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Unified quantifier of mechanical disorder in solids
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Mechanical disorder in solids, which is generated by a broad range of physical processes and controls
various material properties, appears in a wide variety of forms. Defining unified and measurable dimensionless
quantifiers, allowing quantitative comparison of mechanical disorder across widely different physical systems,
is therefore an important goal. Two such coarse-grained dimensionless quantifiers (among others) appear in
the literature: one is related to the spectral broadening of discrete phononic bands in finite-size systems
(accessible through computer simulations) and the other is related to the spatial fluctuations of the shear
modulus in macroscopically large systems. The latter has been recently shown to determine the amplitude of
wave attenuation rates in the low-frequency limit (accessible through laboratory experiments). Here, using two
alternative and complementary theoretical approaches linked to the vibrational spectra of solids, we derive a
basic scaling relation between the two dimensionless quantifiers. This scaling relation, which is supported by
simulational data, shows that the two apparently distinct quantifiers are in fact intrinsically related, giving rise
to a unified quantifier of mechanical disorder in solids. We further discuss the obtained results in the context
of the unjamming transition taking place in soft sphere packings at low confining pressures, in addition to their
implications for our understanding of the low-frequency vibrational spectra of disordered solids in general, and
in particular those of glassy systems.

DOI: 10.1103/PhysRevE.104.035001

I. INTRODUCTION

Mechanical disorder in solids appears in a multitude of
forms, e.g., manifested in the material’s composition, in the
spatial arrangement of its constituents, and in the interac-
tions between them. It can be generated by a broad range of
physical processes, taking place either during solid formation
(e.g., solidification or glass transition [1]) and/or after it (e.g.,
through various heat treatments [2], irreversible mechanical
deformation [3], and irradiation [4]). Mechanical disorder
has a deep impact on the properties of solids, such as stress
relaxation [5], sound attenuation [6–8], thermal conductivity
[9], plastic deformability [10], and failure resistance [11–13].
Consequently, quantifying mechanical disorder is important;
in particular, it is highly desirable to define measurable dimen-
sionless and universally applicable quantifiers of mechanical
disorder, which allow us to quantitatively compare the degree
of disorder of widely different physical systems [14–16].

Several proposals of quantifiers of mechanical disorder
exist in the literature [14,15,17–27]. Of particular relevance
in the present context are measurable disorder quantifiers
that play key roles in determining material properties and
that can be applied in both computer simulations—that are
playing increasingly important roles in materials research due
to the dramatic rise in computing power—and in laboratory
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experiments. As such, the disorder quantifiers we consider are
coarse grained to some extent, probing the effect of disorder
on some measurable physical properties. One such quantifier
can be constructed using the standard deviation of the spatial
distribution of the shear modulus μ, denoted by �μ. The ratio
�μ/〈μ〉 (where 〈μ〉 is the average shear modulus, cf. Fig. 1)
can be used to define a dimensionless disorder quantifier.
Such a definition can make physical sense only if it is scale
independent, i.e., if the spatial fluctuations of μ are probed on
a length scale � such that (�μ/〈μ〉)(�/a0)d̄/2 is independent
of �. Here d̄ is the spatial dimension, a0 is an atomistic length,
and � is larger than any possible correlation length associated
with the spatial fluctuations of μ. This disorder quantifier
plays a central role in a class of theoretical approaches collec-
tively termed Fluctuating Elasticity Theory (FET) [14,17–20],
which was recently shown to control wave attenuation rates in
disordered solids [8] and to correlate with the number density
of soft, quasilocalized modes in structural glasses [13]. Its
precise definition and ways to probe it will be discussed in
detail below.

Another quantifier of mechanical disorder has been related
to the spectral broadening of low-frequency phononic bands
in solids [25]. Low-frequency phonons exist in solids due
to a broken global continuous symmetry, independently of
whether the solids are ordered (e.g., crystalline) or disordered.
For finite-size solids, lowest-frequency phonons appear in
well-separated, discrete bands. If the solid is ordered, the dis-
crete phononic bands are degenerate, i.e., groups of phonons
with different wave vectors share the same frequency ω. In
the presence of mechanical disorder, this degeneracy is lifted
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FIG. 1. (a)–(c) Low-frequency density of states D(ω) averaged over 100 computer glasses of N = 64 000 particles in three dimensions,
plotted against the rescaled frequency ω/ω0, where ω0 ≡ cs/a0 with cs the (ensemble averaged, Tp-dependent) speed of shear waves, and
a0 ≡ (V/N )1/3 is an interparticle distance in a system of volume V . (a) Data for glasses of parent temperature Tp = 0.4 (in simulational units);
the disorder-dependent frequency scale ω†(L) indicated by the dashed vertical line separates the frequency axis into the range in which discrete
phonon bands are distinguishable, and the range in which their width surpasses the gaps between them, rendering them indistinguishable
(phonon sea). The grey rectangle indicates the zoomed-in window presented in panel (b), where the universal ∼ω4 VDoS of nonphononic
modes is observed between and below the discrete phonon bands. (c) Same as (a) but for Tp = 1.3 glasses of larger mechanical disorder.
The dimensionless prefactor Agω

5
0 is roughly 35 times larger compared to the Tp = 0.4 glasses. (d) Sample-to-sample probability distribution

functions (PDFs) of the shear modulus μ, measured for Tp = 1.3 and Tp = 0.4 glasses of N = 16 000 particles.

and the discrete phononic bands acquire a finite spectral width
�ω, as demonstrated in Fig. 1. Consequently, �ω/ω can be
used to construct a dimensionless disorder quantifier. The
precise definition based on �ω/ω and ways to probe it will
be discussed in detail below. The main questions we aim at
addressing in this paper are whether the disorder quantifier
defined based on �μ/〈μ〉 is fundamentally related to the one
defined based on �ω/ω, and if so, what the physical content
and meaning of such a basic relation are.

To better understand these questions and to sharpen them,
we present in Fig. 1(a) the low-frequency vibrational density
of states D(ω) (VDoS) of finite-size computer glasses com-
prised of N = 64 000 particles in three dimensions, obtained
by quenching a deeply supercooled equilibrium liquid to zero
temperature (details about the model and methods are pro-
vided below). It is observed that phononic bands localized at
discrete frequencies exist at the lowest tail of the VDoS [28].
Each phononic band is also characterized by a well-defined
width �ω, explicitly marked on the third band for illustration,
making the ratio �ω/ω well defined for each band. The lowest
phononic bands are shown to be superimposed on top of an
ω4 function (continuous green line), as highlighted by the

zoom-in view presented in Fig. 1(b). The ω4 law corresponds
to nonphononic excitations, which have been recently shown
to be a universal feature of glasses formed by quenching a
melt [16,29–32]. As the nonphononic part of the VDoS uni-
versally follows the ω4 law, the prefactor Ag of this law (see
figure) encapsulates nonuniversal properties of the glass and,
in particular, must be sensitive to the degree of mechanical
disorder, which depends on the glass preparation procedure
[24,26,32].

At higher frequencies, the VDoS changes its character. In
particular, when a crossover frequency ω† (which depends on
the linear system size L, as well as on the disorder quantifier
χ as explained below) is surpassed, discrete phononic bands
are no longer clearly distinguishable [25]. Moreover, the ω4

law of nonphononic excitations is not clearly observed due
to the overwhelming abundance of phonons, which eventu-
ally (at frequencies ω > ω†) follow Debye’s density of states
∼ωd̄−1 in d̄ spatial dimensions (not shown). In these terms,
the posed challenge is to understand how �μ/〈μ〉 manifests
itself within the phonon sea for ω > ω† and how it might
be related to the spectral broadening of discrete phononic
bands at ω < ω†. If this challenge is met, then one is able
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to unify two apparently distinct dimensionless quantifiers of
mechanical disorder, which are accessible in both finite-size
computer solids and in macroscopically large solids. In the
latter context, one should also establish experimental proce-
dures to probe the disorder quantifier.

In this paper, a basic relation between the two me-
chanical disorder quantifiers discussed above is derived and
substantiated through computer simulations. The former is
achieved using two alternative and complementary theoretical
approaches that intimately link mechanical disorder to the
low-frequency vibrational spectra of solids and to its effect
on wave attenuation in such systems. The relation to low-
frequency vibrational spectra, following FET [14,17–20] and
the very recent support it received [8], makes the emerging
unified disorder quantifier experimentally accessible using
techniques such as neutron and inelastic x-ray scattering.

To robustly validate the derived relation between the
two mechanical disorder quantifiers against computer sim-
ulations, we seek to study model systems that feature the
largest-possible range of mechanical disorder. To this aim, we
employed a glass-forming model [33] that can be very deeply
supercooled using the swap-Monte-Carlo method [34,35]. In
addition, the unified disorder quantifier is applied to pack-
ings near the unjamming transition and to disordered elastic
spring-networks at low connectivities; as discussed in what
follows, the mechanical disorder in these systems can vary
substantially by driving them to the unjamming point [36,37].

Consequently, our work theoretically and computation-
ally substantiates a unified quantifier of mechanical disorder
in solids, thus allowing us to quantify mechanical disorder
across widely different physical systems using various prob-
ing techniques. At the same time, it offers insight into the
low-frequency vibrational spectra of disordered solids in gen-
eral and, in particular, those of glassy systems.

II. OBSERVABLES AND THEORY

In this section, we introduce and relate two broadly ap-
plicable quantifiers of mechanical disorder, both illustrated
in Fig. 1. The first quantifier, χ , is related to the spectral
broadening of discrete phonon bands that emerge at the lowest
frequencies of the vibrational spectrum of finite-size solids,
as marked in Fig. 1(a). The second quantifier is known as the
disorder parameter γ [14,17–20] and is related to the relative
width of the spatial or sample-to-sample [38] distribution of
the shear modulus μ, as shown, for example, in Fig. 1(d).

A. The mechanical-disorder quantifier χ

Phonons are collective, wavelike excitations that emerge in
solids due to global translational symmetry [39]. In an ideal
homogeneous and isotropic linear-elastic medium, phonons
that share the same wavelength feature the exact same
vibrational frequency, if they are also of the same polariza-
tion (shear or sound waves). This frequency degeneracy of
phonons, expected in ideal continua, is lifted in disordered
solids due to structural and mechanical disorder [25]. Con-
sequently, ideal phononic modes of a particular wave vector
k and frequency ω feature sizable projections on eigenvectors
(normal modes) of the disordered system that are character-

ized by a frequency range �ω. We hereafter refer to �ω,
which corresponds to the spectral width of the dynamic struc-
ture factor at a wave vector k, as the spectral width pertaining
to wave vector k. In an isotropic solid, the spectral widths
depend on the magnitude k ≡ |k| (in addition to other observ-
ables, see below); in what follows, we restrict the discussion
to isotropic media.

How does the spectral width �ω(k) depend on k? At the
smallest allowed phonon frequencies of a solid of linear size
L, the spectral widths �ω(k) are smaller than the frequency
gaps between phonons of successive allowed wave vectors,
i.e., they remain discrete, as is clearly shown in Fig. 1(a).
Sorting the low-frequency, discrete phonon bands by increas-
ing wave vectors k, we denote the phonon band index by z,
and the (lifted) degeneracy of the zth band by nz. The latter
is given by the number of different solutions to the sum-
of-integer-squares problem, namely, the number of different
combinations of integers mx, my, mz such that

m2
x + m2

y + m2
z = z. (1)

Notice that the wave vector k is related to the integers m ≡
(mx, my, mz ) as k = (2π/L)m [39], and |m| = √

z.
In Ref. [25], a perturbation theory was developed, culmi-

nating in a prediction for the scaling behavior of the spectral
widths of discrete phonon bands; it reads [25]

�ω(ω, z, N ) ∝ ω
√

nz√
N

, (2)

where N is the system size, ω � ck is the frequency of
phonons from the zth band (c is the wave speed), and nz is
their (lifted) degeneracy level. The prefactor of this propor-
tionality relation defines a dimensionless mechanical disorder
quantifier χ , namely [25],

χ ≡ �ω(ω, z, N )
√

N

ω
√

nz
. (3)

Figures 1(a) and 1(c) present the low-frequency VDoS of
computer glasses of N = 64 000 quenched from different
equilibrium parent temperatures Tp (as indicated by the leg-
ends); the different degrees of mechanical disorder featured by
these glasses is manifested in the much-larger spectral widths
�ω of the high-Tp glasses.

B. The phonon sea crossover frequency ω†

Equation (2) for the spectral widths of discrete phonon
bands holds up to a system-size dependent crossover fre-
quency scale ω†(L), defined by the condition that the spectral
width of discrete phonon bands becomes comparable to the
gaps between successive phonon bands. Incorporating the def-
inition of χ spelled out above and following Ref. [25], the
crossover frequency ω† is predicted to satisfy [25]

ω† ∼ (χL)−
2

d̄+2 , (4)

where d̄ again denotes the dimension of space. ω† is marked
by the vertical line in the example of Fig. 1(a), and its scaling
with L was validated using numerical simulations in Ref. [40].
At frequencies ω > ω†, discrete phonon bands are no longer
distinguishable, and a phonon sea emerges instead, as seen in
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Figs. 1(a) and 1(c). Since ω† → 0 in the thermodynamic limit,
the phonon sea is expected to extend to zero frequency in
that limit. In the phonon sea, Debye’s VDoS [39] for phonon
frequencies D(ω) ∼ ωd̄−1 is expected to hold.

C. Spectral widths in the phonon sea

How do the spectral widths �ω(k) behave at frequencies
ω > ω†, deep inside the phonon sea? Let us assume that
Eq. (2) for the spectral width of discrete phonon bands with
ω < ω† also holds in the phonon sea; since the (lifted) de-
generacy of phonons is no longer relevant (phonon bands are
no longer discrete and well-separated in frequency), now nz

represents the number of modes that exist within the spectral
widths �ω (recall the physical meaning of the latter, as dis-
cussed above). nz can therefore be related to the VDoS D(ω)
via [40]

nz � ND(ω)�ω. (5)

Using this relation together with Eq. (2), we obtain

�ω � χ2ω2D(ω), (6)

which, importantly, is independent of the system size N .
Equation (6) is closely related to the Rayleigh-Klemens law
[41]. In the thermodynamic limit, we expect phonons to
dominate the low-frequency spectrum [25], namely, D(ω) ∼
ω−d̄

0 ωd̄−1; we thus obtain the spectral widths inside the
phonon sea in the form

�ω ∼ χ2ω−d̄
0 ωd̄+1. (7)

In the context of the attenuation rate of plane waves in
disordered media, the ∼ωd̄+1 scaling is known as Rayleigh
scattering [42], and has been observed in numerical simula-
tions in recent years [6,8,40,43,44].

D. The disorder parameter γ

FET [14,17–20] is a theoretical framework that relates the
spatial fluctuations of the local elastic moduli fields of a dis-
ordered solid to its vibrational and thermodynamic properties.
Of particular interest here is the low-frequency wave attenu-
ation rate �, which according to FET scales as γω−d̄

0 ωd̄+1,
where γ is called the ‘disorder parameter’ defined as

γ ≡
(

�μ

〈μ〉
)2(

�

a0

)d̄

. (8)

Here � represents the coarse-graining length on which the
spatial fluctuations �μ of the shear modulus are evaluated and
a0 is an interparticle length as defined above. Assuming that
the spatial distribution of the shear modulus field is correlated
on a length scale ξg < �, one expects the variance (�μ)2 to
scale as ∼�−d̄ , and therefore γ should become independent
of the coarse-graining length � for large enough �. Since we
expect � to be proportional to �ω, we conclude that the
spectral width �ω at frequency ω follows

�ω ∝ γω−d̄
0 ωd̄+1. (9)

E. A unified quantifier of mechanical disorder

Combining now Eqs. (7) and (9), we immediately conclude
that

χ2 ∼ γ , (10)

which is the main result of this paper.
The very same result can be obtained based on Eqs. (2)

and (9) alone; recall that the degeneracy nz(k) of wave vectors
of magnitude k (for a perfectly homogeneous solid) is pro-
portional to kd̄−1 [39], and that k ∼ √

z/L. Therefore, nz ∼
z

d̄−2
2 ∼ Ld̄−2ωd̄−2 [25], and hence for large z phonon bands

(at frequencies ω < ω†), we expect

�ω ∼ χωd̄/2

L
. (11)

Requiring that the spectral widths for ω < ω† smoothly con-
nect to the spectral widths at ω > ω† as given by Eq. (4), we
obtain

χ
ω

d̄/2
†

L
∼ γωd̄+1

† ⇒ ω† ∼
(

γ L

χ

)− 2
d̄+2

. (12)

Comparing this result with the scaling relation for ω† in
Eq. (4), we obtain

(χL)−
2

d̄+2 ∼
(

γ L

χ

)− 2
d̄+2

⇒ χ2 ∼ γ , (13)

in agreement with Eq. (10) above.

III. NUMERICAL SUPPORT

Our goal in this section is to test our main prediction in
Eq. (10) for computer glasses generated over a broad range
of conditions, which mimic a correspondingly large range of
cooling rates through the glass transition.

A. Models and methods

In this paper, we employ a computer glass model of highly
polydispersed soft spheres interacting via a ∝r−10 pairwise
potential, where r is the distance between the centers of pairs
of soft spheres. A full description of the model can be found
in Ref. [45]. The model is inspired by the one put forward in
Ref. [33], and as such it can be equilibrated down to very low
temperatures using the swap-Monte-Carlo algorithm, where
the latter is also explained in detail in Ref. [33]. The crossover
temperature of this system is found to be TX ≈ 0.66 in the
model’s simulation units (as described in Ref. [45]), according
to the definition introduced in Ref. [46]. TX coincides with the
onset of the high-Tp plateau of γ as shown in Fig. 3 below.
The high-Tp shear modulus of this system is μ∞ ≈ 9.2 in the
model’s simulation units.

We created ensembles of glassy samples of N = 16 000
particles, parameterized by the equilibrium parent tem-
perature Tp, from which liquid configurations were in-
stantaneously quenched using a conventional minimization
algorithm. The sample-to-sample fluctuations of the shear
modulus were evaluated using ensembles of 2000 independent
glassy samples for each Tp. We also created a similar set of
glass ensembles with N = 2000 particles to demonstrate the
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FIG. 2. (a) Phonon-band widths �ω plotted against phonon
bands frequencies ω (expressed in simulation units, see Ref. [45]).
Data were measured for glasses of various sizes N and parent temper-
atures Tp as indicated by the legend. (b) Same phonon-band widths
�ω as reported in (a), this time plotted against the rescaled frequency
ω

√
nz/

√
N . The continuous lines are fits to Eq. (3) from which we

estimate χ (Tp).

strength of finite-size effects. For our spectral-width calcu-
lations described below, it is necessary to employ somewhat
large systems to cleanly estimate the widths of the lowest-
frequency phonon bands in solids quenched from high parent
temperatures. The system sizes we employed for these calcu-
lations per each parent temperature are described in the legend
of Fig. 2(a) below.

B. Spectral widths �ω of discrete phonon-bands

Phonon band widths �ω for each Tp-ensemble were esti-
mated as follows:

(1) We performed a partial diagonalization of the Hessian
matrix H ≡ ∂2U

∂x∂x
for at least 50 independent configurations

for each Tp ensemble to obtain the vibrational eigenfrequen-
cies ω� (all particle masses in our model are set to unity) and
their associated eigenmodes �(�).

(2) We filtered eigenfrequencies ω� according to the
participation ratio e(�(�) ) ≡ [N

∑
i(�

(�)
i · �

(�)
i )2]

−1
of their

corresponding eigenmodes �(�), as also done in Refs. [25,30].
In our analyses, we only considered eigenmodes �(�)

FIG. 3. Comparison between the direct calculation of γ (via
sample-to-sample statistics), and the two estimation methods as de-
scribed in the text for computer glasses of N = 16 000 particles. The
vertical dashed line marks the crossover temperature TX [46], which
coincides with the onset of the high-Tp plateau of γ . Also plotted are
direct measurements and the outlier exclusion estimations of γ for
systems of N = 2000 particles (using the same ensemble sizes as the
N = 16 000 systems), which are much noisier [15]. We find that, for
N = 16 000, the outlier exclusion method estimation follows closely
the direct measurement at low Tp, and is roughly 55% higher than
the median-based estimation throughout the studied Tp range. We
therefore adopt the outlier-exclusion estimate of γ in what follows.

with e(�(�) ) > 0.03 to prevent low-frequency quasilocalized
modes from affecting our estimations of phonon-band widths.

(3) We fitted a Gaussian to each peak pertaining to indi-
vidual phonon bands, as done and explained in Ref. [25]. The
spectral widths �ω were taken as the standard deviation (std)
obtained from those Gaussian fits.

In Fig. 2, we present our measurements of our different Tp

glasses’ phonon-band widths �ω. In Fig. 2(a), we present the
raw data obtained from the Gaussian fits as explained above.
In Fig. 2(b), we plot the same data as shown in Fig. 2(a), this
time against the rescaled frequency ω

√
nz/

√
N . For each Tp,

we fit the data following Eq. (2)—represented by the contin-
uous ∝ω lines in Fig. 2(b)—to obtain an estimation of χ (Tp)
in accordance with its definition in Eq. (3).

C. Sample-to-sample μ fluctuations

Having at hand estimations for χ , we now turn to estimat-
ing γ via the sample-to-sample fluctuations �μ of the shear
modulus μ. Support for the equivalence between these proce-
dures has been presented recently in Ref. [44]. To this aim, we
first stress that the sample-to-sample distribution p(μ; N ) of
glasses of size N shows strong finite-size effects, as discussed
at length in Refs. [8,15]. In particular, in small glass samples
quenched from high parent temperatures, some occurrences
of anomalously large fluctuations of μ are often observed,
rendering a clean estimation of the variance (�μ)2 difficult.
This finite-size effect—which is also demonstrated in Fig. 3
below—is likely related to the deviations from the ω4 law
observed in small computer glasses instantaneously quenched
from high parent temperatures [47].
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To overcome this potential difficulty, we adopt and com-
pare between two approaches introduced in Refs. [15,45],
respectively:

(1) We follow the procedure described in Ref. [15] to
remove outliers from each data set {μi} pertaining to each
parent temperature Tp, as follows: For each data point μi, we
calculate std(μ) for all other data points j = i, namely, under
the exclusion of μi. We then identify the data point whose
exclusion leads to the largest variation of std(μ) amongst
all other data points; if that (largest) variation with respect
to the original (unfiltered) value of std(μ) exceeds 1%, we
permanently remove the identified data point from the total
data set. This procedure is repeated until the variation of the
standard deviation std(μ) under exclusion of any single data
point is smaller than 1%. This method is referred to below as
the outlier exclusion method.

(2) In Ref. [45], a measure of the width of the sample-to-
sample distribution p(μ) was defined as the square-root of the
median (instead of the mean, as done for obtaining std(μ)) of
the squared fluctuations (μi − 〈μ〉)2 about the ensemble-mean
〈μ〉. We refer to this method as the median method. Notice
that here we report the median of (μi − 〈μ〉)2 rather than the
square-root of the median as reported in Ref. [45].

In Fig. 3, we compare our estimations of γ using the
direct calculation and the two analysis schemes described
above (outlier-exclusion and median methods). We find that
the outlier-exclusion method results in slightly lower values
of γ for high Tp glasses. Importantly, we reiterate that our cal-
culations are performed on ensembles of 2000 glasses of N =
16 000 particles, explaining why the difference between the
direct calculation and the outlier elimination method are quite
underwhelming. In Fig. 3, we also show the direct calculation
of γ for glasses of N = 2000 particles, which is substantially
noisier, see Ref. [15] for a related discussion. We further note
that the data obtained with the outlier exclusion method are
roughly proportional to the estimations of γ based on the
median of fluctuations as described above, which is much
less sensitive to outliers. For these reasons, we opt for the
outlier-exclusion method to estimate γ in what follows below.
Finally, note that the crossover temperature TX [46], marked
by vertical dashed line in Fig. 3, appears to coincide with the
onset of the high-Tp plateau of γ . The physical significance
and relevance of this interesting observation will be discussed
elsewhere.

With estimations of γ (Tp) and χ (Tp) at hand, we paramet-
rically plot the two quantifiers against each other in Fig. 4 to
find that γ ∼ χ2, as predicted by our scaling theory in Sec. II.

IV. MECHANICAL DISORDER NEAR
THE UNJAMMING POINT

Up to now we demonstrated the validity of our main pre-
diction in Eq. (10) for computer glasses quenched from a
melt, cf. Fig. 4. Our prediction, however, is expected to be
generally valid for a broader class of disordered solids. This
is demonstrated in this section.

The unjamming transition is a mechanical instability ob-
served upon decompressing athermal packings of frictionless
soft spheres [36,37,48,49]. Growing length scales and corre-
lation volumes are known to emerge in these systems as their

FIG. 4. Parametric plot of γ (Tp) vs χ 2(Tp) obtained as explained
in the text. The main result of this paper is that γ ∼ χ 2, as predicted
by our scaling theory in Eq. (10).

confining pressure is reduced toward zero [50–55]. The key
microscopic parameter controlling the mechanical behavior
of low-pressure soft-sphere packings is the coordination Z ,
which represents the number of interactions per particle. In
particular, scaling laws of elastic moduli [56,57] and length
scales [50,51,53–55] with the difference δZ ≡ Z − Zc are
known to emerge, where the critical coordination Zc = 2d̄—
known as the Maxwell threshold [58]—is reached in the limit
of vanishing confining pressure.

How do the interrelated mechanical disorder quanti-
fiers discussed here behave near the unjamming point? In
Refs. [59,60], the spectral widths of acoustic excitations are
obtained using Effective Medium calculations on disordered
Hookean spring networks of coordination Z; the key result rel-
evant to the present discussion is the scaling �ω ∼ ω4/δZ5/2

(in three dimensions), implying together with Eq. (9) and
ω0 ∼ √

μ ∼ √
δZ [57] that γ ∼ 1/δZ . This result is con-

sistent with numerical data from simulations of soft-sphere
packings put forward in Ref. [52], where it was shown that
the sample-to-sample shear modulus distribution collapses for
different pressures and system sizes if it is considered for sys-
tems with constant NδZ , implying again that γ ∼ 1/δZ near
the unjamming point. We note, however, that the numerical
results of Ref. [6] for wave attenuation rates in soft-sphere
packings near the unjamming point do not agree with the
Effective Medium prediction, as discussed in that same work.

If the relation γ ∼ χ2 is general, it should hold in sys-
tems near the unjamming transition as well. Here, we test
this scaling relation by measuring the broadening of discrete,
low-frequency phonon-bands of disordered spring networks
in two dimensions. Our networks’ geometry was first derived
from the contact network of disordered soft-disc packings, and
their coordination Z was reduced toward Zc using an edge-
dilution scheme described in the Appendix, which minimizes
fluctuations of the angles formed by edges around nodes. The
results are presented in Fig. 5; we find that χ ∼ 1/

√
δZ , in

agreement with our main theoretical prediction.

V. CONCLUDING REMARKS AND PROSPECTS

In this paper, we have discussed two broadly applicable and
dimensionless quantifiers of mechanical disorder. The first
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FIG. 5. Phonon-band widths �ω measured in disordered spring
networks in two dimensions, see text and Appendix for details. �ω is
plotted against the frequency ω in panel (a), and against the rescaled
frequency ω

√
nz/

√
δZN ∼ χω

√
nz/

√
N in panel (b). The data col-

lapse implies that χ ∼ 1/
√

δZ ∼ √
γ , strengthening the generality

of the scaling relation between the mechanical disorder quantifiers γ

and χ .

quantifier, χ , is related to the spectral broadening of discrete
phonon bands seen in the low-frequency spectra of finite-size
computer glasses, as shown in Figs. 1(a) and 1(c). The second
quantifier, γ , is known as the disorder parameter in FET
[14,17–20] and plays a key role in determining the spectral
widths of acoustic excitations in the thermodynamic limit.
Our main result—γ ∼ χ2—was validated (in Fig. 4) against
extensive computer simulations of glasses quenched from a
broad range of parent temperatures Tp. It was also validated
(in Fig. 5) against computer simulations of disordered spring
networks approaching the unjamming transition.

To assess the value of γ —which characterizes the relative
width of the distribution of coarse-grained elastic mod-
uli fields in disordered media [see Eq. (8)]—we employed
sample-to-sample statistics instead of spatial coarse-graining
procedures. The equivalence of these two approaches to eval-
uating γ was recently argued for in Ref. [44] based on detailed
analyses of computer glasses. A deeper understanding of this

equivalence and its further reinforcement is left for future
investigations.

In Figs. 1(a)–1(c), we presented data that indicate that
the prefactor Ag of the universal ∝ω4 nonphononic VDoS
correlates with the mechanical disorder quantifiers γ and χ

discussed in this paper. It is natural to expect that systems
rich with soft nonphononic modes—as indicated by a large
(dimensionless) prefactor Agω

5
0—would also have relatively

large spatial fluctuations of their coarse-grained shear modu-
lus fields. Indeed, in Ref. [13] it was argued that Agω

5
0 ∼ γ 5/3

in three-dimensional glasses [61], based on scaling arguments.
These predictions are tested against our computer glasses

data in Fig. 6. In Fig. 6(a), we show the low-frequency VDoS
of our computer glasses of different parent temperatures Tp;
we obtain estimations of the dimensionless prefactors Agω

5
0

by fitting the low-frequency tails to the universal ∼ω4 law.
In Fig. 6(b), we plot the extracted Agω

5
0 versus the disorder

parameter γ obtained as explained in Sec. III C. We find that
the proposed scaling Agω

5
0 ∼ γ 5/3 holds over a limited, inter-

mediate range of γ values. As pointed out in Refs. [15,62],
Agω

5
0 dips downward at the lowest values of γ . In Ref. [62],

it was demonstrated that γ varies monotonically with a glassy
correlation length ξg, which is expected to be bounded from
below by an interparticle distance, suggesting a lower bound
on γ as well. Relations between the glassy length ξg, the
disorder parameter γ and the prefactor Ag were suggested, dis-
cussed and tested further in Refs. [15,44,54,62]. A complete
understanding of the relation between Ag and the disorder
quantifiers discussed here is left for future work.

We conclude the discussion with commenting on the ex-
perimental accessibility of the mechanical disorder quantifiers
discussed in this paper. Spectral widths of acoustic excita-
tions �ω(k) are related to wave attenuation rates �(k) as
� ∼ �ω, as demonstrated for frequencies ω < ω† using com-
puter simulations in Ref. [25], and for frequencies ω > ω†

in Ref. [44]. While longitudinal wave attenuation rates are
accessible experimentally [63,64] via high-resolution inelastic
x-ray scattering, methods for measuring transverse (shear)
waves’ attenuation rates well in the Rayleigh scaling regime

FIG. 6. (a) VDoS of our computer glasses of various Tp as indicated by the legend. The dimensionless prefactors Agω
5
0 are estimated by

fitting the low frequency tails to the universal quartic law ∝ω4 of the nonphononic VDoS. The extracted dimensionless prefactors Agω
5
0 are

then plotted in panel (b) vs. the disorder parameter γ obtained from the sample-to-sample fluctuations of the shear modulus as explained in
the text. In Ref. [13] it is argued that Agω

5
0 ∼ γ 5/3, as represented by the continuous line.
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FIG. 7. (a) Lowest-frequency phonon bands of three realiza-
tions of spring networks of N = 1 638 400 nodes with coordination
Z = 4.1 generated using the algorithm described in the text. Sound
waves are marked by arrows. (b) An example of a spring network
of N = 400 nodes and coordination Z = 4.1 generated with the algo-
rithm described here.

(k � 1nm−1) are unfortunately not yet available. In Ref. [65],
a measure of local elastic moduli of a metallic glass (amor-
phous PdCuSi) was obtained using atomic force acoustic
microscopy. There, it was reported that �μ/μ ≈ 30%, where
the fluctuations were estimated over lengths of order 10 nm.
An important goal of future experiments is to assess and
compare the mechanical disorder of laboratory glasses to our
measurements of the mechanical disorder of computer glasses
on equal footing, in terms of the quantifiers discussed in this
paper. An impressive effort in this direction was presented
very recently in Ref. [14].
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APPENDIX: DISORDERED SPRING NETWORKS

We created two-dimensional disordered networks of
Hookean springs by adopting the contact networks of the
soft-disc glasses described and studied in Ref. [24]. The par-
ticle centers of the original glass are set to be the networks’
nodes, and an edge is placed between each pair of interact-
ing particles in the original glass. The coordination of these
initial networks is Z ≈ 6.5. We employed the edge-dilution
algorithm described below to remove edges until the target
coordinations Z = 4.4, 4.2, 4.1 were reached. Each edge of
the remaining network is then replaced by a relaxed Hookean
spring (of unit stiffness), i.e., the spring’s rest length is set to
the original distance between the pair of nodes it is connected
to. An example of a network produced by our algorithm is
shown in Fig. 7(b).

The low-frequency spectrum of the disordered networks
produced by our scheme—provided the system is large
enough—consists solely of phonons, as demonstrated in
Fig. 7(a). This is a nontrivial feature of our scheme. We tested

FIG. 8. (a) When an edge α is removed, two remaining angles
θ

(α)
i and θ

(α)
j are formed at nodes i and j. In each iteration of the

algorithm, we aim to remove the edge whose removal forms the
smallest remaining angles. (b) Illustration of the key data structure
of the algorithm; upon initialization, all edges of the initial network
are stored in b—an array of linked lists—so bi contains a linked list
of edges with 2π i

M < max(θ (α)
i , θ

(α)
j ) < 2π (i+1)

M . The edge targeted for
removal is shown in pink. (c) An element of a linked list contains
an edge α specified by the two nodes i and j, the largest bond angle
that would open up in case of its removal, and a pointer p to the next
element of the linked list.

other edge-dilution schemes aimed at minimizing local coor-
dination fluctuations. The low-frequency spectrum of spring
networks with small δZ produced by these other schemes
usually features localized, nonphononic soft vibrations, in
addition to phonons. Since the low-frequency spectrum of the
spring networks produced by our algorithm consists solely
of phonons, we could directly measure the spectral width of
phonon bands by calculating the standard deviation of the
vibrational frequencies of each band.

Bond-dilution algorithm

We introduce an algorithm [66] that iteratively removes
edges from a two-dimensional network, based on the net-
work’s geometry. To explain how the algorithm works, we
refer readers to the illustration in Fig. 8(a); removing the edge
labeled α between two nodes i and j creates two remaining
angles θ

(α)
i and θ

(α)
j . In each edge-removal iteration of our
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algorithm, the next edge to be removed is the one whose larger
(out of two) associated remaining angle (as defined above) is
minimal, across all edges.

The algorithm consists of a preprocessing step and a re-
moval step. The preprocessing step creates an array of M
linked-lists, denoted by b. The links of each linked list repre-
sent edges; each link representing an edge stores the larger of
the two remaining angles that would be formed upon removal
of that edge, namely, θ (α) ≡ max(θ (α)

i , θ
(α)
j ). Each linked list

b� holds the edges α whose θ (α) are equal up to 2π/M, namely,
those that satisfy 2π�

M < θ (α) < 2π (�+1)
M . This data structure is

explained in Fig. 8(b).
To find the edge that opens up the smallest bond-angle

(up to accuracy 2π/M), we simply find the first element of
b that contains a nonempty linked list and remove the edge

that is stored in the head of that linked list [shown in pink in
Fig. 8(b)]. The second element of the linked list becomes its
new head. To remove subsequent edges, we simply repeat this
procedure, emptying the linked lists in the array b from left to
right.

Importantly, when a link is considered for removal, it is
necessary to check if the originally stored θ (α) is still accurate,
since previous edge removals might have increased it. If θ (α)

is unchanged, we remove the edge. If θ (α) has changed due
to other edge removals, we remove its link and reinsert it at
the head of the linked list in b corresponding to the updated
remaining angle θ (α). The reason we can traverse b from left
to right is that θ (α) can only increase when we remove other
edges =α. To create the networks used in this paper, we chose
M = 104.
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