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Stimulated by recent works highlighting the indispensable role of Coulomb interactions in the formation of
helical chains and chiral electronic order in the elemental chalcogens, we explore the p-orbital Hubbard model
on a one-dimensional helical chain. By solving it in the Hartree approximation we find a stable ground state
with a period-3 orbital density wave. We establish that the precise form of the emerging order strongly depends
on the Hubbard interaction strength. In the strong-coupling limit, the Coulomb interactions support an orbital
density wave that is qualitatively different from that in the weak-coupling regime. We identify the phase transition
separating these two orbital ordered phases and show that realistic values for the interorbital Coulomb repulsion
in elemental chalcogens place them in the weak-coupling phase, in agreement with observations of the order in
the elemental chalcogens.

DOI: 10.1103/PhysRevB.103.235123

I. INTRODUCTION

A. Orbital versus spin and charge density waves

It is well known that spin or charge density waves can
form in the ground states of Hubbard models. Such density
waves are triggered by the Coulomb repulsion, which, to-
gether with appropriate nesting conditions, opens a gap in
the electronic band structure at the Fermi level and stabilizes
the spin or charge density waves at specific fillings. Perhaps
among the best-known examples here are the spin and charge
density waves of the extended single-band one-dimensional
(1D) Hubbard model at half filling [1–3]. These become stable
at infinitesimally weak interactions. Moreover, their physics
in the weak- and strong-coupling limits, although distinct in
details, is qualitatively similar.

Here, we investigate a distinct type of density wave: the
orbital density wave, consisting of a periodic modulation of
the distribution of electrons between orbitals, keeping the
charge and spin densities constant. We establish that this type
of orbital density wave emerges as the ground state of a
particular Hubbard model with orbital degrees of freedom.
We show that considering a realistic orbital Hubbard model
yields orbital order in a way that is qualitatively distinct from
the typical spin and charge density waves.

B. Orbital density wave in the chalcogens

In contrast to the orbital order established in Mott insu-
lators, such as the cooperative Jahn-Teller effect [4], orbital
density waves are currently known to exist in only a few ma-
terials. Whereas there have been suggestions that some of the
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dichalcogenides, such as, for example, 1T-TiSe2 or 2H-TaS2,
can support orbital density waves [5,6], perhaps the simplest
case concerns the two elemental chalcogens—selenium and
tellurium [7–10]. Selenium and tellurium crystals have long
been known to be semiconducting and to consist of weakly
coupled helical chains of atoms, accompanied by a “chiral
order,” at ambient pressure [11–14]—though at high pressure
both elements superconduct [15,16].

The formation of helices naturally introduces spatially
anisotropic electron hopping, which combines with the pres-
ence of an open p4 valence subshell in chalcogenic atoms
to give rise to the orbital density wave [11,12,17]. This sets
the stage for explaining the formation of orbital density wave
order using only a noninteracting model. This is referred to
as a “valence bond” mechanism [7], since it originates in the
lowering of electronic kinetic energy in the 1D tight-binding
model for the helical chain by a specific hybridization pat-
tern of valence electrons between neighboring orbitals. To be
precise, on each chalcogen atom, two valence electrons are
assumed to reside in the two different p orbitals that can hy-
bridize with states on neighboring sites in the chain, while two
other valence electrons known as the “lone pair” occupy the
remaining p orbital. The pattern of orbital occupancy obtained
in this simple picture is shown in Fig. 1(a) and is referred to
as a “2-1-1” orbital density wave.

C. The role of Coulomb repulsion

Although the above discussion may suggest that there are
no fundamental questions related to the onset of the orbital
density wave in the chalcogens, let us now make a “de-
tour” and try to understand why the weakly coupled helical
chains are formed in elemental chalcogens. Note that naively
one would assume both elements to crystallize in a simple
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FIG. 1. Visualization of two possible orbital density waves with period 3 that can in principle become stable in the helical chains of
elemental chalcogens: (a) The “2-1-1” orbital density wave with two orbitals being partially unoccupied, a configuration stable already in the
noninteracting case. (b) The “2-2-0” orbital density wave with one type of p orbital unoccupied and supported by the interorbital Coulomb
repulsion. Depicted here is the probability density for the wave function of the unoccupied orbital, with stronger opacity indicating a higher
probability density as obtained in this paper for the orbital Hubbard model (1) with Coulomb repulsion U = 0 (a) and using the Hartree
approximation for U = 20tσ (b), with tσ being the largest hopping element in the helical chain. The bond angle in Eq. (1) is here taken to be
α = 103◦, while the hopping amplitudes obey tπ = −tσ /3.

cubic structure [7,8,10]. To resolve this issue, a minimal
3D microscopic model [10], which builds on earlier mod-
els [7,8], was recently proposed. It starts with the Peierls
effect, which triggers the formation of charge density waves
with period 3 in the three “straight” chains formed by the
pα orbitals along each of the α = x, y, z cubic directions, ac-
companied by the formation of short and long bonds in those
chains.

Next, a very small [18] interorbital Coulomb repulsion U
is invoked to explain the “locking” of the respective phases of
each of the charge density waves. Then, taking into account
the electronic hopping processes solely across the short bonds
naturally leads to the separation of the original 3D system
into quasi-1D helical chains. Altogether, this leads to no net
charge modulation per chalcogen atom [7,10], and thus the
charge density waves from all orbital channels combine to
form orbital density waves in helical chains; see Fig. 1 of
Ref. [10].

Within this picture, the helical chain thus necessarily has
a nonzero interorbital Coulomb repulsion which stabilizes
an orbital density wave—however, basic calculations within
a spinless model suggest (cf. Fig. 1 of Ref. [10]) that this
density wave consists of a “2-2-0” pattern with two lone pairs
and one empty orbital on each chalcogen atom, as shown in
Fig. 1(b).

The purpose of this paper is to investigate the appar-
ent inconsistency between the two models discussed above.
Whereas the 1D tight-binding model supports the onset of a
2-1-1 orbital density wave in each helical chain, the 3D model
with finite electron-phonon and interorbital Coulomb repul-
sion explains the formation of helical chains but gives rise to
a 2-2-0 orbital density wave. In particular, it is clear that if the
presence of helical chains in the crystal structure of elemental

chalcogens indeed relies on the presence of Coulomb inter-
actions, these should be included in any realistic electronic
model.

This leads us to address two questions: (i) What is the
critical value of the Coulomb repulsion Ucrit which triggers
the onset of the (unrealistic) 2-2-0 orbital density wave in the
helical chain? (ii) What is a realistic value of the interorbital
Coulomb repulsion in the chalcogens—is it smaller than Ucrit

so that, despite the finite Coulomb repulsion, the model for
the electronic band structure of the helical chains can still
support the 2-1-1 orbital density wave that is indirectly ob-
served in the chalcogens? Note that the answers to the above
questions cannot be easily predicted by some kind of back-
of-the-envelope calculations; for instance, in the well-known
case of the extended Hubbard model [1–3], both the charge
and spin density waves are stabilized already by an infinitely
small Hubbard U , so that Ucrit = 0.

To study the role of Coulomb repulsion in the formation
of the orbital density wave in the two elemental chalcogens,
we first formulate a particular p-orbital Hubbard model on
a 1D helical chain; see Sec. II. We then turn to the Hartree
approximation, which is used to obtain solutions in both the
weak- and strong-coupling regimes; see Sec. II C. In Sec. III A
we present the results of the tight-binding model, which are
extended by the effect of U in Sec. III B. The results are dis-
cussed in Sec. IV. First, the orbital density wave is visualized
in Sec. IV A. Next we interpret the results obtained in the
weak-coupling (Sec. IV B) and strong-coupling (Sec. IV C)
limits. We discuss the qualitative differences between the or-
bital density waves found in the different regimes of coupling
strength in Sec. IV. The paper is summarized in Sec. V, while
we derive the nearest-neighbor hopping matrix in Appendix A
and verify the employed Hartree approximation using the
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preliminary density matrix renormalization group (DMRG)
simulations in Appendix B.

II. MODEL AND METHODS

Since the late 1940s, it has been known that the crystal
structure of trigonal selenium and tellurium consists of loosely
coupled, 1D, helical chains [11]. It can be thought of as a
deformation of a hypothetical “parent” cubic lattice in which
the bond angles are enlarged along helical paths through the
cubic structure, as shown schematically in Fig. 2 [19–22]. This
yields a helical chain with a period of three bonds (λ = 3).
For both selenium and tellurium, the bond angle α has been
experimentally determined to be α ≈ 103◦ [11,22].

Both selenium and tellurium are group-16 elements
(chalcogens) with the electron configuration ns2 np4. Con-
sequently, on each chalcogen ion in the helical chain we
consider a 2/3-filled p shell. To be able to explore the
influence of both electron-electron interactions and chain ge-
ometry on orbital order in these chains, we will construct
a spinless three-orbital Hubbard model. We neglect the spin
degree of freedom both to simplify the model and because
spin is not expected to play an important role in selenium and
tellurium [18]—see also the discussion at the end of Sec. V.
The Hamiltonian then consists of two terms—the hopping or
kinetic term Ht and the interaction term HU ,

H = Ht + HU . (1)

A. The kinetic energy

Formally, we can write

Ht =
∑
i,μ,ν

(Tμ,ν (i)c†
i,μci+1,ν + H.c.), (2)

where c†
i,μ (ci+1,ν ) creates (annihilates) a spinless electron

with orbital μ (ν) on site i (i + 1) along a helical chain.
The orbital indices enumerate the three orthogonal p orbitals
at each site. The tunneling amplitudes between orbitals on
neighboring sites are encoded in the hopping matrix Tμ,ν (i)
and depend on the Slater-Koster overlap integrals between the
nearest-neighbor p orbitals [23],

tσ ≡ (ppσ ), tπ ≡ (ppπ ). (3)

Here, we use tσ = 2.57 eV [19] and tπ = −tσ /3 [12]. Note
that the hopping matrix depends on the site index i, because
the helical chain has three nonequivalent sites.

To derive an explicit form for the hopping matrix Tμ,ν (i),
we first need to choose an orbital basis {pμ}. The two most
general choices include either picking a global basis, the same
at each site, or considering a set of three local bases—one
for each site in a single period of the chain. The Hubbard
problem is much simpler if one makes the second choice,
because the helical symmetry can then be used to render the
orbital orientations relative to surrounding atoms the same at
each site.

To this end, we choose each local basis in such a way that
the lobes of each of the three pμ ≡ {px, py, pz} orbitals are
parallel to the axes of a local Cartesian coordinate system.
The local coordinates are defined by a set of three unit vectors

FIG. 2. The helical chains in elemental chalcogens visualized in
two possible geometries: (a) the idealized simple cubic case with
α = 90◦; (b) the realistic case with α > 90◦ (the selenium or tel-
lurium structure is obtained for the bond angle α = 103◦). Indicated
in each case are three atoms in a single (λ = 3) period of the chain,
the bond angles α, and the local basis in relation to the bond angle.
Looking along the chain, the three atoms form an equilateral triangle.
The projection of the distance between neighboring atoms onto the
chain axis depends on the bond angle.

{l, t, z} which fulfill the conditions that (i) z = l × t, (ii) both
l and t lie in the same plane as the bond angle α, (iii) l is
perpendicular to the bisector of the bond angle α and points
towards the neighboring site with highest site index, and
(iv) t is parallel to the bisector of the bond angle α and
points outwards from the bond angle α. Two examples of the
local coordinate systems, in relation to the bond angle α, are
presented in Fig. 2.

This choice of local basis leads to the nearest-neighbor
hopping matrices Tμ,ν (i) being the same for each site i.
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Consequently, instead of working with a (9 × 9) hopping ma-
trix in the global basis (three sites with three orbitals), we only
need to consider a (3 × 3) hopping matrix in the local basis
(one site with three orbitals). The trade-off in this approach
is that one needs to specifically derive the elements of the
matrix Tμ,ν in terms of the bond angle α and the hopping
amplitudes {tσ , tπ }. Making use of the helical symmetry, this
is a straightforward but tedious procedure, described in detail
in Appendix A.

The resulting matrix elements can be linearized with re-
spect to the bond angle, around α = 90◦, which does not
change the bandwidth by more than 15% for α in the range
[90◦, 105◦] (see Appendix A). The linearized hopping matrix
is given by

Tμ,ν = 1

2

⎛
⎜⎜⎝

(1 + ε) tσ + ε tπ tσ − ε tπ
2−ε√

2
tπ

− tσ + ε tπ (−1 + ε) tσ − ε tπ
2+ε√

2
tπ

2−ε√
2

tπ − 2+ε√
2

tπ −2ε tπ

⎞
⎟⎟⎠.

(4)

Here, ε = α − π/2 denotes the deviation from the simple
cubic arrangement.

To build intuition, we first consider the special case of
ε = 0, in the limit of tπ = 0 (realistic tπ in selenium or tel-
lurium is expected to be around −tσ /3). The nonvanishing
hopping amplitudes then form a 2 × 2 block within the matrix
Tμ,ν :

Tμ,ν (tπ = 0, α = 90◦) = 1

2
tσ

⎛
⎝ 1 1 0

−1 −1 0
0 0 0

⎞
⎠. (5)

This result can be easily understood in terms of the simple
cubic lattice structure.

Since tπ = 0, the only possible hopping is between orbitals
of the same flavor aligned along the bonds. The natural basis
in this case is that of simple cubic crystal axes. In such a
(global) basis the hopping matrix is bond dependent. As an
example, let us focus on the bond extending along the x̂ axis.
The hopping matrix is very simple:

(Tx )μ,ν = tσ

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠. (6)

Looking at Fig. 2, one can see that the matrix in Eq. (5) is
obtained by rotating the basis on the left by 45◦ around the ẑ
axis and the basis on the right by (i) −90◦ around the x̂ axis
and (ii) −45◦ around the ŷ axis. It is easy to check that one gets
Eq. (5) as a result of these transformations applied to Eq. (6).
One can of course perform the right rotations for other bonds
and obtain Eq. (5) in each case.

B. The on-site Hubbard interaction

Since the change from the global to the local coordinate
basis is just a local rotation, it does not affect the on-site
interaction terms. The local Hubbard-U repulsion between
spinless electrons in different p orbitals at the same site is thus

written as

HU = U
∑
μ > ν

μ, ν = l, t, z

∑
i

ni,μni,ν . (7)

Here, we defined the electron number operator ni,μ = c†
i,μci,μ

and took into account the well-known fact that the electron-
electron coupling constant Uμ,ν = U is the same for each pair
of p orbitals; cf. Refs [24,25].

While in what follows we will treat the Hubbard U as a
model parameter and vary it, let us also estimate the realis-
tic value of the interorbital Coulomb repulsion between two
spinless electrons in the elemental chalcogens:

Ureal � 1

4

[
F (0) + 1

25
F (2)

]
+ 3

4

[
F (0) − 1

5
F (2)

]

= F (0) − 14

100
F (2)

= UTe − 7

10
JTe

≈ 0.61 eV. (8)

Here, we assumed the following: (i) In the first line of Eq. (8)
we approximated the effective interorbital repulsion between
two spinless electrons by a repulsion between two spinful
electrons either in an interorbital singlet (3 out of 12 possible
“interorbital multiplets”) with energy F (0) + 1

25 F (2) or in an
interorbital triplet (9 out of 12 possible interorbital multiplets)
with energy F (0) − 1

5 F (2) (F (k) are the Slater integrals defined
in a standard way, cf. Ref. [25], and the calculations of atomic
multiplets are, for example, available [26]). (ii) In the third
line of Eq. (8) we introduced the values of the Coulomb
repulsion parameters as estimated by Deng and co-workers
for solid tellurium [27,28]: F (0) = UTe ≈ 1.10 eV and
F (2)/5 = JTe ≈ 0.7 eV. Note that in this way we obtain a
realistic ratio U/tσ ≈ 0.24 in tellurium and that this also con-
stitutes the lower bound for that ratio for selenium—since
the selenium 4p orbitals are effectively “smaller” than the
tellurium 5p orbitals and hence the value of the Slater integral
F (0) should be larger in the former case.

C. The Hartree approximation

To solve the Hubbard model for the helical chain, we
employ the Hartree approximation. This means that the in-
teraction term becomes

HU = U
∑
μ > ν

μ, ν = l, t, z

∑
i

(〈ni,μ〉 ni,ν + ni,μ 〈ni,ν〉 − 〈ni,μ〉〈ni,ν〉).

(9)

Because the outer p shell of chalcogen atoms is 2/3 filled, we
expect to find two spinless electrons per site. The mean fields
thus need to fulfill the following condition at every site i:∑

μ

〈ni,μ〉 = 2. (10)

To solve the mean-field model consisting of Eqs. (2)
and (9), we use the ansatz that the ground-state expectation
values {〈ni,μ〉} have unbroken translational symmetry in the
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local basis. That is, we look for ground states within the
subspace of translationally invariant eigenstates that obey

〈ni,μ〉 ≡ n̄μ for μ = l, t, z. (11)

This assumption is equivalent to only considering types of
order that respect the helical symmetry of the chain in the
global coordinate basis. Consequently, the periodicity of the
orbital density waves that we are looking for is encoded in our
choice of local basis, and the only unknown we need to solve
for in the mean-field analysis is the orbital occupation (again,
in the local basis). As already discussed in the Introduction,
physically this means that the presence of helical chains in
the atomic structure of elemental chalcogens hardwires a pre-

ferred periodicity for any density wave instability. It does not,
however, determine the amplitude and the form of any orbital
density wave. That is, the choice of occupied orbitals resulting
from the competition between the 2-1-1 and 2-2-0 density
waves (corresponding to “1-0.5-0.5” and “1-1-0” ordering
of spinless electrons) is still to be determined. These are
influenced by the trigonal distortions (deviation of the bond
angle α from 90◦) and Coulomb repulsion (represented by the
Hubbard U ).

The orbital occupation numbers {n̄μ} can be solved for
in a self-consistent manner. Namely, we look for the lowest-
energy fixed point of the recursion relations:

(n̄l )k = 1

N

∑
q

〈�0((n̄l )k−1, (n̄t )k−1,U )|nq,l |�0((n̄l )k−1, (n̄t )k−1,U )〉,

(n̄t )k = 1

N

∑
q

〈�0((n̄l )k−1, (n̄t )k−1,U )|nq,t |�0((n̄l )k−1, (n̄t )k−1,U )〉, (n̄z )k = 2 − (n̄l )k − (n̄t )k . (12)

Here, the state |�0((n̄l )k−1, (n̄t )k−1,U )〉 used in calculating
the mean-field values in step k is the ground state of the
Hamiltonian defined by Eqs. (2) and (9) with mean-field
values 〈ni,l〉 = (n̄l )k−1 and 〈ni,t 〉 = (n̄t )k−1, calculated in step
k − 1 of the recursive procedure. We also used the fact that for
a site-independent orbital occupation (in the local basis), we
have

〈�0|ni,μ|�0〉 = 1

N

∑
i

〈�0|ni,μ|�0〉 = 1

N

∑
q

〈�0|nq,μ|�0〉.

(13)

Note that the last equality in Eq. (12) directly follows from
Eq. (10) and that this condition is also implicitly used in the
first two equations in Eq. (12). The calculations are performed
for a 100-site chain.

III. RESULTS

A. The tight-binding model (U = 0)

In the noninteracting model with U = 0, i.e., considering
only the hopping term of Eq. (2), the orbital occupations in
the ground state {n̄μ} can be calculated exactly. In Fig. 3(a) we
show that the {n̄μ} remain approximately constant for angles
in the range α ∈ (90◦, 105◦). The values at the selenium or
tellurium bond angle are n̄l ≈ n̄t ≈ 0.54 and n̄z ≈ 0.92. In
Fig. 3(b) we show {n̂μ} as a function of bond angle α when
tπ = 0. As in the previous case, the occupation numbers do
not change within the pictured bond-angle range and are very
similar to those obtained for realistic values of tπ .

Note that since both Figs. 3(a) and 3(b) have been cal-
culated using the linearized hopping matrix, results obtained
for bond angles higher than ≈105◦ differ quantitatively from
those obtained using the full hopping matrix. The experi-
mentally established bond angles in selenium and tellurium,
however, lie well within the region where the linear approxi-
mation is valid (as discussed in Appendix A).

The results obtained in the noninteracting limit fully
agree with the “valence bond picture” (as described in
Refs. [11,12,17]), which translates to (1,0.5,0.5) orbital oc-
cupancies in the spinless electron language. According to this
mechanism, every chalcogen atom lends a single electron to
each of two covalent bonds, while the other two electrons
remain in the pz orbital, normal to the bond-angle plane. In
the spinless electron picture, this translates to one spinless
electron distributed evenly between the two orbitals in the
bond-angle plane, pl and pt , while the remaining electron
occupies the pz orbital, as shown in Figs. 3(a) and 3(b). As
presented in Sec. IV A and shown in Fig. 1, this leads to the
orbital density wave of 2-1-1 character.

B. Including the interaction term

To study the properties of the full Hubbard model, includ-
ing a nonzero Coulomb repulsion U , we employ the Hartree
approximation described by Eq. (9). The resulting evolutions
of the orbital occupation numbers {n̄μ}, as well as the deriva-
tive of the ground-state energy with respect to the Coulomb
repulsion strength, dε0/dU , are shown in Fig. 4. Increasing
interaction strength leads to a phase transition, which occurs
at Ucrit ≈ 2.8tσ for both tπ = −tσ /3 and tπ = 0. It is signaled
by discontinuities in dεGS/dU [see Figs. 4(c) and 4(d)] and
orbital occupations {n̄μ} [see Figs. 4(a) and 4(b)].

For weak interactions (U < Ucrit), the obtained orbital
density wave agrees with the one discussed in Sec. III A im-
mediately above—see Figs. 3(a) and 3(b). Thus the valence
bond picture is valid here, and the 2-1-1 character of the
density wave is observed; see Sec. IV A and Fig. 1.

As the system approaches the critical value of the Coulomb
repulsion Ucrit , the following effects are observed:

(i) In the bond-angle plane the hole occupation slightly
polarizes, favoring the pl orbital, for both zero and nonzero
tπ .
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FIG. 3. The ground-state orbital occupation n̄μ in the local basis
with U = 0, i.e., considering only the hopping term of Eq. (2), as
a function of bond angle α for (a) tπ = −tσ /3 (for a realistic value
in selenium or tellurium, see text) and (b) tπ = 0. The selenium or
tellurium bond angle α = 103◦ is marked with a vertical line.

(ii) Perpendicular to the bond-angle plane the pz orbital is
always occupied for tπ = 0 [see Fig. 4(b)], while for nonzero
tπ its occupation is slowly increased with increasing interac-
tion, without a visible discontinuity at the transition.

For interaction strengths slightly above Ucrit , the system is
approaching a saturated state, with a least-occupied pt orbital
character. The occupation numbers change slowly upon fur-
ther increasing U , so that in the infinite-U limit the spinless
electrons are completely localized on the pt and pz orbitals.
This gives (1,1,0) orbital occupation in the spinless electron
model, which, as presented in Sec. IV A and Fig. 1, character-
izes the orbital density wave of 2-2-0 character.

IV. DISCUSSION

A. Visualizing the orbital density waves

Having found the ground state of the mean-field model
in the local basis, we can translate it back to the global ba-
sis. This allows us to clearly present the real-space orbital
densities in selenium or tellurium chains, as shown already
in Fig. 1 of the Introduction, for both U < Ucrit and U > Ucrit .
The phases in these regimes differ significantly in the way
electronic charge is distributed over the orbitals.

The orbital density wave stabilized in the noninteracting
case and for all values of U < Ucrit has two (pl and pt ) par-
tially occupied orbitals lying in the bond-angle plane, i.e., the
orbital density wave has 2-1-1 character (one orbital fully oc-
cupied and two partially occupied), and is qualitatively similar
to the one depicted in Fig. 1(a). Interestingly, we observe that
the resulting charge density is flattened in the direction normal
to the bond angle (the z direction in the local basis). Above
the critical interaction strength U > Ucrit the system enters
a different phase, and the unoccupied orbital is purely of pt

character as shown for U = 20tσ in Fig. 1(b). In the “spinful
language” this density wave corresponds to the so-called 2-2-0
orbital density wave (two orbitals fully occupied and one
empty).

B. Orbital density wave for U < Ucrit

To understand the presence of an orbital density wave for
U < Ucrit , it suffices to consider the exactly solvable noninter-
acting case. The evolution of the orbital occupation with bond
angle can be then understood entirely in terms of the evolution
of the band structure, which is shown in Fig. 5.

In the simple cubic case, obtained for the bond angle
α = 90◦, we see three well-separated, threefold degenerate
bands [see Fig. 5(a)]. The middle three degenerate bands can
be identified as having mostly pz orbital character, while the
other two threefold degenerate bands are formed by linear
combinations of the pl and pt orbitals lying in the bond-angle
plane. The degeneracy of the bands is a consequence of the
α = 90◦ bond angle, for which there exists a global orbital
basis in which there is absolutely no orbital mixing, even with
nonzero tπ . This is the basis associated with the three cubic
crystal axes.

For bond angles α > 90◦, the degeneracy is lifted, and for
the selenium or tellurium bond angle α = 103◦, nine distinct
bands can be seen [see Fig. 5(b)]. Nevertheless, they are well
separated into three classes of bands. The insulating character
remains for the present filling of 2/3, but the gap is somewhat
reduced.

C. Orbital density wave for U > Ucrit

To understand the orbital density wave in the strong-
coupling limit, with U > Ucrit , we focus on the infinite-U
limit. Within the Hartree approximation, a phase transition
occurs when one of two things happens in the flow of the
iterative procedure defined by Eq. (12): Either (i) a new fixed
point appears, which is also a new global energy minimum,
or (ii) the energy hierarchy of existing fixed points changes,
thus switching the ground state. To investigate which case is
realized here, Fig. 6 depicts the flow diagrams and fixed points
for four values of the interaction strength.

First, in Fig. 6(a), the noninteracting model is seen to have
a single fixed point. As U increases, the fixed point moves
towards the n̄t = 1 − n̄l axis [see Fig. 6(b)]. This is visible
as a continuous increase in n̄z as U departs from zero in
Figs. 4(a) and 4(c). Eventually, for U = Ucrit , the single fixed
point vanishes, while three new ones emerge near the corners
of parameter space, as shown in Fig. 6(c). The new ground
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FIG. 4. Evolution of the ground-state properties in the Hartree approximation as a function of the on-site Coulomb repulsion U and with
hopping parameters tπ = −tσ /3 [(a) and (c)] or tπ = 0 [(b) and (d)]. The bond angle α coincides with the experimentally observed value
of 103◦. The top panels show the ground-state orbital occupations {n̄μ} in the local basis, and the bottom panels show the derivative of the
ground-state energy for increasing Coulomb repulsion U . A phase transition (marked by a dashed vertical gray line) occurs at Ucrit ≈ 2.8tσ for
both tπ = −tσ /3 and tπ = 0, with the order shifting from covalent bond formation (fully occupied pz orbital, the other spinless electron split
evenly between the two orbitals in the bond-angle plane) to localized electrons (one, pt orbital, unoccupied). Note that tπ = −tσ /3 [(a) and
(c)] and Ureal � 0.24tσ (solid gray vertical line) are the realistic values of model parameters for the two elemental chalcogens; see text.

state is in the corner n̄t ≈ 0 and n̄l ≈ 1. This is the saturated
phase with an unoccupied pt orbital.

For even larger values of U , the three fixed points move
farther towards the corners of parameter space [Fig. 6(d)],
where they settle and become degenerate in the U → +∞
limit. Incidentally, these corner states constitute the threefold
degenerate ground state of the interorbital Coulomb repulsion
on a single chalcogen ion in the {pl , pt , pz} basis.

In the full 1D Hubbard model (1) the threefold degeneracy
of the ground state in the infinite-U limit is broken by the
kinetic term (2), which leads to the selection of pt as the single
least-occupied orbital. This means that whereas the Coulomb
repulsion triggers the onset of the orbital density wave in
the strong-coupling limit, the kinetic term decides the precise
nature of the orbital density wave.

V. CONCLUSIONS

A. Summary of main results

In this paper we studied the instabilities towards orbital
density wave order in a p-orbital Hubbard model for a he-
lical chain. This is the relevant geometry for the trigonal
phases of the two elemental chalcogens selenium and tel-
lurium [11–13,19,22]. By considering the orbital Hubbard

model for such a helical chain in the Hartree approximation,
we showed that an orbital density wave with the same period
as the atomic helix is stabilized, irrespective of the strength
of the interorbital Coulomb repulsion U . The precise form
of the orbital density wave, however, is strongly sensitive to
the interaction strength U . For realistic values of both the
bond angle in the helical chain and the ratio of the hopping
amplitudes tπ and tσ , we observe a phase transition between
qualitatively different orbital density waves at Ucrit ≈ 2.8tσ .

As the main result of this work, we have shown that in
the considered model the value of Ucrit is not only nonzero,
but also relatively large—and that the estimated value of
Ureal ≈ 0.24tσ in the two elemental chalcogens clearly
puts these materials in the weak-coupling regime, with
Ureal < Ucrit . Therefore the stable orbital density wave in the
chalcogen model with a finite but realistic Hubbard U can
be adiabatically connected to the ground state of the model
without Coulomb interactions. We thus show that including
a realistic value of interorbital Coulomb repulsion does not
invalidate the paradigm of the valence bond picture [11,12,17]
[i.e., the 2-1-1 density wave of Fig. 1(a)] in the helical chalco-
gens: The orbital density variations are already imposed by the
combination of the helical chain structure and the anisotropic
hopping amplitudes of the p orbitals. The sole role of the
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FIG. 5. The band structure for holes in the noninteracting model
(U = 0), with hopping tπ = −tσ /3 (a realistic value for both ele-
mental chalcogens; see text). Two values of the bond angle α are
shown: (a) the simple cubic case with α = 90◦ and (b) the selenium
or tellurium bond angle α = 103◦. Dashed lines denote the Fermi
energy. The band degeneracy is lifted as the bond angle α departs
from 90◦.

relatively small interorbital Coulomb repulsion in the chalco-
gens is to explain the formation of the helical chains
themselves, starting from a hypothetical cubic crystal, as pos-
tulated in Ref. [10].

It is only in the limit of unrealistically strong interactions
with U > Ucrit that we find a distinct orbital density wave,
with only one type of orbital being unoccupied per chalcogen,
i.e., the 2-2-0 density wave of Fig. 1(b). While the orbital
density wave in the strong-coupling limit is triggered by the
on-site Coulomb repulsion U , and can be easily understood in
the fully localized limit of infinite U , the particular choice of
the orbital which is occupied by a single hole is dictated by
the kinetic energy.

B. Relevance of the employed model and approximation

Let us first comment on the role of the spin degree of
freedom, neglected in this paper. In some of the previous
works [7,8,27,28] on the subject it was postulated that the
Hund’s exchange could be the dominant mechanism which
stabilizes the double occupancy of one of the valence p or-

bitals and partial occupancy of the other two orbitals on each
chalcogen atom; in this way the 2-1-1 density wave should
be easily supported in the chalcogens. While it is natural to
expect that the Hund’s exchange may support the 2-1-1 orbital
density wave, this work, in combination with Ref. [10], shows
that, even without taking into account the electron’s spin and
Hund’s exchange, both the helical structure and the orbital
density wave can be stabilized in elemental chalcogens. Al-
though detailed further studies are needed here, the results
shown here suggest that in real materials the role of spin
and Hund’s exchange may also be secondary. In fact, to the
best of our knowledge, there are no reports of any onset of
spin density modulations in elemental chalcogens. We remark
that such modulations would indeed be expected if the spin
degree of freedom mattered for the onset of the orbital density
wave.

Next, let us discuss the validity of the Hartree approxi-
mation. In this case it is worth pointing out that even in the
case of the 1D single-band (i.e., “standard”) Hubbard model
at half filling, the Hartree approximation leads to a partially
correct result, especially in the weak-coupling limit [29].
Moreover, we expect that for the (anisotropic) orbital Hubbard
model studied here, which lacks a continuous symmetry in
the orbital sector, the Hartree approximation should work
better, for the quantum fluctuations should then be somewhat
suppressed. Nevertheless, in order to check this presumption,
we performed preliminary DMRG calculations of the orbital
Hubbard model; see Appendix B for further details.

Crucially, the obtained DMRG results unambiguously con-
firm that the 2-1-1 orbital density wave is indeed stable in
the weak-coupling limit—in particular, this density wave is
the ground state well above the realistic value of U = 0.2tσ .
On the other hand, the 2-2-0 orbital density wave, i.e., the
density wave that is not observed in the chalcogens and that—
according to the Hartree approximation—could become stable
in the limit of unrealistically high Hubbard U (see above),
seems to be further destabilized in the DMRG simulations.
In fact, according to the preliminary DMRG calculations, this
density wave becomes stable only once a small crystal field,
which has not been included in the model considered in this
paper but may nevertheless be present in the 3D chalcogens
(see Appendix B), is added. Note that, in order to unequivo-
cally verify the stability of the 2-2-0 orbital density wave as
well as to further corroborate the phase diagram of the orbital
Hubbard model proposed here, further, extensive numerical
studies are needed (due to the numerical complexity of the or-
bital Hubbard model, these are beyond the scope of this work).

Finally, we note that the effects of the electron-phonon
coupling are in general neglected here and left for future
studies. Nevertheless, we stress that the mere onset of the
1D helical chains in the chalcogens originates in a particular
electron-phonon coupling; see Ref. [10] and discussion in
Sec. I C.

C. Final remarks

The emergence of the different types of orbital order
discussed here shows how the physics of the 1D p-orbital
Hubbard model in a helical chain differs from that of the
single-band Hubbard model in one dimension which may
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FIG. 6. The flow of the iterative procedure defined by Eq. (12) for four different values of U , presented in terms of the vector field
〈�0(�̄n)|�n|�0(�̄n)〉 − �̄n, where �n = (nl , nt ). The bond angle is taken to be α = 103◦, while the hopping tπ = −tσ /3 is a realistic value for both
elemental chalcogens; see text.

host spin or charge density waves. In general terms, the
reason for this is twofold: First, the orbital systems are
naturally prone to lattice distortions due to the strong cou-
pling between orbitals and lattice. One should then consider
the lattice distortions (such as the ones leading to helical
chains in elemental chalcogens) before deriving the physi-
cally relevant, orbital Hubbard model. Second, unlike those
in the single-band Hubbard model, the hopping amplitudes
between distinct orbitals are generically strongly anisotropic,

triggering spatial dependencies in observable quantities and
phenomena.
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APPENDIX A: THE HOPPING MATRIX

In this Appendix, we derive the nearest-neighbor hopping
matrix Tμ,ν (i)—here referred to as T̂ (i). Since the chain has a
helical symmetry, it suffices to consider a single bond to derive
all the hopping elements in the chain; phrasing it differently,
in the local basis the hopping matrix T̂ (i) is site independent,
and we can drop the site index: T̂ (i) ≡ T̂ (as discussed in the
main text).

To describe a bond, we consider two neighboring sites in
the chain and label them 1 and 2. In order to find the local
basis on site 2, one needs to take the local basis on site 1 and
rotate it by −2π/3 around the helical axis, as shown in Fig. 2.
In the local basis, the helical axis is related to the local z axis
via a rotation by β around the local t axis [see Fig. 2(b)]. The
angle β, in turn, can be written in terms of the bond angle α

as

cos β = tan
(π

6

)
tan−1

(α

2

)
. (A1)

Consequently, the basis change from the local basis at site 1
to the local basis at site 2 is

R̂1,2 = R̂t (β ) R̂z

(
−2π

3

)
R̂†

t (β ). (A2)

Finally, the vector pointing along the bond from site 1 to site
2 is rotated by (α − π )/2 around the local z axis with respect
to basis vector l of the local basis at site 1.

Since the p orbitals transform like vectors under rotations,
all of the above leads to the following expression for the
hopping matrix:

T̂ = R̂z

(
−α

2
+ π

2

)†
T̂0 R̂z

(
−α

2
+ π

2

)
R̂1,2. (A3)

Here, T̂0 is the hopping matrix for the p orbitals in a straight
1D chain, given by

T̂0 =
⎛
⎝tσ 0 0

0 tπ 0
0 0 tπ

⎞
⎠. (A4)

FIG. 7. A comparison between the results with U = 0, i.e., the noninteracting model, obtained using the full hopping matrix of Eq. (A5)
[(a) and (c)] and the linearized hopping matrix of Eq. (4) [(b) and (d)]. Top panels: the ground-state orbital charge densities {n̄μ} in the local
basis as functions of bond angle α (the bond angle α ≈ 103◦ observed in selenium and tellurium is marked with a vertical line). Bottom panels:
the band structure for the bond angle α = 103◦ (dashed lines denote the Fermi energy). The hopping is tπ = −tσ /3 for all panels. The results
are similar in both cases, with noticeable quantitative differences appearing only for bond angles considerably higher than the selenium or
tellurium bond angle.
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The resulting hopping matrix for the helical chain is⎛
⎜⎜⎜⎝

1
2 {tσ [sin(ε) + 1] + tπ sin(ε) ζ 2} 1

2 ζ {tσ [sin(ε) + 1] − tπ sin(ε)} tπ
√

1
−2 sin(ε)−2 + 1 ζ

1
2 ζ {tπ sin(ε) − tσ [sin(ε) + 1]} 1

2 {tσ [sin(ε) − 1] − tπ sin(ε)} tπ
√

1
−2 sin(ε)−2 + 1

tπ
√

1
−2 sin(ε)−2 + 1 ζ −tπ

√
1

−2 sin(ε)−2 + 1 −tπ
1

csc(ε)+1

⎞
⎟⎟⎟⎠. (A5)

Here, ζ ≡ cot[ 1
4 (2ε + π )], and ε ≡ α − π/2. The linearized

version of the hopping matrix is given in Eq. (4) of the main
text. For bond angles not much larger than 90◦, the linearized
model is sufficient to describe the band structure. The se-
lenium or tellurium bond angle α = 103◦ lies comfortably
within the range of applicability of the linearized model, as
illustrated in Fig. 7.

APPENDIX B: CHALCOGENIC ORBITAL DENSITY
WAVES IN DENSITY MATRIX RENORMALIZATION

GROUP

In order to test the accuracy of the Hartree approximation
(see main text), we performed preliminary DMRG calcula-

FIG. 8. Site-dependent ground-state orbital occupations {n̄μ} in
the local basis as obtained from DMRG calculations of the Hub-
bard model (1) on an (L = 100)-site chain with (a) U = 0.2tσ and
(b) U = tσ . Open boundary conditions are imposed, and only densi-
ties on the “middle” 50 sites of the chain are shown.

tions [30] on systems of size L × 3, L being the number of
sites in the chain and 3 being the number of orbitals per
site. We use open boundary conditions. We fix L = 100 in
our calculations and keep up to m = 2000 density matrix
eigenvalues in the renormalization procedure. This way we
are able to obtain accurate results with an error δ/L = 10−10.
To suppress the edge effects, in what follows we plot the local
orbital densities for all sites between site number L/4 and site
number 3L/4 in the chain.

1. Weak coupling

In the weak-coupling regime, extending to at least U = tσ ,
we find that the DMRG results and the Hartree approximation
results (see main text) are in perfect agreement; see Fig. 8.
This is due to the fact that the noninteracting system is in an
orbitally ordered phase protected by a finite energy gap, so
that the (quantum) fluctuations in orbital densities are indeed
negligible.

2. Strong coupling

In the strong-coupling regime we find that a small but finite
symmetry-breaking crystal field �CF term must be included in
the DMRG calculations to stabilize the 2-2-0 orbital density
wave predicted by the Hartree approximation; see Fig. 9. Note
that such a field, which raises the on-site energy of one of the
orbitals in the bond-angle plane (e.g., the pt orbital as assumed
here), may possibly arise in a model for a single chiral chain of

FIG. 9. Site-dependent ground-state orbital occupations {n̄μ} in
the local basis as obtained from DMRG calculations of the Hubbard
model (1) with U = 10tσ and with crystal field �CF = 0.15tσ on an
(L = 100)-site chain (see text for further details). Open boundary
conditions are imposed, and only densities on the “middle” 50 sites
of the chain are shown.
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the 3D chalcogen crystal once the influence of the neighboring
chains (as arising from the electron tunneling or Coulomb
interactions) is taken into account. This is because, for bond
angles greater than 90◦, the presence of the neighboring chains
needs to affect the on-site energies of the two orbitals lying in
the bond-angle plane differently [since one of them is oriented
more along the chain (pl )].

Without such a finite symmetry-breaking term the 2-2-0
orbital density wave predicted by the Hartree approximation
(see main text) is not recovered in our preliminary DMRG
calculations for the Hubbard model with U = 10tσ . In fact,
the calculation fails due to very long convergence time. To
comment on this a little further, let us note that if one considers
the extremely correlated regime (U = 20tσ ), the calculation

converges (not shown). In this case the result with zero crystal
field exhibits strong orbital density fluctuations in real space.
We expect this to be—at least partially—the effect of the
open edges. Importantly, in this extremely correlated regime
we find a 50-fold increase in the CPU time for the calcula-
tion without the symmetry-breaking field with respect to the
calculation with the symmetry-breaking field included or the
calculation for the weak-coupling case (U � tσ ). This sug-
gests the presence of competing interactions in the system and
means that large-scale, state-of-the-art numerics are needed
to establish the exact nature of the ground state without
the symmetry-breaking field, possible order in the strong-
coupling limit, or the dependence of the results on boundary
conditions.
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