G with 〈v, v〉 = −2, where 〈·, ·〉 denotes the bilinear form of the lattice �4,20. We say
that a positive four-plane is a singular positive four-plane if it is orthogonal to some root
vector. Physically, they correspond to type IIA compactifications with enhanced gauge
symmetry, or to singular NLSMs. The 23 Niemeier lattices with roots play an important
role in the analysis of these singular cases.

2.1 The moduli space

Let us first review some general properties of NLSMs onK3 (see [3,75]). Themoduli space
of non-singular NLSMs on K3 withN = (4, 4) supersymmetry is given by an open subset
in

M = (SO(4) × O(20))\O+(4, 20)/O+(�4,20) , (2.2)

where (SO(4) × O(20))\O+(4, 20) is the Grassmannian of positive four planes � within
R
4,20 ∼= �4,20 ⊗Z R, and �4,20 is the even unimodular lattice with signature (4, 20). The

complement inM of this open subset is the set of singular four planes � (i.e. orthogonal
to a root v ∈ �4,20, v2 = −2) and corresponds to certain singular limits of NLSMs on K3.
The whole spaceM is also themoduli space of type IIA string theory at a fixed finite value
of gs; in particular, points ofM representing singular limits of NLSMs on K3 correspond
to perfectly well-defined compactifications of the full non-perturbative type IIA string
theory.
The real group O(4, 20) := O(4, 20;R) has four connected components

O(4, 20) = O++(4, 20) ∪ O+−(4, 20) ∪ O−+(4, 20) ∪ O−−(4, 20) , (2.3)

where the elements of

O+(4, 20) = O++(4, 20) ∪ O+−(4, 20) (2.4)

preserve the orientation of positive four planes.2 We denote by O(�4,20) ⊂ O(4, 20) the
group of automorphisms of the lattice �4,20 and define

O+(�4,20) = O(�4,20) ∩ O+(4, 20) . (2.5)

In thiswork, the lattice�4,20 plays the following roles. Geometrically,�4,20 is the integral
cohomology lattice H∗(X,Z) with Mukai pairing of a K3 surface X , and �4,20 ⊗Z R is the
real cohomology. Physically, �4,20 is the lattice of D-brane charges, �4,20⊗ZR is the space
of R–R ground states and � ⊂ �4,20 ⊗Z R is the subspace spanned by the four spectral
flow generators, i.e., the R–R ground states which furnish a (2, 2) representation of the
SU (2)L × SU (2)R R-symmetry group. From the point of view of the spacetime physics,
the choice of a positive four-plane� is given by a choice of the (spacetime) central charge
Z : H̃1,1(X,Z) → C, where H̃1,1(X,Z) := H0,0(X,Z) ⊕ H1,1(X,Z) ⊕ H2,2(X,Z), which
determines the mass of supersymmetric D-branes.
Note that in the existing literature, the moduli space is often defined as the quotient

of the Grassmannian by the full automorphism group O(�4,20) instead of O+(�4,20). As

2Here and in the following, by “orientation of positive four-planes,” we mean each of the two equivalence classes of
oriented positive four planes in R

4,20 modulo O(4, 20) transformations connected to the identity.
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we explain in more detail in Sect. 3.2, dividing by O+(�4,20) amounts to distinguishing
between NLSMs that are related by world-sheet parity [75]. Due to the existence of sym-
metries that act differently on the right- and left-moving states of the NLSM, it is crucial
for us to identify O+(�4,20) instead of O(�4,20) as the relevant group of duality.

2.2 Symmetry groups

Let us denote by T (�) the NLSM associated with a given non-singular positive four-plane
�. With some abuse of notation, we will use the same letter for the lattice automorphism
h ∈ O+(�4,20) and the corresponding duality between the two CFTs T (�) and T (�′),
where �′ := h(�). Let G be the group of symmetries of a non-singular NLSM T (�)
preserving the N = (4, 4) superconformal algebra and the four spectral flow generators.
It is shown in [54] that G is given by the largest O(�4,20)-subgroup whose induced action
on �4,20 ⊗ZR fixes� pointwise, and hence is always a subgroup ofO+(�4,20) ⊂ O(�4,20).
From the spacetime point of view, the group G admits the alternative interpretation as
the spacetime-supersymmetry-preserving discrete symmetry group of a six-dimensional
type IIA string theory with half-maximal supersymmetry, away from the gauge symmetry
enhancement points in the moduli space. More precisely, G is the group of symmetries
commuting with all space-time supersymmetries, quotiented by its continuous (gauge)
normal subgroup U (1)24.
When � is a singular four-plane, the NLSM T (�) is not well defined [4,5,95] and it

is hence meaningless to talk about the symmetry group of the NLSM in this case. On
the other hand, note that the two alternative definitions of the symmetry group—G as
the pointwise stabilizer of the subspace � and as the discrete symmetry group of type IIA
string theory—can be extended to singular four-planewithout any difficulty. One subtlety,
however, is that the two definitions are not equivalent for singular models. Indeed, if we
define Gfull to be the full group of symmetries of the type IIA string model commuting
with spacetime supersymmetry, generated by the continuous gauge group G and by the
self-dualities in Stab(�) and GIIA to be the quotient Gfull/G, then we get

GIIA ∼= Stab(�)/W . (2.6)

Here, W ⊆ Stab(�) is the group generated by reflections with respect to hyperplanes
v⊥ ⊂ �4,20 ⊗ R, for all roots v ∈ �4,20 ∩ �⊥, v2 = −2, orthogonal to �; as we will
discuss below, W can be identified with the Weyl group of the continuous group G. We
stress that the points in themoduli space where Stab(�) is non-trivial (which are themost
interesting points from our point of view) are exactly the points where the moduli space
M develops orbifold singularities. Among these points, the ones where W ⊆ Stab(�) is
non-trivial can be characterized as the points where the continuous gauge group becomes
non-abelian or, equivalently, where the NLSM on K3 becomes singular [4,5,95].
In order to understand why (2.6) holds, let us describe in more detail the definition of G

and Gfull. The continuous gauge group G has always rank 24. It is abelian (G ∼= U (1)24) if
and only if the K3 sigmamodel is non-singular. More generally, G is a semi-simple, simply
laced Lie group of rank 24; in the heterotic description of the model, where all gauge
bosons correspond to perturbative string states, it is easy to see that the non-abelian part
of the Lie algebra of G is of ADE type, with root lattice isomorphic to the sublattice of
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�4,20 generated by the vectors v ∈ �4,20 ∩ �⊥, with v2 = −2 [5,95].3 In addition to these
continuous symmetries, each of the generators of Stab(�) corresponds to self-dualities
of the model and therefore lifts to discrete symmetries of the string theory model. The
groupGfull is defined as the group generated by G and by all these self-dualities. Since the
self-dualities map gauge bosons into gauge bosons, the continuous group G is normal in
Gfull, so that the quotientGIIA = Gfull/G is also a group. In order to describe this quotient
more explicitly, it is useful to choose a maximal torus H ∼= U (1)24 of G. In the type IIA
description, the gauge bosons ofH correspond to R-R fundamental string states, while the
remaining gauge bosons are given by D-branes getting massless at this particular point
in the moduli space [85]. Given such a choice, �4,20 can be interpreted as the lattice of
electric charges with respect toH. Since the dualities in Stab(�) ⊆ O+(�4,20) stabilize this
lattice, their lifts toGfull can be chosen to be in the normalizerN ≡ NGfull (H) ofH inGfull.
Notice that the group Gfull does not depend on the choice of H: Since all maximal tori
are conjugated within G, a different choice H′ = gHg−1, g ∈ G, just leads to a different
choice of the Gfull-generators, which get conjugated by g . Since Gfull can be generated by
elements in G and in the normalizer N ofH, we get

Gfull/G ∼= N/N , (2.7)

whereN := N ∩G is the normalizer ofHwithin G. The groupN has a well-defined action
on the gauge bosons ofH and, consequently, on the lattice of charges�4,20. The condition
that Gfull commutes with space-time supersymmetry implies that N acts trivially on the
four gauge bosons in the gravity supermultiplet (graviphotons), so that the action on �4,20

is via lattice automorphisms in Stab(�). The homomorphism N → Stab(�) is surjective
by construction of Gfull and N , and its kernel is the maximal torusH, so that we have an
isomorphismN/H ∼= Stab(�). The groupN/H contains, as a normal subgroup, theWeyl
group N /H, which can be identified via this isomorphism with the group W ⊆ Stab(�)
generated by root reflections. Thus, we finally obtain

GIIA = Gfull/G ∼= N/N ∼= (N/H)/(N /H) ∼= Stab(�)/W . (2.8)

While GIIA is the most interesting group from the point of view of string theory, the
group Stab(�) admits a more direct mathematical definition. Furthermore, by (2.6), it is
straightforward to recover GIIA once Stab(�) is known. As a result, we will mainly focus
on Stab(�) in this section. In terms of the symplectic autoequivalencies of the bounded
derived category Db(Coh(X)) of coherent sheaves of a K3 surface X , allowing for the
orthogonal complement of � in �4,20 to contain roots amounts to relaxing the stability
condition in [8,66] to allow for the central charge Z : H̃1,1(X,Z) → C to vanish on some
δ with δ2 = −2.
Let us now consider the problem of classifying all O+(�4,20) subgroups of four-plane

fixing type, including those involving singular four planes. Notice that by definition the
invariant lattice �G has signature (4, d) for some 0 ≤ d ≤ 20, and hence the co-invariant
lattice �G is negative definite of rank 20 − d.

3While the Lie algebra of G is uniquely determined by this description, it is an interesting problem to determine the
precise group G acting faithfully on the states of the string theory. We will not try to answer this question here, since
it is not important for our subsequent discussion.
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In [54], it is shown that if �G contains no roots, then it can be primitively embedded
into the Leech lattice � (taken negative definite)

i : �G ↪→ � (2.9)

and that G is isomorphic to a subgroup Ĝ of the Conway group Co0 ∼= O(�). More
precisely, Ĝ ⊂ Co0 acts faithfully on�Ĝ := i(�G) ⊂ � and fixes pointwise the orthogonal
complement �Ĝ = (�Ĝ)

⊥ ∩ �.
In order to generalize the classification of the symmetry groupsG to singular four planes,

we have to consider the case where �G contains a root. It is clear that in this case, lattices
with non-trivial root systems—i.e., Niemeier lattices other than the Leech lattice—are
necessary for the embedding. In fact, in this case, the co-invariant lattices can be always
embedded into one of the Niemeier lattices, as we show with the following theorem.

Theorem 1 Let G be a subgroup of O+(�4,20) fixing pointwise a sublattice�G of signature
(4, d), d ≥ 0. Then, there exists a primitive embedding i of the orthogonal complement �G
into some negative-definite rank 24 even unimodular lattice (Niemeier lattice) N

i : �G ↪→ N . (2.10)

Furthermore, the action of Ĝ := iGi−1 on i(�G) extends uniquely to a group of automor-
phisms of N that fixes pointwise the orthogonal complement of i(�G). If �G has no roots,
then N can be chosen to be the Leech lattice.

Proof See “Appendix B.1.” ��
Note that the embedding is generically far from unique, and often �G can be embedded

in more than one Niemeier lattice N . At the same time, we believe that all Niemeier
lattices are necessary in order to embed all �G as in (2.10). In particular, in a geometric
context it was conjectured in [78] that for each of the 24 Niemeier latticesN there exists a
(non-algebraic)K3 surfaceX whose Picard lattice P(X) can be primitively embedded only
in N . This conjecture has been proven for all but two Niemeier lattices: those with root
systems A24 and 2A12. It is possible to find an appropriate choice of the B-field such that
the orthogonal complement lattice �G contains the Picard lattice. Therefore, we expect
all Niemeier lattices (and not just the Leech lattice) play a role in the study of physical
symmetries of type IIA string theory on K3.
By Theorem 1, every group of symmetries G is isomorphic to a subgroup Ĝ ⊂ O(N ) of

the group of automorphisms of some Niemeier lattice N , fixing a sublattice of N of rank
at least 4. In fact, the converse is also true by the following theorem.

Theorem 2 Let N be a (negative definite) Niemeier lattice and Ĝ be a subgroup of O(N )
fixing pointwise a sublattice NĜ of rank 4 + d, d ≥ 0. Then, there exists a primitive
embedding

f : NĜ ↪→ �4,20 (2.11)

of the co-invariant sublattice NĜ := (NĜ)⊥ ∩ N into the even unimodular lattice �4,20.
Furthermore, the action of G := f Ĝf −1 on f (NĜ) extends uniquely to a group of automor-
phisms of �4,20 that fixes pointwise the orthogonal complement of f (NĜ). Therefore, there
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exists a positive four-plane � such that Stab(�) contains Ĝ as a subgroup. When N is the
Leech lattice, � can be chosen so that its orthogonal complement contains no roots.

Proof See “Appendix B.2.” ��
As we will discuss in the next subsection, for manyG arising in the way described above,

there exist continuous families of � such that the above statement is true, while for those
groups with invariant sublattice of rank exactly four, the family consists of isolated points.
It is now useful to make a comparison to the groups in umbral and Conway moonshine

(cf. Sect. 3.3). When N is a Niemeier lattice with roots, the automorphism group O(N )
contains as a normal subgroup theWeyl groupWN , generated by reflections with respect
to the hyperplanes orthogonal to the roots. The quotients

GN := O(N )/WN (2.12)

are the groups whose representation theory dictates the mock modular forms featuring
in umbral moonshine [16]. To uniformize the notation, when N = � is the Leech lattice,
we defineWN to be the trivial group and subsequently GN = O(N ) = Co0. We will refer
to theseGN as theNiemeier groups. Next, we discuss the properties ofG in relation to the
Niemeier groups.

Proposition 3 For a given sublattice �G ⊂ �4,20 of signature (4, d) with d ≥ 0, let
G := {g ∈ O(�4,20)|gv = v ∀v ∈ �G}. Suppose that the orthogonal complement �G can
be primitively embedded in the Niemeier lattice N , so that G is isomorphic to a subgroup
Ĝ ⊂ O(N ). Then:

1. Ĝ has non-trivial intersection with the Weyl group WN if and only if �G contains
some root.

2. if �G has no roots, then G is isomorphic to a subgroup of GN := O(N )/W (N ).

Proof See “Appendix B.3.” ��
From the above theorems and proposition, we led to the following corollary for the

stringy K3 symmetries:

Corollary 4 Consider type IIA string theory compactified on aK3 surface X corresponding
to a point in the moduli spaceM (cf. (2.2)).

1. The supersymmetry-preserving discrete symmetry groups GIIA that are realized some-
where inM are in bijection with the four-plane preserving subgroups of the Niemeier
groups GN .

2. Consider the sublattice of the D-brane lattice H∗(X,Z) ∼= �4,20 orthogonal to the
GIIA-invariant subspace of H∗(X,R). The isomorphism classes of lattices that arise in
this way somewhere inM are in bijectionwith the isomorphism classes of co-invariant
lattice NĜ, with N a Niemeier lattice and Ĝ ⊆ GN a four-plane preserving subgroup
of the corresponding Niemeier group.

2.3 G-families

It is useful to consider families of positive four planes that share certain symmetries, with
the equivalence relation given by the action of O+(�4,20) taken into account. Let G be a
O+(�4,20)-subgroup of four-plane fixing type. We define
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FG := {� ⊆ �G ⊗ R, sign(�) = (4, 0)}/NO+(�4,20)(G), (2.13)

where

NO+(�4,20)(G) = {h ∈ O+(�4,20) | hGh−1 = G} (2.14)

is the normalizer ofG insideO+(�4,20) and corresponds to the subgroup ofO+(�4,20) that
fixes the lattice �G setwise. Let d be such that the invariant lattice �G has signature (4, d).
Then, FG is a Grassmannian parametrizing four-dimensional positive-definite subspaces
within �G ⊗Z R ∼= R

4,d , modulo the groupNO+(�4,20)(G) of physical dualities. The family
FG admits a description as a double coset

FG ∼= SO(4) × O(d)\O+(�G ⊗Z R)/NO+(�4,20)(G) , (2.15)

which makes manifest that FG has real dimension 4d and is connected: When d = 0,
the group O+(�G ⊗Z R) ∼= SO(4) has one connected component, while for d > 0 the
two connected components of O+(�G ⊗Z R) ∼= O+(4, d) are identified via O(d). In the
following, we will often identify families FG and FG′ that are conjugated in O+(�4,20):

FG ∼ FG′ if G′ = hGh−1 for some h ∈ O+(�4,20) . (2.16)

Physically, we are motivated to study FG for the following reason. From the fact that a
positive four-plane defines a K3 NLSM, FG can be physically interpreted as a family of
K3 NLSMs with symmetry groups which contain G. As we will see, the connectedness
of FG and the continuity argument we present in Sect. 3 then guarantee that all theories
T (�) for � ∈ FG have the same twining genera Zg (T (�); τ , z) for all g ∈ G.
We close this section with a few useful properties of FG . We would like to know

whether a given family FG contains any singular positive four-plane. First, let us dis-
tinguish between the following two cases:

(1) �G contains no roots
(2) �G contains roots

By definition, case (1) contains some non-singular four planes, while case (2) contains only
singular models. It is natural to ask under what circumstances does a family in case (1)
contain singular four planes. In what follows, we collect the answer for a few interesting
cases:

• if G is a group of geometric symmetries (i.e., if G arises as a group of hyper-Kähler
preserving symmetries of a K3 surface), then the corresponding family FG contains
some singular models. To see this, first recall that a necessary and sufficient condition
for G to be geometric is that the invariant lattice �G contains an even unimodular
�1,1 ⊂ �G . In this case, one can take any root v ∈ �1,1 and notice that v⊥ ∩ (�G ⊗ZR)
has signature (4, d − 1), so it contains some � of signature (4, 0) that is by definition
singular.

• If �G has rank exactly four, then FG consists of a single point, and if we are in case 1
above, this is by definition non-singular.
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• If the defining 24-dimensional representation of G is not a permutation representa-
tion, then all four planes inFG are non-singular. This can be seen as follows. For each
� in the familyFG , one can show, using techniques analogous to theproof ofTheorem
2, that the orthogonal sublattice �� := �⊥ ∩ �4,20 can be primitively embedded in
some Niemeier lattice N (possibly depending on �). This implies that also �G ⊂ ��

can be primitively embedded in N . Recall that the defining 24-dimensional repre-
sentation is a permutation representation for all subgroups of the Niemeier group
GN unless N is the Leech lattice; indeed, when N is not the Leech lattice, GN is just
the group of automorphisms of the Dynkin diagram of the corresponding root lattice
([26], chapter 16) and therefore acts by permutations on a basis of 24 simple roots.
By hypothesis, �G has no roots, so that by Proposition 3 G must be isomorphic to a
subgroup of GN . The only N such that the 24-dimensional representation of GN is
not a permutation representation is the Leech lattice. We conclude that, for all � in
FG , �� can be embedded in the Leech lattice, and therefore it cannot contain any
root.

On the other hand, assuming a family in case (1) does contain a singular four-plane, we
can deduce the following result about �G :

• If FG contains some singular four-plane �, then �G can be embedded in some
Niemeier lattice N with roots, so that G is isomorphic to a subgroup of the Niemeier
group O(N )/WN . The argument for this is analogous to the previous statement. The
sublattice �� := �⊥ ∩�4,20 orthogonal to a singular four-plane� can be primitively
embedded in some Niemeier lattice N . By definition, �� contains some root and
henceN cannot be the Leech lattice. Furthermore, �G is a primitive sublattice of ��,
so it can also be primitively embedded in N .4

3 Twining genera
In this section, we investigate how the symmetry groups discussed in the previous section
act on the BPS spectrum of the theory. In particular, in Sect. 3.3 we will present two
conjectures relating the twining genera of NLSMs and the functions featured in umbral
and Conway moonshine. In this section, we restrict our attention to non-singular NLSMs
as the elliptic genus is otherwise not well defined.
For any non-singular NLSM T on K3, the elliptic genus [45,92] may be defined as

Z(T ; τ , z) = TrHRR (q
L0− c

24 q̄L̄0−
c̄
24 yJ0 (−1)J0+J̄0 ) (3.1)

where q := e2π iτ , y := e2π iz . In the above definition,HRR denotes the Ramond-Ramond
Hilbert space ofT , andL0, L̄0 and J0, J̄0 denote the zeromodes of the left- and right-moving
Virasoro resp. Cartan generators in the su(2) level 1 Kac-Moody algebras contained in the
N = (4, 4) superconformal algebra with central charges c = c̄ = 6. As is well known,
the elliptic genus of a compact theory only receives nonvanishing contributions from the
right-moving ground states which have vanishing eigenvalue of L̄0 − c̄

24 , and hence it is
holomorphic both in τ and in z. Moreover,Z(T ; τ , z) is a weak Jacobi form of weight zero

4However, the converse is not true: It can happen that �G admits a primitive embedding into a Niemeier lattice while
FG contains no singular model, as exemplified by certain examples when �G is exactly four-dimensional and FG
contains only an isolated point.
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and index 1, i.e. it satisfies certain growth conditions [47] and is a holomorphic function
H × C → C satisfying the following modularity

φk,m(τ , z) = (cτ +d)−ke−2π im cz2
cτ+d φk,m

(
aτ + b
cτ + d

,
z

cτ + d

)
∀

(
a b
c d

)
∈ SL2(Z), (3.2)

and quasi-periodicity properties

φk,m(τ , z) = e2π im(
2τ+2
z) φk,m(τ , z + 
τ + 
′) ∀(
, 
′) ∈ Z
2, (3.3)

for k = 0 and m = 1. The elliptic genus is a (refined) supersymmetric index and, in par-
ticular, is invariant under supersymmetric marginal deformations of the nonlinear sigma
model.5 Since the moduli space of K3 NLSMs is connected, this means that Z(T ; τ , z) is
independent of the particular K3 NLSM T from which it is calculated. As a result, often
we will simply denote it as Z(K3; τ , z). Explicitly, it can be expressed in terms of Jacobi
theta functions as

Z(K3; τ , z) = 8
4∑

i=2

θi(τ , z)2

θi(τ , 0)2
= 2y + 20 + 2y−1 + O(q). (3.4)

Let us consider a non-singularNLSM T with a symmetry groupG. Then, for each g ∈ G,
one can define the twining genus

Zg (T ; τ , z) = TrHRR (gq
L0− c

24 q̄L̄0−
c̄
24 yJ0 (−1)FL+FR ) . (3.5)

From the usual path integral picture,6 one concludes that Zg is a weak Jacobi form of
weight 0 and index 1 for some congruence subgroup Gg of SL2(Z), possibly with a non-
trivial multiplier system (see “Appendix C” for details).
By the same arguments as for the elliptic genus and under standard assumptions about

deformations ofN = (4, 4) superconformal field theories, the twining genus Zg is invari-
ant under exactly marginal deformations that preserve supersymmetry and the symmetry
generated by g . More precisely, consider a group of symmetries G such that the subspace

Fns
G := {� ⊆ FG | � is not singular} (3.6)

of non-singular positive four planes is non-empty (cf.(2.13)). Note that there is no loss
of generality by restricting to non-singular models, since only for these the world-sheet
definition of (twined) elliptic genus that we employ in this section applies. Then, we argue
that the following is true:
Let g ∈ O+(�4,20) be a group element fixing pointwise a sublattice�g ⊆ �4,20 of signature

(4, d) and such that the co-invariant lattice �g contains no roots. Then, the family Fns
g :=

Fns〈g〉 of non-singular four planeswith symmetry g is non-empty and connected. Furthermore,
if we assume that the operators L0, L̄0, J0, J̄0 and g vary continuously under deformations
within the family of NLSM corresponding to Fns

g , then the twining genus Zg is constant on
Fns
g .

5This is true except at points in moduli space where a non-compact direction opens up and the CFT is singular.
6In the present paper, we make the standard assumption in theoretical physics that the path integral formulation of
NLSM yields correct answers.
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The proof is an obvious generalization of the arguments showing that the elliptic genus
is independent of the moduli. One first defines the twining genusZg along any connected
path within the family Fns

g and then uses continuity of L0, L̄0, J0, J̄0 as well as the discrete-
ness of their spectrumwithin the relevant space of states to show thatZg must be actually
constant along this path. An even simpler proof can be given if one adopts the equivalent
definition of the twining genusZg as an equivariant index in theQ-cohomology of a half-
twisted topological model. In this case, it is sufficient to use the fact that a g-invariant and
Q-exact deformation cannot change the index.
We note that

Zg (τ , z) = Zg−1 (τ ,−z) = Zg−1 (τ , z) . (3.7)

Here, the first equality corresponds to the transformation
( −1 0

0 −1
) ∈ SL2(Z) and follows

from standard path integral arguments. The second equality holds because the space of
states carries a representation of the su(2) algebra contained in the left-moving N = 4
algebra, and su(2) characters are always even.
Finally, a twining genusZg is invariant under conjugation by any duality h ∈ O+(�4,20).

More precisely, suppose h is a duality between the models T and T ′, i.e., an isomorphism
between the fields and the states of the two theories that maps the superconformal gener-
ators into each other and is compatible with the OPE. Then, the twining genusZg defined
in the model T equals the twining genus Zhgh−1 defined in the model T ′. This follows
after noticing that hmaps (L0, J0)-eigenspaces in T into the corresponding eigenspaces in
T ′ and using the cyclic properties of the trace. The effect of a conjugation under a duality
in O(�4,20) \ O+(�4,20) is much more subtle and will be discussed in Sect. 3.2.
Using the above results, one can assign a twining genusZg to any conjugacy class [g] of

O+(�4,20) such that 〈g〉 is a subgroup of four-plane fixing type and that the co-invariant
sublattice �g contains no roots. In principle, Zg and Zg ′ are distinct if g ′ is conjugate to
neither g nor g−1 as elements of O+(�4,20), unless accidental coincidences occur.7 In the
next subsection we will classify the conjugacy classes of O+(�4,20).

3.1 Classification

While many examples of twining genera have been computed in specific sigma models, a
full classification of the corresponding conjugacy classes in O+(�4,20) and a complete list
of all corresponding twining genera are still an open problem. In this work, we solve the
first problem for all but one of the 42 possibilities (labeled by conjugacy classes of Co0).
As a first step in this classification problem, it is useful to consider the eigenvalues of

O+(�4,20)-elements in the defining 24-dimensional representation, denoted below simply
byρ24 : O+(�4,20) → End(V24), given byV24 ∼= �4,20⊗ZR. (This is also the representation
on the 24 R-R ground states in a sigmamodel T (�) ∈ Fg .) It is convenient to encode such
information in the form of a Frame shape, i.e. a symbol

πg :=
∏

|N


k
 , (3.8)

7Coincidences like this occur, for example, when the dimension of the relevant space of modular forms is small. See
Sects. 4.4 and 4.5 for more details.
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where N = o(g) is the order of g . The integers k
 ∈ Z are defined by

det(t124 − ρ24(g)) =
∏

|N

(t
 − 1)k
 . (3.9)

When g acts as a permutation of the vectors in some basis of �4,20 ⊗Z R, all k
 are
nonnegative and the Frame shape coincides with the cycle shape of the permutation. We
will say that a Frame shape is a four-plane preserving Frame shape if it coincides with the
Frame shape of an element of a four-plane preserving subgroup of O(�4,20), as defined
in Sect. 2. Explicitly, a Frame shape is a four-plane preserving Frame shape if and only
if

∑

 k
 ≥ 4, corresponding to the fact that the eigenvalue 1 must be repeated at least

four times. A salient feature shared by the Frame shapes of all Niemeier groups that
correspond to Niemeier lattices with non-trivial root systems (and hence not given by the
Leech lattice) is that they are all cycle shapes, and this is not true for some of the Conway
Frame shapes.
One can explicitly check, by using Theorem 1, that such four-plane preserving Frame

shapes of O+(�4,20) are precisely the 42 four-plane preserving Frame shapes of Co0,
corresponding to the 42 four-plane preserving conjugacy classes of Co0. Moreover, if
g, g ′ ∈ O+(�4,20) have the same Frame shape, then the co-invariant sublattices �g and �g ′

are isomorphic

πg = πg ′ ⇒ �g ∼= �g ′ . (3.10)

This follows from the fact that �g ∼= �ĝ and �g ′ ∼= �ĝ ′ by construction, and moreover ĝ
and ĝ ′ are conjugated in Co0. However, it can happen that �g ,�g ′ ⊂ �4,20 are isomorphic
as abstract sublattices, but are not conjugatedwithinO+(�4,20). Indeed, as argued in detail
in “Appendix D,” the problem of determining the number of O+(�4,20) conjugacy classes
for a given Frame shape can be reduced to that of classifying the (in a suitable sense)
inequivalent primitive embeddings of the corresponding lattice �ĝ in �4,20. The proof
of this statement can be found in “Appendix D,” and the result of the classification is
tabulated in “Appendix D.2.”
A summary of these results is the following. Out of the 42 distinct four-plane preserving

Frame shapes of O+(�4,20), there was only one (with Frame shape 1−4253461) for which
we were unable to determine the number of its O(�4,20) (and thus O+(�4,20)) classes. For
this Frame shape, we can only prove that either a) there is one class or b) there are two
classes for which one is the inverse of the other. The remaining 41 Co0 conjugacy classes
give rise to 58 distinct O(�4,20) conjugacy classes and 80 distinct O+(�4,20) conjugacy
classes.

3.2 World-sheet parity

We have argued earlier that the twining genera Zg are invariant under conjugation by
O+(�4,20) dualities. In many physical applications, however, the larger group O(�4,20)
is taken to be the relevant duality group. As will be discussed below, the elements of
O(�4,20)\O+(�4,20) correspond to dualities betweenNLSMs that reverse the world-sheet
orientation. Inparticular,wewill show that the twining generaZg , on theother hand, are in
general different unless the two theories are relatedby an element ofO+(�4,20) ⊂ O(�4,20).
For this reason, it is necessary, for ourpurposes, to consider twoNLSMsrelatedbydualities
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h ∈ O(�4,20) \ O+(�4,20) as distinct, although we will still refer to such h as (orientation-
reversing) dualities.
Let us first explain why only elements of O+(�4,20) ⊂ O(�4,20), which by definition

preserve the orientation of any positive four-plane, preserve the orientation of the world-
sheet of NLSM [75]. To understand this, let us first recall some known facts about
NLSM on K3 (see, e.g., [75] for a discussion and more details). The tangent space to
(SO(4)×O(20))\O+(4, 20) ∼= (O(4)×O(20))\O(4, 20) at the point corresponding to a four
plane � can be identified with the 80-dimensional space ofN = (4, 4)-preserving exactly
marginal operators of the corresponding NLSM T (�). The latter have schematically the
formG−1/2G−1/2χi, where χi, i = 1, . . . , 20, are fields of weight (1/2, 1/2) belonging to 20
different N = (4, 4) irreducible representations. In particular, the N = (4, 4)-preserving
marginal operators are the descendants of conformal weights (1, 1) that are singlets under
the internal R-symmetries SU (2)susyL ×SU (2)susyR , generated by the zeromodes of the holo-
morphic and anti-holomorphic ŝu(2)1 current algebras within N = (4, 4). On the other
hand, they transformas (2, 2) under the groupSU (2)outL ×SU (2)outR of outer automorphisms
acting on the left- and right-moving supercharges. The space (SO(4) × O(20))\O+(4, 20)
has an holonomy group SO(4) × SO(20), where the SO(4) factor is the group SO(�)
of rotations of the four-plane � ⊂ R

4,20, while SO(20) rotates its orthogonal comple-
ment �⊥ ⊂ R

4,20. This holonomy group must act on the space of exactly marginal
operators G−1/2G−1/2χi; in particular, the SO(20) factor rotates the fields χi, while the
SO(�) ∼= SO(4) factor acts on the supercharges G−1/2 and Ḡ−1/2 by automorphisms of
the N = (4, 4) superconformal algebra. Therefore, the double cover Spin(�) ∼= Spin(4)
of SO(�) can be identified with the group SU (2)outL ×SU (2)outR of algebra automorphisms.
Now, leth ∈ O(�4,20) be a dualitymappingT (�) toT (h(�)). The group SO(h(�)) rotating
the dual 4-plane h(�) and its double cover Spin(h(�)) are the conjugate by h of the group
SO(�) ⊂ O+(4, 20) rotating� and its cover Spin(�) ∼= SU (2)outL ×SU (2)outR , respectively.
Recall that, given an oriented Euclidean four-dimensional space, conjugation by (a lift of)
an element h ∈ SO(4) maps each SU (2) factor in the spin cover Spin(4) ∼= SU (2)× SU (2)
into itself, while conjugation by h ∈ O(4)\SO(4) exchanges the two SU (2) factors. There-
fore, if a duality h is in O+(�4,20), then conjugation by h will send the factor SU (2)outL
(respectively, SU (2)outR ) of Spin(�) to the groupof outer automorphisms of the left-moving
(resp., right-moving) N = 4 superconformal algebra in the dual model T (h(�)). On the
other hand, if h ∈ O(�4,20) \ O+(�4,20), conjugation by h will map the group of left-
moving outer automorphisms SU (2)outL in the model T (�) to the group of right-moving
outer automorphisms in the dual model T (h(�)), and vice versa. By consistency, in this
case h must also send the holomorphic N = 4 superconformal algebra in T (�) to the
anti-holomorphic N = 4 algebra in T (h(�)). This means that a duality h ∈ O(�4,20)
preserves the world-sheet orientation if and only if h ∈ O+(�4,20) ⊂ O(�4,20). Since the
definition of the twining genera effectively only focuses on the action of g on the left-
movers (i.e. on the right-moving ground states), and in general g acts on the right-movers
differently, one expects Zg to be invariant only under O+(�4,20) duality transformations.
This consideration is particularly relevant for symmetries whose corresponding twining

genera have complexmultiplier systems. Recall that the twined elliptic genusZg is a Jacobi
form under a certain congruence subgroup Gg ⊂ SL2(Z) with a (in general non-trivial)
multiplier ψg : Gg → C

∗. We say that ψg is a complex multiplier system if its image does
not lie in R. Note that this is necessarily the case when the multiplier has order greater
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than 2. To see the relation between world-sheet parity and themultiplier system, consider
two K3 NLSMs T and T ′ corresponding to the four planes � and �′ that are related by
an h ∈ O(�4,20), �′ = h(�), which reverses the orientation of a positive four-plane and
hence exchanges the left- and the right-movers. This means in particular that hmaps the
N = (4, 4) algebras of T and T ′ as

hLnh−1 = L̄′
n hJnh−1 = J̄ ′n . (3.11)

Given a symmetry g of T , namely g ∈ O+(�4,20) such that g fixes � pointwise, then a
corresponding symmetry of T ′ is given by g ′ := hgh−1. We would like to know whether
Zg (T ; τ , z) and Zg ′ (T ′; τ , z) are the same.
To answer this question, consider the refined twining partition function

Zg (T ; τ , z, ū) = TrHRR

(
gqL0−

c
24 q̄L̄0−

c̄
24 e2π izJ0e−2π iūJ̄0 (−1)F+F̄

)
, (3.12)

for a symmetry 〈g〉 of the theory T . Note that, unlike the elliptic genus, this function is
not an index, and it depends on both the conjugacy class of g and the point in moduli
space, T . In general, Zg is not holomorphic in τ , but it is elliptic (one can apply spectral
flow independently to the left- and right-movers) and modular (in the appropriate sense
for a non-holomorphic Jacobi form) under some subgroup of SL2(Z). In particular, if g
has order N , we expect Zg to transform under

( a b
c d

) ∈ �1(N ) as

Zg (T ; τ , z, u) = ψg (( a b
c d )) e

−2π i( cz2
cτ+d + cū2

cτ̄+d ) Zg

(
T ;

aτ + b
cτ + d

,
z

cτ + d
,

ū
cτ̄ + d

)
. (3.13)

Clearly, one recovers the twining genus as

Zg (T ; τ , z, ū = 0) = Zg (T ; τ , z).

This implies that the multiplierψg of the twining partition function Zg coincides with the
one of the twining genus Zg .
Now, the O(�4,20)-equivalence and the absence of O+(�4,20)-equivalence between the

theories T and T ′ imply

Zg ′ (T ′; τ ′, z′, ū′) = Zg (T ; τ , z, ū). (3.14)

In the above, apart from g ′ = hgh−1 we also have τ ′ = −τ̄ , z′ = −ū and ū′ = −z. To see
the relation between themultiplier system ofZg ′ (T ′) andψg , note that the above equation
implies

Zg ′ (T ′; τ , 0, z) = Zg (T ;−τ̄ ,−z̄, 0) = Zg (T ;−τ̄ ,−z̄). (3.15)

As a result, assuming that the coefficients of the double series expansions in q and y of
Zg (T ) are all real, we obtain

Zg ′ (T ′; τ , 0, z) = Zg (T ; τ , z) (3.16)

and hence has multiplier given by ψg : �1(N ) → C
∗, the inverse of the multiplier of

Zg . The above assumption can be proven from the fact that TrV (g) = TrV (g−1) for any
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finite-dimensional representationV of a finite group 〈g〉 and using the identityZg = Zg−1

(see eq.(3.7)).
Finally, recall that Zg ′ (T ′; τ , 0, u) and Zg ′ (T ′; τ , z, 0) = Zg ′ (T ′; τ , z) necessarily have the

samemultiplier, since they both coincidewith that ofZg ′ (T ′; τ , u, z), and thuswe conclude
that the twining genera Zg ′ (T ′; τ , z) and Zg (T ; τ , z) have multiplier systems that are the
inverse (equivalently, complex conjugate) of each other. In particular, Zg ′ (T ′; τ , z) and
Zg (T ; τ , z) cannot be the same unless ψg = ψg . As a result, symmetries g leading to a
twining genus with a complex multiplier system necessarily act differently on left- and
right-moving states. Note, however, that it can happen that a symmetry acting asymmet-
rically on left- and right-movers leads to a twining genus with a multiplier system of order
one or two. In what follows, we will refer to a symmetry g of a NLSM a complex symmetry
if the resulting twining genus has complex multiplier system.

3.3 Conway and umbral moonshine

Once the possible O+(�4,20) classes of symmetries have been determined, it remains to
calculate the corresponding twining genera. As we will see in Sect. 4, many examples have
been computed in specific NLSMs. However, the list of such functions is still incomplete.
After reviewing the earlier work [22,42], in this subsection we present two conjectures
relating physical twining genera to functions arising fromumbral andConwaymoonshine,
as well as some evidence for their validity.
Consider the 23 Niemeier lattices N with non-trivial root systems. Umbral moonshine

attaches to each element g of the Niemeier group GN a weight one mock Jacobi form

�N
g (τ , z) =

∑
r∈Z/2m

HN
g ;r(τ )θm,r(τ , z),

whose index is given by the Coxeter number of the root system of the corresponding
Niemeier latticeN [16]. In the above expression, the indexm theta functions are given by

θm,r(τ , z) =
∑

k=r mod 2m
qk

2/4myk ,

and the vector-valued mock modular form HN
g = (HN

g ;r) contains precisely the same
information as the mock Jacobi form �N

g . In [22], a weight 0 index 1 Jacobi form for a
certainGg ⊆ SL2(Z) is then given in terms of �N

g by

φN
g (τ , z) = Zg (N ; τ , z) + θ21 (τ , z)

2η6(τ )

(
1

2π i
∂

∂w
�N

g (τ , w)
) ∣∣∣

w=0
. (3.17)

In the above formula, Zg (N ; τ , z) denotes the holomorphic part of the (g-twined) elliptic
genus of the singularities corresponding to the root system of N .8 In string theory and
conformal field theory, it is often useful to consider K3 surfaces that are either smooth or
have at worst du Val type surface singularities, i.e. singularities locally of the form C

2/G,
whereG is a finite subgroup of SU (2)C [37]. Note that, upon including this kind of singular
surfaces, the moduli space of hyperkähler structures (with fixed volume) on K3 admits a
simple description as (a discrete quotient of) the Grassmannian O(3, 19)/O(3) × O(19),

8Note that the holomorphic part of the elliptic genus in question is well defined both from a physical and mathematical
point of view. From the physics perspective, the holomorphic part corresponds to the contribution from the discrete
part of the spectrum [1,44,59,89]. From the mathematical point of view, the holomorphic part corresponds to the
holomorphic part of the harmonic Maass form [9].
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parametrizing positive-definite 3-spaces within the space �3,19 ⊗R ∼= R
3,19 (see, e.g., [6]).

In particular, surfaces with duVal singularities correspond to the case where the 3-space is
orthogonal to a root v ∈ �3,19, v2 = −2, and therefore can be obtained as suitable limits of
smoothK3 surfaces. DuVal singularities have anADE classification, formally analogous to
the one of simply laced root systems. A conformal field theory description of string theory
withADE singularities as the target spacewas given in [79]. The formof their elliptic genus
was investigated in anumber of papers, including [1,2,22,44,63,74,89]. For instance,when
N is the Niemeier lattice with root system 24A1, Z(N ; τ , z) := 24Z(A1; τ , z) is 24 times
the holomorphic part of the elliptic genus of an A1-singularity.
It was conjectured in [22] that φN

g are candidates for twining genera arising from K3
NLSMs when g preserves a four-plane; this conjecture has passed a few consistency tests
and was further tested in [17]. For a givenN with a non-trivial root system, we will denote
the set of Jacobi forms arising in this way as

�(N ) := {φN
g |g is a four-plane preserving element of GN }.

The construction and conjecture in [22] gives us a set of Jacobi forms �(N ) attached to
each of the 23Niemeier latticeN with roots that (conjecturally) play the role of twinedK3
elliptic genera at certain points in the moduli space. It is also possible to define a similar
set �(�) associated with the Leech lattice �, though the construction is quite different.
In [42] Duncan and Mack-Crane proposed two (possibly coinciding) weight 0 index 1
weak Jacobi forms for a certain Gg ⊆ SL2(Z), denoted φ�

g,+(τ , z) and φ�
g,−(τ , z), to each of

the four-plane preserving conjugacy classes of Co0.9 The construction of φ�
g,+ and φ�

g,− is
based on anN = 1 super VOA of central charge c = 12, which has symmetry group Co0
[40]. Concretely, one has

φ�
g,±(τ , z) =

4∑
i=1

εg,i θ
2
i (τ , z)

10∏
k=1

θ2i (τ , ρg,k )

where ρg,k are such that

{1, 1, 1, 1, e−2π iρg,1 , e2π iρg,1 , . . . , e−2π iρg,10 , e2π iρg,10}
are the 24 eigenvalues of g acting on the 24-dimensional representation, and

εg,i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∓1 i = 1,

− Tr4096 g
4

∏10
k=1(e

−π iρg,k +eπ iρg,k )
i = 2,

1 i = 3,

−1 i = 4.

In the above formula, obtained via a simple manipulation (see [14], eq. (5.10) and the
discussion therein) of the expressions given in [42], 4096 is the representation of Co0 that
decomposes as 4096=1+276+1771+24+2024 in terms of Co0 irreducible represen-
tations. This representation corresponds to the space of fermionic ground states for the
N = 1 super VOA in [40].

9Note that, in [40], the Jacobi form attached to a Co0 conjugacy class with representative g depends on the choice of an
orientation for the space H̃ (X,Z)⊗R (see the beginning of section 9 in [40]). In particular, in the explicit formulae for φg
(eq.(9.14) of [40]), this choice of orientation determines the sign of the parameter Dg , while its absolute value depends
on the Co0 conjugacy class. Therefore, φ�

g,+(τ , z) and φ�
g,−(τ , z) coincide only for those classes for which Dg = 0. See

also [14] for further discussions about this point.
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One has φ�
g,+ �= φ�

g,− if and only if the invariant sublattice �g has exactly rank four.
Henceforth, we define

�(�) := {φ�
g,+,φ�

g,−|g is a four-plane preserving element of Co0}.
The authors of [42] then conjectured that the functions in �(�) are relevant for twining
genera arising from (non-singular) K3 NLSMs. In fact, they conjecture that all twining
genera arising from any K3 NLSM coincide with some element of �(�) arising from the
Conway module, which is supported by the non-trivial fact that all the known twining
genera Zg coincide with a function in �(�).
There are a fewmotivations for us to modify this conjecture and to make the conjecture

in [22] more concrete. Firstly, the classification theorems of Sect. 2 suggest that if one
does not exclude the loci in the moduli space (2.2) corresponding to singular four planes,
one should treat the Leech lattice and the other 23 Niemeier lattices with non-trivial root
systems on an equal footing when discussing the four-plane preserving symmetry groups.
As a consequence, onemight expect both Conway and umbral moonshine to play a role in
describing the twining genera. Secondly, UV descriptions of K3NLSMs given by Landau–
Ginzburg (LG) orbifolds furnish evidence that suggests that the Conway functions alone
are not sufficient to capture all the twining genera [17] (see also Sect. 4.3). To be more
precise, there are twining genera arising from symmetries of UV theories that flow to K3
NLSMs in the IR that can be reproduced from the set �(N ) for some N with roots, but
do not coincide with anything in �(�). One caveat preventing this result from being a
definitive argument is that the action of the corresponding symmetry on the IRN = (4, 4)
superconformal algebra is not accessible in the UV analysis.
The third and arguably most convincing argument to include functions arising from

both Conway and umbral moonshine is the following. As we have seen in Sect. 3.2, a
pair of theories related by a flip of world-sheet parity gives rise to twining genera with
inverse multiplier systems. At the same time, �(�) contains some twining functions with
a complex multiplier system and no functions with the inverse multiplier. Such functions
canalwaysbe recovered from�(N ) for someotherNiemeier latticeN . As a result, no single
�(N ) (not even for N the Leech lattice) is sufficient to reproduce both a physical twining
function Zg (T ) with complex multiplier and its parity-flipped counterpart Zg ′ (T ′).
These observations lead us to formulate the following conjecture:

Conjecture 5 Let T (�) be a K3 NLSM, and let G be its symmetry group. Then, there
exists at least one Niemeier lattice N such that �G can be embedded in N, G ⊆ GN , and
for any g ∈ G the twining genus Zg coincides with an element of �(N ).

In other words, we conjecture that for each K3 NLSM T , the set �̃(T ) := {Zg (T (�))|g ∈
O+(�4,20), g fixes � pointwise} of physical twining genera is a subset of the �(N ) for
some Niemeier lattice N . Clearly, for most theories, the Niemeier lattice N satisfying
the above properties is not unique. In particular, recall that there are many coincidences
among the functions associated with different Niemeier lattices. In other words, there
exist φ ∈ �(N ), φ′ ∈ �(N ′) with N �= N ′ such that φ = φ′.
Conversely, we conjecture that all elements of �(N ) play a role in capturing the sym-

metries of BPS states of K3 NLSMs:

Conjecture 6 For any element φ of any of the 24 �(N ), there exists a NLSM T with a
symmetry g such that φ = Zg (T ).
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In Sect. 4.5, we collect some evidence supporting these conjectures. We will close this
section with a few remarks on the consequences of the above conjectures, in relation to
the complex symmetries discussed in Sect. 3.2.

• If a given function in�(N ) has complex multiplier system, then Conjecture 6 implies
that it has to coincide with a twining genus arising from a complex symmetry acting
differently on the left- and right-moving Hilbert spaces.

• As we argued in Sect. 3.2, if a theory T leads to the twining function Zg (T ) with a
complex multiplier system, the parity-flipped theory T ′ has a twining genus Zg ′ (T ′)
with the inverse multiplier system. As a result, the following observations constitute
consistency checks and circumstantial evidence for Conjecture 5 and Conjecture 6.
Namely, whenever there exist a Niemeier lattice N and a function φ ∈ �(N ) with a
complex multiplier system, arising from a group element with a given Frame shape
π , then there exists at least one other Niemeier lattice N ′ such that there exists a
φ′ ∈ �(N ′) with the inverse complex multiplier system, which moreover arises from
a group element with the same Frame shape π . See Table 3 for the pairs (N ′, g ′) with
the above properties.

• In fact, by inspection one can check that there are never two functions φ,φ′ ∈ �(N )
arising from the same Niemeier lattice that have inverse complex multiplier systems.
As a result, Conjecture 5 predicts that a theory corresponding to the four-plane
� must have its orthogonal sublattice �4,20 ∩ �⊥ embeddable into more than one
Niemeier lattice in the event that it has a complex symmetry.

• Recall that a theory in the NLSM moduli space (2.2) on a torus orbifold locus—one
of the few types of exactly solvable models—always contains symmetries which can
only be embedded using the Leech lattice (in the sense of Theorem 1) [51]. As a
result, assuming the veracity of Conjecture 5, complex symmetries can never arise
in such a model. This makes it particularly difficult to find examples of K3 NLSMs
with complex symmetries and probably explains why we have seen no such examples
so far. In Sect. 4.3, we will discuss results of the aforementioned investigation of LG
orbifolds [17], while in Sect. 4.4 wewill analyze the constraints on such genera coming
from modularity.

4 Examples
In this section, we collect all known explicit calculations of twining genera in NLSMs
on K3. Most of these results have appeared earlier in the literature, the only exceptions
being certain genera appearing in Sects. 4.2 and 4.4. See Table 4 for the data. While these
examples do not cover the complete set of all possible twining genera, the fact that these
partial results fit nicely with the general properties described in the previous sections
represents strong evidence in favor of our conjectures.

4.1 Geometric symmetries

We say that a symmetry of a K3 NLSM is a geometric symmetry if it is induced from a
hyper-Kähler preserving automorphism of the target K3 surface. These symmetries are
characterized by the property that the fixed sublattice �g contains a unimodular �1,1,
which can be interpreted as the components H0(S,Z) ⊕ H4(S,Z) of degree 0 and 4 in the
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integral homology of the K3 surface S. There exist such geometric symmetries with order
N ∈ {2, 3, 4, 5, 6, 7, 8} [73,77]. For each of these orders, there is precisely one Frame shape

1828, 1636, 142444 , 1454 , 12223262, 1373, 12214182 (4.1)

that can arise from a geometric symmetry of a K3 surface [73].
A general formula for the corresponding twining genus for each of the above Frame

shapes and reads

Zg (τ , z) = Tr24(g)
ϕ(N )

∑
n∈Z/NZ

gcd(n,N )=1

ϑ1(τ , z + n
N )ϑ1(τ , z − n

N )
ϑ1(τ , n

N )ϑ1(τ ,− n
N )

, (4.2)

where the totient function ϕ(N ) := |(Z/NZ)×| is number of integers mod N that are
coprime to N . This formula follows from appendix A of [82]; a slightly simplified version
valid for N = 2, 3, 4, 6 appears in [19]. These twining genera can be defined in purely
geometric terms as equivariant complex elliptic genera and computed using a version of
the Lefschetz fixed-point formula [27]. The results agree with the formulas derived from
NLSMs.

4.2 Torus orbifolds

If a K3 model is obtained as a (possibly asymmetric) orbifold of a torus T 4 by a symmetry
g of order N , then it has a quantum symmetry Q of order N , which acts as multiplication
by e

2π ir
N on all states in the gr-twisted sector, r ∈ Z/NZ. It is not difficult to compute

the twining genus of a quantum symmetry, since it can be computed from the twining
genus of g on the NLSM TT 4 on the T 4. In [90], general formulas for the twining genera
of all possible symmetries of any NLSM on T 4 were given. The supersymmetric NLSM
on T 4 has four left-moving and four right-moving Majorana-Weyl fermions. The holo-
morphic fermions form two doublets (χ+

i ,χ−
i ), i = 1, 2, each in the (2, 1) representation

of the SU (2)L × SU (2)R R-symmetry , while the anti-holomorphic fermions form dou-
blets (χ̃+

i , χ̃−
i ), i = 1, 2, in the (1, 2) representation. The symmetry g commutes with the

R-symmetry and acts on the multiplets by

(χ+
1 ,χ−

1 ) �→ζL(χ+
1 ,χ−

1 ), (χ+
2 ,χ−

2 ) �→ζ−1
L (χ+

2 ,χ−
2 ), (4.3)

(χ̃+
1 , χ̃−

1 ) �→ζR(χ̃+
1 , χ̃−

1 ), (χ̃+
2 , χ̃−

2 ) �→ζ−1
R (χ̃+

2 , χ̃−
2 ) , (4.4)

with

ζL,R = exp(2π irL,R) for some rL, rR ∈ 1
N
Z/Z . (4.5)

For ζL �= 1, the twining genus of g is given by

Zg (TT 4 ; τ , z) = (ζL + ζ−1
L − 2)(ζR + ζ−1

R − 2)
ϑ1(τ , z + rL)ϑ1(τ , z − rL)

ϑ1(τ , rL)ϑ1(τ , rL)
. (4.6)

Note that the above function is invariant under both rL → −rL and rR → −rR, but is
in general not invariant under rL ↔ rR. When rL = 0 mod Z (i.e., ζL = 1), the twining
genus is given instead by
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Zg (TT 4 ; τ , z) = (ζR + ζ−1
R − 2)

ϑ1(τ , z)2

η(τ )6
�L(τ ) , (4.7)

where

�L(τ ) :=
∑
λ∈L

q
λ2
2 (4.8)

is the theta series associated with a lattice L of rank 4. The only relevant cases are (rL, rR) =
(0, 1/2) and (rL, rR) = (0, 1/3), inwhichcasesL is theD4 orA2

2 root lattices, respectively (see
[90] for more details). In particular, the untwined elliptic genus of T 4 is Ze(T 4; τ , z) = 0.
When aCFThas a discrete symmetry, it is also useful to discuss the twisted sectors of the

symmetry (modules of the invariant subalgebra), labeled by the twisting group element
g . For any element h of the discrete symmetry group that commutes with the twisting
element g , one can consider the graded trace of h over the g-twisted sector, analogous
to the way in which a twined partition function or twined elliptic genus is defined. Such
a character is often called the twisted-twining partition function/elliptic genus. As usual
in the literature, we use Zh,g to denote the g-twining function in the h-twisted sector. In
particular, the twining function of the original unorbifolded theory is given byZg := Ze,g .
Using the modular properties of the theta function as well as the fact that the twisted-

twining genera form a representation of SL2(Z), we obtain the following expression which
is valid for rLM �= 0 mod Z

Zgn,gm (TT 4 ; τ , z) = (ζM
L + ζ−M

L − 2)(ζM
R + ζ−M

R − 2)

× ϑ1(τ , z + rL(nτ + m))ϑ1(τ , z − rL(nτ + m))
ϑ1(τ , rL(nτ + m))ϑ1(τ , rL(nτ + m))

, (4.9)

where M = gcd(n,m). When rLM = 0 mod Z, Zgn,gm is given by a suitable SL2(Z)
transformation of (4.7).
The elliptic genus of the g-orbifolded theory TK3, which we assume to be a K3 model,

is then given in the usual way by

Z(TK3; τ , z) = 1
N

∑
n,m∈Z/NZ

Zgn,gm (TT 4 ; τ , z) . (4.10)

Similarly, the twining genus of the quantum symmetry Q is given by

ZQ(TK3; τ , z) = 1
N

∑
n,m∈Z/NZ

e
2π in
N Zgn,gm (TT 4 ; τ , z) . (4.11)

A number of new twining genera can be obtained from the above calculation. The relevant
values of rL, rR and the Frame shapes of the corresponding quantum symmetries are
collected in Table 1 (see [90]).
A set of more general twining genera can be obtained as follows. Suppose that g is a

symmetry of a NLSM on T 4 of order N and the gn-orbifolded theory is a K3 NLSM
for a n|N . Then, g induces a symmetry g ′ of order N/n on the resulting K3 NLSM that
commutes with the quantum symmetry, and one has

Zg ′lQm (TK3; τ , z) = n
N

N/n∑
j,k=1

e
2π ijm
N/n Zgnj ,gnk+l (TT 4 ; τ , z) . (4.12)
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Table 1 Frame shapes corresponding to quantum symmetriesQ of torus orbifolds

rL rR πQ w-s parity

1/2 1/2 1−8216 ◦
1/3 1/3 1−339 ◦
1/4 1/4 1−42644 ◦
1/6 1/6 1−4253461 ◦
1/5 2/5 1−155 �
2/5 1/5

1/4 1/2 2−448 �
1/2 1/4

1/6 1/2 1−2243−264 �
1/2 1/6

1/6 1/3 1−12−13363 �
1/3 1/6

1/8 5/8 1−2234182 �
5/8 1/8

1/10 3/10 1−22352101 �
3/10 1/10

1/12 5/12 1−2223241121 �
5/12 1/12

The twining genera can be obtained by applying formulae (4.11) and (4.9). In the last column, the symbol ◦ means that the
symmetry is fixed by world-sheet parity, while � that world-sheet parity relates two different symmetries. Clearly, a twining
genus for a quantum symmetry is fixed by world-sheet parity if and only if rL = ±rR mod Z

The right-hand side of this equation can be easily computed using (4.9). The Frame shapes
corresponding to these symmetries are collected in Table 2.

4.3 Landau–Ginzburg orbifolds

It is very non-generic for aK3NLSM to correspond to an exactly solvable CFT. In fact, the
only such examples we know of are torus orbifolds, described in the previous subsection,
Gepner models, i.e. orbifolds of tensor products of N = 2 minimal models [57], and
generalizations thereof [48]. However, for the purpose of computing the (twined) elliptic
genus, it is sufficient to have a UV description which flows in the IR to a K3 NLSM. This
fact was used byWitten to provide evidence for the connection between certain Landau–
Ginzburg (LG) models andN = 2 minimal models [94]. The LG theories are generically
massive, super-renormalizableN = 2 quantum field theories; however, in the IR they can
flow to anN = (2, 2) superconformal field theory. For instance, the LG theory of a single
chiral superfield with superpotential

WAk+1 (�) = 1
k + 2

�k+2 (4.13)

flows to an IR fixed point corresponding to theN = 2 minimal model of type Ak+1.
Though these minimal models all have central charge less than 3, LG theories prove to

have geometric applications through the orbifold construction.Namely, one can construct
theories which flow in the IR to a NLSM on a CY d-fold by taking superpotentials of
multiple chiral multiplets, such that the sum of their charges equals 3d, along with an
orbifold which projects the Hilbert space onto states with integer U (1) charges. This
connection between CY geometry and LG orbifolds was further elucidated byWitten [93]
using the framework of gauged linear sigma models.
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Table 2 Symmetries of torus orbifolds whose twining genera are given by (4.12)

rL rR o(Q) o(g′) πQg′

1/4 1/4 2 2 212

1/6 1/6 2 3 14213−465

3 2 152−43164

1/6 1/2 2 3 1−2243−264

1/6 1/3 3 2 1−12−13363

1/8 3/8 2 4 2444

4 2 2444

1/10 3/10 2 5 12215−2103

5 2 132−251102

1/12 5/12 6 2 2363

4 3 123−24162121

3 4 1122314−2122

2 6 2363

In [17], a number of new twinings were found in explicit models: LG orbifolds which
flow in the IR to K3 CFTs. Here, we briefly mention cases where symmetries of order 11,
14 and 15 arise. These symmetries preserve precisely a four-plane in the Leech lattice and
thus only occur at isolated, non-singular points in K3 moduli space. The symmetries of
order 11 and 15 arise in cubic superpotentials of six chiral superfields of the form,

Wc
1(�) = �3

0 + �2
1�5 + �2

2�4 + �2
3�2 + �2

4�1 + �2
5�3, (4.14)

Wc
2(�) = �2

0�1 + �2
1�2 + �2

2�3 + �2
3�0 + �3

4 + �3
5, (4.15)

respectively, while the symmetry of order 14 arises in a model with quartic superpotential

Wq(�) = �3
1�2 + �3

2�3 + �3
3�1 + �4

4 . (4.16)

As discussed in [17], the symmetry groups of Wc
1, Wc

2, and Wq are given by L2(11),
(3 × A5) : 2 and L2(7) × 2, each of which contains elements of order 11, 15 and 14,
respectively. Using their explicit actions on the superfields, one can readily compute their
LG twining genus.
The symmetries of order 11, 15 and 14 all have a unique Frame shape (12112, 1.3.5.15

and 1.2.7.14, respectively), and each occurs in two non-Conway Niemeier groups, corre-
sponding to Niemeier latticesN1, N2 with root lattices {A24

1 , A12
2 }, {A24

1 , D6
4} and {A24

1 , A8
3},

respectively. Since these symmetries preserve exactly a four-plane, the Conway module
associates two different twinings functions with these Frame shapes. In each of these three
cases, the two umbral moonshine twinings given corresponding to two Niemeier lattices
yield two different results φ

N1
g1 and φ

N2
g2 , coinciding with the two twinings φ�

g,+ and φ�
g,−

arising from Conway module.
The twinings of order 11, 15 and14 computed in the above-mentionedLGmodelsmatch

those associated with root systems A12
2 , D6

4 and A8
3, respectively. This can be viewed as

evidence for the connection between (non-M24 instances of) umbralmoonshine andCon-
way moonshine, to the symmetries of K3 NLSMs.10 We refer to [17] for more examples
and details.

10It is intriguing tonote that the formsofWc
1 ,Wc

2 andWq are closely related to the superpotentialswhichflow to theA2,
D4 andA3N = 2minimalmodels, where theA-type case is given above, and theD4 case isWD4 (�1 ,�2) ∼ �3

1+�1�2
2 .
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4.4 Modularity

In this section, we discuss how one can use constraints of modularity to precisely spec-
ify the twining genera corresponding to certain O+(�4,20) conjugacy classes in some
cases. The twining genera Zg are weak Jacobi forms under some congruence subgroup
Gg ⊆ SL2(Z), possibly with a non-trivial multiplier ψ . At the same time, the Frame shape
establishes the q0-terms in their Fourier expansion, given by

Zg (τ , z) = 2y + 2y−1 + TrV24 (g) − 4 + O(q) . (4.17)

Here,TrV24 (g) denotes the trace of g ∈ O+(�4,20) in the defining 24-dimensional represen-
tation V24. In some cases, the modular properties together with the above leading-term
coefficients are sufficient to fix the function Zg completely. More precisely, the above
criteria dictate that Zg can be written as

Zg (τ , z) = TrV24 (g)
12

φ0,1(τ , z) + F (τ )φ−2,1(τ , z) , (4.18)

where

φ0,1(τ , z) = 4
4∑

i=2

θi(τ , z)2

θi(τ , 0)2
= y + 10 + y−1 + O(q) (4.19)

φ−2,1(τ , z) = θ1(τ , z)2

η(τ )6
= y − 2 + y−1 + O(q) , (4.20)

are the standard weak Jacobi forms of index 1 and weight 0 and −2, respectively, and

F (τ ) = 2 − Tr24(g)
12

+ O(q) , (4.21)

is a modular form of weight 2 under Gg , with a suitable multiplier ψ . Clearly, ψ can only
be non-trivial when Tr24(g) = 0. Let us denote byM2(Gg ;ψ) the space of modular forms
of weight 2 for a group G ∈ SL2(Z) with multiplier ψ . It is clear from (4.17) and (4.21)
that Zg is uniquely determined in terms of Tr24(g) whenever dimM2(Gg ;ψ) ≤ 1.
The approach described above is particularly effective in constraining twining genera

with non-trivial multiplierψ , since the spaceM2(Gg ;ψ) is often quite small. We illustrate
our arguments with the following example. Consider g with Frame shape 38. The possible
multipliers can be determined using themethods described in “AppendixC.” In particular,
TrV24 (g) = 0 and Gg = �0(3), and hence the order of the multiplier system is either 1
or 3. The Witten index of a putative orbifold by g is 8, which is different from 0 or 24.
We can therefore conclude that the orbifold is inconsistent and hence the multiplier has
order n = 3. (See “Appendix C” for the detailed argument.) Thus, F (τ ) = 2 + O(q) is
modular form of weight 2 for �0(3) with multiplier of order 3. It turns out that there
are two possible multipliers ψ and ψ̄ of order 3, with the property dimM2(�0(3);ψ) =
dimM2(�0(3); ψ̄) = 1. Hence, in both cases there are a unique weight 2 form F and
therefore a unique weak Jacobi form Zg , with the required normalization (4.21), giving
the umbral twining function corresponding to the root systems A24

1 and A12
2 .

Footnote 10 continued
It would be interesting to understand whether this is connected to the fact that the twinings correspond to cases of
umbral moonshine whose root systems contain copies of A2 , D4 and A3 , respectively.
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Using similar arguments, one can determine the twining genera for the Frame shape 46

for bothpossible choices ofmultipliers, and the twining genera for the Frame shapes 64 and
4282 for one of the two possible multipliers. In all such cases, the resulting twining genera
coincide with some umbral functions, i.e., some �(N ) (see “Appendix D.2”), offering
support for our Conjecture 5.

4.5 Evidence for the conjectures

In this section, we summarize a number of results which we view as compelling evidence
for our conjectures of Sect. 3.3. Conjecture 5 states, among other things, that all physical
twining genera Zg are reproduced by some function arising from umbral or/and Conway
module. If true, then combined with the world-sheet parity analysis in Sect. 3.2, the
following two statements necessarily hold. The fact that they do hold then constitutes
non-trivial evidence for the conjecture.

• As reported in Appendix D.2, there are either 81 or 82 distinct O+(�4,20) classes
of symmetries. In particular, for the Frame shape 1−4253461, there is either a single
O+(�4,20) class or two classes that are the inverse of each other and hence must have
the same twining genus. Therefore, there are potentially 81 distinct twining genera
Zg . Only 56 have been computed using the methods described in Sects. 4.1–4.4. In
all such cases, one has Zg ∈ �(N ) for at least one Niemeier lattice N .

• Whenever there is an umbral or Conway twining genus φg ∈ �(N ) which has a
complex multiplier ψ , there exists another φ′

g ′ ∈ �(N ′) corresponding to the same
Frame shape πg = πg ′ and with the conjugate multiplier ψ̄ . Furthermore, πg has
distinct O+(�4,20) conjugacy classes which are related by world-sheet parity. Note
that in all cases we have N �= N ′. Table 3 shows the pairs of N,N ′, denoted in
terms of their root systems in the case N �= �, leading to Jacobi forms with complex
conjugate multipliers.

Similarly, the following fact is non-trivially compatible with Conjecture 6.

• Fix a four-plane preserving Frame shapeπg . Denote byK the number of distinct twin-
ing functionsφN

g associatedwithπg arising fromeitherConwayorumbralmoonshine,
and denote by K ′ the number of O+(�4,20) conjugacy classes associated with πg . In
all cases, K ′ ≥ K , and for a vast majority (35 out of 42) of the four-plane preserving
Frame shapes this inequality is saturated.

Note that the fact that K is small can be attributed to the large number of coincidences
among the elements of �(N ) and �(N ′) related to different Niemeier lattices N,N ′. For
example, the Frame shape 2444 appears in the group GN for seven distinct Niemeier
latticesN , but the seven twining genera φN

g are all the same, compatible with the fact that
there is a unique O+(�4,20) class for this Frame shape. Since for some (7 out of 42) Frame
shapes the number of O+(�4,20)-classes is strictly larger than the number of distinct φN

g ,
Conjecture 5 predicts that there must be some coincidences among the physical twining
genera corresponding to these different classes.
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Table 3 Frame shapes with complexmultiplier and corresponding Niemeier lattices

Frame shape ψ ψ

38 A122 , D6
4 , A

3
8 , E

3
8 ,� A241 , A64 , D

3
8

46 A83 , A
6
4 , A

2
12 ,� A241 , A122 , A46 , D

4
6

64 A122 , D6
4 , A

3
8 ,� A241 , A64

4282 A83 , E
4
6 ,� A122

5 Discussion
In the present paper, we have proven classification results on lattices and groups rele-
vant for symmetries of K3 string theory and proposed conjectures regarding the relation
between the these symmetries and umbral and Conway moonshine. These results moti-
vate a number of interesting questions. We discuss a few of them here.

• Apart from classifying the symmetry groups of K3 NLSMs as abstract groups, it is
also important to know what their actions are on the (BPS) spectrum. In particular,
the twining genus can differ for two K3 NLSM symmetries with the same embedding
into Co0 [17,22,54]. This motivated us to classify the distinct conjugacy classes in
O+(�4,20) and O(�4,20) for a given four-plane preserving Frame shape.
Given this consideration and given our Conjectures 5 and 6 relating twining genera
and moonshine functions, an important natural question is the following: Given a
particular K3 NLSM, how do we understand which case(s) of umbral moonshine
govern its symmetries?

• In this paper, we extend the classification of symmetry groups to singular points
in the moduli space of K3 NLSMs. These singular points correspond to perfectly
well-defined string compactifications where the physics in the six-dimensional non-
compact spacetime involves enhanced non-abelian gauge symmetries. It will be inter-
esting to study the BPS-counting functions arising in these compactifications.
Moreover, as these points are T-dual to type IIB compactifications on K3 in the
presence of an NS5-brane [91], it would be interesting to explore the symmetries of
these special points from this spacetime point of view. Furthermore, it may also be
interesting to classify the symmetry groups in more general fivebrane spacetimes,
such as those studied in [61,62] in connection with umbral moonshine.

• More generally, one can try to classify the discrete symmetry groups which arise in
other supersymmetric string compactifications, in varying dimensions and with dif-
fering numbers of supersymmetries. For example, one case of particular interest is the
symmetries of theories preserving only eight supercharges. One difficulty in studying
such theories is the global form of the moduli space is often not known, so one does
not have the power of lattice embedding theorems used to study theories with 16
supercharges. However, it may be possible to get partial results in certain examples.
The connection between sporadic groups, geometry and automorphic forms in theo-
ries with eight supercharges has only somewhat been studied (see, e.g., [23,60]), and
it would be interesting to explore it further.

• Twining genera of K3 NLSMs can be lifted to twining genera of the N th symmetric
product CFT SymN (K3) through a generalization [19] of the formula for the sym-
metric product elliptic genus of [36]. It can happen that a symmetry which is not a
geometric symmetry of any K3 surface can be a geometric symmetry for a hyper-
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Kähler manifold that is deformation equivalent to the N -th Hilbert scheme of a K3
surface for N ≥ 2. The symmetries of such hyper-Kähler manifolds of K3[N ] type
were classified in [64] for N = 2 in terms of their embedding into Co0. This includes
Frame shapes corresponding to elements of order 3, 6, 9, 11, 12, 14 and 15 which
are not geometric symmetries of any K3 surface. Each of these elements has at least
two distinct twining functions associated with it via umbral and Conway moonshine
as presented in Table 4. We noticed that for the elements of order 11, 14 and 15,
these distinct twining functions lift to the same twined elliptic genus for SymN (K3)
forN = 2, 3, 4. It would be interesting to understand when this general phenomenon
occurs, and more generally the structure of symmetries of string theory on K3 × S1.

• The compactification of type IIA on K3 × T 2 gives rise to a four-dimensional model
with half-maximal supersymmetry (16 supercharges). When the internal NLSM has
a symmetry g , one can construct a new four-dimensional model (CHL model) with
the same number of supersymmetries [10–12,83]. The CHL model is defined as the
orbifold of type IIA on K3×T 2 by a fixed-point-free symmetry acting as g on the K3
sigma model and, simultaneously, by a shift along a circle S1 in the T 2. The twining
genus Zg is directly related to the generating function 1/�g of the degeneracies of
1/4 BPS dyons in this CHL model [20,29–32,35,36,67,84]. Up to dualities, the CHL
model only depends on the Frame shape of g [80]. This is apparently puzzling for
those Frame shapes that correspond to multiple O+(�4,20)-classes and therefore to
multiple twining generaZg : In these cases, there are different candidates 1/�g for the
1/4 BPS-counting function, one for each distinct twining genus Zg . Since O+(�4,20)
is part of the T-duality group of the four-dimensional model, a natural interpretation
of this phenomenon is that the different 1/�g functions count 1/4 BPS dyons related
to different T-duality orbits of charges in the same CHL model. In view of this inter-
pretation, it would be interesting to understand the precise correspondence between
O+(�4,20)-classes and T-duality orbits of charges.

• One piece of supporting evidence for our conjectures concerns twining genera with
complex multiplier systems. However, so far we have not been able to directly obtain
these proposed twining genera from K3 NLSMs. Nevertheless, we argue that this is
unsurprising and does not constitute discouraging counter-evidence for our conjec-
tures for the following reason. Recall that the argument in Sect. 3.2 indicates that these
functions must arise from a symmetry acting differently on left- and right-movers.
Then, our Conjecture 5, together with the observation that such twining functions
always arise frommultiple instances of umbral and Conwaymoonshine (see Sect. 4.5,
2nd bullet point), predicts that these theories correspond to lattices embeddable into
multiple Niemeier lattices. This precludes most of the exactly solvable models that
have been studied so far, in particular all torus orbifolds and some Gepner models,
since these always contain a quantum symmetry which can only arise from a Leech
embedding. So far most of the NLSM analysis has focussed on these exactly solvable
models, and this explains why we have not observed these proposed twining genera
yet.
On the other hand, a number of the proposed twining genera with complex multipli-
ers (as well as many with real multipliers) were found by twining certain LG orbifold
theories [17]. These include functions arising from symmetries of order 3, 4, 6 and
8 and with Frame shapes 38, 46, 64 and 4282—the four Frame shapes which both
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preserve a four-plane in Co0 and correspond to twining genera with complex multi-
plier. In order to obtain these twining genera, one has to consider symmetries which
act asymmetrically on the left- and right-moving fermions in the chiral multiplets,
such that the UV Lagrangian, the right-movingN = 2 algebra and the four charged
Ramond ground states are preserved. In general, however, the left-moving N = 2
algebra is not preserved. Though HL and JL must remain invariant for the twining
genus to be well defined, G− and G− are transformed under these symmetries, such
that the symmetry maps the left-moving N = 2 to a different but isomorphic copy.
See [17] for more details. It is important to note that though these symmetries do not
preserve the full UV supersymmetry algebra, it does not preclude the possibility that
they preserve a copy of the IR N = (4, 4) SCA. After all, there is only an N = (2, 2)
supersymmetry algebra apparent in the UV, and only after a non-trivial RG flow
involving a complicated renormalization of the Kähler potential does the symmetry
get enhanced to N = (4, 4) at the conformal point. A clarification of the IR aspects
of these UV symmetries would be helpful in unravelling the nature of these left-right
asymmetric symmetries.

• While our Conjecture 6 states that all umbral and Conway moonshine functions
corresponding to four-plane preserving group elements play a role in the twining
genera ofK3NLSMs, the physical relevance of the umbral (includingMathieu)moon-
shine functions corresponding to group elements preservingonly a two-plane remains
unclear. We highlight a number of approaches to this problem here.
One possible approach to the problem is to find away to combine symmetries realized
at different points in moduli space and in this way generate a larger group which also
contains two-plane preserving elements. This approach is motivated by the fact that
the elliptic genus receives only contributions from BPS states and is invariant across
the moduli space. This possibility was first raised as a question “Is it possible that
these automorphism groups at isolated points in the moduli space of K3 surface
are enhanced to M24 over the whole of moduli space when we consider the elliptic
genus?” in [46]. Concrete steps toward realizing this idea in the context of Kummer
surfaces were taken in [17,87,88]. See also [50] for recent progress in the direction.
A second approach is to consider string compactifications where larger groups are
realized at given points in moduli space as symmetry groups of the full theory (and
not just the BPS sector). For theories with 16 supercharges, this is only possible for
compactifications with less than six non-compact dimensions. For example, it was
shown that there are points in the moduli space of string theory compactifications to
three dimensionswhich admit theNiemeier groups as discrete symmetry groups [68].
In the type IIA frame, these are given by compactifications on K3 × T 3. The action
of these symmetry groups on the 1/2-BPS states of the theory has been analyzed [68],
and it would be interesting to understand the action on the 1/4-BPS states.
A third approach stems from the vertex operator algebra (VOA) perspective. In [14],
a close variant of the Conway module is shown to exhibit an action of a variety of
two-plane preserving subgroups of Co0, including M23, and yields as twining genera
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a set of weak Jacobi forms of weight zero and index two.11 In addition, the mock
modular forms which displayM23 representations appear to be very closely related to
the mock modular forms which play a role inM24 moonshine. However, the physical
relevance of this module is still unclear. A better understanding of the connection
between the Conwaymodule andK3 NLSMs could help explainMathieu and umbral
moonshine.
Finally, yet another approach is to consider compactifications preserving less super-
symmetry [23,60]. It is not unlikely that the ultimate explanation of umbral moon-
shine will require a combination of the above approaches.
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A Some basic facts about lattices
In this appendix, we collect some useful facts about lattices (see [26,76] for more details).
Let L be an even lattice with non-degenerate quadratic form Q : L → 2Z of signature
(n,m) and rank d = n+m. Let L∗ be the dual, so that naturally L ⊆ L∗, L∗ ⊂ L⊗ZQ. The
quadratic form Q extends to Q : L∗ → Q by linearity. The discriminant group of L

AL := L∗/L , (A.1)

is a finite abelian group, with a discriminant form

qL : AL → Q/2Z (A.2)

induced by Q : L∗ → Q. The discriminant group has order det Bij where Bij is the Gram
matrix for the quadratic form Q with respect to some basis v1, . . . , vd of L.
We denote by O(L) the group of automorphisms of L (which is the same as the group

O(L∗) of automorphisms of the dual L∗). Similarly, we define O(qL) as the group of auto-
morphisms of the discriminant group AL that preserves the quadratic form qL

O(qL) := {g ∈ Aut(AL) | qL(g(x)) = qL(x) for all x ∈ AL} . (A.3)

There is an obvious map

O(L) → O(qL) , (A.4)

which, in general, is neither injective nor surjective.

11Coincidentally, in [7], and as further discussed in [18], it was shown that this module also admits an M24 action;
although the twining genera are no longer weak Jacobi forms, the representations are less closely related to those of
Mathieu moonshine.
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We recall that two even lattices L, L′ are in the same genus if and only if they have the
same signature and the discriminant forms are isomorphic, i.e., there is an isomorphism
γ : AL

∼=→ AL′ such that qL′ ◦γ = qL (that the signature and the quadratic form determine
the genus is proved in Corollary 1.9.4 in [76]; the converse is trivial; see, for example,
Theorem VI.6.1 in [70]). See [26] for the definition of the genus of quadratic forms.
When two discriminant groups A,A′ with discriminant forms q, q′ are isomorphic γ :

A
∼=−→ A′ and the isomorphism is compatible with the quadratic forms, i.e. q = q′ ◦ γ ,

then we simply say that the discriminant forms are isomorphic and use the notation

q ∼= q′. (A.5)

Let L be an even unimodular lattice and M a primitive sublattice. Recall that M ⊂ L is
said to be a primitive sublattice if the following three equivalent statements are true: 1.
L/M has no torsion; 2. (M ⊗ Q) ∩ L = M; 3. if v ∈ L and nv ∈ M for some n ∈ Z, then
v ∈ M. Let N be the orthogonal complement of M (then, N is automatically primitive),
so that

N ⊕ M ⊆ L ⊆ N ∗ ⊕ M∗ . (A.6)

Then, there is an isomorphism γ : AM → AN of discriminant groups, such that

qN ◦ γ = −qM , (A.7)

and satisfying

L = {(v, w) ∈ M∗ ⊕ N ∗ | γ (v̄) = w̄} , (A.8)

where v̄ ∈ AM (resp., w̄ ∈ AN ) is the class with representative v ∈ M∗ (resp., w ∈ N ∗).
Vice versa, given two even lattices N,M with an isomorphism γ : AM → AN satisfying
(A.7), then the lattice L defined by (A.8) is an even unimodular lattice, such that N,M are
two mutually orthogonal primitive sublattices of L.

B Proofs of results in Sect. 2
B.1 Proof of Theorem 1

Recall that, given an even lattice T , the discriminant group is the finite abelian group
AT = T ∗/T . The quadratic form on T induces a quadratic form qT : AT → Q/2Z on the
discriminant group, called the discriminant (quadratic) form.
Theorem1.12.4 of [76] gives sufficient conditions for the existence of a primitive embed-

ding of an even lattice T of signature (t+, t−) into some even unimodular lattice L of
signature (l+, l−), with l+ − l− ≡ 0 mod 8:

⎧⎨
⎩
l+ ≥ t+, l− ≥ t−

t+ + t− ≤ 1
2 (l

+ + l−)
⇒ exists primitive T ↪→ L . (B.1)

Alternatively, a necessary and sufficient condition for such an embedding is the existence
of a lattice K of signature (l+ − t+, l− − t−) such that

qK ∼= −qT (B.2)
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where qK and qT are the discriminant forms of K and T (see [76], Theorem 1.12.2). More
precisely, when (B.2) is satisfied, one can construct an even unimodular lattice L such that

K ⊕ T ⊆ L ⊆ K ∗ ⊕ T ∗ , (B.3)

and such that the embeddings T ↪→ L and K ↪→ L are primitive [76]. Conversely, if T
is a primitive sublattice of an even unimodular lattice and K its orthogonal complement,
then (B.2) is satisfied.
Since �G has signature (4, d), by (B.1) it can be primitively embedded into an even

unimodular lattice �8+d,d of signature (8 + d, d). Let S be its orthogonal complement in
�8+d,d and S(−1) the lattice obtained by flipping the sign of the quadratic form of S. Then,
S(−1) has signature (0, 4 + d) and, using (B.2) repeatedly, we obtain

qS(−1) = −qS ∼= q�G ∼= −q�G . (B.4)

Thus, there exists an even unimodular lattice N of signature (0, 24) such that

�G ⊕ S(−1) ⊆ N ⊆ �∗
G ⊕ S∗(−1) (B.5)

and such that the embedding �G ↪→ N is primitive. For the proof of the other claims, see
appendix B in [54].

B.2 Proof of Theorem 2

The proof is completely analogous to the one of Theorem 1. Since NG has signature
(0, 4 + d), by (B.1) it can be primitively embedded into an even unimodular lattice �d,8+d

of signature (d, 8+d). Let S be its orthogonal complement in �d,8+d and S(−1) the lattice
obtained by flipping the sign of the quadratic form of S. Then, S(−1) has signature (4, d)
and, using (B.2) repeatedly, we obtain

qS(−1) = −qS ∼= qNG ∼= −qNG . (B.6)

Thus, since there is a unique (up to isomorphism) even unimodular lattice of signature
(4, 20), we have

NG ⊕ S ⊆ �4,20 ⊆ N ∗
G ⊕ S∗ (B.7)

and the embedding NG ↪→ �4,20 is primitive. For the proof of the other claims, see
appendix B in [54].

B.3 Proof of Proposition 3

Recall that aWeyl chamberW ⊂ N⊗R is the closure of any of the connected components
in

N ⊗ R \
( ⋃
r∈N, r2=−2

r⊥)
, (B.8)
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the complement of the hyperplanes orthogonal to the roots. The Weyl groupWN acts by
permutations on the set of Weyl chambers; in particular, for any non-trivial w ∈ WN and
Weyl chamberW , the interiorWo and its image w(Wo) have no intersection

Wo ∩ w(Wo) = ∅ . (B.9)

Suppose that Ĝ∩WN contains some non-trivial elementw. Sincew fixesNĜ pointwise, it
follows that the sublatticeNĜ cannot contain any vector in the interior of aWeyl chamber.
Therefore,

NĜ ⊂
⋃

r∈N, r2=−2

r⊥ . (B.10)

Since NĜ ⊗ R is convex, it must be actually contained in some hyperplane r⊥, for some
root r ∈ N , which implies that r ∈ NĜ

∼= �G . Vice versa, if NĜ
∼= �G contains a root r,

then the corresponding reflectionwr ∈ WN fixesNĜ and therefore is inG. For the second
point, notice that the natural projection O(N ) → O(N )/WN defines a homomorphism
from Ĝ into GN = O(N )/WN . As we just proved, if �G has no roots, then Ĝ has trivial
intersection with WN , so that this homomorphism is injective. We hence conclude that
Ĝ is isomorphic to a subgroup of GN .

C Modular groups andmultipliers
In this appendix, we present the arguments we employed in Sect. 3 to determine the
modular properties, in particular the multipliers, of the twining genera. The twining
generaZg are weak Jacobi forms of weight 0 and index 1 for some subgroupGg ⊆ SL2(Z),
possibly with a multiplier (group homomorphism) ψ : Gg → C

∗.
In this appendix, we describe in some more detail the groupsGg and the multipliers ψ .

Consider an order-N symmetry g . Recall that themodular transformation
( a b
c d

) ∈ SL2(Z)
transforms the twining genusZg into a “twisted-twining” genusZgc,gd , the trace of gd over
the gc- twisted sector (see, e.g., [58], section 8.3; we use the convention that a state |v〉 in
the g-twisted sector satisfies g |v〉 = e2π i(L̄0−L0)|v〉). As a result, the subgroupGg ⊆ SL2(Z)
corresponding to transformations fixing Zg (possibly up to a multiplier) is given by

Gg :=
{( a b

c d
) ∈ �0(N ) | ∃ h ∈ O+(�4,20) s.t. gd = hgh−1 or gd = hg−1h−1

}
, (C.1)

and is in particular always contained in

�0(N ) =
{ ( a b

c d
) ∈ SL2(Z) | c = 0 mod N

}
.

The groupGg for each four-plane preserving Frame shape is given in “Appendix D.2.”
The order n of the multiplier ψ of Zg can be determined from the Frame shape of g

under some physicallymotivated assumptions about its form,whichwewill discuss below.
These results, derived using these assumptions, will be used in appendix D to put a lower
bound on the number of O+(�4,20) classes for the Frame shapes 38 and 46.
The assumptions are as follows. In general, for (holomorphic) orbifold CFTs, the multi-

plier is believed to be completely specified in terms of an element of the third cohomology
group H3(ZN ,U (1)) ∼= ZN , which determines the modular tensor category of modules
over the g-invariant subalgebra [33,34,81].We will assume that this is true forK3 NLSMs



Cheng et al. Res Math Sci (2018) 5:32 Page 35 of 45 32

and their orbifolds. Furthermore, we will assume that the triviality of the multiplier ψ

is the only condition for the g-orbifold to be a consistent CFT. See also recent results
on generalized umbral moonshine [13,55] for more detail about the relations between
multipliers and third cohomology. Under these assumptions, the order n of the multiplier
ofZg is always a divisor ofN . Second, for any divisor d|n, the element gd has multiplier of
order n/d. In particular, gn is the smallest power of g with trivial multiplier. As a result, if
the gK -orbifold of the NLSM is again a consistent CFT, necessarily an N = (4, 4) super-
conformal field theory at central charge 6, our assumption then dictates that n divides
K .
The above considerations, together with an analysis of the Witten index of the orbifold

theory which we now explain, lead to a derivation of lower and upper bounds on n for a
given g . There is a general formula for the Witten index of an orbifold by a cyclic group
〈g〉. In terms of the Frame shape πg = ∏


|N 
k
 of g , this is given by

∑

|N

N


k
 (C.2)

(see, e.g., [51] or [80] for a proof). On the other hand, the only possible Witten indices
of an N = (4, 4) SCFT with central charge 6 and integer U (1) charges are 0 or 24 [75].
Therefore, if for some g the putativeWitten index (C.2) of the g orbifold is different from 0
or 24, then the orbifold is necessarily inconsistent, and the correspondingmultiplier must
be non-trivial (n > 1). An upper bound on n can be obtained by noticing that, by (4.21),
the multiplier must be trivial (n = 1) whenever TrV24 (g) �= 0. By studying which powers
of g have a potentially non-trivial multiplier (i.e. TrV24 (gn) = 0) and which powers give a
potentially consistent orbifold (i.e., (C.2) is either 0 or 24), one derives lower and upper
bounds on the order of the multiplier of g , which are sufficient to determine n in all cases.
For almost all the four-plane preserving Frame shapes

∏

|N 
k
 , the order n is the value of

the smallest 
 for which k
 �= 0. The only exception is 2−448, which has trivial multiplier,
as follows from the fact that it is the square of an element of Frame shape 142−24−284,
which has nonzero trace and therefore n = 1.
A case-by-case analysis for all the four-plane preserving Frame shapes shows that the

possible orders of a non-trivial multiplier are n ∈ {2, 3, 4, 6}. For each such n, the possible
formsof the correspondingmultiplierψ are inone-to-one correspondencewith the classes
of order n in the third cohomology group H3(ZN ,U (1)) ∼= ZN . In particular, for n = 2,
there is only one possible multiplier ψ , while for each n = 3, 4 or 6 there are two possible
multipliers ψ and ψ̄ that are complex conjugate to each other. By the arguments in Sect.
3.2, when n > 2, both ψ and ψ̄ must appear as the multipliers associated with some
physical twining genera.

D Some classification results
D.1 Classification ofO+(�4,20) conjugacy classes

Consider a four-plane preserving element of O+(�4,20). Its eigenvalues in the 24-
dimensional defining representation can be encoded in a Frame shape. See Sect. 3. Given
such a Frame shape, in this appendix we compute the number of compatible O+(�4,20)-
conjugacy classes. More specifically, we first discuss a theorem (Theorem 7) which we
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will employ to determine the number of O+(�4,20) conjugacy classes with a given Frame
shape, as recorded in Table 4.
Let � be the (negative definite) Leech lattice, ĝ ∈ O(�) ∼= Co0 be an automorphism

with Frame shape πg and fixing a sublattice �ĝ of rank 4 + d, d ≥ 0 and let �ĝ (the
co-invariant lattice) be the orthogonal complement of �ĝ in �. We denote by O(�ĝ ) the
group of automorphisms of �ĝ and by

CO(�ĝ )(ĝ) := {ĥ ∈ O(�ĝ )|ĝ ĥ = ĥĝ} (D.1)

the centralizer of ĝ in this group.
Given a primitive embedding

i : �ĝ ↪→ �4,20 , (D.2)

denote the image of i and its orthogonal complement by

�g := i(�ĝ ) �g := �4,20 ∩ (�g )⊥ . (D.3)

The embedding induces an automorphism g ∈ O+(�4,20) which acts as ĝ on the image
i(�ĝ ) and trivially on its orthogonal complement i(�ĝ )⊥ ∩ �4,20. Namely, we have

g ◦ i = i ◦ ĝ g |�g = id|�g . (D.4)

Note that given ĝ and i, the above fixes g completely. Moreover, as the notation suggests,
�g is the sublattice of vectors in �4,20 fixed by g .
The lattice �g has signature (4, d), and by (A.7), its discriminant form q�g must be the

opposite of q�ĝ :

sign(�g ) = (4, d), q�g ∼= −q�ĝ . (D.5)

As a consequence, the genus of �g is determined uniquely in terms of �ĝ , independently
of the embedding i. We denote by cl(ĝ) the set of isomorphism classes of lattices in this
genus.
Conversely, every g ∈ O+(�4,20) fixing a sublattice of signature (4, d) with d ≥ 0 can be

obtained in this way: namely, (D.4) for some ĝ ∈ Co0 and some primitive embedding i. As
discussed in Sect. 3.1, two such automorphisms g1 and g2 have the same Frame shape if
and only if they can be induced by the same ĝ ∈ Co0, possiblywith different embeddings i1,
and i2. In particular, if g1 and g2 are conjugated withinO+(�4,20), then they are necessarily
induced by the same ĝ . The converse statement is, however, not true in general: It can
happen that two g1 and g2 are induced from the same ĝ (i.e., they have the same Frame
shape), but they are not conjugated in O+(�4,20). The following theorem 7 will enable
us to determine the number of O+(�4,20) conjugacy classes arising from a given Frame
shape, for all four-plane fixing elements of Co0 with the exception of the Frame shape
1−4253461 which we will discuss at the end of this appendix.
To understand the theorem, recall that a (positive) sign structure for a lattice L is a

choice of orientation of a maximal positive definite subspace in L ⊗Z R.12 We denote by

12Similarly, a negative sign structure is given by a choice of orientation of a maximal negative-definite subspace in
L ⊗Z R. In the following, we will only consider positive sign structures and simply refer to them as sign structures.
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cl+(ĝ) the set of classes of lattices with sign structure in the genus (D.5). In other words,
two lattices L1, L2 are equivalent if there is an isomorphism L1 → L2 that preserves the
orientation of maximal positive-definite subspaces.

Theorem 7 Let cl+(ĝ) be the set of equivalence classes of lattices with a sign structure
in the genus determined by (D.5). Then, the number of O+(�4,20) conjugacy classes with
Frame shape πg is given by

∑
K∈cl+(ĝ)

∣∣∣CO(�ĝ )(ĝ)\O(q�ĝ )/γK
∗(O+(K ))

∣∣∣ , (D.6)

where the sum is over a set of representatives for the isomorphism classes in cl+(ĝ),
O+(K ) (respectively, CO(�ĝ )(ĝ)) is the image of the natural map O+(K ) → O(qK ) (resp.

CO(�ĝ )(ĝ) → O(q�ĝ )). Furthermore, for each K , γK : AK
∼=−→ A�ĝ is an isomorphism of

discriminant groups, with qK = −q�ĝ ◦γK , and γ ∗
K (O(qK )) := γKO(qK )γ −1

K = O(q�ĝ ) the
induced identification of the orthogonal groups. The number of classes does not depend on
the choice of these isomorphisms.

The first step in proving this theorem is to determine when two different embeddings
i1 and i2 give rise to g1 and g2 that are conjugated in O+(�4,20).

Lemma 8 Let i1 and i2 be primitive embeddings of �ĝ into �4,20 and g1, g2 ∈ O+(�4,20)
be the automorphisms determined by (D.4). Then, g1 and g2 are conjugated in O+(�4,20) if
and only if there exist s ∈ CO(�ĝ )(ĝ) and h ∈ O+(�4,20), such that

h ◦ i1 = i2 ◦ s , (D.7)

and in this case g2 = hg1h−1.

Proof Suppose there areh and s such thath◦i1 = i2◦s. Then,h induces an isomorphismof
the sublattices i1(�ĝ ) and i2(�ĝ ) and the orthogonal complements h(i1(�ĝ )⊥) = i2(�ĝ )⊥.
This implies that

(hg1h−1)|i2(�ĝ )⊥ = id|i2(�ĝ )⊥ . (D.8)

Furthermore, the condition g1i1 = i1ĝ and the analogue for g2, i2 (we drop ◦ from now
on) imply

hg1i1 = hi1ĝ = i2sĝ = i2ĝ s = g2i2s = g2hi1 . (D.9)

Using again h(i1(�ĝ )) = i2(�ĝ ), it follows that

(hg1h−1)|i2(�ĝ ) = g2|i2(�ĝ ). (D.10)

As a result, since hg1h−1 coincides with g2 both on i2(�ĝ ) and on its orthogonal comple-
ment, they must be the same.
In the other direction, suppose that g2 = hg1h−1 for some h ∈ O+(�4,20). It is easy to see

that g2 acts trivially on h(i1(�ĝ )⊥) and hence h(i1(�ĝ )⊥) = i2(�ĝ )⊥ and hi1(�ĝ ) = i2(�ĝ ).
From this and the identity

hi1ĝ = hg1i1 = g2hi1 . (D.11)
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we get

i−1
2 hi1ĝ = i−1

2 g2hi1 = ĝ i−1
2 hi1 . (D.12)

This implies that the automorphism s := i−1
2 hi1 ∈ O(�ĝ ) commutes with ĝ and, by

definition, hi1 = i2s. ��

As a result, theO+(�4,20) conjugacy classes corresponding to a given four-plane preserv-
ing Frame shape πg of Co0 are in one-to-one correspondence with the classes of primitive
embeddings i : �ĝ ↪→ �4,20, modulo O+(�4,20) × CO(�ĝ )(ĝ). We are now ready to prove
Theorem 7.

Proof For each isomorphism class in cl+(ĝ), we choose once and for all a representative
K and an isomorphism γK : AK

∼=→ A�ĝ , qK = −q�ĝ ◦ γK , and identify O(q�ĝ ) with
γKO(qK )γ −1

K . Note that any other such isomorphism is obtained by composing γK with
an element in O(q�ĝ ).
As shown above, the O+(�4,20) conjugacy classes with Frame shape πg are in one-

to-one correspondence with classes of primitive embeddings i : �ĝ ↪→ �4,20, modulo
O+(�4,20) × CO(�ĝ )(ĝ). We will prove that O+(�4,20) classes of embeddings are in one-
to-one correspondence with pairs (K, [t]), where K runs over our set of representatives of
the classes in cl+(ĝ), and [t] is a double coset in CO(�ĝ )(ĝ)\O(q�ĝ )/O+(K ). Given such a
pair (K, [t]), choose an element t ∈ O(q�ĝ ) in the double coset [t] and consider the lattice

�K,t := {(v, w) ∈ K ∗ ⊕ �∗̂
g | t ◦ γK (v̄) = w̄} . (D.13)

Since t ◦γK is an isomorphism qK → −q�ĝ ,�K,t is an even unimodular lattice of signature

(4, 20) and there is a sign structure-preserving isomorphism f : �K,t
∼=→ �4,20. This iso-

morphism determines a primitive embedding i : �ĝ → �4,20 by i(w) = f ((0, w)) ∈ �4,20,
which depends on the choice of the isomorphism f only up to compositionwithO+(�4,20).
Let t ′ be a different element in the double coset [t], so that t ′ = s̄t(γK σ̄ γ −1

K ) for some
s ∈ CO(�ĝ )(ĝ) and σ ∈ O+(K ). Then, there is an isomorphism f ′ : �K,t ′ → �4,20 given by
the composition of the isomorphism �K,t ′ → �K,t defined by (v, w) �→ (σ (v), s−1(w)),
followed by f . We denote by i′ : �ĝ ↪→ �4,20 the primitive embedding such that
i′(w) = f ′((0, w)). Thus, the embeddings i and i′ are related by i(w) = i′(s(w)). We con-
clude that there is a well-defined function mapping pairs (K, [t]) to classes of primitive
embeddings modulo O+(�4,20) × CO(�ĝ )(ĝ).
Let us now consider a primitive embedding i : �ĝ ↪→ �4,20. This embedding determines

a description of �4,20 as a sublattice of (�g )∗ ⊕ i(�∗̂
g ),

�4,20 = {(v, i(w)) ∈ (�g )∗ ⊕ i(�∗̂
g ) | γi(v̄) = w̄} , (D.14)

where, as described before, �g := (i(�ĝ ))⊥ ∩ �4,20 and g ∈ O+(�4,20) is given by (D.4). In
this formula, γi is some isomorphism γi : q�g

∼=→ −q�ĝ of discriminant forms (see (A.8)).
Since �g satisfies (D.5), there exists a sign structure-preserving isomorphism �g ∼= K
with one of the representatives of the classes in cl+(ĝ). This isomorphism determines an
element t ∈ O(q�ĝ ) such that γi = tγK ; elements corresponding to different choices of the
isomorphism are related by composition by O+(K ). Consider two primitive embeddings
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i1, i2, and let g1, g2 ∈ O+(�4,20) be determined by the embeddings i1 and i2 via (D.4), so that
�ga = ia(�ĝ )⊥ ∩ �4,20, a = 1, 2. If i1, i2 are related by hi1 = i2s−1, for some h ∈ O+(�4,20)
and s ∈ CO(�ĝ )(ĝ), then there is a sign structure-preserving isomorphism σ : �g1

∼=→ �g2

given by the restriction of h to �g1

σ (v) = h(v), ∀v ∈ �g1 (D.15)

and such that

s̄γi2 σ̄ = γi1 , (D.16)

where s̄ and σ̄ are the induced maps on the discriminant forms. Therefore, the elements
t1, t2 ∈ O(q�ĝ ) such that γik = tkγK are related by

t1 = s̄t2(γK σ̄ γ −1
K ) , (D.17)

so that t1 and t2 belong to the same double coset in CO(�ĝ )(ĝ)\O(q�ĝ )/O+(K ). Therefore,
there is a well-defined function that maps classes of primitive embeddings into pairs
(K, [t]), and this function is the inverse of the map defined above. ��
When the rank of �ĝ is exactly 20, i.e., when the lattices in cl+(ĝ) are positive definite,

the groups O+(K ) and CO(�ĝ )(ĝ) are finite and the number of classes can be computed
directly. This paper is accompanied by a text file containing theMagma programwewrote
to perform this calculation. In the course of this calculation, wemake use of results in [65]
classifying sublattices of the Leech lattice fixed by subgroups of Co0.
When the rank of �ĝ is less than 20, a brute force computation is not available, since

the groups O+(K ) have infinite order. Nevertheless, we can determine lower and upper
bounds on the number of O+(�4,20) classes. Firstly, we know that, for each Frame shape,
there is at least one O+(�4,20) class. Miranda and Morrison [71,72] provide a practical
algorithm to compute the number of right cosets

∑
K∈cl+(g)

∣∣∣O(q�ĝ )/O+(K )
∣∣∣ in the case

where K is indefinite with rank at least three. This provides an upper bound on the
number of O+(�4,20)-classes in the case where �ĝ has rank less than 20. This upper
bound is almost always sharp—it is equal to one in all cases where the rank of �ĝ is less
than 20, with the exception of the Frame shapes 38, 46, and 1−4253461, where there might
be at most two classes. Furthermore, when the corresponding twining genus has complex
multiplier, the number ofO+(�4,20) classesmust be at least two.Our analysis in “Appendix
C” (which is based on some assumptions about modular properties of the twining genera
and consistency of the orbifolds) indicates that the twining genera for the Frame shapes 38

and 46 have complexmultiplier of order 3 and 4, respectively, so theremust be exactly two
O+(�4,20) classes in these cases. The only undecided case is the Frame shape 1−4253461,
for which we were not able to determine whether the number of associated O+(�4,20)
classes is one or two. On the other hand, even if there are two classes, they are necessarily
the inverse of each other. This implies that the twining genera are the same. All results
are collected in “Appendix D.2.”
To summarize:

• For all possible Frame shapes of four-plane preserving elements of O+(�4,20), except
38, 46 and 1−4253461, the number of O+(�4,20) and O(�4,20) classes is exactly as
shown in the tables in Appendix D.2;
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• for the Frame shapes 38 and 46, there is a single O(�4,20) conjugacy class are at most
two O+(�4,20) classes; the number of O+(�4,20) classes is exactly two if the orders of
the multipliers of the corresponding twining genera are as described in “Appendix
C”;

• for the class 1−4253461, there are at most two O+(�4,20) conjugacy classes and at
most two O(�4,20) conjugacy classes.

D.2 Twining genera

In this subsection, we present the classification of four-plane preserving O+(�4,20) con-
jugacy classes and our results on the corresponding twining genera. The results are sum-
marized in Table 4.
The first column πg contains the 42 possible Frame shapes of four-plane preserving

classes of O+(�4,20), which are in one-to-one correspondence with the 42 Co0 conjugacy
classes of automorphisms of the Leech lattice that fix a sublattice of rank at least 4 [25].
For each Frame shape πg , the corresponding twining genera are weak Jacobi forms of

weight 0 and index 1 for a subgroup Gg ⊆ SL2(Z), defined in (C.1), with a multiplier ψ

of order n. In the second column, we list the group Gg and the order n of the multiplier
ψ . We use the following notation to describe Gg . If κ is a subgroup of (Z/NZ)×, then we
define

�κ (N ) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 (mod N ), a, d (mod N ) ∈ κ

}
.

In this notation, the standard congruence subgroups �0(N ) and �1(N ) correspond to
�κ (N ) with κ = (Z/NZ)× and κ = 〈1〉 , respectively. Apart from these standard congru-
ence subgroups, we also encounter groups with κ = 〈−1〉 = {1,−1}. We use the symbol
�κ (N )|n if the twining genus is a Jacobi form for the group �κ (N ) with multiplier of order
n > 1. When n = 1, we simply write �κ (N ). Note that, as discussed in appendix C, in
general specifyingGg and n is not sufficient to fix ψ uniquely.
The third and fourth columns report, respectively, the number ofO(�4,20) andO+(�4,20)

conjugacy classes of each Frame shape. More precisely, in the third column, we put a
symbol ◦ for each O(�4,20) class. In the fourth column, we put a symbol ◦ for each
O+(�4,20)-class that is fixed by world-sheet parity (i.e., it is a class also with respect to the
full O(�4,20) group) and a symbol � for each pair of O+(�4,20)-classes that are exchanged
under world-sheet parity (i.e., they merge to form a uniqueO(�4,20) class). We are able to
determine the number of such classes for all Frame shapes, except for 1−4253461. In this
case, there might be either a single class or two classes corresponding to inverse elements
g, g−1 ∈ O+(�4,20). Notice that whenever Gg is of the form �〈−1〉(N ), there are always
exactly two O+(�4,20) classes [g], [g ′] (which may or may not be related by world-sheet
parity), which are related by a power map, i.e., [g ′] = [ga] for some a coprime to N . The
corresponding twining genera are distinct, but are related by �0(N ) transformations that
are not in �〈−1〉(N ).
The fifth column reports, for each O+(�4,20) class, whether the corresponding twining

genus Zg is known in the following sense. A � denotes a twining function which has
been observed in an (IR) K3 NLSM. LG denotes twining functions that have not been
observed in an IR K3 NLSM but have been computed in [17] as the twining genus of a UV
symmetry in a LG orbifold which flows to a K3 NLSM in the IR, as discussed in Sect. 4.3.
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Table 4 Conjugacy classes, status of the twining genera and the corresponding Niemeier
moonshine, for all the four-plane preserving Frame shapes

πg (Gg)|n O(�4,20) classes O+(�4,20) classes Zg φN
g

124 SL2(Z) ◦ ◦ � All

1828 �0(2) ◦ ◦ � All except A46 , A
2
12 , D

2
12 , A24 , D16E8 , D24

1−8216 �0(2) ◦ ◦ � �

212 �0(2)|2 ◦ ◦ � A241 , A122 , A83 , A
6
4 , D

6
4 , A

4
6 , A

3
8 , D

4
6 , A

2
12 , D

2
12 , A24 ,�

1636 �0(3) ◦ ◦ � A241 , A122 , A83 , A
4
5D4 , D6

4 , A
4
6 , D

4
6 , E

4
6 ,�

1−339 �0(3) ◦ ◦ � �

38 �0(3)|3 ◦ � LG† A122 , D6
4 , A

3
8 , E

3
8 ,�

×† A241 , A64 , D
3
8

142244 �0(4) ◦ ◦ � A241 , A122 , A83 , A
6
4 , A

4
5D4 , D6

4 , A
2
9D6 ,�

182−848 �0(4) ◦ ◦ × �

1−42644 �0(4) ◦ ◦ � �

2−448 �0(4) ◦ � � �+
� �−

2444 �0(4)|2 ◦ ◦ � A241 , A122 , A83 , D
6
4 , A

2
7D

2
5 , E

4
6 ,�

46 �0(4)|4 ◦ � LG† A241 , A122 , A46 , D
4
6

×† A83 , A
6
4 , A

2
12 ,�

1454 �0(5) ◦ ◦ � A241 , A122 , A64 , D
6
4 ,�

1−155 �〈−1〉(5) ◦ � � �+
� �−

12223262 �0(6) ◦ ◦ � A241 , A122 , A83 , D
6
4 , E

4
6 ,�

14213−465 �0(6) ◦ ◦ � �

152−43164 �0(6) ◦ ◦ � �

1−2243−264 �0(6) ◦ � � �+
� �−

1−12−13363 �0(6) ◦ � � �+
� �−

1−4253461 �0(6) ◦, ◦∗ ◦, ◦∗ � �

2363 �0(6)|2 ◦ ◦ � A122 , A83 , A
4
6 ,�

◦ � ×† A241 , A64
LG A122 , D6

4 ,�+
64 �0(6)|6 ◦ � ×† A241 , A64

× A38 ,�−
1373 �0(7) ◦ ◦ � A241 , A83 ,�

12214182 �0(8) ◦ ◦ � A241 , A122 , A45D4 ,�

142−24−284 �0(8) ◦ � × �+
× �−

1−2234182 �〈−1〉(8) ◦ � � �+
� �−

244−484 �0(8)|2 ◦ ◦ � �+
◦ ◦ × �−

4282 �0(8)|4 ◦ � ×† A122
LG A83 ,�+

◦ � ×† A122
× E46 ,�−

133−293 �0(9) ◦ ◦ � �+
◦ ◦ � �−

12215−2103 �〈−1〉(10) ◦ � � �+
� �−
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Table 4 continued

πg (Gg)|n O(�4,20) classes O+(�4,20) classes Zg φN
g

132−251102 �〈−1〉(10) ◦ � � �+
� �−

1−22352101 �〈−1〉(10) ◦ � � �+
� �−

22102 �0(10)|2

⎡
⎢⎢⎢⎢⎣

◦
◦
◦
◦

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�
◦
◦
◦

⎤
⎥⎥⎥⎥⎦ LG A241 , A122 ,�+

× A64 ,�−

12112 �0(11)

⎡
⎢⎣

◦
◦
◦

⎤
⎥⎦

⎡
⎢⎣

�
◦
◦

⎤
⎥⎦ × A241 ,�+

LG A122 ,�−
122−232426−2122 �0(12) ◦ � × �+

× �−
1122314−2122 �〈−1〉(12) ◦ ◦ � �+

◦ ◦ � �−
123−24162121 �〈−1〉(12) ◦ ◦ � �+

◦ ◦ � �−
1−2223241121 �〈−1〉(12) ◦ � � �+

� �−

214161121 �0(12)|2

⎡
⎢⎣

◦
◦
◦

⎤
⎥⎦

⎡
⎢⎣

�
◦
◦

⎤
⎥⎦ × A241 ,�+

× D6
4 ,�−

112171141 �0(14)

⎡
⎢⎣

◦
◦
◦

⎤
⎥⎦

⎡
⎢⎣

�
◦
◦

⎤
⎥⎦ × A241 ,�+

LG A83 ,�−

113151151 �0(15)

⎡
⎢⎣

◦
◦
◦

⎤
⎥⎦

⎡
⎢⎣

�
◦
◦

⎤
⎥⎦ × A241 ,�+

LG D6
4 ,�−

An × denotes a twining function which has not been observed in any K3 NLSM or LG
orbifold anywhere in the literature. Finally, for those twining functions which have not
been observed in a K3 NLSM, a † denotes that nevertheless, the explicit twining function
is fixed by the modularity arguments of Sect. 4.4.
In the last column, we report the list of Niemeier lattices N such that the given Frame

shape appears in the corresponding Niemeier group GN . Equivalently, this is the list of
those N for which the corresponding Jacobi form φN

g arising from umbral or Conway
moonshine is conjecturally equal to one of the twining genera Zg of the given Frame
shape. When N = � and the g-invariant subspace has dimension exactly 4, we write two
different symbols �+ and �− to represent the two distinct genera φ�

g,+ φ�
g,−. Niemeier

lattices N and N ′ for which φN
g = φN ′

g are listed in the same row. More precisely, next
to each O+(�4,20)-class for which the twining genus Zg is known, we list all those N for
which φN

g = Zg . In some cases, the same lattice N appears in different rows for the same
Frame shape: This occurs whenever two distinct O+(�4,20)-classes have the same genus
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Zg . Next to theO+(�4,20)-classes for which the twining genus is unknown, we list thoseN
for which, based on our conjectures, φN

g is expected to coincide withZg . For some Frame
shapes, (22102, 12112, 214161121, 112171141, 113151151) we are not able to formulate any
reasonable conjecture associatingO+(�4,20)-classes with candidate twining genera φN

g . In
these cases, the alignment between classes and lists of Niemeier lattices has no meaning.
This is represented by a square parenthesis in the third column. A special case is the
Frame shape 1−4253461, to which there may correspond either one or two O(�4,20) and
O+(�4,20) classes; we emphasize our lack of certainty by writing ◦, ◦∗. If there are two,
they are not related by world-sheet parity. However, the two classes are inverses of each
other, so they have the same twining genus.
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69. Kondō, S., et al.: Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces.

Duke Math. J. 92(3), 593–603 (1998)
70. Miranda, R., Morrison, D.R.: Embeddings of integral quadratic forms (unpublishedmanuscript). http://web.math.ucsb.

edu/~drm/manuscripts/eiqf.pdf
71. Miranda, R., Morrison, D.R.: The number of embeddings of integral quadratic forms. II. Proc. Jpn. Acad. Ser. A Math.

Sci.62(1), 29–32 (1986). http://projecteuclid.org/euclid.pja/1195514495
72. Miranda, R., Morrison, D.R.: The number of embeddings of integral quadratic forms. I. Proc. Jpn. Acad. Ser. A Math.

Sci.61(10), 317–320 (1985). http://projecteuclid.org/euclid.pja/1195514534
73. Mukai, S.: Finite groups of automorphisms of K3 surfaces and the Mathieu group. Inventiones mathematicae 94(1),

183–221 (1988)
74. Murthy, S.: A holomorphic anomaly in the elliptic genus. JHEP 06, 165 (2014). arXiv:1311.0918 [hep-th]
75. Nahm, W., Wendland, K.: A Hiker’s guide to K3: aspects of N = (4, 4) superconformal field theory with central charge

c = 6. Commun. Math. Phys. 216, 85–138 (2001). arXiv:hep-th/9912067 [hep-th]
76. Nikulin, V.V.: Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser.

Math.43(1), 111–177 (1979)
77. Nikulin, V.V.: Finite groups of automorphisms of Kählerian K3 surfaces. Trudy Moskov. Mat. Obshch. 38, 75–137 (1979)
78. Nikulin, V.V.: Kählerian K3 surfaces and Niemeier lattices. I. Izvestiya: Math. 77(5), 954 (2013)
79. Ooguri, H., Vafa, C.: Two-dimensional black hole and singularities of CY manifolds. Nucl. Phys. B463, 55–72 (1996).

arXiv:hep-th/9511164 [hep-th]
80. Persson, D., Volpato, R.: Fricke S-duality in CHL models. JHEP 12, 156 (2015). arXiv:1504.07260 [hep-th]
81. Roche, P., Pasquier, V., Dijkgraaf, R.: QuasiHopf algebras, group cohomology and orbifold models. Nucl. Phys. Proc.

Suppl.18B, 60–72 (1990)
82. Sen, A.: Discrete information from CHL black holes. JHEP 1011, 138 (2010). arXiv:1002.3857 [hep-th]
83. Sen, A., Vafa, C.: Dual pairs of type II string compactification. Nucl. Phys. B455, 165–187 (1995). arXiv:hep-th/9508064

[hep-th]
84. Shih, D., Strominger, A., Yin, X.: Recounting dyons in N = 4 string theory. JHEP 10, 087 (2006). arXiv:hep-th/0505094

[hep-th]
85. Strominger, A.: Massless black holes and conifolds in string theory. Nucl. Phys. B451, 96–108 (1995).

arXiv:hep-th/9504090 [hep-th]
86. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B379, 99–104 (1996).

arXiv:hep-th/9601029 [hep-th]
87. Taormina, A., Wendland, K.: A twist in the M24 moonshine story. arXiv:1303.3221 [hep-th]
88. Taormina, A., Wendland, K.: The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24.

JHEP 1308, 125 (2013). arXiv:1107.3834 [hep-th]
89. Troost, J.: The non-compact elliptic genus: mock or modular. JHEP 06, 104 (2010). arXiv:1004.3649 [hep-th]
90. Volpato, R.: On symmetries ofN = (4, 4) sigma models on T 4. JHEP 1408, 094 (2014). arXiv:1403.2410 [hep-th]
91. Witten, E.: Some comments on string dynamics. In: Future Perspectives in String Theory. Proceedings, Conference,

Strings’95, Los Angeles, USA, March 13–18, 1995, pp. 501–523 (1995). arXiv:hep-th/9507121 [hep-th]
92. Witten, E.: Elliptic genera and quantum field theory. Commun. Math. Phys. 109, 525 (1987)
93. Witten, E.: Phases of N = 2 theories in two-dimensions. Nucl. Phys. B403, 159–222 (1993). arXiv:hep-th/9301042

[hep-th]
94. Witten, E.: On the Landau–Ginzburg description of N = 2 minimal models. Int. J. Mod. Phys. A9, 4783–4800 (1994).

arXiv:hep-th/9304026 [hep-th]
95. Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B443, 85–126 (1995). arXiv:hep-th/9503124

[hep-th]

http://arxiv.org/abs/1505.06420
http://arxiv.org/abs/1309.6528
http://arxiv.org/abs/hep-th/0510147
http://arxiv.org/abs/1603.07330
http://web.math.ucsb.edu/~drm/manuscripts/eiqf.pdf
http://web.math.ucsb.edu/~drm/manuscripts/eiqf.pdf
http://projecteuclid.org/euclid.pja/1195514495
http://projecteuclid.org/euclid.pja/1195514534
http://arxiv.org/abs/1311.0918
http://arxiv.org/abs/hep-th/9912067
http://arxiv.org/abs/hep-th/9511164
http://arxiv.org/abs/1504.07260
http://arxiv.org/abs/1002.3857
http://arxiv.org/abs/hep-th/9508064
http://arxiv.org/abs/hep-th/0505094
http://arxiv.org/abs/hep-th/9504090
http://arxiv.org/abs/hep-th/9601029
http://arxiv.org/abs/1303.3221
http://arxiv.org/abs/1107.3834
http://arxiv.org/abs/1004.3649
http://arxiv.org/abs/1403.2410
http://arxiv.org/abs/hep-th/9507121
http://arxiv.org/abs/hep-th/9301042
http://arxiv.org/abs/hep-th/9304026
http://arxiv.org/abs/hep-th/9503124

	K3 string theory, lattices and moonshine
	Abstract
	1 Introduction
	2 Symmetries
	2.1 The moduli space
	2.2 Symmetry groups
	2.3 G-families
	3 Twining genera
	3.1 Classification
	3.2 World-sheet parity
	3.3 Conway and umbral moonshine

	4 Examples
	4.1 Geometric symmetries
	4.2 Torus orbifolds
	4.3 Landau–Ginzburg orbifolds
	4.4 Modularity
	4.5 Evidence for the conjectures
	5 Discussion
	A Some basic facts about lattices 

	B Proofs of results in Sect. 2
	B.1 Proof of Theorem 1
	B.2 Proof of Theorem 2
	B.3 Proof of Proposition 3
	C Modular groups and multipliers
	D Some classification results
	D.1 Classification of O+(Γ4,20) conjugacy classes
	D.2 Twining genera
	References








