
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Laser dynamics modelling and simulation: An application of dynamic load
balancing of parallel cellular automata

Guisado, J.L.; Jiménez-Morales, F.; Guerra, J.M.; Fernández de Vega, F.; Iskra, K.A.; Sloot,
P.M.A.; Lombraña González, D.
DOI
10.1007/978-3-642-10675-0_14
Publication date
2010
Document Version
Author accepted manuscript
Published in
Parallel and Distributed Computational Intelligence

Link to publication

Citation for published version (APA):
Guisado, J. L., Jiménez-Morales, F., Guerra, J. M., Fernández de Vega, F., Iskra, K. A., Sloot,
P. M. A., & Lombraña González, D. (2010). Laser dynamics modelling and simulation: An
application of dynamic load balancing of parallel cellular automata. In F. Fernández de Vega,
& E. Cantú-Paz (Eds.), Parallel and Distributed Computational Intelligence (pp. 321-347).
(Studies in Computational Intelligence; Vol. 269). Springer. https://doi.org/10.1007/978-3-642-
10675-0_14

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1007/978-3-642-10675-0_14
https://dare.uva.nl/personal/pure/en/publications/laser-dynamics-modelling-and-simulation-an-application-of-dynamic-load-balancing-of-parallel-cellular-automata(0ddae967-3af0-4fcc-8416-88142b41dc62).html
https://doi.org/10.1007/978-3-642-10675-0_14
https://doi.org/10.1007/978-3-642-10675-0_14

Laser Dynamics Modelling and Simulation: An
application of Dynamic Load Balancing of
Parallel Cellular Automata

J.L. Guisado, F. Jiménez-Morales, J.M. Guerra, F. Fernández de Vega, K.A. Iskra,
P.M.A. Sloot, and Daniel Lombraña González

1 Introduction

This chapter reviews the application of a biologically inspired heuristic technique –
Cellular Automata (CA) – for developing high performance simulations of a well
known complex system: the laser.

CA can be described as a class of mathematical systems. They were introduced
several decades ago, and are well suited to model spatio-temporal phenomena. On

J.L. Guisado
Departamento de Arquitectura y Tecnologı́a de Computadores, Universidad de Sevilla.
E.T.S. Ingenierı́a Informática. Avda. Reina Mercedes s/n. 41012 Sevilla, Spain.
e-mail: jlguisado@us.es

F. Jiménez-Morales
Departamento de Fı́sica de la Materia Condensada, Universidad de Sevilla.
P.O. Box 1065, 41080 Sevilla, Spain. e-mail: jimenez@us.es

J.M. Guerra
Departamento de Óptica, Facultad de CC. Fı́sicas, Universidad Complutense de Madrid.
28040 Madrid, Spain. e-mail: jmguerra@fis.ucm.es

F. Fernández de Vega
Centro Universitario de Mérida, Universidad de Extremadura.
Sta. Teresa Jornet, 38. 06800 Mérida (Badajoz), Spain. e-mail: fcofdez@unex.es

K.A. Iskra
Argonne National Laboratory, Mathematics and Computer Science Division.
9700 South Cass Avenue, Argonne, IL 60439, USA. e-mail: iskra@mcs.anl.gov

P.M.A. Sloot
Section Computational Science. Laboratory for Computing, System Architecture and Program-
ming. Faculty of Science, University of Amsterdam.
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands. e-mail: p.m.a.sloot@uva.nl

D. Lombraña González
Centro Universitario de Mérida, Universidad de Extremadura.
Sta. Teresa Jornet, 38. 06800 Mérida (Badajoz), Spain. e-mail: daniellg@unex.es

1

2 Authors Suppressed Due to Excessive Length

the other hand, CA can be implemented very efficiently on parallel platforms, given
both, their intrinsic parallel nature, with all the components working usually in a
synchronized way, and the discreteness of the individual components using the same
behavior rules. We therefore make use of this feature, and consider the problem of
running Parallel CA simulations on non-dedicated clusters of workstations. We thus
present results of laser dynamics simulations, traditionally modeled using differen-
tial equations.

This new approach can be very useful when modeling lasers given that differ-
ential equations are difficult to integrate or even difficult to apply: lasers ruled by
stiff differential equations, devices with complex boundary conditions, very small
devices for which the approximations implied by the differential equations may not
be valid, etc.

The presented model is based on a synchronous CA using the Single Program,
Multiple Data (SPMD) paradigm, deployed on a non-dedicated cluster of comput-
ers. Therefore, it is not clear in advance if a good performance and efficiency can
be obtained on this kind of non-dedicated platform. We thus analyze the feasibility
of executing our parallel bioinspired model of laser dynamics on an heterogeneous
non-dedicated cluster, and we evaluate its performance including artificial load to
simulate other tasks or jobs submitted by other users. Finally, a dynamic load bal-
ancing strategy is used with two main differences from previous CA implementa-
tions:

• It is possible to migrate the load to cluster nodes that do not belong initially to
the pool.

• The model uses the load balancing tool –the Dynamite system– to give flexibility
to the model.

By studying the performance and scalability of this parallel implementation we
obtain very satisfactory results, including performance increases from 60% to 80%.

This chapter is organized as follows: In Section 2, we will present the problem to
be solved by the proposed algorithm: laser dynamics. We will describe in detail the
proposed algorithm in Section 3. In Section 4, we will review some of the laser prop-
erties which are successfully reproduced by the CA model. Next, we will describe
a parallel implementation of the CA model and we will analyze its performance
and scalability when executed on a heterogeneous non-dedicated cluster, including
dynamic load balancing. In Section 6, we will propose some ideas for future work.
Finally, some conclusions will be drawn in Section 7.

2 The Problem: Laser Dynamics

A laser is a device that generates and amplifies coherent electromagnetic radiation
based on the stimulated emission phenomenon, predicted by Albert Einstein in 1917
[1]. The word laser is an abbreviation of “Light Amplification by Stimulated Emis-
sion of Radiation”. In a laser system radiation is amplified by propagation across a

Title Suppressed Due to Excessive Length 3

medium, in which, the population of an upper energy state is larger than the popula-
tion of a low energy state (population inversion). Some mechanism, usually known
as the pumping system, is needed to enhance the upper state population up to be
larger than the remaining in a lower energy state. When the pumping is above a
threshold value, the radiation traveling through the medium is amplified by the stim-
ulated emission process. The effective amplification is usually enhanced by placing
the laser active medium inside a Fabry-Perot resonator, that provides a feed-back
by making the amplified light bounce between two parallel mirrors. Therefore, the
laser device acts as a regenerative light oscillator and transient, periodic or chaotic
oscillatory processes can be originated in it.

The time dependence of the total number of laser photons and the total population
inversion in the laser medium can be described [2], as a first step, by the Equations
(1) and (2):

dn(t)
dt

= K N(t)n(t)− n(t)
τc

(1)

dN(t)
dt

= R− N(t)
τa

−K N(t)n(t) (2)

This model, based on two coupled nonlinear rate equations is simplified but can
still describe realistically many laser dynamics phenomena. The first equation pro-
vides the variation on the number of laser photons n(t) with time, proportional to
the laser beam intensity. The term +KN(t)n(t) describes the increase in the number
of photons by stimulated emission (K is the coupling constant between the radia-
tion and the population inversion). The term −n(t)/τc accounts for the decaying
(or absorption) process of laser photons inside the laser cavity with a characteristic
decay time τc. The second equation represents the temporal variation of the pop-
ulation inversion N(t). The term +R(t) represents the pumping of electrons with
a pumping rate R to the upper laser level. The term −N(t)/τa introduces the de-
caying of electrons from the upper laser level to lower levels, with a characteristic
decay time τa. The product term −KN(t)n(t) reflects the decreasing of the popula-
tion inversion by stimulated emission. The presence of the product term KN(t)n(t)
in each equation gives them a nonlinear nature. For small amplitude fluctuations its
solutions can show relaxation oscillations in their evolution towards a steady state.
For strong oscillations the two variables n(t) and N(t) are changing in a fast and
typically nonlinear way and there does not seem to be a simple analytic solution
[2, 3].

The four-level laser system shown in Figure 1 is a simplified model that still
gives a realistic description of the main phenomena featured by a laser system: for
instance, an external pumping process can excite electrons and make them jump
from the ground level up to level E3. Similarly, the figure shows the population
inversion process, produced between levels E1 and E2 thanks to the fact that the
life times of energy levels E3 and E1 are negligible as compared to the life time
of level E2. Therefore, electrons in levels E3 and E1 decay very fast but level E2

4 Authors Suppressed Due to Excessive Length

Fig. 1 A four-level laser system and its basic physical processes.

is metastable. On the other hand stimulated emission occurs when an electron in
level E2 decays down to level E1 stimulated by the presence of a stimulator photon
with energy E = E2 −E1. In addition, there are two processes which are also very
important and which are not represented in Figure1: absorption of electrons in level
E2 (which decay to lower levels due to different processes not related to stimulated
emission) and absorption of laser photons, a fraction of which disappear because
they leave the laser cavity through the semi-reflecting mirror or are absorbed by the
material.

3 Cellular Automata and Laser Dynamics

Cellular Automata (CA) are a class of spatially and temporally discrete mathemat-
ical systems characterized by local interaction and synchronous dynamical evolu-
tion [4]. They provide an excellent approach for modeling and simulating complex
systems and have been used over the recent years in many fields of science and
technology [5, 6]. We study here the modeling of light amplification by stimulated
emission by means of CA, firstly described by Guisado et. al. in [3].

The algorithm is based on a two-dimensional, partially probabilistic, multi-
variable CA that simulates a transverse section of the active medium in a laser
system. The defining characteristics of the CA are described in the following.

Title Suppressed Due to Excessive Length 5

3.1 Cellular Space

The CA employ a cellular space consisting of a two-dimensional square lattice
which contains Nc = L × L cells. Periodic boundary conditions are used.

3.2 State of the Cells

Each of the cells within the CA embodies two variables: ai j(t) and ci j(t). The first
one, ai j(t), represents the state of the electron in cell {i j} (row i and column j)
at time t: when ai j(t) = 0 the electron is in the ground state and when ai j(t) =
1 the electron is in the upper laser state. Also, ci j(t) ∈ {0,1,2, ...,M} represents
the number of laser photons in cell {i j} at time t. This number is bounded by an
upper value M which must be chosen large enough to avoid the saturation of the
system. The state variables represent “bunches” of real photons and electrons. Their
values are linked to the number of photons and electrons in the real system by a
normalization constant.

3.3 Neighborhood

Every cell performs local interactions with a predefined number of surrounding
cells. We employ the well-known Moore neighborhood for establishing interactions
patterns: the neighborhood of any particular cell is formed by the cell itself (C), its
four nearest neighbors located at the north (N), south (S), east (E) and west (W) po-
sitions and the four next nearest neighbors located at the northeast (NE), southeast
(SE), southwest (SW) and northwest (NW) positions, as shown in Figure 2 .

W

NW NE

SES

E

N

C

SW

Fig. 2 Moore neighborhood.

6 Authors Suppressed Due to Excessive Length

3.4 Transition rules

Every CA model requires a set of rules which defines the behavior and evolution of
the whole system. This set of rules, usually known as transition rules, specify the
state of each cell at time step t + 1 depending on its state and the state of the cells
included in its neighborhood at time step t. Therefore, the rules model the physical
processes working at the microscopic level in the laser system. The application of
the transition rules is the main operation of a CA algorithm. In our case the overall
structure of the CA laser model algorithm is shown in Algorithm 1.

Algorithm 1 Pseudo-code diagram for the CA laser model
Initialize system
Input data
for time step = 1 to maximum time step do

for each cell in the array do
Apply stimulated emission rule
Apply photon decay, electron decay, and pumping rules
Apply noise photons creation rule

end for
Calculate populations after this time step
Optional additional calculations on intermediate results

end for
Final calculations
Output results

After an initialization step, the transition rules are applied synchronously to each
CA cell inside a time loop. Our CA model employs five transition rules:

• Stimulated emission rule: If the electronic state of a cell has a value of ai j(t) =
1 at time t and the sum of the values of the laser photons states in the nine
neighboring cells is larger than a certain threshold θ (which in our simulations
has been taken to be 1), then at time t +1 a new photon will be emitted in that cell:
ci j(t +1) = ci j(t)+1 and the electron will decay to the ground level: ai j(t +1) =
0. All the cells of the CA must be updated in parallel. To this end, changes from
this rule are computed using a temporal matrix c′i j. After the rule has been applied
to all the cells of the CA, the values of ci j are updated with the contents of c′i j.

• Photon decay rule: Each photon is destroyed τc time steps after being created.
In particular, (tlci jk) represents the number of time steps that will have to elapse
until a particular photon located in cell {i j} (at row i and column j) is destroyed,
where k distinguishes between the different photons that can occupy the same
cell. When a photon is created, tlci jk = τc. After that, 1 is subtracted from tlci jk
at each time step and the photon will be destroyed when tlci jk = 0.

• Electron decay rule: After an electron is excited from the ground level to the
upper laser level, it will decay to the ground level again after τa time steps, if it
has not yet decayed by stimulated emission. In particular, (tlai j) represents the
number of time steps that will have to elapse until a particular electron located

Title Suppressed Due to Excessive Length 7

in cell {i j} decays to the ground level. When the electron is initially excited,
tlai j = τa. After that, 1 is subtracted from tlai j at each time step and the electron
will decay to the ground level again when tlai j = 0.

• Pumping rule: If the electronic state of a cell {i j} has a value of ai j(t) = 0 at time
t, then at time t +1 that state will have a value of ai j(t +1) = 1 with a probability
pumping λ .

• Noise photons creation: A small number of laser photons in randomly chosen
positions is introduced at each time step to reproduce spontaneous emission and
thermal contributions, responsible of the initial laser start-up. To this end, for
a small number of randomly chosen cells {i j} (< 0.01% of total) it is applied
ci j(t +1) = ci j(t)+1.

This CA models a typical four levels laser system, as described in section 2 and
represented by the diagram shown in Figure 1. Thus it has been assumed that the
population of the lower laser level (level 1 in Figure 1) is negligible. For this reason,
stimulated absorption transitions have not been taken into account. Also for the
same reason, the state ai j(t) = 0 doesn’t correspond to the lower laser level, but to
the ground level, which is coupled to the pumping mechanism.

4 Experimental Analysis

We first present a summary of experimental results obtained when applying the pre-
viously described model to the simulation of laser dynamics (for interested readers,
a whole description of results can be found in [3, 7, 8, 9]). We analyze in this sec-
tion how the CA model of laser dynamics can reproduce different aspects of the
phenomenology of laser systems.

Three main parameters influence the behavior of the system: the pumping proba-
bility (λ), the life time of photons (τc) and the life time of excited electrons (τa). In
a simulation, an initial state is provided (ai j(0) = 0, ci j(0) = 0, ∀i j, except a small
fraction, 0.01%, of noise photons present) and then the system is let to evolve for a
number of time steps. In each step, we measure two macroscopic magnitudes: the
total number of laser photons, n(t), and the total number of electrons in the upper
laser state (population inversion), N(t), defined in Equation 3.

n(t) =
Lx

∑
i=1

Ly

∑
j=1

cij(t), N(t) =
Lx

∑
i=1

Ly

∑
j=1

aij(t) (3)

It is a well-known laser systems’ feature that laser action only happens when the
pumping probability is over a threshold value. This property is correctly reproduced
by the CA model [3] and the dependence of this threshold value on the other two
system parameters (life times τa and τc) is found to be in good agreement with the
laser behavior, as shown in Figure 3.

Two different behaviors which depend on the values of their three main parame-
ters can be found in their time evolution: a constant or an oscillatory behavior [3, 8].

8 Authors Suppressed Due to Excessive Length

As shown in Figure 4, the model reproduces these two kinds of behavior: the time
evolution obtained from the simulations is similar to that one exhibited by laser sys-
tems, described for example in [2]. A lattice size of 400 × 400 cells was used for
this figure.

Fig. 3 Dependence of the threshold pumping probability λt from the CA laser model on the prod-
uct of the characteristic life times τa and τc (measured in time steps), plotted on a logarithmic scale.
The solid line is the laser behavior predicted by the standard laser rate equations, and the dots are
the results of the simulations.

0 200 400 600 800 1000
0

5

10

15

20

25

30 Population inversion
 Laser photons

Po
pu

la
tio

n

 (
 1

04)

Time steps
0 200 400 600 800 1000

0

2

4

6

8

10

 Population inversion
 Laser photons

Po
pu

la
tio

n

 (
 1

04)

Time steps

(a) (b)

Fig. 4 Results of the simulations, showing the time evolution of the two macroscopic magnitudes
—number of laser photons n(t) and population inversion N(t)— versus time, for two different
sets of values of the system parameters. The two main characteristic behaviors exhibited by lasers
are reproduced by the CA model: (a) (left): Constant behavior. Parameters: {λ = 0.192, τc = 10,
τa = 30}. (b) (right): Oscillatory behavior. Parameters: {λ = 0.0125, τc = 10, τa = 180}.

Moreover, we can also notice in Figure 5 another complex behavior in the CA
model: irregular oscillations with fluctuations on a wide range of time scales appear

Title Suppressed Due to Excessive Length 9

Fig. 5 Regime with irregular oscillations, for: λ = 0.031, τc = 10, τa = 180. The number of laser
photons and population inversion are plotted versus time, after a transient of 500 time steps. Lattice
size: 400 × 400 cells.

(see [8]). This regime could correspond to a chaotic state, as found in the dynamics
of many lasers. Also, the dependence on the system parameters of the type of behav-
ior exhibited in the time evolution of the system is in a good qualitative agreement
with the laser behavior [3], as shown in Figure 6.

In this figure, we show a Contour plot of a magnitude called the Shannon’s en-
tropy of the distribution of the number of laser photons, for a fixed value of τc = 10
time steps and obtained using simulations with a 200 × 200 lattice. This magnitude
is a good indicator of the presence of oscillations in the time evolution of the num-
ber of laser photons (for a precise definition and discussion, see for example [7]).
In this plot, R is the laser pumping rate and Rt is the threshold laser pumping rate,
which are linearly related to the pumping probability λ and the threshold pumping
probability λt that appear in the CA model, so that R

Rt
= λ

λt
. Points a, b and c show

the values of the parameters that correspond to Figs. 4 and 5: a corresponds to a
constant behavior (Figure 4 left), b to a oscillatory behavior (Figure 4 right), and c
to a regime with irregular oscillations (Figure 5).

High values of the Shannon’s entropy (dark zones) correspond to an oscillatory
behavior and low values (bright zones) to a non-oscillatory response. The predic-
tions of the standard laser rate equations are indicated by the black line: areas of
oscillatory behavior should appear above and to the right of this curve and constant
behavior should appear in the remaining areas. There is a good qualitative agree-
ment between the predictions and the results of the simulations indicated by the
Shannon’s entropy, as the high values of this magnitude appear above and to the
right of the black line and their contour resemble the shape of this line.

10 Authors Suppressed Due to Excessive Length

Fig. 6 Contour plot of the Shannon’s entropy of the distribution of the number of laser photons
obtained from the simulations with a fixed value of τc = 10 time steps. This plot shows there
is a good qualitative agreement between the dependence on the system parameters of the type
of behavior exhibited by the system, as obtained from the simulations, and the laser behavior,
delimited by the black line.

5 Parallel CA based simulation of the Laser

As shown in previous section, the CA based laser model correctly reproduces much
of the phenomenology of the laser system, and can be therefore considered an al-
ternative to the standard modeling approach, which employs differential equations.
Even when such a very simple coarse-grained CA model has demonstrated its use-
fulness, if we pursue more realistic simulations for specific laser devices, and we
want a larger granularity, closer to real macroscopic systems, a 3D CA – or huge
2D CA instead– may be required. Therefore, a very large lattice size will be needed,
which will make necessary parallel computers systems to run the model, avoiding
thus the otherwise prohibitively large runtime of sequential counterparts.

In this section, we describe the parallel implementation of the previous CA model
and study its performance and scalability running on a small computer cluster (in-
terested readers can refer to [9], [10], [11] and [12] for a larger description of results
obtained). We begin by reviewing previous approaches to parallel implementations
of CA models.

5.1 Previous approaches

As described above, sequential CA-based simulations can only be used for very
simple systems. In order to simulate real world phenomena (which need 3D or large

Title Suppressed Due to Excessive Length 11

2D CA) parallel implementations running on high performance parallel computers
must be used since very long computing time or memory requirements are needed
[13].

During the last decade some attempts to introduce parallelism within CA have
been described. Most of them were not intended to implement in a direct way the
inherently parallel CA internal rules of working, which can be easily simulated in
a sequential fashion, but to improve speedup of the whole process by using a large
number of processors.

The first attempts to parallelize CA were carried out by M. Resnick with the
StarLogo system [14] and by Cannataro et. al. [15], although many approaches and
results have been described later by using parallel CA, such as CAMEL [16], Nemo
[17], PECANS [18], DEVS [19] and P-CAM [20]. A review of the topic is presented
by Talia in [13].

Two main kinds of hardware infrastructure can be found in the literature for
implementing parallel CA. The first one consists of using parallel computers. The
second one requires specialized hardware such as the Cellular Automata Machine
(CAM) [21]. In this work, we focus on using available parallel, cluster or GRID de-
ployments. In fact, general-purpose parallel computers are well-suited for scalable
CA models, from the point of view of speedup, programmability and portability.

Considering the structure of CA, the parallel implementation must take care of
the information about the state of the cells included in the borders of the different
partitions of the system; this information must be exchanged after each time step,
as represented in Fig. 7. Therefore some methodology is required for the imple-
mentation of the parallel CA that allows information exchange among the different
processes involved. Two main solutions are available: using general purpose parallel
programming languages, such as HPF, HPC++ or Linda, or employing a standard
high-level sequential language combined with specific libraries allowing parallel ap-
plications to run, such as MPI (Message Passing Interface), PVM (Parallel Virtual
Machine) or OpenMP (Open Multi Processing).

On the other hand, when considering the information that must be exchanged
among the different processes implementing the parallel CA after each time step,
all of them must wait until all the computing nodes have finished for each time
step before proceeding, i.e. the system operates in a lock-step mode. Therefore,
the performance of the parallel implementation is limited by the slowest running
task. A group of overloaded nodes which execute the computations slower than the
majority of the nodes can degrade the overall performance. As the usual platform
for executing this kind of applications are non-dedicated (and often heterogeneous)
clusters, it raises the following question: Can this algorithm have a reasonably good
performance when running on such platforms?

Several proposals in the literature focus on distributing the active cells between
the nodes for CA featuring some cells that may become idle for a number of time
steps [22, 15, 23]. Similarly, the possibility of moving cells from heavily loaded
nodes to more unloaded ones has been described in [24, 25, 26]. A different possi-
bility is to adjust the size of the partitions to be handled by each cluster node (see
for instance [27, 28]). The idea behind those proposals is to make a balance on the

12 Authors Suppressed Due to Excessive Length

Fig. 7 In the parallel implementation of a CA, information of the state of the cells included in
the borders of each partition of the system has to be communicated to the neighboring partition to
be used in the computation corresponding to the next time step. In this example, the CA has been
partitioned into parallel stripes. Each partition is assigned to a different processing node.

load when some nodes are overloaded. Yet, all of these proposals lack the capability
of migrating jobs to new nodes which are dynamically added to the pool of comput-
ers initially running the CA model. This possibility, if present, would provide extra
flexibility for a real-life non-dedicated parallel computing environment. This is the
main reason why we opted for using a dynamic load balancing approach.

Even when load balancing has already been considered for parallel CA, most
of the approaches include the dynamic load balancing mechanism within the CA
algorithm (check for instance the P-CAM system [20] which directly integrates data
decomposition and dynamic load balancing into the framework functionality). Our
proposal tries to split and differentiate both important but non-related sections of
the algorithm, the parallel CA and the load balancing technique. This would allow
in the future to transparently change or improve any of them without affecting each
other.

The tool that we have employed is Dynamite [29], an automated load balancing
system that can migrate individual tasks which are part of a parallel program run-
ning with a message passing library. Dynamite is based on Dynamic PVM [30], a
re-implementation of the PVM message passing library that includes the load bal-
ancing functionality. It monitors the utilization of the cluster nodes and migrates
tasks when some of them get under-utilized or over-utilized as defined by config-
urable thresholds.

The Dynamite system is composed of three separate parts (see [31] and [32]
for a complete description): the load-monitoring subsystem, the scheduler –which
determines when a migration becomes necessary, which tasks will be involved and
which particular allocation will be adopted– and the task migration software.

We have chosen Dynamite because of its flexibility, maturity, and availability.
Nevertheless, dynamite is not the only load balancing system available. Other alter-
natives could also be used to execute this kind of simulations, such as the CAMELot-
Grid system [33], and also the general purpose framework designed by Vadhiyar and
Dongarra, implemented and tested in the GrADS system [34]. Even when they have
some advantages over Dynamite, such as their possibility of integration on a grid

Title Suppressed Due to Excessive Length 13

computing environment, we preferred Dynamite. The main reason was our interest
for running the experiments on a cluster computing environment –mainly because
of the tightly coupled nature of the parallel CA model– : a parallel CA (a high per-
formance computing application) requires low latency of the communications, and
this cannot be generally attained on a GRID environment (which generally would
be more adequate for running multiple executions of a complete CA for different
values of the parameters –a high throughput computing application–).

5.2 Algorithm description: Basic approach

In order to parallelize the CA model, and taking into account all the considerations
included above, we decided to employ the message passing paradigm. Given the se-
lection of Dynamite as a component for implementing and analyzing dynamic load
balancing mechanisms, we selected the parallel virtual machine (PVM) implemen-
tation of this paradigm. A master-worker model was implemented, such as the one
described in Figure 8.

Fig. 8 Block diagram of the parallel implementation of the CA model of laser dynamics, show-
ing processes running on different processors (boxes in bold type represent different processors),
communications between them (bold lines) and data flows.

The data decomposition methodology is employed for distributing identical tasks
with different partitions –of equal size– of the data among the pool of computers em-
ployed for the simulation, one partition per processor. Master and worker programs
are therefore in charge of the following tasks:

• Master program:

14 Authors Suppressed Due to Excessive Length

1. Read input data (system size, number of partitions, parameter values, number
of time steps) and initialize.

2. Spawning of slave programs.
3. Partitioning of the initial data of the automaton.
4. Sending of common information and initial data to each slave.
5. Collection of results from slaves at each time step.
6. Termination of slave programs.
7. Calculations performed using collected data.
8. Output of final data to external files.
9. Timing functions to measure performance.

• Slave program:

1. Reception of common information and initial data from master.
2. Time evolution computation for the assigned partition: application of CA evo-

lution rules.
3. Exchange of state of the boundary cells with slave programs computing the

neighboring partitions.
4. Computation of intermediate results and their communication to master pro-

gram.

Among the possibilities for establishing the domain decomposition (see [9]), a
1D decomposition has been used, so that the CA is divided into parallel vertical
stripes, each of them assigned to a different computer. Extra ghost cells have been
included both at the left and right sides of each partition (see Fig. 7) which are in
charge of storing the state of border cells belonging to adjacent partition, and allows
to compute all the transition rules for the cells. The state information required from
neighboring cells is the photon state ci j(t), which will be sent from neighboring
subdomains and stored in the ghost cells. Each slave program is responsible for
computing the time evolution on its assigned partition.

At the beginning of each iteration the state of the boundary cells is directly ex-
changed between slave programs computing neighboring partitions, using two cou-
ples of PVM send and receive routines (pvm send and pvm recv). The routine
pvm recv is blocking, so it waits until the specified message has arrived. There-
fore, this exchange plays the role of a synchronization point between all the slave
programs. This is illustrated in Fig. 9 which shows a detail of the tasks executed by
each node and the messages transferred between different nodes versus time, once
the computation has started. This figure also shows that computation periods are
much longer than communication periods, so that the application achieves a high
computation-to-communication ratio, of the order of 10.

Title Suppressed Due to Excessive Length 15

Fig. 9 Gantt chart depicting a detail of the tasks executed by each cluster node and the messages
transferred between different nodes versus time, once the calculation has started. The exchange of
neighboring states between nodes processing adjacent partitions at the beginning of each iteration
acts as a synchronization point.

5.3 Performance and Scalability Analysis

We have measured the performance and scalability of the parallel CA by run-
ning simulations on the Beowulf-type cluster “Abacus” from the University of Ex-
tremadura (Spain), see Table 1.

Table 1 Abacus hardware specifications

Nodes 10
Microprocessor Pentium-4

Clock Frequency 2.7 GHz (6 nodes) and 1.8 GHz (4 nodes)
Network 100 Mbps Fast-Ethernet switch

To avoid indeterminism in the results due to the heterogeneity of the cluster, for
simulations with nodes 1 to 6, slave programs have always been run on the “fast”
(2.7 GHz) machines, and for simulations with 7 to 10 nodes additional “slow” (1.8
GHz) machines have been used to complete the required number of nodes. The
master program has always been run on the master node of the cluster (1.8 GHz).

16 Authors Suppressed Due to Excessive Length

Three different system sizes and different number of partitions –one per worker
processor– have been considered for the experiments. Figure 10 shows results, and
a significant runtime decrease can be noticed when the number of processors in-
crease. The only exception is the change from 6 to 7 processors where an increase
is registered due to the assigning strategy that has been used: only “fast” nodes are
assigned to jobs with 6 or less processors and for jobs with more than 6 processors
some “slow” processors have to be used.

Fig. 10 Runtime of the experiments, using a logarithmic scale, for different number of partitions
of the whole CA, each running on a different processor. Measurements for three different system
sizes are shown.

In order to measure the performance of a parallel application, speedup (Sp) can be
employed as defined by Foster in [35]. This value establishes a comparison between
a parallel algorithm and its sequential counterpart. It can be defined as the ratio of
the runtime of the sequential version of the program running on 1 processor of the
parallel computer (T1) to the runtime of the parallel version running on m processors
of the same computer (Tm):

Sp(m) =
T1

Tm
(4)

Fig. 11 shows the speedup obtained for the parallel implementation of our CA
model for the three different system sizes, compared to the linear speedup –line
y = x . For the smallest system size, a very good performance has been obtained.
For the other two system sizes, still better performance figures are obtained, in fact
super-linear speedup (speedup higher than linear). The main reason is the finite
memory space available for only one processor and therefore the necessity of using
the swap memory. Because of this circumstance, the calculation of very large system
sizes –as for example a detailed 3D simulation– may not be affordable on a single
PC (for the prohibitively large runtime needed due to the use of swap memory) but
feasible on a cluster, in which the system is partitioned so each individual node

Title Suppressed Due to Excessive Length 17

Fig. 11 Speedup obtained for the parallel implementation with respect to the sequential program
for different number of processors and for three different system sizes. For comparison, the ideally
optimal linear speedup has been shown. A very good performance is obtained for a moderate
system size (630 × 630 cells) and a super-linear speedup for larger system sizes.

needs less memory and does not have to use swap memory (interested readers can
also check [9]).

In order to analyze the scalability of the combination parallel application-parallel
computer, the running times obtained for the same experiment when increasing the
system size (which in our problem is represented by the total number of cells of
the CA) and the number of processors by the same factor have been compared.
The results are shown in Figure 12. The same experiment as for Fig. 4(b) has been
used, but involving the computation of 10000 time steps. For an ideally scalable
application, the same running time should be obtained [36]. Our parallel application
shows only a small excess (from 2 % to 5 %) of runtime compared to the optimal
value. Therefore its scalability is good on a small computer cluster.

5.4 Load Balancing with Dynamite

Previous sections have shown the interest of deploying a parallel version of the CA
based laser model. We consider now the problem of load balancing: how to obtain
the best results when running experiments on a non-dedicated platform, where dif-
ferent tasks dynamically arrive to run simultaneously with our parallel application.
The problem is thus to decide when and where different tasks must be migrated for
improving speedup.

In order make this study we have included artificial loads that simulate a normal
non-dedicated cluster use. All the experiments shown below have thus been run

18 Authors Suppressed Due to Excessive Length

Fig. 12 Scalability analysis of the combination parallel application-parallel computer. The runtime
for the same experiment but increasing the system size and the number of processors by the same
factor is shown. The optimal ideal value would be the same runtime for all cases (horizontal line).
The results show only a small excess (from 2 % to 5 %) with respect to this optimal value.

under controlled conditions on the cluster. We have considered the computation of
the time evolution of the system during 10,000 time steps for a single value of the
system parameters: λ = 0.0125, τc = 10, τa = 180.

A sequential program with a loop statement including a single assign instruction
involving double precision numbers was employed as the external load, similarly as
described in [34]. This C program was compiled regularly with no application of
optimization techniques that would allow to improve the runtime of the program.
The artificial load was intended to simulate the normal use of a non-dedicated high
performance computing cluster for different users. Normally, to achieve the best
performance possible, a cluster user would not run more than one process of her
application on any cluster node. For that reason, only one artificial load process was
executed on each cluster node.

The experiments used 6 worker nodes plus the master one for the parallel CA
application, while 10 nodes were available on the cluster. The external load was
systematically assigned to a number of cluster nodes, and time was then measured.
The idea was to study the effect of different levels of loads for both the regular PVM
version of the algorithm, and also the one employing Dynamite, which includes the
load balancing system.

Immediately after starting the CA application, the artificial load task was initi-
ated on a number of nodes, which range from 0 to 5 nodes and were always nodes
to which one of the slave CA applications had been initially allocated also. The ar-
tificial load tasks kept on running for a time longer than the total execution time of
the CA application.

Title Suppressed Due to Excessive Length 19

Table 2 Execution time and improvement due to load balancing when the application is run with
and without load balancing and running artificial external load on a different number of cluster
nodes. Normal PVM was used for configurations without load balancing and the Dynamite system
for configurations with load balancing.

Configuration Execution time (s) Improvement
No load balancing with artificial load 1895.08 -
Load balancing with load on 1 node 384.59 80 %
Load balancing with load on 2 nodes 564.76 70 %
Load balancing with load on 3 nodes 611.12 68 %
Load balancing with load on 4 nodes 1595.75 16 %
Load balancing with load on 5 nodes 1833.82 3 %

No load, with and without load balancing 233.43 -

5.4.1 Results and Discussion

Table 2 presents results obtained for the experiments described above, including
execution time and improvement obtained when the load balancing technique is
employed.

The first row shows the execution time obtained when no load-balancing tech-
nique is employed –standard PVM– while external loads are applied to any number
of nodes, from 1 to 5. Regardless of the number of nodes undergoing external loads,
the execution time is always the same. The reason is that the CA laser model oper-
ates in a lock-step mode, and the slowest running task limits the global performance
obtained.

The following rows show the execution time when Dynamite is employed –
instead of regular PVM, so that the load balancing mechanism is enabled. External
artificial loads are applied again to nodes ranging from 1 to 5. Additionally, each
row offers information about the improvement obtained when compared to previous
execution –first row, when no load-balancing technique was employed.

Finally, the execution time obtained when running the application without any
artificial load, which is the same with and without load balancing, has been shown
as a reference in the last row.

Fig. 13 represents the number of executed time steps from the application versus
time, which offers an idea of the progression of the application. We can notice an
interesting improvement in the performance obtained when the parallel application
is run on 6 worker nodes plus the master one, while a total number of 10 nodes
are available on the cluster: when external load is run on up to 3 nodes, and given
that idle nodes are available, the load balancing mechanism takes a good advantage,
migrating required tasks, therefore reducing the execution time by a factor or 3. If
more than 3 nodes receive external load, the improvement obtained is lower, but we
still obtain a smaller execution time when compared to the first row of the table.
The execution progress initially follows the same straight line as for no dynamic
load balancing (i.e. for standard PVM), until the load balancing system identifies the

20 Authors Suppressed Due to Excessive Length

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
te

ps

Time (s)

Without external load
Load on 1 node, dynamic load balancing

Load on 2 nodes, dynamic load balancing
Load on 3 nodes, dynamic load balancing
Load on 4 nodes, dynamic load balancing
Load on 5 nodes, dynamic load balancing

Load on any number of nodes, no load balancing

Fig. 13 Execution progress of the CA laser model application for different levels of artificial
external load on the system. The system size was 840× 840 cells. The number of cluster nodes
used on the execution is 6.

situation and performs the migration of some of the tasks of the system to balance
the load.

After that, when external loads are run on a small number of nodes, a significant
improvement is found in the execution progress, following again a new straight line
close to that one of the standard PVM. When considering external loads on a higher
number of nodes, sometimes the benefits obtained after migrations produced by the
load balancing mechanism are very low.

We have also found that occasionally, after an advantageous migration of tasks,
the dynamic load balancing system incorrectly migrates tasks to let the system load
unbalanced and obtain a sub-optimal execution progress.

It is also of interest to point out that the dynamic load balancing system incurs
in practically no overhead on the execution time of the application, as its execution
progress is virtually identical for PVM and Dynamite when there is no external load
applied: the same line in Fig. 13 (labeled as ”Without external load”) applies to both
cases.

We have also studied the effect of the system size on the global performance
obtained. To this end, we have run simulations for three different system sizes and
the execution progress has been compared.

The results of the experiments performed are shown in Fig. 14. Given that large
CA sizes might require the use of swap memory of the operating systems, which
would greatly decrease the whole performance of the system, keeping us from cor-
rectly analyzing runtime, we have employed relatively small CA sizes (interested
readers can also see [11]). The figure shows that the use of a load balancing strategy
results in a good performance improvement for all system sizes within the studied
ranges.

Title Suppressed Due to Excessive Length 21

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
te

ps

Time (s)

Without external load, 600x600
Without external load, 720x720
Without external load, 840x840

With external load and load balancing, 600x600
With external load and load balancing, 720x720
With external load and load balancing, 840x840

With external load and no load balancing, 840x840

Fig. 14 Execution progress of the CA laser model application for different system sizes. The
number of cluster nodes used on the execution is 6 and artificial external load has been run on 3
nodes.

Finally, we have studied the frequency and regularity of activation of the schedul-
ing mechanism, so that a given experiment has been performed a number of times
under exactly the same initial conditions.

Fig. 15 shows four different runs of the same experiment using Dynamite. We
can notice some cases in which the load balancing system lets the load unbalanced
and the execution time is not optimal. Although this behavior was also present in the
experiments reported in previous figures for a 10% - 20% of the executions, these
cases were not taken into account for the results presented.

We can thus conclude that migrations are not performed by the load balancing
system in a very regular and deterministic way, and although results obtained are
globally of interest , we clearly see that the scheduler component of the Dynamite
load balancing system could be improved.

6 Future Work: Virtualization and load balancing

In the previous sections, we have reviewed the application of cellular automata to
model laser dynamics and we have shown that with this approach it is possible to
develop high performance simulations that run efficiently on computer clusters. We
have also shown that these simulations can successfully be run on heterogeneous
non-dedicated clusters, using an adequate load balancing mechanism, with a good
performance. Finally, in this section we will present some ideas about future work in
this subject, regarding the joint use of a dynamic load balancing tool like Dynamite
and virtualization technology, to have a self-adapting cluster computing environ-

22 Authors Suppressed Due to Excessive Length

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
te

ps

Time (s)

Fig. 15 Execution progress of 4 different runs of the application with Dynamite carried out under
the same conditions. System size: 840×840 cells.

ment capable of deploying additional cluster nodes on demand, in the course of a
computation.

Nowadays, the virtualization technology is gaining more adepts quickly. The
benefits of using it as a solution for deploying and administering different services
like HTTP, FTP, etc. within the virtual machines, have achieved a great success.
Big processor companies like Intel or AMD have their own and specific solutions to
provide a good performance within the virtualization paradigm.

Virtualization is a technology that allows to multiplex the physical hardware to
take advantage of its computer resources [37, 38, 39]. This technology creates a
“virtual” machine (VM) where it is possible to load and run an operating system
and its associated applications, for example a cluster node.

The VM is handled by a software called the virtual machine monitor (VMM)
or hypervisor. The VMM is in charge of virtualizing the underlying hardware and
assures that a problem or a bug within the VM will affect only to the VM and not
to the real hardware and OS. Therefore, security and isolation are two of the main
benefits of using VMs.

The main features of virtualization are the following:

• Resource isolation. Virtualization isolates each VM inside the host machine.
This is very useful from the standpoint of the researcher because a failure inside
a VM will affect only that VM and not the real machine.

• Guest OS instantiation. This feature permits to create an OS image that can be
loaded into any machine that is compatible with the VMM employed for creating
it.

• Snapshots or state serialization (also known as checkpointing [40]). With virtu-
alization it is possible to freeze the execution of a whole OS and restart it exactly
where it was stopped.

Title Suppressed Due to Excessive Length 23

There are two different approaches to provide virtualization in x86 platforms.
One of them is the native virtualization. The native virtualization implements this
technology by providing an exact copy of the underlying hardware for the VM, in
terms of functionality. This approach is two-folded: any OS is supported without
modifications, but the performance gets affected due to x86 was not designed to be
virtualized [41]. For this reason, any problematic instruction has to be captured by
the VMM to assure the right operation of the virtual machine.

The other approach is the paravirtualization. This technique implements virtu-
alization by providing a virtual hardware that is similar, instead of identical, to the
underlying hardware in order to circumvent the previous described x86 problem.
In order to use this technique, the guest OS has to be adapted to support the par-
avirtualization while applications can be run without any modifications (the binary
interface is not modified).

Both techniques have different products and software solutions, for instance:
VMware [37, 42], Xen [38] or VirtualBox [39]. Additionally, the processor man-
ufacturers are also interested in virtualization and they are providing specific so-
lutions for virtualization in their microchips (Intel VT-x1 technology and AMD-V
Pacifica 2). Thanks to this new technology, the paravirtualization and native virtual-
ization solutions can improve its performance and features.

To sum up, the virtualization is a promising technology that can improve the
deployment and maintenance of clusters, due to its main features: resource isolation,
guest OS instantiation and snapshots. On the other hand, take into account research
groups or institutions that have clusters or additionally servers dedicated to other
services like HTTP, FTP, etc. Despite of the load of those machines, it could be
interesting to take advantage of the computing resources that these machines can
add to our cluster by means of VMs. The goal is to install virtual cluster nodes
on non-dedicated cluster nodes to obtain computing resources when requested and
available.

To the best knowledge of the authors, several attempts have been done on inte-
grating virtualization and clusters. J.S. Chase et. al. [43] present new mechanisms
for dynamic resource management in a cluster manager called Cluster-On-Demand.
I. Foster et. al. [44] propose to give custom client clusters to circumvent the hard-
ware and software heterogeneity of clusters. Finally, W. Emeneker et. al. [45] pro-
pose to use virtualization in clusters for job forwarding and spanning. However,
none of the above cited articles use Dynamite, the load balancing tool employed on
this work. Therefore, what we are considering in the context of the problem pre-
sented in this chapter is the deployment of additional cluster nodes on-demand by
means of virtualization. The goal is to improve Dynamite (see Section 5.4) adding
a new virtualization feature that can request more computing power by launching
virtual nodes on other machines, for example other servers from the institution. The
application will determine when it is necessary more computer power and request it
by launching those virtual cluster nodes.

1 http://www.intel.com/technology/virtualization/
2 http://www.amd.com/us-en/0,,3715_15781,00.html?redir=wsv08

24 Authors Suppressed Due to Excessive Length

This improvement to Dynamite will benefit the whole cluster as virtualization
gives identical cluster computing nodes as real ones. It is obvious that using a vir-
tualization technology gives some overhead [38, 37], but thanks to new micropro-
cessors from Intel and AMD and the improvements on the technology, virtual nodes
performance is more or less equal to real hardware [38, 37].

Additionally, the use of virtualization technology will allow to checkpoint and
migrate any running virtual cluster node without having to implement any special
library for checkpointing and migration at level process like Overeinder et. al. pro-
posed on his work [30]. Virtualization simplifies this problem by checkpointing the
whole node and migrating it without losing any kind of connectivity or data (see
[38]). Furthermore, the possibility of serializing and migrating a VM (snapshots)
opens new opportunities to load balancing and reliability.

Other benefit of using VMs is the possibility of running cluster nodes on differ-
ent OSs and architectures because virtualization abstracts the underlying hardware.
Thus, it will be possible to run GNU/Linux cluster nodes on Microsoft Windows
machines without any kind of problem. Furthermore, thanks to virtualization it will
be possible to harness all the computers from an institution or research laboratory
independently of its OS platform, providing more computing power to the cluster
when necessary. Bear in mind that Dynamite will launch virtual machines only when
more computing power is required.

In conclusion, thanks to this new approach it will be possible to have a more
powerful and flexible cluster that auto-adapts itself to the CPU load launching or
stopping virtual nodes on-demand.

7 Conclusions

This chapter has presented the modeling of a well-known complex system, the laser,
by means of a parallel version of a bioinspired algorithm, the cellular automaton.

By means of a series of experiments, we have considered key factors of the par-
allel algorithm when running on clusters of workstation. We have used a cluster
computing environment for being better suited in general than a grid computing
platform to run a parallel CA due to its lower latency on the communications.

Firstly we have shown the feasibility of CA for modeling the laser. Secondly, we
have studied the performance obtained by a parallel version of the model, and finally
we have considered the execution of the algorithm on a non-dedicated cluster, when
external loads dynamically arrive while the CA tasks are being simultaneously run.

We have thus shown that the parallel version of the algorithm –following a
master-worker model using the message passing mechanism- can offer good scala-
bility when running on a cluster, which is of interest for running large versions of
the CA model for modeling realistic laser systems.

We have then moved to a more realistic scenery by considering the presence
of external loads on the cluster system. We have evaluated the performance of the
application including artificial external loads to simulate the effect of other tasks

Title Suppressed Due to Excessive Length 25

running simultaneously on the cluster. In this case, a dynamic load balancing strat-
egy has been used, with two main differences with respect to most previous parallel
CA implementations: load can be migrated to new nodes initially not belonging to
the pool and the load balancing functionality is uncoupled from the CA algorithm.
For this purpose, we have run the parallel application on top of a dynamic load bal-
ancing software tool –Dynamite–. This modular approach has the advantage that
changes can be introduced to the CA algorithm or to the dynamic load balancing
strategy without perturbing each other.

In spite that for this kind of application –a synchronous cellular automaton– all
the computing nodes must have finished an iteration before the next one can be
initiated, the results have been very satisfactory. The performance of the parallel
application is improved by the load balancing strategy from 60% to 80% when there
are some idle nodes on the cluster to which some load can be migrated. Still when
there were no such idle nodes, the execution time was always shorter than without
the use of load balancing.

In conclusion, we have reviewed the application of a parallel cellular automata
model to simulate laser dynamics and we have also presented evidence of the feasi-
bility of running large parallel simulations using this approach to simulate realistic
laser devices on heterogeneous non-dedicated clusters if an adequate dynamic load
balancing strategy is used.

References

1. A. Einstein. Zur quantenmechanik der strahlung. Physikalische Zeitschrift, 18:121–128. 1917.
2. A.E. Siegman. Lasers. University Science Books, Mill Valley, CA. 1986.
3. J.L. Guisado, F. Jiménez-Morales, J.M. Guerra. Cellular automaton model for the simulation

of laser dynamics. Physical Review E,67(6): 066708. 2003.
4. A. Ilachinski. Cellular automata. A discrete Universe. World Scientific, Singapore, 2001.
5. P. M. A. Sloot and A. G. Hoekstra. Modeling Dynamic Systems with Cellular Automata,

chapter 21, pages 21–1+6. Chapman & Hall/CRC, 2007. ISBN 1-58488-565-3.
6. Bastien Chopard and Michel Droz. Cellular Automata Modeling of Physical Systems. Cam-

bridge University Press, Cambridge, 1998.
7. J.L. Guisado, F. Jiménez-Morales, J.M. Guerra. Application of shannon’s entropy to classify

emergent behaviors in a simulation of laser dynamics. Mathematical and Computer Mod-
elling,42: 847–854. 2005.

8. J.L. Guisado, F. Jiménez-Morales, J.M. Guerra. Computational simulation of laser dynamics
as a cooperative phenomenon. Physica Scripta, T118: 148–152. 2005.

9. J.L. Guisado, F.Jiménez-Morales, and F.Fernández de Vega. Cellular automata and cluster
computing: An application to the simulation of laser dynamics. Advances in Complex Sys-
tems, 10(Suppl. No. 1):167–190, 2007.

10. J.L. Guisado, F.Fernández de Vega, and K.Jiménez-Morales, F.and Iskra. Parallel implemen-
tation of a cellular automaton model for the simulation of laser dynamics. Lecture Notes in
Computer Science, 3993:281–288, 2006.

11. J. L. Guisado, F. Fernández de Vega, and K. Iskra. Performance analysis of a parallel discrete
model for the simulation of laser dynamics. In 2006 International Conference on Parallel
Processing, Workshops, pages 93–99. IEEE Computer Society, 2006.

26 Authors Suppressed Due to Excessive Length

12. J.L. Guisado, F. Fernández de Vega, F. Jiménez-Morales, K.A. Iskra, P.M.A. Sloot. Using
cellular automata for parallel simulation of laser dynamics with dynamic load balancing. In-
ternational Journal of High Performance Systems Architecture, 1(4): 251–259. 2009.

13. D.Talia. Cellular processing tools for high-performance simulation. IEEE Computer,
33(9):44–52, 2000.

14. M. Resnick. Turtles, Termites, and Traffic Jams. MIT Press, Cambridge, Mass, USA. 1994.
15. M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, D. Talia. A parallel cel-

lular automata environment on multicomputers for computational science. Parallel Comput-
ing,21(5): 803–823. 1995.

16. G. Spezzano, D. Talia, S. Di Gregorio, R. Rongo, W. Spataro. A parallel cellular tool for
interactive modeling and simulation. IEEE Computational Science & Engineering,3(3): 33–
43. 1996.

17. D. Hutchinson, L. Kattner, M. Lanthier, A. Maheshwari, D. Nussbaum, D. Roytenberg, J.R.
Sack. Parallel neighbourhood modeling: research summary. Proceedings of the eighth annual
ACM symposium on Parallel algorithms and architectures: 204–207. 1996.

18. L. Carotenuto, F. Mele, M. Furnari, R. Napolitano. PECANS: A parallel environment for
cellular automata modeling. Complex Systems,10(1): 23–42. 1996.

19. B. Zeigler, Y. Moon, D. Kim, G. Ball. The DEVS environment for high-performance modeling
and simulation. IEEE Computational Science & Engineering,4(3): 61–71. 1997.

20. A. Schoneveld and J.F. de Ronde. P-CAM: a framework for parallel complex systems simu-
lations. Future Generation Computer Systems, 16(2):217–234, 1999.

21. T. Toffoli and N. Margolus. Cellular automata machines: a new environment for modeling.
MIT Press, Cambridge, MA. 1987.

22. P.M.A. Sloot, J.A. Kaandorp, A.G. Hoekstra, and B.J. Overeinder. Distributed simulation
with cellular automata: architecture and applications. Lecture Notes in Computer Science,
1725:203–248, 1999.

23. D.D’Ambrosio and W.Spataro. Parallel evolutionary modeling of geological processes. Par-
allel Computing, 33(3):186–212, April 2007.

24. M. Mazzariol, B. Gennart, and R. Hersch. Dynamic load balancing of parallel cellular au-
tomata. In Proc. SPIE Conference on Parallel and Distributed Methods for Image Processing
IV, volume 4118, page 2129, San Diego, July 2000. SPIE.

25. G. A. Kohring. Dynamic load balancing for parallelized particle simulations on MIMD com-
puters. Parallel Computing, 21:683–693, 1995.

26. A. Cortés, M. Planas, J. L. Millán, A. Ripoll, M. A. Senar, and E. Luque. Applying load
balancing in data parallel applications using DASUD. Lecture Notes in Computer Science,
2840:237–241, 2003. Euro PVM/MPI 2003.

27. J. C. Fabero, I. Martin, A. Bautista, and S. Molina. Dynamic load balancing in a heterogeneous
environment under PVM. In 4th Euromicro Workshop on Parallel and Distributed Processing
(PDP ’96), pages 414–419. IEEE Computer Society, 1996.

28. J. R. Weimar. Cellular automata for reaction-diffusion systems. Parallel Computing,
23(11):1699–1715, 1997.

29. G. Dick van Albada, J. Clinckmaillie, A. H. L. Emmen, Jörn Gehring, O. Heinz, Frank van der
Linden, Benno J. Overeinder, Alexander Reinefeld, and Peter M. A. Sloot. Dynamite - blast-
ing obstacles to parallel cluster computing. Lecture Notes In Computer Science, 1593:300–
310, 1999. HPCN Europe ’99: Proceedings of the 7th International Conference on High-
Performance Computing and Networking.

30. B. J. Overeinder, P. M. A. Sloot, R. N. Heederik, and L. O. Hertzberger. A dynamic load
balancing system for parallel cluster computing. Future Generation Computer Systems,
12(1):101–115, 1996.

31. Kamil Iskra, Zeger W. Hendrikse, G. Dick van Albada, Benno J. Overeinder, Peter M. A. Sloot,
and Jörn Gehring. Experiments with migration of message-passing tasks. Lecture Notes in
Computer Science, 1971:203–213, 2000. GRID ’00: Proceedings of the First IEEE/ACM
International Workshop on Grid Computing.

Title Suppressed Due to Excessive Length 27

32. Kamil Iskra, Zeger W. Hendrikse, G. Dick van Albada, Benno J. Overeinder, and Peter M.
A. Sloot. Dynamic migration of PVM tasks. In ASCI 2000, Proceedings of the sixth annual
conference of the Advanced School for Computing and Imaging, pages 206–212, June 2000.

33. G. Folino and G. Spezzano. An autonomic tool for building self-organizing grid-enabled
applications. Future Generation Computer Systems, 23(5):671–679, 2007.

34. S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid computing. Concurrency Computa-
tion Practice and Experience, 17(2-4):235–257, 2005.

35. I. Foster. Designing and building parallel programs. Addison-Wesley, Reading, MA. 1995.
36. Dongarra, J., Foster, I., Fox, G. C., Gropp, W., Kennedy, K., Torczon, L. and White, A. (eds.).

Sourcebook of parallel computing (Morgan Kaufmann, San Francisco, 2003).
37. J. Sugerman, G. Venkitachalam, B. Lim. Virtualizing i/o devices on vmware workstation’s

hosted virtual machine monitor.
38. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

A. Warfield. Xen and the art of virtualization, Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles (2003) 164–177.

39. J. Watson. Virtualbox: bits and bytes masquerading as machines, Linux J. 2008 (166),1 (2008).
40. E. Elnozahy, L. Alvisi, Y. Wang, D. Johnson. A survey of rollback-recovery protocols in

message-passing systems, ACM Computing Surveys (CSUR) 34 (3) (2002) 375–408.
41. J. Robin, C. Irvine, N. P. S. M. C. D. O. C. SCIENCE. Analysis of the Intel Pentium’s Ability

to Support a Secure Virtual Machine Monitor, Defense Technical Information Center, 2000.
42. J. Nieh, O. C. Leonard. Examining VMware, j-DDJ 25 (8) (2000) 70, 72–74, 76.
43. J.S. Chase, D.E. Irwin,L.E. Grit, J.D. Moore, S.E. Sprenkle. Dynamic Virtual Clusters in a

Grid Site Manager, HPDC ’03: Proceedings of the 12th IEEE International Symposium on
High Performance Distributed Computing (2003) 90.

44. I. Foster,T. Freeman, K. Keahy, D. Scheftner, B. Sotomayer, X. Zhang. Virtual Clusters for
Grid Communities, CCGRID ’06: Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid (2006) 513–520.

45. W. Emeneker, D. Stanzione. Dynamic Virtual Clustering, 2007 IEEE International Conference
on Cluster Computing, (2007) 84–90.

View publication statsView publication stats

https://www.researchgate.net/publication/226637251

