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The two-dimensional infinite projected entangled pair state tensor network is evolved in imaginary time
with the full update (FU) algorithm to simulate the Shastry-Sutherland model in a magnetic field at finite
temperature directly in the thermodynamic limit. We focus on the phase transition into the m = 1

2 magnetization
plateau, which was observed in experiments on SrCu2(BO3)2. For the largest simulated bond dimension, the
early evolution in the high-temperature regime is simulated with the simple update (SU) scheme and then, as
the correlation length increases, continued with the FU scheme towards the critical regime. We apply a small
symmetry-breaking bias field and then extrapolate towards zero bias using a simple scaling theory in the bias
field. The combined SU + FU scheme provides an accurate estimate of the critical temperature, even though
the results could not be fully converged in the bond dimension in the vicinity of the transition. The critical
temperature estimate is improved with a generalized scaling theory that combines two divergent length scales:
One due to the bias, and the other due to the finite bond dimension. The obtained results are consistent with
the transition being in the universality class of the two-dimensional classical Ising model. The estimated critical
temperature is 3.5(2) K, which is well above the temperature 2.1 K used in the experiments.

DOI: 10.1103/PhysRevB.103.075113

I. INTRODUCTION

Weakly entangled quantum states constitute a small corner
in an exponentially large Hilbert space but are ubiquitous as
stationary (ground or thermal) states appearing in condensed-
matter physics. They can be efficiently represented by tensor
networks [1,2], including the one-dimensional (1D) matrix
product state (MPS) [3], its two-dimensional (2D) general-
ization known as a projected entangled pair state (PEPS)
[4], or a multiscale entanglement renormalization ansatz
[5–8]. The MPS ansatz provides a compact representation
of ground states of 1D gapped local Hamiltonians [1,9,10]
and purifications of their thermal states [11]. It is also the
ansatz underlying the density-matrix renormalization group
(DMRG) [12–15]. Analogously, the 2D PEPS is expected to
represent ground states of 2D gapped local Hamiltonians [1,2]
and their thermal states [16,17], although representability of
area-law states, in general, was shown to have its limitations
[18]. Tensor networks do not suffer from the notorious sign
problem plaguing quantum Monte Carlo methods. Conse-
quently, they can deal with fermionic systems [19–23] as was
shown for both finite [24] and infinite PEPS [25,26].

The PEPS was originally proposed as an ansatz for ground
states of finite systems [27,28], generalizing earlier attempts
to construct trial wave functions for specific models [29]. The
subsequent development of efficient numerical methods for
infinite PEPS (iPEPS) [30–33] promoted it as one of the meth-
ods of choice for strongly correlated systems in 2D. Its power

was demonstrated, e.g., by a solution of the long-standing
magnetization plateaus problem in the highly frustrated com-
pound SrCu2(BO3)2 [34,35], establishing the striped nature
of the ground state of the doped 2D Hubbard model [36]
and new evidence supporting the gapless spin liquid in the
kagome Heisenberg antiferromagnet [37]. Recent develop-
ments in iPEPS optimization [38–40], contraction [41,42],
energy extrapolations [43], and universality-class estimation
[44–46] pave the way towards even more complicated prob-
lems, including simulation of thermal states [47–61], mixed
states of open systems [55,62], excited states [63,64], or real-
time evolution [55,65–69].

In parallel with iPEPS, there is continuous progress in
simulating systems on cylinders of finite width using DMRG.
This numerically highly stable method that is now routinely
used to investigate 2D ground states [36,70] was applied also
to thermal states on a cylinder [71–75]. However, the expo-
nential growth of the bond dimension limits the cylinder’s
width to a few lattice sites. Among alternative approaches are
direct contraction and renormalization of a three-dimensional
tensor network representing a 2D thermal density matrix
[76–83].

In this article, we apply the recent iPEPS finite-temperature
(imaginary time-evolution) algorithm from Ref. [55] to a
challenging frustrated spin system: the Shastry-Sutherland
model (SSM) [84] in a magnetic field. It is an effective
model of SrCu2(BO3)2 [85–87] for which experiments have
revealed an intriguing sequence of magnetization plateaus
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[34,85,88–97]. On the theory side, much progress has been
made in understanding the spin structures realized in these
plateaus [34,35,67,86,87,95,97–108]. Whereas at large mag-
netic fields the spin structures can be understood as crystals
of triplets, at low fields they correspond to crystals of triplet
bound states [35]. In experiments using ultrahigh magnetic
fields up to 118 T [34], a m = 1

2 plateau was found at low tem-
peratures (2.1 K), which has also been predicted in theoretical
studies at zero temperature [34,67,86,94,99,107]. However,
accurate studies at finite temperatures and finite magnetic
fields have so far been lacking (for recent works at zero
magnetic field, see Refs. [59,60]). In particular, the negative
sign problem puts it out of reach of quantum Monte Carlo.
In this paper, we use iPEPS to study the finite-temperature
phase transition into the m = 1

2 plateau phase to accurately
determine the critical temperature and to confirm that the
transition belongs to the 2D Ising universality class.

This paper is organized as follows. We first introduce the
SSM in Sec. II. We follow in Sec. III with a summary of the
finite-temperature simple update (SU) and full update (FU)
algorithms of Ref. [55] used in this paper. In the same section,
we introduce a hybrid SU + FU algorithm that provides better
stability in the case of a large bond dimension. In Sec. IV,
we summarize a simple scaling theory [55,58] that allows
extrapolation to a zero symmetry-breaking field for results
that are converged in the bond dimension. This simple theory
is applied to the results of our simulations in Sec. V, providing
estimates of the critical temperature and evidence for the 2D
Ising universality class of the transition. As the obtained nu-
merical results are not fully converged in the bond dimension
in Sec. VI we introduce a generalized theory that enables
extrapolation to the zero-field limit for results that are close
to convergence. The theory yields the critical temperature
consistent with the estimates of the simple theory applied to
the largest simulated bond dimension. Finally, we conclude
in Sec. VII. Further technical details can be found in a series
of appendices. In Appendix A, we discuss technical details
of the simulations with the hybrid SU + FU algorithm, and
in Appendix B, we compare the FU and SU + FU results to
ones obtained with the SU evolution carried on all the way to
the critical regime. Effects of the finite environmental bond
dimension χ and Trotter step dβ are analyzed in Appendix C.
Finally, we comment on the U (1) symmetry sectors appearing
in our simulations in Appendix D.

II. SHASTRY-SUTHERLAND MODEL

The SSM [84] with an external magnetic field is given by
the Hamiltonian,

H0 = J ′ ∑
〈i, j〉

Si · S j + J
∑
〈〈i, j〉〉

Si · S j − h
∑

i

Sz
i , (1)

with Si being spin-1/2 operators. The spins are arranged on a
square lattice with nearest-neighbor Heisenberg coupling J ′.
Pairs of spins form an effective square lattice of dimers (see
Fig. 1) with the Heisenberg coupling J between spins within
each dimer. The magnitude of the magnetic field is controlled
by h. Below, we fix the units setting J = 1 (as well as kB =
h̄ = 1).

FIG. 1. The Shastry-Sunderland model of spins 1/2 (represented
by blue dots) arranged on a square lattice. The light blue bands
indicate antiferromagnetic Heisenberg couplings between nearest-
and some next-nearest-neighbor sites with coupling strengths J ′ and
J , respectively. It can be represented as a checkerboardlike lattice
of dimers (indicated with black ovals). We label dimers belonging
to the two sublattices as A and B. In our simulations, each dimer is
combined into a single effective lattice site with a physical dimension
d = 4. This way, we obtain a nearest-neighbor Hamiltonian on an
effective square lattice of dimers. The corresponding tensor network
ansatz with one tensor per dimer is shown with the black lines that
indicate the virtual iPEPS bonds (the physical legs of the tensors are
omitted here).

At zero magnetic field, h = 0, and for a small ratio of the
couplings J ′/J , the SSM has a dimer ground state, formed
as a product of singlets [84]. For large J ′/J , the ground state
exhibits antiferromagnetic long-range order. In between, a
plaquette phase is found [109–112] for 0.675(2) < J ′/J <

0.765(15) [113].
At nonzero magnetic field, the model exhibits a series

of magnetization plateaus. In this paper, we fix the ratio
J ′/J = 0.63, which was estimated for SrCu2(BO3)2 from fits
to the magnetization curve at high fields, see Ref. [34]. We
simulate the model in the middle of the m = 1

2 magnetization
plateau for h/J = 1.85 [34]. The ground state corresponding
to this plateau breaks the translational symmetry and exhibits
a checkerboard order of magnetized dimers. The correspond-
ing order parameter o is defined as

o = 1

N

(∑
i∈A

〈
Sz

i

〉 − ∑
i∈B

〈
Sz

i

〉)
, (2)

where the labels A and B distinguish dimers (and the spins
forming them) belonging to two different checkerboard sub-
lattices, see Fig. 1. N is the number of all dimers in the lattice.
The order parameter and the dimensionality of the model
imply that a finite-temperature second-order phase transition
should belong to the universality class of the classical 2D Ising
model.
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III. IPEPS ALGORITHM

We use a FU scheme to simulate imaginary time evolution
of a thermal state’s purification that is represented as an iPEPS
[55,58]. To simulate the SSM we map each dimer to a single
iPEPS site with a local Hilbert space of dimension d = 4,
see Fig. 1 (as was performed in some of the previous studies
[34,35,59,113,114]). We employ U (1) symmetric iPEPS to
speed up simulations. The expectation values of observables
follow from iPEPS contraction via the corner transfer-matrix
renormalization-group (CTMRG) method [33,115,116] where
the accuracy of the contraction is controlled by an environ-
mental bond dimension χ .

For the largest simulated iPEPS bond dimension D = 9,
we find that it is beneficial to perform the first few steps of the
evolution with the SU scheme and then continue with the FU
scheme. The imaginary time evolution begins at infinite tem-
peratures for which we conveniently choose the purification
to be a product state over all the sites of the effective lattice of
dimers,

∏
k

(
d∑

jk=1

| jk, jk〉
)

. (3)

Here, the first (second) index in | jk, jk〉 refers to the phys-
ical (ancilla) state at the kth lattice site. When represented
by iPEPS the product state has a trivial bond dimension
D = 1. In the early stages of the evolution, for small in-
verse temperatures β, correlations remain short range and
are effectively limited to the nearest-neighbor sites. In that
case, it is not necessary to use the FU scheme that requires
expensive evaluation of the infinite tensor environment (nec-
essary to represent long-range correlations accurately) and
whose stability may become problematic. Indeed, for weak
correlations when D is too large, the norm matrix (that has
to be repeatedly pseudoinverted) is abundant in zero modes.
We observe that the FU results for large D depend strongly
on the pseudoinverse cutoff chosen during the first steps of
the evolution, consistent with this scenario. Therefore, in the
early stages of the evolution (in the high-temperature regime),
the SU scheme offers more efficiency and stability than the
FU without compromising the accuracy of long-range corre-
lations that are still absent. However, in the case of critical
states, it was shown that the SU scheme might converge too
slowly with the iPEPS bond dimension to provide accurate
results [55]. That is why as the temperature decreases towards
Tc the optimal strategy seems to be to switch from SU to
FU at some inverse-temperature βSU chosen to maximize the
accuracy (see Appendix A for systematic comparisons).

We add a small symmetry-breaking term,

Hbias = hs

(∑
i∈A

Sz
i −

∑
i∈B

Sz
i

)
, (4)

to make the simulations of the evolution across the critical
point with a finite bond dimension feasible. The bias hs turns
the phase transition into a smooth crossover. Therefore, we
perform simulations using the Hamiltonian,

H = H0 + Hbias, (5)

and recover the results for H0 by extrapolating to hs = 0. To
that end, we require a scaling theory in the critical regime.
We begin with a simplifying assumption that the results are
converged in the bond dimension for each value of the bias.

IV. SIMPLE SCALING THEORY

Assuming a continuous phase transition—rather than a
weakly first-order one—and convergence in D, the simple
(standard) scaling theory predicts the behavior of the or-
der parameter o(t, hs), its temperature derivative o′(t, hs) =
∂o(t, hs)/∂t , specific-heat CV (t, hs), and correlation length
ξ (t, hs) in the vicinity of the critical temperature Tc of the
second-order phase transition as

o(t, hs) = h1/δ
s f

(
th−1/β̃δ

s

)
, (6)

o′(t, hs) = h(β̃−1)/β̃δ
s f ′(th−1/β̃δ

s

)
, (7)

CV (t, hs) = h−α/β̃δ
s g

(
th−1/β̃δ

s

)
, (8)

ξ (t, hs) = h−ν/β̃δ
s l

(
th−1/β̃δ

s

)
. (9)

Here, t = (T − Tc)/Tc is a dimensionless distance from the
critical point, ν, β̃, δ, and α are the critical exponents, and
f , g, and l are nonuniversal functions with f ′(x) = df /dx
[55]. Note that we use β̃ instead of a conventional notation
to avoid confusion with the inverse temperature β = 1/T . At
the critical temperature (at t = 0) the correlation length scales
with hs as

ξ (t = 0, hs)
def= ξh ∝ h−ν/β̃δ

s . (10)

For fixed hs, both o′(t, hs) and CV (t, hs) have a peak in the
vicinity of Tc at T ∗(hs) and T ∗

CV
(hs), respectively. The scaling

theory implies that

T ∗(hs) = Tc + ah1/β̃δ
s , (11)

T ∗
CV

(hs) = Tc + bh1/β̃δ
s , (12)

where a and b are nonuniversal constants. Below, we use
Eqs. (11) and (12) to determine Tc and verify the universality
class numerically. Additionally, to provide further verifica-
tion of the universality class, we investigate the behavior of
the correlation length ξ and order-parameter derivative o′ at
t∗(hs) = [T ∗(hs) − Tc]/Tc, i.e., at the temperature where o′
has a maximum. The expected scalings read

ξ ∗(hs)
def= ξ (t∗(hs), hs) ∝ h−ν/β̃δ

s , (13)

o′∗(hs)
def= o′(t∗(hs), hs) ∝ h(β̃−1)/β̃δ

s . (14)

V. NUMERICAL RESULTS

We perform the imaginary time evolution with a bias
in the range of 10−29/8 ≈ 2.4 × 10−4 � hs/h � 10−22/8 ≈
1.8 × 10−3 (with hs/h = 10− j/8 for integer j). Figure 2 shows
the order parameter and the specific heat for the weakest bias
hs/h = 10−29/8 where criticality is the most apparent. For
D = 6–9, we observe the order-parameter symmetry breaking
and the peak of specific-heat CV at T ≈ 0.05. Although it
is clear that the results are not fully converged in the bond

075113-3



CZARNIK, RAMS, CORBOZ, AND DZIARMAGA PHYSICAL REVIEW B 103, 075113 (2021)

FIG. 2. Temperature dependence of (a) the order-parameter
o(T ), (b) its temperature derivative o′(T ), and (c) the specific-heat
CV (T ). The results are for the smallest simulated symmetry-breaking
bias hs/h ≈ 2.4 × 10−4 and the parameters J ′/J = 0.63 and h/J =
1.85 (fixing the units with J = h̄ = kB = 1). Different curves corre-
spond to the iPEPS bond dimension D = 6–9 where the exact results
should be recovered for D → ∞. Both o′(T ) and CV (T ) display
sharp peaks at temperatures where the order parameter suddenly
rises, indicating the vicinity of the critical point. The inset displays a
wider range of temperatures.

dimension, in this section we will continue with the simple
scaling theory. A more refined analysis will follow in Sec. VI.

As we can see in Fig. 3, in the considered range of biases,
T ∗(hs) and T ∗

CV
(hs) can be fitted accurately by scaling formu-

las in Eqs. (11) and (12), respectively. From the fits, we infer
the estimates of Tc and 1/β̃δ that we gather in Table I. For the
largest D = 7–9, the estimates of 1/β̃δ that we obtain from

FIG. 3. Extrapolation of the critical temperature based on a sim-
ple scaling theory. In panel (a), we plot the position T ∗(hs ) of the
maximum of o′(T, hs ), see Fig. 2 for different values of the bias and
D = 6–9. Each curve is fitted with the scaling ansatz in Eq. (11).
Similarly, in (b), we focus on the maxima of the specific-heat T ∗

CV
(hs )

and fit it with the scaling ansatz in Eq. (12). The obtained values of
the critical temperature Tc and critical exponent 1/β̃δ are collected
in Table I.

the fits of T ∗(hs) agree with the classical 2D Ising universality
class within their error bars. A priori, we expect that the esti-
mates obtained from the fits of T ∗

CV
(hs) may be less accurate as

the height of the CV peak diverges only logarithmically in the
2D Ising universality class. That makes the scaling in Eq. (12)
more susceptible to nonuniversal corrections. Nevertheless,
for D = 7–9, we still obtain 1/β̃δ which differs from the Ising
universality class by at most 15% only.

We proceed with analyzing the magnitudes of the corre-
lation length and the order-parameter derivative. In Fig. 4 we
plot o′∗(hs) and ξ ∗(hs) for D = 7–9 together with their best fits
according to the scaling formulas (14) and (13), respectively.
Estimates of (1 − β̃ )/β̃δ and ν/β̃δ obtained in this way are
collected in Table II. They differ from the Ising 2D values by
at most 7% and 15%, respectively. Here, the correlation length
was obtained by extrapolating the spectrum of the CTMRG
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TABLE I. The critical temperature Tc and the critical exponent
1/β̃δ obtained from the best fits of T ∗(hs ) and T ∗

CV
(hs ) shown in

Fig. 3 for different values of the iPEPS bond dimension D. The error
bars correspond to 68% confidence intervals. The fitted values of
1/β̃δ can be compared with the one in the universality class of the
2D classical Ising model.

Method D Tc 1/β̃δ

T ∗(hs ) 6 0.0505(3) 0.69(5)
T ∗(hs ) 7 0.0445(5) 0.54(4)
T ∗(hs ) 8 0.0443(9) 0.51(7)
T ∗(hs ) 9 0.0429(4) 0.57(4)
T ∗

CV
(hs ) 6 0.0496(2) 0.72(4)

T ∗
CV

(hs ) 7 0.0446(2) 0.61(2)
T ∗

CV
(hs ) 8 0.0442(3) 0.53(3)

T ∗
CV

(hs ) 9 0.0428(1) 0.61(1)
2D Ising 8/15 ≈ 0.53

FIG. 4. Scaling of the correlation length and the magnitude of the
order-parameter derivative at its peak. In (a), we show a log-log plot
of ξ ∗(hs ) fitted by the scaling ansatz in Eq. (13), whereas in (b), we
focus on o′∗(hs ) and the corresponding scaling ansatz in Eq. (14). The
fitted critical exponents are gathered in Table II. Here ξ ∗ is measured
in units of lattice spacing of the effective dimer lattice, see Fig. 1.

TABLE II. The values of the critical exponents ν/β̃δ and (1 −
β̃ )/β̃δ obtained from the best fits of the correlation length and the
peak amplitude of the order-parameter derivative in Fig. 4 for dif-
ferent iPEPS bond dimensions D. The reference values are for the
classical 2D Ising universality class.

D ν/β̃δ (1 − β̃ )/β̃δ

6 0.27(2) 0.33(2)
7 0.452(3) 0.496(2)
8 0.462(5) 0.500(3)
9 0.449(3) 0.488(4)
2D Ising 8/15 ≈ 0.53 7/15 ≈ 0.467

transfer matrix to the limit of infinite environmental bond
dimension χ [46]. We obtain

1.9 < ξ ∗(hs) < 4.9 (15)

measured in the units of the dimer lattice spacing (for the units
of spacing in the original spin-1/2 lattice, multiply by

√
2).

The values compare favorably to the ones accessible by other
state-of-the-art methods, such as DMRG on a thin cylinder.

VI. GENERAL SCALING THEORY

Although our numerical simulation could not be fully con-
verged in D in the vicinity of the transition, the simple scaling
theory—which assumes such a convergence—provides re-
markably self-consistent results. Those are in good agreement
with the expected universality class of the 2D Ising model.
This suggests that we are in the limit where the corrections to
the simple scaling theory are small. To capture them correctly,
we try below a more general scaling theory. There, in addition
to the correlation length ξh in (10) (that diverges in the limit
of zero bias), we have another correlation length ξD that di-
verges for infinite bond dimension. Here, we define ξD as the
correlation length obtained for a given D at the critical point
(at t = 0) and without bias hs = 0. In the absence of the bias,
the relevance of ξD was well established both at zero [44,45]
and at finite temperatures [56].

When both ξh and ξD are finite, Eq. (7) generalizes to

o′(t, hs, D) = h(β̃−1)/β̃δ
s F

(
th−1/β̃δ

s , ξh/ξD
)
, (16)

where F is a nonuniversal function. For ξh/ξD → 0, it be-
comes equal to f ′(th−1/β̃δ

s ) in Eq. (7). From Eq. (16) we obtain

T ∗(hs, D) = Tc + a(x)h1/β̃δ
s , x = ξh/ξD, (17)

where a(x) is a nonuniversal function. We are interested in
the regime of x � 1 where the influence of the bias hs on the
correlation length is stronger than the one coming from D (in
other words, results for each finite bias are almost converged
in D). In this regime we postulate an asymptotic form

a(x) = a + bxc, (18)

where a, b, and c are nonuniversal constants. The combina-
tion of Eqs. (17) and (18) yields

T ∗(hs, ξD) = Tc + ah1/β̃δ
s + b

ξ c
D

h(1−cν)/β̃δ
s . (19)
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FIG. 5. The scaling ansatz combining both the effect of a
small bias hs and the finite iPEPS bond dimension D. All three
curves T ∗(hs, ξD ), indicating the position of the maximum of
the order-parameter derivative for D = 7–9, are fitted by the sin-
gle scaling ansatz in Eq. (19). The fit yields Tc = 0.043(2), c =
0.83(4), ξD=8/ξD=7 = 1.09(7), ξD=9/ξD=7 = 25+∞

−23.6. The error bars
correspond to 68% confidence intervals.

Here Tc, a, b, and c are the fitting parameters that do not
depend on the bond dimension, and ξD is D dependent. Note
that it is not possible to fit the actual values of ξD but only the
ratios ξD+1/ξD.

Assuming the 2D Ising universality class, the best fit to all
the data for D = 7–9 is shown in Fig. 5. It yields the critical
temperature,

Tc = 0.043(2), (20)

with the error bar corresponding to a 68% confidence inter-
val. We note that the upper error bar of ξD=9/ξD=7 extends
to infinity. This is a consequence of (1 − cν)/β̃δ = 0.09(2)
being close to zero which makes the last term in (19) rather
insensitive to hs. For 1 − cν = 0 it would be impossible to fit
Tc. This explains its relatively large error bar, despite the high
quality of the fit in Fig. 5. Still, the relative error on Tc is only
5%, which is a considerably high accuracy given the fact that
the error includes both finite bias and finite bond dimension
effects in a systematic way.

VII. SUMMARY

In this paper, we have systematically studied the finite-
temperature phase transition into the m = 1

2 plateau phase in
the Shastry-Sutherland model using iPEPS. At the technical
level there are two main developments in this paper: the SU
+ FU hybrid algorithm and the generalized scaling theory.
The former combines the advantages of the two most popular
time-evolution schemes. At a small β, it takes advantage of
the stability and efficiency of the SU for states with short-
range correlations. At larger β’s it switches over to the FU
scheme to take into account long-range correlations and make
the most efficient use of the limited bond dimension. The
latter development becomes a necessary tool when even the

FU algorithm cannot provide full convergence in the vicinity
of the phase transition for available bond dimensions. The
generalized scaling theory includes two relevant finite length
scales: One due to the finite symmetry-breaking bias and the
other due to the finite bond dimension. Its expressive power
bridges the gap towards results that are fully converged in both
bond dimension and extrapolated to zero bias.

Using the simple scaling theory, which assumes results
are converged in D, the estimates of 1/β̃δ obtained with the
scaling ansatz (11) are in agreement with the 2D classical
Ising model universality class for sufficiently large D � 7.
Our result for the critical temperature Tc = 0.043(2), obtained
from the generalized scaling theory, is compatible with the
observation of a stable m = 1

2 plateau in experiments at a tem-
perature around 2.1 K [34]. Taking the estimate of J = 84 K
from fits to specific-heat data [59], we obtain a critical tem-
perature Tc = 3.5(2) K, which is well above the temperature
used in the experiment. It would be interesting to study the
stability of the m = 1

2 plateau as a function of temperature in
future experiments.
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APPENDIX A: THE SIMPLE UPDATE TO THE FULL
UPDATE (SU + FU) AND THE FU

APPROACHES—TECHNICAL DETAILS

Within the FU approach, for the largest D = 9, we found
that the results depend on simulation parameters, such as the
magnitude of the pseudoinverse cutoff. The same is true for
charges and dimensions of the U (1)-symmetry sectors of the
iPEPS tensors (which are selected dynamically during the
simulation). Furthermore, for D = 9, we observed different
iPEPS tensors’ decomposition into symmetry sectors for dif-
ferent small hs’s, even when using the same FU pseudoinverse
cutoff. A change in charge distribution can lead to a qualitative
change in the data, leading to an irregular behavior that cannot
be explained by a simple scaling theory. Indeed, we observe
that for D = 9, T ∗(hs) obtained with FU is not monotonic,
see Fig. 6(a). The same figure shows that performing the first
few steps of the evolution with the SU solves the problem.
Namely, the iPEPS tensors’ charge distributions become the
same for all small values of hs, and T ∗(hs) becomes mono-
tonic in hs.

To obtain a stable charge sector decomposition, for D =
9, it is enough to perform the SU evolution until βSU =
0.24. D = 9 results shown in the main text have been obtained
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FIG. 6. A comparison of FU and FU + SU approaches. In (a), we
show T ∗(hs/h) where the SU + FU results were obtained with βSU =
0.24. In (b), we show the comparison of SU + FU results obtained
with βSU = 0.24 and βSU = 0.44. We observe that for D = 7 both
FU and SU + FU give similar results, but for D = 9 SU + FU gives
more regular results. For both D = 7 and 9, βSU = 0.24 and 0.44 give
similar results. The fitted Tc and 1/β̃δ can be found in Table III.

with this βSU . We find that in the case of smaller D = 7 to 8,
performing the first steps with the SU is not necessary. In
the case of D = 7 and hs considered in the main text, iPEPS
tensors have the same decomposition. For D = 8 we have
found just one hs with a different decomposition than the rest,
which we have excluded from the analysis.

TABLE III. Comparison of critical temperature Tc and exponent
1/β̃δ obtained from the best fits in Fig. 6.

Method D Tc 1/β̃δ

FU 7 0.0445(5) 0.54(4)
SU + FU βSU = 0.24 7 0.0443(3) 0.53(2)
SU + FU βSU = 0.44 7 0.0442(4) 0.53(2)
SU + FU βSU = 0.24 9 0.0429(4) 0.57(4)
SU + FU βSU = 0.44 9 0.0420(6) 0.50(4)
2D Ising 8/15 ≈ 0.53

FIG. 7. Comparison of the SU approach with the FU and FU
+ SU results. In (a) we show T ∗(hs/h) where the SU results have
been obtained with D = 7–10. They differ significantly from the FU
and SU + FU results, changing slowly with increasing D. In (b) we
show a log-log plot of the correlation length ξ ∗(hs/h). The SU results
for D = 9 to 10 are clearly inconsistent with the expected power-law
behavior of ξ ∗(hs/h).

Nevertheless, for a benchmark purpose and cross-check,
we simulate D = 7 with the SU + FU method using βSU =
0.24 and 0.44. We find that the obtained results are very
similar to the ones coming from the FU method, see Fig. 6(b)
and Table III. To get a better insight into the stability of the
results as a function of βSU , we also simulate D = 9 with
βSU = 0.44. With this choice, we obtain iPEPS tensors with
a different charge distribution than with βSU = 0.24, but the
estimates of Tc and 1/β̃δ are still within their respective error
bars for both βSU values, see Table III.

In view of the increased stability of the FU + SU scheme,
one may wonder if it would be beneficial to switch to the
cheaper SU scheme completely. To give insight into this ques-
tion, in the next Appendix, we compare the SU + FU results
with the pure SU approach.

The computational complexity of our full update evolu-
tion implementation is determined by sizes and numbers of
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TABLE IV. Convergence of critical temperature Tc and exponent
1/β̃δ with Trotter step dβ and environmental CTMRG bond dimen-
sion χ . The results are obtained from the best fits of T ∗(hs ) for the
FU scheme with D = 7.

χ dβ Tc 1/β̃δ

21 0.04 0.0445(5) 0.54(4)
21 0.02 0.04470(3) 0.53(2)
28 0.04 0.0444(4) 0.53(3)
35 0.04 0.0442(3) 0.53(3)

U (1)-symmetric sectors, see Appendix D for their definitions.
Therefore, scaling of the complexity with increasing D cannot
be determined a priori. For the largest simulated D = 9 simu-
lations took about 2 weeks to complete using a machine with
4 Intel Xeon E7-8890v4 24-core processors.

APPENDIX B: COMPARISON WITH THE SIMPLE
UPDATE (SU) APPROACH

Here, we compare the SU approach results for D = 7–10
with the FU and SU + FU at D = 7–9. We find that T ∗(hs)’s
obtained with SU are far removed from the FU results and
changing slowly with increasing D, see Fig. 7(a). In Fig. 7(b),
we show a log-log plot of the SU D = 9 to 10 results for
ξ ∗(hs) together with their FU and SU + FU counterparts. They
deviate significantly from the critical behavior. We also note
that correlation lengths ξ ∗(hs) obtained from the SU are much
shorter than those obtained from the FU and SU + FU. We
conclude that the convergence of the SU results in D is much
slower than in the case of the FU and SU + FU methods.
Therefore, we prefer to use the FU and SU + FU here.

APPENDIX C: EFFECTS OF FINITE CTMRG
ENVIRONMENTAL BOND DIMENSION χ AND TROTTER

STEP dβ

The CTMRG environmental bond dimension χ controls
the accuracy of the iPEPS contraction. To perform the FU
evolution and to obtain o, o′, and CV shown in the main text,
we use χ = 3D − 4D. Another parameter that determines
the accuracy of the simulation is the Trotter step dβ. In
the main text, we use a second-order Trotter decomposition
with the step dβ = 0.04. Here we compare the Tc and 1/β̃

estimates obtained from T ∗(hs) following the FU evolution
with D = 7, dβ = 0.04, and χ = 21, 28, 35. Furthermore,
we compare the results obtained with dβ = 0.02, 0.04 and

D = 7, χ = 21. We find that the results are very similar, see
Table IV, which suggests that the chosen values of dβ and χ

are good enough to provide accurate estimates. To obtain the
correlation length ξ , we perform the extrapolation following
the approach of Ref. [46] using the data from the range of
environmental bond dimensions of χ = D2 − 3D2.

APPENDIX D: A PEPS TENSORS’ DECOMPOSITION TO
U (1)-SYMMETRIC SECTORS

The Hamiltonian conserves Sz
tot . Therefore, the thermal

density-matrix ρ is U (1) invariant. To create a U (1)-invariant
tensor network representation of ρ, we choose the following
representation of the symmetry group,

UρU † = ρ, U = ⊗U (d ), U (d ) = e−i(Sz
1+Sz

2+1),

(D1)
where the tensor product is taken over the dimers and Sz

1, Sz
2

are acting at the first and the second spins of a dimer, re-
spectively. ρ is built from a pair of PEPS tensors AA and AB

corresponding to dimer sublattices A and B. To simplify no-
tation, we omit the sublattice index below whenever possible.
The PEPS tensors Atlbri j have six indices, where t, l, b, and
r are virtual indices, i is a physical index corresponding to a
dimer, and j is an ancilla index. We choose the tensors to be
U (1) invariant,∑

t ′l ′b′r′i′ j′
U (t )

tt ′ U (l )
ll ′ U (b)†

bb′ U (r)†
rr′ U (d )

ii′ U (d )†
j j′ At ′l ′b′r′i′ j′ = Atlbri j . (D2)

Here we introduce group representations U (l ), U (b), U (r),
and U (t ) acting at virtual indices as proposed in
Refs. [117,118].

For such a choice, A can be decomposed into symmetric
sectors [117] indexed by integer charges ct , cl , cb, cr, ci,
and c j ,

A = ⊕ct ,cl ,cb,cr ,ci,c j A
ct ,cl ,cb,cr ,ci,c j , (D3)

with a constraint,

ct + cl − cb − cr + ci − c j = 0. (D4)

In Table V, we list the charges and dimensions of the sectors
for D = 6–9 simulations. We observe that for our D = 6–9
simulations described in the main text charges present in the A
decomposition (D3) remain unchanged for β > βSU (or β > 0
in the case of full update simulations). All combinations of
the charges allowed by (D4) are present for β > 0.04. Fur-
thermore, dimensions of the charge sectors’ indices remain
unchanged for β > 0.32.

TABLE V. Charges of the AA sectors and dimensions of the sectors’ indices for D = 6–9 simulations from the main text and large β > 0.32.
We show the decomposition for the smallest hs = 10−29/8. Here we denote bond dimensions of Act ,cl ,cb,cr ,ci,c j by Dct , Dcl , Dcb, Dcr , and a
dimension of its physical index by dci . Charges and dimensions for the ancillary index j are the same as for the physical index i. Note that an
analogous decomposition of AB is determined by the AA decomposition.

D (ct , Dct ) (cl , Dcl ) (cb, Dcb ) (cr, Dcr ) (ci, dci )

6 {(−1, 2), (0, 2), (1, 2)} {(−1, 2), (0, 3), (1, 1)} {(−1, 1), (0, 3), (1, 2)} {(−1, 1), (0, 3), (1, 2)} {(0, 1), (1, 2), (2, 1)}
7 {(−1, 2), (0, 3), (1, 2)} {(−1, 2), (0, 3), (1, 2)} {(−1, 2), (0, 3), (1, 2)} {(−1, 2), (0, 3), (1, 2)} {(0, 1), (1, 2), (2, 1)}
8 {(−1, 3), (0, 3), (1, 2)} {(−1, 3), (0, 3), (1, 2)} {(−1, 2), (0, 3), (1, 3)} {(−1, 2), (0, 3), (1, 3)} {(0, 1), (1, 2), (2, 1)}
9 {(−1, 3), (0, 4), (1, 2)} {(−1, 3), (0, 4), (1, 2)} {(−1, 2), (0, 4), (1, 3)} {(−1, 2), (0, 4), (1, 3)} {(0, 1), (1, 2), (2, 1)}
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sign problem at finite temperature: Quantum tensor network
for the orbital eg model on an infinite square lattice, Phys. Rev.
B 96, 014420 (2017).

[54] Y.-W. Dai, Q.-Q. Shi, S. Y. Cho, M. T. Batchelor, and H.-Q.
Zhou, Finite-temperature fidelity and von neumann entropy
in the honeycomb spin lattice with quantum ising interaction,
Phys. Rev. B 95, 214409 (2017).

[55] P. Czarnik, J. Dziarmaga, and P. Corboz, Time evolution of an
infinite projected entangled pair state: An efficient algorithm,
Phys. Rev. B 99, 035115 (2019).

[56] P. Czarnik and P. Corboz, Finite correlation length scaling with
infinite projected entangled pair states at finite temperature,
Phys. Rev. B 99, 245107 (2019).

[57] A. Kshetrimayum, M. Rizzi, J. Eisert, and R. Orús, Tensor
Network Annealing Algorithm for Two-Dimensional
Thermal States, Phys. Rev. Lett. 122, 070502
(2019).

[58] P. Czarnik, A. Francuz, and J. Dziarmaga, Tensor network sim-
ulation of the Kitaev-Heisenberg model at finite temperature,
Phys. Rev. B 100, 165147 (2019).

[59] A. Wietek, P. Corboz, S. Wessel, B. Normand, F. Mila,
and A. Honecker, Thermodynamic properties of the Shastry-
Sutherland model throughout the dimer-product phase, Phys.
Rev. Research 1, 033038 (2019).

[60] J. L. Jiménez, S. P. G. Crone, E. Fogh, M. E. Zayed, R.
Lortz, E. Pomjakushina, K. Conder, A. M. Läuchli, L. Weber,
S. Wessel, A. Honecker, B. Normand, C. Rüegg, P. Corboz,
H. M. Rønnow, and F. Mila, A quantum magnetic analog to
the critical point of water, arXiv:2009.14492.

[61] D. Poilblanc, M. Mambrini, and F. Alet, Finite-temperature
symmetric tensor network for spin-1/2 Heisenberg antiferro-
magnets on the square lattice, SciPost Phys. 10, 019 (2021).

[62] A. Kshetrimayum, H. Weimer, and R. Orús, A simple ten-
sor network algorithm for two-dimensional steady states, Nat.
Commun. 8, 1291 (2017).

[63] L. Vanderstraeten, M. Mariën, F. Verstraete, and J. Haegeman,
Excitations and the tangent space of projected entangled-pair
states, Phys. Rev. B 92, 201111(R) (2015).

[64] B. Ponsioen and P. Corboz, Excitations with projected entan-
gled pair states using the corner transfer matrix method, Phys.
Rev. B 101, 195109 (2020).

[65] C. Hubig and J. I. Cirac, Time-dependent study of disordered
models with infinite projected entangled pair states, SciPost
Phys. 6, 31 (2019).

[66] C. Hubig, A. Bohrdt, M. Knap, F. Grusdt, and J. I. Cirac,
Evaluation of time-dependent correlators after a local quench
in iPEPS: hole motion in the t-J model, SciPost Phys. 8, 21
(2020).

[67] A. Abendschein and S. Capponi, Effective Theory of Magne-
tization Plateaux in the Shastry-Sutherland Lattice, Phys. Rev.
Lett. 101, 227201 (2008).

[68] A. Kshetrimayum, M. Goihl, and J. Eisert, Time evolution of
many-body localized systems in two spatial dimensions, Phys.
Rev. B 102, 235132 (2020).

[69] A. Kshetrimayum, M. Goihl, D. M. Kennes, and J. Eisert,
Quantum time crystals with programmable disorder in higher
dimensions, arXiv:2004.07267.

[70] L. Cincio and G. Vidal, Characterizing Topological Order by
Studying the Ground States on an Infinite Cylinder, Phys. Rev.
Lett. 110, 067208 (2013).

[71] B. Bruognolo, Z. Zhu, S. R. White, and E. M. Stoudenmire,
Matrix product state techniques for two-dimensional systems
at finite temperature, arXiv:1705.05578.

[72] B.-B. Chen, L. Chen, Z. Chen, W. Li, and A. Weichselbaum,
Exponential Thermal Tensor Network Approach for
Quantum Lattice Models, Phys. Rev. X 8, 031082
(2018).

[73] L. Chen, D.-W. Qu, H. Li, B.-B. Chen, S.-S. Gong, J. von
Delft, A. Weichselbaum, and W. Li, Two-temperature scales in
the triangular-lattice Heisenberg antiferromagnet, Phys. Rev.
B 99, 140404(R) (2019).

[74] H. Li, B.-B. Chen, Z. Chen, J. von Delft, A. Weichselbaum,
and W. Li, Thermal tensor renormalization group simulations

075113-10

https://doi.org/10.1103/PhysRevB.94.155123
https://doi.org/10.1103/PhysRevB.98.235148
https://doi.org/10.1103/PhysRevB.96.045128
https://doi.org/10.1103/PhysRevB.93.045116
https://doi.org/10.1103/PhysRevX.8.031031
https://doi.org/10.1103/PhysRevX.8.031030
https://doi.org/10.1103/PhysRevX.8.041033
https://doi.org/10.1103/PhysRevB.86.245101
https://doi.org/10.1103/PhysRevB.90.035144
https://doi.org/10.1103/PhysRevB.92.035120
https://doi.org/10.1103/PhysRevB.93.184410
https://doi.org/10.1103/PhysRevB.92.035152
https://doi.org/10.1103/PhysRevB.94.235142
https://doi.org/10.1103/PhysRevB.96.014420
https://doi.org/10.1103/PhysRevB.95.214409
https://doi.org/10.1103/PhysRevB.99.035115
https://doi.org/10.1103/PhysRevB.99.245107
https://doi.org/10.1103/PhysRevLett.122.070502
https://doi.org/10.1103/PhysRevB.100.165147
https://doi.org/10.1103/PhysRevResearch.1.033038
http://arxiv.org/abs/arXiv:2009.14492
https://doi.org/10.21468/SciPostPhys.10.1.019
https://doi.org/10.1038/s41467-017-01511-6
https://doi.org/10.1103/PhysRevB.92.201111
https://doi.org/10.1103/PhysRevB.101.195109
https://doi.org/10.21468/SciPostPhys.6.3.031
https://doi.org/10.21468/SciPostPhys.8.2.021
https://doi.org/10.1103/PhysRevLett.101.227201
https://doi.org/10.1103/PhysRevB.102.235132
http://arxiv.org/abs/arXiv:2004.07267
https://doi.org/10.1103/PhysRevLett.110.067208
http://arxiv.org/abs/arXiv:1705.05578
https://doi.org/10.1103/PhysRevX.8.031082
https://doi.org/10.1103/PhysRevB.99.140404


TENSOR NETWORK STUDY OF THE m = 1
2 … PHYSICAL REVIEW B 103, 075113 (2021)

of square-lattice quantum spin models, Phys. Rev. B 100,
045110 (2019).

[75] B.-B. Chen, C. Chen, Z. Chen, J. Cui, Y. Zhai, A.
Weichselbaum, J. von Delft, Z. Y. Meng, and W. Li, Quantum
many-body simulations of the 2d Fermi-Hubbard model in
ultracold optical lattices, Phys. Rev. B 103, L041107 (2021).

[76] W. Li, S.-J. Ran, S.-S. Gong, Y. Zhao, B. Xi, F. Ye, and G. Su,
Linearized Tensor Renormalization Group Algorithm for the
Calculation of Thermodynamic Properties of Quantum Lattice
Models, Phys. Rev. Lett. 106, 127202 (2011).

[77] Z. Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, and T.
Xiang, Coarse-graining renormalization by higher-order sin-
gular value decomposition, Phys. Rev. B 86, 045139 (2012).

[78] S.-J. Ran, W. Li, B. Xi, Z. Zhang, and G. Su, Optimized
decimation of tensor networks with super-orthogonalization
for two-dimensional quantum lattice models, Phys. Rev. B 86,
134429 (2012).

[79] S.-J. Ran, B. Xi, T. Liu, and G. Su, Theory of network con-
tractor dynamics for exploring thermodynamic properties of
two-dimensional quantum lattice models, Phys. Rev. B 88,
064407 (2013).

[80] S.-J. Ran, W. Li, S.-S. Gong, A. Weichselbaum, J. von Delft,
and G. Su, Emergent spin-1 trimerized valence bond crystal in
the spin- 1

2 Heisenberg model on the star lattice, Phys. Rev. B
97, 075146 (2018).

[81] C. Peng, S.-J. Ran, T. Liu, X. Chen, and G. Su, Fermionic
algebraic quantum spin liquid in an octa-kagome frustrated
antiferromagnet, Phys. Rev. B 95, 075140 (2017).

[82] X. Chen, S.-J. Ran, T. Liu, C. Peng, Y.-Z. Huang, and G. Su,
Thermodynamics of spin-1/2 kagomé Heisenberg antiferro-
magnet: algebraic paramagnetic liquid and finite-temperature
phase diagram, Sci. Bull. 63, 1545 (2018).

[83] S.-J. Ran, B. Xi, C. Peng, G. Su, and M. Lewenstein, Effi-
cient quantum simulation for thermodynamics of infinite-size
many-body systems in arbitrary dimensions, Phys. Rev. B 99,
205132 (2019).

[84] B. Sriram Shastry and B. Sutherland, Exact ground state of a
quantum mechanical antiferromagnet, Physica B+C 108, 1069
(1981).

[85] H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov,
K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto,
and Y. Ueda, Exact Dimer Ground State and Quantized
Magnetization Plateaus in the Two-Dimensional Spin System
SrCu2(BO3)2, Phys. Rev. Lett. 82, 3168 (1999).

[86] S. Miyahara and K. Ueda, Exact Dimer Ground State of
the Two Dimensional Heisenberg Spin System SrCu2(BO3)2,
Phys. Rev. Lett. 82, 3701 (1999).

[87] S. Miyahara and K. Ueda, Theory of the orthogonal dimer
Heisenberg spin model for SrCu2(BO3)2, J. Phys.: Condens.
Matter 15, R327 (2003).

[88] K. Onizuka, H. Kageyama, Y. Narumi, K. Kindo, Y. Ueda, and
T. Goto, 1/3 magnetization plateau in SrCu2(BO3)2 - stripe
order of excited triplets -, J. Phys. Soc. Jpn. 69, 1016 (2000).

[89] H. Kageyama, M. Nishi, N. Aso, K. Onizuka, T. Yosihama, K.
Nukui, K. Kodama, K. Kakurai, and Y. Ueda, Direct Evidence
for Localized Single-Triplet Excitations and Dispersive Multi-
triplet Excitations in SrCu2(BO3)2, Phys. Rev. Lett. 84, 5876
(2000).

[90] K. Kodama, M. Takigawa, M. Horvatić, C. Berthier, H.
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