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Recent formal classifications of crystalline topological insulators predict that the combination of time-reversal
and rotational symmetry gives rise to topological invariants beyond the ones known for other lattice symmetries.
Although the classification proves their existence, it does not indicate a way of calculating the values of those
invariants. Here we show that a specific set of concentric Wilson loops and line invariants yields the values of all
topological invariants in two-dimensional systems with pure rotation symmetry in class AII. Examples of this
analysis are given for specific models with twofold and threefold rotational symmetry. We find new invariants
that relate to the presence of higher-order topology and corner charges.
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Introduction. In crystalline topological insulators, the pres-
ence or absence of symmetries allows for the emergence of
a wide variety of topological phases. These are labeled by an
equally wide variety of topological invariants, ranging from
the Chern number [1], to the two-dimensional Fu-Kane-Mele
(FKM) invariants [2–5], to the Lau-Brink-Ortix (LBO) or
line invariants [6], as well as invariant features of the Wil-
son loop spectrum (WLS) describing higher-order and fragile
topological insulators [7–13]. A unified, symmetry-based ap-
proach describing all of these topological phases was recently
proposed [14–18]. This shows that the FKM, LBO, higher-
order, and similar invariants may all be extracted from an
algorithmic analysis of lattice symmetries and their effect on
the structure of Berry curvature. Moreover, being a complete
classification of all possible such invariants (as guaranteed
by the underlying K-theory), it predicts that additional, as
yet unidentified, invariants of the same type exist in various
crystals, for example, those with rotational symmetries in two
dimensions [15]. Explicitly, in wallpaper groups p2, p3, p4,
and p6 we expect to find 4, 2, 3, and 3 Z2 invariants of which
only 3, 1, 2, and 2 invariants are known.

Although the classification predicts the existence of topo-
logical invariants for systems with a given symmetry, it does
not give a way of identifying or evaluating them in any specific
system. Here we introduce a single, unified diagnostic that
yields the values of all curvature-based invariants in two-
dimensional crystalline topological phases with time-reversal
symmetry (TRS) and rotational symmetry, including the new
phases predicted by the symmetry-based classification. Our
analysis employs a spectrum of concentric Wilson loops rather
than the usual spectrum of parallel Wilson loops [4,5,9,10,19].
The concentric loops are tailored to the rotational symmetry of
the crystal lattice, allowing them to capture the full influence
of symmetry on the topological structure.

*Corresponding author: j.g.b.henke@uva.nl
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We showcase the use of the concentric WLS in examples
with threefold and twofold rotational symmetry. We then indi-
cate how the same methodology can be applied to any n-fold
rotational symmetry group and discuss the significance of the
new invariant with respect to edge and corner states.

The concentric WLS. The gauge invariant eigenvalues of
(non-Abelian) Wilson loops can be interpreted as generalizing
the (Abelian) Berry curvature to systems with internal and
lattice symmetries [7]. We will briefly review the established
use of Wilson loops for extracting the FKM invariant before
introducing the set of concentric Wilson loops that we employ
below to capture the full topology of rotationally invariant
crystals.

In a material with N occupied bands, the non-Abelian
Berry connection is an N × N matrix with vector-valued
components defined as Amn(k) = i〈um(k)|∇k|un(k)〉. Here,
|un(k)〉 indicates an occupied Bloch state at momentum k
with band index n ∈ {1, . . . , N}. The Wilson loop W[C] on
a closed contour C in the Brillouin zone (BZ) is then given by:

W[C] = P exp

(
i
∮
C

dk · A
)

, (1)

with P indicating path ordering. The Wilson loop is a
U (N ) matrix and satisfies W[C]W[C]† = W[C]W[Cr] = 1,
with Cr the orientation-reversed loop. The Wilson loop can
equivalently be expressed as a product of projectors onto
the occupied states along the loop, which is particularly
convenient when analyzing its properties under symmetry
transformations, as shown in Appendix A in Supplemental
Material [20].

In systems without any internal or crystal symmetries, one
can consistently assign band indices to all states, such that the
off-diagonal elements of the Berry connection matrix are zero,
and each band can be said to have its own independent Berry
curvature and U (1) Wilson loops. The presence of symme-
tries, however, may cause unavoidable degeneracies between
bands, which necessitate the use of the non-Abelian Berry
connection. Notably, TRS causes the formation of Kramers
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FIG. 1. Left: Concentric Wilson loops in a threefold rotationally
symmetric BZ. Right: The corresponding four elementary spectra
(schematic), with topological indices indicated as w = (wFKM,wπ ).
Spectra with higher winding can be reduced to elementary ones on
the addition of a topologically trivial Kramers pair with w = (0, 0).

pairs, and the associated FKM invariant [2,3,21] may be for-
mulated in terms of a U (2) Wilson loop [22]. In TRS systems
without any additional symmetries that cause degeneracies of
more than two bands (for instance, due to nonsymmorphic
symmetries [23]), it is always possible to consider the U (2)
Wilson loop, and more general Berry connections do not
contain any additional topological information. We therefore
restrict our attention to the U (2) Wilson loops relevant for
TRS crystals from here on.

The gauge-invariant Wilson loop eigenvalues of generic
closed paths on the Brillouin torus are typically not quantized
and do not represent topological invariants [24]. This may
be different for paths respecting constraints imposed by sym-
metry. For instance, the partial polarization in TRS systems
is given by the (degenerate) U (2) Wilson loop eigenvalues
θ j along a loop respecting the TRS [5]. Even without such
symmetry constraints, however, one can gain topological in-
formation by considering a family of generic Wilson loop
contours, parametrized by some variable k that collectively
yield a spectrum θ j (k). For the family of contours in two
dimensions with constant crystal momentum component kx,
the parity of the winding of the WLS θ j (kx ) equals the FKM
invariant [4,5,9].

Here we consider an alternative, “concentric” WLS, which
allows us to evaluate not only the generic FKM invariant but
also the newly predicted invariant specific to crystals with ro-
tational symmetry. The concentric spectrum consists of loops
that do not cycle around the entire BZ torus but instead grow
from an infinitesimal loop to enclosing (1/n)th of the n-fold
rotationally symmetric BZ (see Fig. 1). The gauge-invariant
eigenvalues of each of the loops in the spectrum come in pairs
of opposite sign and describe the net enclosed U (2) Berry
curvature. The spectrum trivially starts at zero (no curvature
enclosed) and ends at a value corresponding to ±(1/n)th of
the total U (2) Berry curvature present in the BZ. The total
winding of the spectrum, times n and modulo 4π , thus equals
the FKM invariant. Additionally, we prove in Appendix A in
Supplemental Material [20] that linear crossings at θ j = π

can only be gapped by pairwise annihilation. The parity of
the number of times the spectrum crosses θ j = π therefore
describes a second topological invariant.

Crossings through θ j = 0 do not carry the same protection.
To see this, consider a spectrum starting and ending at θ j = 0
with one additional zero crossing in between. This spectrum
may be reduced to a completely flat spectrum (θ j = 0 for all
loops in the spectrum) by transformations of the Hamiltonian
that do not break any symmetries or constraints. In more
general spectra the zero crossings are fragile, in the sense that
they cannot generally be reduced to a completely flat spectrum
by themselves, but the zero crossings can be removed (and the
total winding reduced) after adding a trivial Kramers pair and
letting the WLS hybridize.

In fact, within each wallpaper group, one can identify a
set of concentric WLS whose winding cannot be reduced any
further on the addition of topologically trivial, occupied pairs
of bands. We call these elementary spectra. See Appendix B
in Supplemental Material [20] for details. Figure 1 depicts
the elementary spectra for the case of threefold rotational
symmetry. These elementary concentric WLS indicate both
the FKM invariant, corresponding to the parity of the winding
divided by 2π/3 (or 2π/n for n-fold rotational symmetry)
[25], and the new invariant, corresponding to the parity of the
number of π crossings.

Threefold rotation. To see how the concentric WLS is used
to identify the value of the new invariant in practice, consider
a crystal with threefold rotational symmetry (C3). In systems
with C3 and TRS, the BZ depicted in Fig. 1 hosts four time-
reversal invariant momenta (TRIM), namely, � and Mi (with
i = 1, 2, 3 mapped onto one another by C3). The K points
are equivalent and symmetric under C3, but mapped onto the
K ′ point under the action of the TRS operator T . In contrast
to any evenfold rotational group, there is no combination of
C3 with T that returns a state to the crystal momentum k it
started with. Notice also that T 2 = (C3)3 = −1 because of
the spin-one-half nature of electrons. The symmetry-based
classification of crystalline topological insulators predicts two
Z2 invariants for these threefold symmetric systems [26].
Accordingly, we can describe all allowed topological phases
in C3-symmetric class AII systems by pairs of numbers w =
(wFKM,wπ ). The first of these corresponds to the FKM invari-
ant, and the second is given by the parity of the number of π

crossings in this WLS. The latter has not, to the best of our
knowledge, been identified before [27].

As an example implementing these invariants, consider a
TRS generalization of the Haldane model, given by the Bloch
Hamiltonian [28–30]:

H =
(

H+
Hal 0
0 H−

Hal

)

H±
Hal(k) = d1(k)τx + d2(k)τy + d±

3 (k)τz. (2)

Here, τi are Pauli matrices for the sublattice degree of free-
dom, so that, for example, τx = a†

σ bσ + b†
σ aσ with a†

σ and b†
σ

creation operators for electrons with spin σ on different sub-
lattices. We also defined d1 = ∑3

j=1[t1 cos(k · a j ) + t3 cos(k ·
c j )], d2 = ∑3

j=1[−t1 sin(k · a j ) − t3 sin(k · c j )], and d±
3 =

m ± ∑6
j=1 t2(−1) j sin(k · b j ). The vectors a j , b j , and c j con-

nect first-, second-, and third-nearest neighbors [31]. The
inclusion of hopping integrals up to third-nearest neighbors
allows for phases of HHal with Chern numbers larger than
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FIG. 2. Left: The phase diagram of the extended Haldane model
Hp3 with t1 = 1, m = 0.1, λR = 0.3. The red phase has trivial values
for all topological indices, i.e., w = 0. The blue and green phases are
nontrivial with their respective w = (wFKM, wπ ) indicated alongside
the magnitude of the Chern numbers for H±

Hal in each phase. In the
white region, the phase could not be unambiguously determined due
to (the proximity to) a gap closing. Right: The concentric WLS over
one-third of the BZ for the three points indicated by the correspond-
ing symbols in the phase diagram. The values of the two topological
invariants for these phases correspond to the parity of 3/(2π ) times
the winding of the WLS value, and the parity of the number of π

crossings in the spectrum.

one [28–30]. To ensure the system is gapped, we add a
Rashba-type spin-orbit coupling connecting the time-reversed
elements H±

Hal:

HR = iλR

3∑
j=1

∑
σ �=σ ′

(c j × s)σσ ′
z eik·c j a†

σ bσ ′ + Hc. (3)

Here σ is a spin index, s is the vector of Pauli matrices, and
a† and b† are again creation operators for electrons on dif-
ferent sublattices. The extended Haldane model Hamiltonian,
Hp3 = H + HR, is invariant under TRS (T = iσy ⊗ τ0 K) and
threefold rotational symmetry (C3 = exp (iπσz/3) ⊗ τ0).

As shown in Fig. 2, the extended Haldane model hosts
three distinct topological phases, which can be accessed by
varying the relative magnitude of the hopping parameters tn.
The right-hand side of Fig. 2 shows an example spectrum for
each phase. The red phase is trivial, having zero total winding
and zero π crossings. The blue and green phases are nontrivial
and have a total winding that is an odd multiple of 2π/3 and
an odd number of π crossings, respectively. Their topological
indices are thus w = (1, 0) and w = (0, 1). Also indicated are
the Chern numbers of the individual H±

Hal Hamiltonians, which
equal wFKM modulo 2.

Twofold rotation. We now apply the same concentric WLS
approach to a TRS system with twofold rotational symmetry.
The topological classification for this class of systems was
predicted to be Z4

2 [14,15]. The K theory underlying this
classification [32] indicates that two of the Z2 invariants are
strong in the K-theory sense of not requiring translational
symmetry, while the remaining two invariants do depend on
the presence of a periodic lattice [33] (see also Refs. [34,35]
for related K-theoretic calculations). These latter two may be
interpreted as LBO line invariants along the lines kx = 0 and
ky = 0 [6], while one of the strong invariants coincides with

the usual FKM invariant. In p2, it has recently been shown
that a fourth invariant can be identified in systems with trivial
FKM invariant [10], which we identify with our new invariant
wπ (see also Appendix C in Supplemental Material [20]).
These four invariants are independent of one another and can-
not be changed on the addition of a trivial band. Topological
phases in C2-symmetric class AII systems can thus be labeled
by w = (wFKM,wπ ,wLBOx ,wLBOy ).

Just as in the case of p3, the concentric WLS of systems
in p2 may always be reduced to four elementary spectra on
the addition of trivial occupied Kramers pairs. The complex
conjugate eigenvalues of the concentric Wilson loops make up
a WLS that always starts at θ j = 0 and ends at either θ j = 0
or ±π , corresponding, respectively, to wFKM = 0 or 1. As be-
fore, zero crossings may be removed (possibly on the addition
of a trivial Kramers pair) by flattening the entire spectrum,
while π crossings are topologically protected (see Appendix
A in Supplemental Material [20]). Notice that this is true even
for π crossings in a spectrum of the green type in Fig. 1
(shown for p2 in Appendix B in Supplemental Material [20]),
which will have a π crossing followed by the spectrum ending
at θ j = π . Although the π crossing can be pushed toward
the end of the spectrum, it cannot be annihilated and gapped
there, because the value at the end of the spectrum equals
the FKM invariant, and is quantized. Therefore, the parity
of π crossings constitutes a topological invariant even in this
special case.

As a generic example of the application of concentric WLS
to identify all invariants in twofold symmetric systems, we
consider a TRS version of the Qi-Wu-Zhang model [36]. We
define the Bloch Hamiltonian:

HQWZ(k) = d1 σ0 ⊗ τx + d2 σz ⊗ τy + d3 σ0 ⊗ τz. (4)

Here, σi and τi are Pauli matrices associated with spin and
sublattice, respectively. The coefficients are given by d1(k) =
cos kx, d2(k) = cos ky, and d3(k) = m2 − (sin kx + sin ky)2.
This Hamiltonian has two chiral symmetries, Cx,y = σx,y ⊗ τy,
which we break by adding:

Hint (k) = t1 sin kx σx ⊗ τz + t2 sin(kx + ky) σy ⊗ τz. (5)

We refer to the full model Hp2 = HQWZ + Hint as the QWZ
model. It has TRS (T = iσy ⊗ τ0 K, with K complex con-
jugation) and twofold rotational symmetry (C2 = iσz ⊗ τ0).
In the following we consider parameter values t1 = 1/2 and
t2 = 1/10.

As shown in Fig. 3, the concentric WLS of loops cover-
ing half of the BZ indicates that depending on the value of
parameter m, the QWZ model resides in one of two phases,
with the newly identified invariant wπ = 0 or 1. In both
phases wFKM = 0, while direct computation of the LBO line
invariants, equivalent to the value of the (degenerate) WL
eigenvalues of loops cycling around the BZ torus with kx = 0
or ky = 0, shows that these are also zero in both phases.

Edge states and corner charges. The bulk-boundary cor-
respondence suggests edge states to be present in finite-sized
materials whose bulk Hamiltonian has a nontrivial FKM in-
variant. Recently, there has been a proposal for a bulk-corner
correspondence in rotationally symmetric topological insu-
lators [37]. Intuitively, one expects a minimal requirement
for topological corner charges to appear to be the presence
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FIG. 3. Left: Concentric Wilson loops covering half the twofold
rotationally symmetric BZ. Right: The concentric WLS of Hp2,
with t1 = 1/2, t2 = 1/10, and two different values of parameter
m. The two different topological phases can be described by w =
(wFKM,wπ , wLBOx , wLBOy ); red has w = (0, 0, 0, 0), and blue has
w = (0, 1, 0, 0).

of a winding WLS—indicating the presence of a nontrivial
topology—with a trivial FKM invariant such that there are
no protected edge states. Such a situation corresponds pre-
cisely to the (wFKM,wπ ) = (0, 1) phase as seen in the models
considered here. To see if this phase indeed hosts corner
charges, we consider the extended Haldane model both on
a finite-sized hexagon (Fig. 4) and in ribbon configurations
with either armchair or zigzag-type edges (see Appendix D in
Supplemental Material) [20,38] for the same sets of parameter
values as highlighted by the symbols in Fig. 2.

As expected, the w = (0, 0) phase is a trivial insulator and
exhibits no edge or corner states in any configuration. The
(1,0) phase hosts topological edge states along both types of
edges, as expected for a nontrivial FKM invariant. Interest-
ingly, infinitely long ribbons with zigzag edges in the (0,1)
phase also host edge states, while the edge states along ribbons
with armchair edges become gapped. The finite-sized hexagon
with armchair edges shown in Fig. 4 exhibits fully localized
corner charges whose energies lie between those of the gapped
edge states.

As discussed in Appendix D in Supplemental Mate-
rial [20], TRS systems derived from subsystems with odd

Chern numbers (wFKM = 1) will always host at least one
pair of gapless edge states. Those derived from subsystems
with even (nonzero) Chern numbers (wFKM = 0), on the
other hand, have no protection against their edge states being
gapped. Whether the edge states are in fact gapped depends on
the specific geometry of the finite-sized system considered.
Even if the system has a gap in both the bulk and the edge
state spectrum, the existence of corner charges additionally
requires their energies to lie within that gap. Depending on
the parameters chosen, corner charges may be pushed into
the gapped edge state spectrum and hybridize. A nontrivial
value of the newly identified invariant (wπ = 1) thus signals
the possibility of corner charges emerging, but whether they
are realized in any specific finite-sized system depends on its
detailed configuration.

Discussion. The concentric WLS serves as a single, uni-
fied diagnostic allowing the simultaneous evaluation of both
the well-known FKM invariant and the topological invariant
that were predicted to exist in rotationally symmetric systems
based on K-theoretical arguments [15,33]. Complementing
the concentric WLS with LBO line invariants, which are given
by the eigenvalues of high-symmetry Wilson loops, yields
the values of all possible topological invariants appearing in
the complete classification of TRS systems with rotational
symmetry [15].

We gave explicit examples of this construction for par-
ticular tight-binding models in class AII with twofold and
threefold rotational symmetries, but stress that the approach is
general and can also be applied to cases with higher rotational
symmetries, as detailed in Appendix B in Supplemental Ma-
terial [20]. Combining rotations with additional symmetries,
including nonsymmorphic ones, may be expected to further
enrich the analysis.

In wallpaper group p3, we showed that an odd number of π

crossings in the concentric WLS signals the possibility of lo-
calized corner charges appearing in finite-sized samples. This
may explain the recent observation of corner charges in spe-
cific rotationally symmetric systems, which were suggested
to be related to a form of fragile topology [37]. Because the
parity of π crossings in the concentric WLS is unaffected by
the addition of topologically trivial Kramers pairs, the present

FIG. 4. Exemplary states of the extended Haldane model in a finite-sized hexagon with armchair edges for the three topological phases
with parameter values as indicated by the symbols in Fig. 2. The (0, 0) phase hosts no in-gap states, while the (1, 0) phase hosts in-gap edge
states and the (0, 1) phase hosts in-gap corner states. The color scale indicates the local density of states, normalized to one in each panel. The
states shown lie at E/t1 = −0.2, 0, and −0.05, respectively.
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analysis in fact suggests the bulk-corner correspondence in
these systems to be stable and described by a true, rather than
fragile, topological invariant. While further investigation is

required, the existence of this stable invariant is not visible in
the usual linear WLS, underlining the utility of the concentric
Wilson loops.
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