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Transient Radio Signatures from Neutron Star Encounters
with QCD Axion Miniclusters

Supplemental Material
Thomas D. P. Edwards, Bradley J. Kavanagh, Luca Visinelli, and Christoph Weniger

A. Neutron Star Population

Considerable effort has been put into modelling the population of neutron stars (NSs) in the Milky Way (MW) [1, 2]
given the sample of those we can actually observe (see for example those reported by the Australia Telescope National
Facility pulsar catalogue [3]). We assume that the spatial distribution of millisecond pulsars in the MW can be used
to approximate the corresponding distribution of old NSs, as in Ref. [4].

The MW hosts around 109 NSs [5], of which 20% have been unbound due to natal kicks [5]. Of these NSs, 60%
are formed in the bulge and 40% in the disk [5, 6]. We normalize the spatial distributions in the bulge and in the
disk assuming the total numbers Nbulge = 4.8 × 108 and Ndisk = 3.2 × 108, respectively. We model the NS spatial
distributions in terms of the galactocentric cylindrical coordinates rcyl and zcyl, which describe the radial distance
from the axis of symmetry and the height from the Galactic plane respectively. Here, we assume that the spatial
distribution of NSs in the bulge tracks the stellar population. We fix this in the companion paper [7] as a truncated
Power-law distribution [8, 9]

nbulge(rcyl, zcyl) = Nbulge
11.1

kpc3
e−(r′/rcut)

2

(1 + r′/r0)
λ
, (S1)

where we use the parameters from Ref. [10], namely the core density ρbulge0 ≈ 99.3M�/pc3, r′ =
√
r2cyl + (zcyl/q)2

with q = 0.5, the bulge cutoff r0 = 0.075 kpc, the exponent λ = 1.8, and rcut = 2.1 kpc. The numerical factor
11.1 accounts for the integration of the NS density over the bulge volume. Note, that this choice differs from other
literature on the subject in which a Hernquist profile is assumed [4].

We use a Lorimer profile to model the distribution of millisecond pulsars in the Galactic disk [11]

ndisk(rcyl, zcyl) = Ndisk
CB+2 e−C

4π r2�σz Γ(B + 2)

(
rcyl
r�

)B
e
−C

rcyl−r�
r� e−

|zcyl|
σz , (S2)

with parameters that are obtained from a fit to the population of almost one hundred millisecond pulsars — these
are taken from Table III of Ref. [12], namely B = 3.91, C = 7.54, and σz = 0.76 kpc.

We have not incorporated any decay mechanisms for the NS’s magnetic field, such as ohmic dissipation [13],
ambipolar diffusion [14, 15], or Hall drift [16]. We assume that all NSs have a mass of MNS = 1.4M� and radius
RNS = 10 km.

B. Neutron Star Magnetosphere

Here, we use the Goldreich-Julian model [17] of the NS magnetosphere, for which the magnetic field along the axis
of rotation η̂ is

Bη̂(r, θobs) = B0

(
RNS

r

)3
3 cos2 θobs − 1

2
, (S3)

where the radial dependence shows the typical dipole behavior falling as ∝ r−3. For simplicity, we have assumed that
the magnetic field is aligned with the axis of rotation, which are both inclined at an angle θobs ∈ [−π/2, π/2] with
respect to the observer. Each NS in the population is described by a magnetic field strength at the poles B0 and a
period P which are drawn from log-normal distributions, with mean and dispersion given by log10(B/G) = 12.65 and
σB = 0.55 for the magnetic field strength [1, 2], and log10(P/ms) = 2.7 and σP = 0.34 for the period [11].

Given the angular velocity vector of the NS Ω with absolute value Ω = 2π/P , the charged plasma in the magneto-
sphere at distance r has a number density [17]

nc =
2ΩBη̂(r, θobs)

e
+ relativistic corrections . (S4)
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FIG. S1. Models for the internal density profile’s of AMCs which we consider in this paper: Power-law, Eq. (S7), and NFW,
Eq. (S9). Vertical dashed lines show the truncation radii RAMC. We fix the characteristic mass and density to MAMC =
10−10M� and ρAMC = 10M� pc−3 respectively.

The plasma frequency can be expressed as ωp =
√

4παEMnc/mc where αEM is the fine structure constant and mc is
the charge carrier mass. For electrons, we obtain

ωp = 150 GHz

√(
Bη̂(r, θobs)

1014 G

)(
1 s

P

)
. (S5)

The conversion radius Rc is defined as the region for which the plasma frequency equals the axion mass. Using
Eq. (S5), which is valid in the electron-dominated region, the conversion radius is given by [18]

Rc(θobs) = 224 km

(
RNS

10 km

)[∣∣3 cos2 θobs − 1
∣∣ B0

1014 G

1 s

P

(
1 GHz

ma

)2
]1/3

, (S6)

where the resonant conversion only takes place if Rc(θobs) > RNS.

C. Axion Minicluster Density Profiles

As described in main text, we use two different parameterizations for the internal density profiles of the AMCs. Since
we do not know the internal density profiles precisely, these two choices are made to reflect the range of potentially
observable radio signatures. An example of both density profiles and their corresponding truncation radii can be seen
in Fig. S1.

An AMC with a Power-law (PL) profile is described by [19, 20]

ρPL
int (R) = ρs

(rs
R

)9/4
Θ
(
RPL

AMC −R
)
, (S7)

where Θ (x) is the Heaviside step function. We truncate the PL profile at a radius

RPL
AMC =

(
3MAMC

4πρ(δ)

)1/3

, (S8)

where we fix ρsr
9/4
s = ρ(δ)(RPL

AMC)9/4/4 [20], to give mean density ρ(δ) and the correct total mass for the AMC.
On the other hand, AMCs with NFW density profiles are described by

ρNFW
int (r) =

ρ(δ)

(r/rs)(1 + r/rs)2
, rs =

(
MAMC

4πρ(δ)fNFW(c)

)1/3

, (S9)

where the function fNFW(c) = ln(1 + c)− c/(1 + c) is defined in terms of a concentration parameter c ≈ 100 [21, 22].
The truncation radius is now given by RNFW

AMC = c rs.
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D. Flux Distributions

Here, we give more details concerning the expected distributions of radio fluxes from AMC-NS encounters. In the
left panel of Fig. S2, we plot the cumulative probability distribution of the mean flux density 〈S〉 (that is, the fraction
of events above a given value of 〈S〉). We show results for AMCs with Power-law (solid blue) and NFW (solid olive)
internal density profiles. The typical flux density from an encounter between an NS and a Power-law minicluster is
larger because these AMCs are substantially more dense than those with NFW profiles. We show also the results for
AMCs which have not undergone perturbations due to stellar encounters (dashed lines). For Power-law miniclusters,
these results are very similar to the perturbed case; their higher density also makes them more resistant to disruption.
Instead, for NFW miniclusters, the typical flux which we would expect when neglecting perturbations is much smaller
than when perturbations are included.

We can see this expressed also in terms of the encounter rate above a given threshold in flux 〈S〉, as shown in the
right panel of Fig. S2. In the NFW case, going from the perturbed to unperturbed distributions, the encounter rate
drops by a factor of around 40. However, the rate of very bright encounters actually increases once perturbations are
taken into account. As we show in detail in Ref. [7], the survival probability for NFW miniclusters is typically larger
than 50% throughout the MW. However, surviving AMCs are stripped of a significant fraction of their mass, typically
leaving behind a much more dense remnant AMC. Thus, what would be common encounters with large, diffuse
AMCs in the unperturbed case become rarer but brighter encounters with small, dense AMCs once perturbations are
accounted for.

Of particular interest is that for the very brightest events (above around 1 Jy) the NS encounter rates for Power-law
and NFW miniclusters start to converge, typically to within an order of magnitude. Despite the substantial differences
in their sizes and densities, we find that the rate of bright encounters between NSs and AMCs in the MW is somewhat
insensitive to the initial density profiles of the AMCs.
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FIG. S2. Left: The cumulative probability of AMC-NS encounters as a function of the mean flux 〈S〉 of the resulting radio
signal. Right: Cumulative rate of encounters above a given mean flux 〈S〉.

E. The Role of Axion Stars

An axion star (AS) [23] is a condensate made of cold axions, described by a solitonic solution of the relativistic
Klein-Gordon equation [24, 25]. The axions inside the star are usually non-relativistic, so that a description in terms
of the Schrödinger-Poisson (SP) equation is often a suitable approximation. Since axions are pseudo-scalar particles,
ASs differ from the analogous solutions for ‘boson stars’ obtained in scalar boson theories [26]. While for scalar bosons
a static solitonic solution to the SP exists, for pseudo-scalar axions the solution has to be oscillating periodically in
time. An AS is then made up of a self-gravitating, oscillating axion field.

ASs may form in the dense central region of an axion minicluster, where the density is high enough that two-to-two
processes enable the cooling of its inner core and lead to the formation of the condensate [27, 28]. This process has
been observed in recent numerical simulations [29–31]. The existence of ASs could be indirectly probed through their
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interaction with stellar objects, which leads to a vast array of potentially detectable signals in the form of gravitational
waves, neutrinos, and electromagnetic radiation [32, 33].

Equilibrium in the so-called ‘dilute’ branch is granted by quantum pressure — due to the wave-like nature of
the axions — which supports the AS from collapsing under its own self-gravity. Other branches in which gravity
is replaced by self-interactions have been shown to be unstable or even non-existing [34]. For this reason, we limit
our discussion to the dilute branch, in which the radius of the AS scales inversely with the AS mass, RAS ∝ M−1AS ,
a relation which can be inferred from energy conservation arguments [34]. The proportionality constant must be
determined by numerically solving the SP equation. References [30, 35] find

RAS = 3.85× 10−8 m

(
20µeV

ma

)2 (
M�
MAS

)
. (S10)

Simulations of DM with wave-like properties of dwarf galaxy scales suggest a relation between the mass of the
solitonic core and the mass of its host halo [35]. This relation has recently been confirmed for heavier axion-like
particles, as we consider here, suggesting that ASs formed at the center of AMCs have a mass:

MAS = 1.56× 10−13M�

(
20µeV

ma

)(
MAMC

1M�

)1/3

. (S11)

Combining Eqs. (S10) and (S11), we can write:

RAS = R?

(
MAMC

M?

)−1/3
, (S12)

where for ma = 20µeV we fix the constants R? = 1.7 × 10−6 pc and M? = 10−16M�. While current numerical
simulations cannot resolve the formation of ASs in the smallest AMCs we consider, we will assume that Eq. (S12)
holds generally.

The presence of ASs in the centers of AMCs may affect their behaviour under stellar perturbations. We neglect this
effect, which should be small for the heaviest AMCs. More dramatically, at sufficiently low AMC mass, the radius
of the AS formed at the center may exceed the radius of the AMC itself. We remain agnostic about the formation
and behaviour of these light AMCs and instead apply a cut (referred to as the ‘AS cut’ in Ref. [7]) which discards all
AMCs for which the AS radius exceeds the AMC radius. More precisely, the AS cut therefore removes all AMCs for
which:

Rf > RAS(Mi) = R?

(
Mi

M?

)−1/3
, (S13)

where Mi is the AMC mass before stellar perturbations are accounted for and Rf is the final AMC radius after
perturbations. In the main text, we present results in which we begin with fAMC = 1 over the full range of AMC
masses [Mmin,Mmax], which then undergo stellar perturbations, followed by the AS cut. As a guide, the fraction of
AMCs passing the AS cut before perturbations is fPL

cut = 2.7 × 10−4 for PL density profiles and fNFW
cut = 1.5 × 10−2

for NFW profiles.
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