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Axion miniclusters are dense bound structures of dark matter axions that are predicted to form in the
postinflationary Peccei-Quinn symmetry breaking scenario. Although dense, miniclusters can easily be
perturbed or even become unbound by interactions with baryonic objects such as stars. Here, we
characterize the spatial distribution and properties of miniclusters in the Milky Way (MW) today after
undergoing these stellar interactions throughout their lifetime. We do this by performing a suite of
Monte Carlo simulations which track the miniclusters’ structure and, in particular, accounts for partial
disruption and mass loss through successive interactions. We consider two density profiles—Navarro-
Frenk-White (NFW) and power-law (PL)—for the individual miniclusters in order to bracket the
uncertainties on the minicluster population today due to their uncertain formation history. For our fiducial
analysis at the solar position, we find a survival probability of 99% for miniclusters with PL profiles and
46% for those with NFW profiles. Our work extends previous estimates of this local survival probability to
the entire MW. We find that towards the Galactic Center, the survival probabilities drop drastically.
Although we present results for a particular initial halo mass function, our simulations can be easily recast
to different models using the provided data and code (github.com/bradkav/axion-miniclusters). Finally, we
comment on the impact of our results on lensing, direct, and indirect detection.

DOI: 10.1103/PhysRevD.104.063038

I. INTRODUCTION

Both the dark matter (DM) and strong-CP problems can
be solved by introducing a new global symmetry into the
Standard Model (SM) of particle physics [1,2]. This new
Peccei-Quinn (PQ) symmetry UPQð1Þ predicts a hypotheti-
cal particle known as the QCD axion [3,4]. Unlike weakly
interacting massive particles, DM axions are typically
much lighter than the rest of the SM [5–7]. Their produc-
tion mechanism must therefore rely upon nonthermal
processes to ensure they are nonrelativistic at the time of
recombination. These nonthermal processes generically
produce gravitationally bound clumps of axions known as
axion miniclusters. In this paper, we characterize the degree
to which tidal interactions can change the properties of these
miniclusters over the lifetime of the Milky Way (MW).
Worldwide, there is an active research program searching

for QCD axion DM, as well as more general axionlike

particles [8]. Unfortunately, the axion’s coupling to SM
particles is expected to be extremely small and therefore
challenging to probe. The majority of searches rely upon
modifications to Maxwell’s equations due to the axion-
photon coupling gaγγ [9–16]. This has inspired a number of
terrestrial direct search strategies [17–32].1 Indirect probes
of axions also utilize the axion-photon coupling but instead
in astrophysical settings. For example, Galactic axions can
convert into radio photons in the magnetic field of a neutron
star (NS) [38–42]. If the NS is locked in a binary system
with an intermediate mass black hole, it may be possible to
uniquely detect the radio signal jointly with a characteristic
gravitational wave signature [43]. Substructures in the
axion distribution may have dramatic effects on all such
searches.
The production of QCD axion DM is tightly connected

to the thermal history of the Universe. After the UPQð1Þ
symmetry is spontaneously broken, the axion field relaxes
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1For additional details, see the recent reviews on axion
cosmology [33,34], models of QCD axions [35], and detection
techniques [36,37].

PHYSICAL REVIEW D 104, 063038 (2021)

2470-0010=2021=104(6)=063038(29) 063038-1 © 2021 American Physical Society

https://orcid.org/0000-0002-3634-4679
https://orcid.org/0000-0002-2258-6191
https://orcid.org/0000-0001-7958-8940
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.063038&domain=pdf&date_stamp=2021-09-23
https://doi.org/10.1103/PhysRevD.104.063038
https://doi.org/10.1103/PhysRevD.104.063038
https://doi.org/10.1103/PhysRevD.104.063038
https://doi.org/10.1103/PhysRevD.104.063038


towards the bottom of its potential. When the Universe has
cooled down to the QCD phase transition, nonperturbative
QCD instantons lead to the explicit breaking of the PQ
symmetry [44,45], giving rise to a new CP-conserving
minimum in the potential. After the QCD phase transition,
the axion field undergoes coherent oscillations about this
minimum, damped by the Hubble expansion rate H. This
process is known as the vacuum realignment mechanism
[5–7]. The DM energy density in this scenario is stored in
the coherent oscillations of the axion condensate and
depends on the initial value of the axion field when the
PQ symmetry breaks, which is parametrized by the initial
misalignment angle θi. We generally expect the axion
energy density to be proportional to θ2i except around
θi ∼ π where the nonharmonic terms in the axion potential
become important [46–50]. The properties of the axion
condensate crucially depend on whether the spontaneous
breaking of the UPQð1Þ symmetry occurs before or after the
end of inflation. In the preinflationary scenario, the value of
θi is uniquely selected over the whole observable Universe.
Here, we consider the opposite scenario in which the PQ

symmetry is broken after the end of inflation—the post-
inflationary scenario. In this case, the initial misalignment
angle θi takes different values in different patches of the
observable Universe, since no patch has been selected by
the inflationary process. In this postinflationary scenario,
self-gravitating substructures called axion miniclusters
(AMCs) [51–53] are expected to form. Moderate Oð1Þ
overdensities initially lead to the formation of minicluster
“seeds” [54] which later collapse into gravitationally bound
AMCs at around matter-radiation equality [51–53,55].2
Instead, AMCs cannot form in the preinflationary scenario
even when the initial conditions of the QCD axion field are
extremely fine-tuned [56].
Significant progress has been made towards solving the

early Universe dynamics of the axion; numerical simula-
tions loosely constrain the fraction of cold DM axions in
these bound structures fAMC to be Oð1% 100%Þ [54,57].
This fraction fAMC plays a fundamental role in the
prospects for axion DM detection. For example, if most
of the DM is bound in AMCs, the probability of having a
substantial DM density near Earth may drop drastically,
due to the rarity of Earth-AMC encounters [58], making
direct detection methods ineffective. Similarly, the encoun-
ter rate of AMCs with a single NS is likely to be low,
rendering radio observations of individual NSs ineffective
in the search for axion-photon conversion. Fortunately,
encounters between miniclusters and the MW population
of NSs can give rise to interesting transient radio signals, as
we show in our companion Letter, Ref. [59].
It is possible to assess the fraction of cold axions bound

in AMCs through femtolensing induced by individual

miniclusters [60,61], microlensing from minicluster halos
formed after matter-radiation equality from hierarchical
merging [62–64], and minicluster lensing of highly mag-
nified stars [65]. These studies typically treat fAMC as a
constant, but miniclusters interacting with their environ-
ment in fact cause fAMC to become dependent on both time
and spatial position. Tidal interactions of miniclusters with
larger host halos, with each other, and with condensed
baryonic objects all play a pivotal role in the survival of
miniclusters [66]. In this paper, we quantify the degree to
which interactions between miniclusters and stars can
change the characteristics of AMCs today. We focus on
the MW, where stars are abundant and constitute the
dominant disruption mechanism [67,68]. In particular, we
present a formalism that describes the reaction of an AMC’s
internal state to an interaction with a star. We then use this
formalism to run Monte Carlo simulations of AMCs as they
orbit the MW and interact with the stellar population. For
computational simplicity, we make a number of simplifying
assumptions. First, we do not concurrently evolve AMCs
through structure formation and stellar disruption. Second,
we assume that the MW has been in a steady state since its
formation. Despite these assumptions our results represent a
fundamental step towards quantifying the importance of tidal
stellar interactions for the distribution of AMCs in the MW.
As we argue in Sec. IVA, relaxing our assumptions will not
change our overall conclusions but future work should
quantitatively address these issues.
In addition to AMCs, axion stars (ASs)—another class of

axionic astrophysical object—are expected to form and
remain stable over cosmological times (in particular the
dilute branch of axion stars [69]). Importantly, they may
readily form within miniclusters, producing a central core
[70–72]. For simplicity, we do not simultaneously consider
both AMCs and ASs. Instead, we make a cut on the
minicluster parameter space in order to focus on those
AMCs for which the density profile is known most reliably
(as described in Sec. II E).
This paper is structured as follows: in Sec. II we describe

the initial distributions of AMCs in the MW that represent
the starting point of our work. Section III discusses the
dynamics of successive stellar encounters. In Sec. IV we
discuss our Monte Carlo simulations and how to interpret
the results. We then discuss the minicluster population
today in Sec. Vand how this applies to observational results
in Sec. VI. Finally, we discuss future work and conclude in
Sec. VII. Throughout this paper, we limit our discussion to
axions which constitute 100% of the DM and only consider
the QCD axion. Specifically, we assume a Kim-Shifman-
Vainshtein-Zakharov (KSVZ)-like [73,74] axion of mass
ma ¼ 20μeV,3 and we comment on results for different

2Note that we will use the terms miniclusters and AMCs
interchangeably throughout the paper.

3We choose the DM axion mass to agree with recent numerical
simulations that also work under the assumption of a KSVZ axion
[57,75].
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masses in Sec. VII. Our results can be extended to other
axion models, provided that the distributions of AMC
masses and overdensities are modified accordingly.

II. MINICLUSTERS IN THE MILKY WAY

Cold axions are produced in the early Universe through
nonthermal processes at the time tosc at which the axion
field begins oscillating, when the Hubble rate is of the order
of the axion mass. The present number density of axions is
given by

na ¼
ρosc
ma

a3osc; ð1Þ

where a is the scale factor (set to unity today), and ρ is the
axion energy density. The subscript “osc” indicates the
value of the parameter at tosc. Equating the energy density
of axions today to the observed DM abundance fixes the
value of the axion mass. The computation of ρosc requires
one to simulate the dynamics of the topological defects
associated with the spontaneous breaking of the PQ
symmetry, which is a significant challenge. Here, we
follow recent literature on the subject and we fix ma ¼
20 μeV [57,75], although a wide range of masses is still
possible [76].
An individual AMC can be characterized by an initial

overdensity parameter δ, discussed in Sec. II A, and an
initial mass described in Sec. II B. Due to the randomness
of the initial conditions of the axion field over causally
connected patches, AMCs are formed with a range of
overdensity parameters and masses. We note that predic-
tions for the AMC properties are still under debate in the
literature and we attempt to highlight these uncertainties
throughout. We emphasize, however, that our framework
can be straightforwardly recast under different assumptions
for the initial distribution of AMCs, as we discuss in Sec. V.

A. Distribution of overdensities

After the DM axion field has started to oscillate, its mean
background density scales with temperature as
ρ̄aðTÞ ¼ 3TeqsðTÞ=4, where sðTÞ is the entropy density
at temperature T and Teq is the temperature at matter-
radiation equality. A density fluctuation ρa > ρ̄a decouples
from the cosmological expansion at the temperature
Tδ ¼ ð1þ δÞTeq, where δ≡ ðρa − ρ̄aÞ=ρ̄a is the overden-
sity parameter. After this, the overdense region undergoes
nonlinear gravitational collapse, becoming gravitationally
bound into an AMC [52,60]. Assuming spherical collapse,
the density of a virialized minicluster is [77]

ρAMCðδÞ ¼ 140ð1þ δÞδ3ρeq; ð2Þ

where ρeq is the average matter density at matter-radiation
equality. The AMC density ρAMCðδÞ does not depend on

the interaction of the axion with matter, nor on the axion
mass. For this reason, we expect that our results will be
unchanged for AMCs formed from an axionlike field, as
long as the axionlike field makes up the entirety of the DM.
The distribution of overdensities dfAMC=dδ can be

assessed through numerical simulations [57,77]. In this
paper, we adopt the expression for dfAMC=dδ used in
Ref. [57] and we span the range of values δ ∈ ½0.1; 20�
(corresponding to characteristic densities ρAMC ∈ ½102; 2×
1010� M⊙pc−3). For completeness, we report the formula
used in the Appendix C. Mapping out the correlation
between δ and the AMC mass MAMC is currently challeng-
ing, as the simulations used to derive dfAMC=dδ stop at
matter-radiation equality [57], while we are interested in the
mass function in the late Universe. In the following, we
assume that there is no correlation between dfAMC=dδ and
the AMC mass distribution introduced below, though our
formalism can be straightforwardly extended to incorporate
such correlations.

B. Initial halo mass function

The characteristic comoving number density of AMCs
per logarithmic mass interval is described by the halo mass
function (HMF). The HMF at matter-radiation equality (at
redshift zeq) can be assessed by evolving the PQ field from
the moment at which the PQ symmetry breaks until zeq
[54,57]. The high-end tail of the HMF shows an exponen-
tial cutoff which, at recombination, is placed at around the
largest mass of the AMCs,MmaxðzeqÞ ≈M0 [54,78,79]. The
characteristic mass M0 is associated with the axion energy
density contained within a Hubble horizon at tosc [80]

M0 ¼
4π

3
ð1þ δÞ ρosc

H3
osc

≈ 10−11 M⊙ð1þ δÞ
�
20 μeV
ma

�
1=2

;

ð3Þ

where M⊙ is the Solar mass.
Perturbations in the axion density continue to grow after

matter-radiation equality, so that the HMF evolves under
hierarchical structure formation. N-body simulations fol-
lowing AMC structures from recombination to z ≈ 99 lead
to a HMF dP=d lnMAMC ∝ MAMC

γ, with a characteristic
slope γ ∼ −0.7 [78]. This result corroborates the semi-
analytic solution obtained by using the Press-Schechter
formalism [81], which finds that the mass function at late
times scales as M−0.68 for small masses, and as M−0.35 for
large masses, over the mass interval 10−15 ≲M=M⊙ ≲
10−9 [64]. Earlier work found the slope ∼ − 0.5 [62,63].
As structure formation proceeds, the high-end cutoff of

the HMF evolves according to the Press-Schechter analysis,
since AMCs of mass MAMC > M0 form through hierar-
chical structure formation from the early seeds of mass
MAMC ≤ M0. On the other hand, the assessment of the low-
end mass cutoff is challenging ([82], Sec. V.2). Both the
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semianalytic formalism and the numerical assessment of
the low-end tail of the mass distributionMAMC ≪ M0 show
limitations due to a number of factors. For example,
fluctuations in this regime are not Gaussian so the Press-
Schechter formalism cannot be used; in addition, resolving
the power spectrum at such small scales is a numerical
challenge [83]. Note that neither the numerical simulations
of the early Universe, nor the Press-Schechter formalism
account for the possible presence of ASs, which we discuss
in Sec. II E.
Here, we model the HMF at the present time z ¼ 0 as

dP
d lnMAMC

¼ γ

Mmax
γ −Mmin

γ MAMC
γ; ð4Þ

where the expression is valid within the mass range
Mmin ≤ MAMC ≤ Mmax; otherwise we set the HMF to zero.
We fix the characteristic slope to γ ¼ −0.7 as suggested by
recent simulations of the collapse and mergers of AMCs
[78]. We adopt the HMF low-end cutoffMmin and high-end
cutoff Mmax from Refs. [62,63].4 The low-end tail of the
HMF distribution is cut off at the mass Mmin, which at the
time of AMC formation is proportional to the axion Jeans
mass. These smallest collapsed miniclusters then grow
slowly to z ¼ 0 today.
The high-end cutoff of the HMF arises from the fact that

the largest overdensities in the initial Gaussian density field
are exponentially suppressed. The exact value of Mmax is
not important in determining the properties of the AMC
distribution, since the HMF is peaked towards low values
of the mass with negligible contributions from masses
MAMC ≫ M0.

Mmin ¼ 3.3 × 10−19 M⊙;

Mmax ¼ 5.1 × 10−5 M⊙: ð5Þ

Note that the lower end of this mass range will be
suppressed by our AS cut, as described in Sec. II E. The
characteristic radius RAMC for an AMC of massMAMC is of
the order of

RAMC∼
�

3MAMC

4πρAMCðδÞ
�

1=3
≈1.4×1011 m

�
MAMC

10−10 M⊙

�
1=3

:

ð6Þ

The HMF in Eq. (4) has been obtained without consid-
ering the effects of the tidal stripping of AMCs due to
nearby stars in the MW or due to the mean Galactic field.
The distribution in Eq. (4) gives us the initial HMF. In
Sec. III, we assess the effects of tidal stripping on the

population of AMCs, which effectively modifies the initial
HMF to yield the true HMF today. Because the HMF is a
falling power law, the lightest AMCs will dominate the
MW population, meaning that our results could in principle
be sensitive to the low-mass cutoff Mmin. While Mmin lies
below the minimum mass that passes our AS cut criteria, it
may still affect the AMC population through its influence
on the normalization of the HMF.

C. Distribution of AMCs in the Galaxy

Given the DM density profile in the MW ρDMðrÞ, we
model the spatial distribution of the number density of
AMCs as

nAMCðrÞ ¼ fAMC
ρDMðrÞ
hMAMCi

; ð7Þ

where hMAMCi is the mean AMC mass before disruption is
accounted for. Using the HMF in Eq. (4), we obtain the
value hMAMCi ¼ 1.4 × 10−14 M⊙. Here, we set fAMC ¼
100% (though all our results can be trivially rescaled).
The distribution of the DM density in the Galaxy ρDMðrÞ

is modeled according to a Navarro-Frenk-White (NFW)
density profile [84],

ρNFWðrÞ ¼
ρs

ðr=rsÞð1þ r=rsÞ2
; ð8Þ

where we set the parameters ρs ¼ 0.014 M⊙ pc−3 and rs ¼
16.1 kpc [85].

D. Density profiles of AMCs

For the internal density profile of the AMCs ρintðRÞ, we
consider two different models, namely (i) a self-similar
power-law (PL) profile, and (ii) an NFW profile as in
Eq. (8). These density profiles are illustrated in Fig. 1.5 The
density profile of an AMC for case (i) is described by
[63,86]

ρPLint ðRÞ ¼ ρs

�
rs
R

�
9=4

ΘðRPL
AMC − RÞ; ð9Þ

where ΘðxÞ is the Heaviside step function. We truncate the
PL profile at a radius

RPL
AMC ¼

�
3MAMC

4πρAMCðδÞ
�

1=3
: ð10Þ

We fix ρsr
9=4
s ¼ ρAMCðδÞðRPL

AMCÞ9=4=4 [63], to give mean
density ρAMCðδÞ and the correct total mass for the AMC.
Such PL profiles are expected from models of secondary

4We note that recently Ref. [79] found a HMF with an overall
shift to lower masses. As we will show below, the disruption
process is approximately independent of the AMCmass; this shift
will therefore not have a substantial effect on our results.

5In the rest of the paper, we heroically endeavor to use
lowercase r for galactocentric radii and uppercase R for AMC
radii.
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infall [87] and have also been observed in numerical
simulations of the gravitational collapse of AMCs [55].
The PL profile likely describes the density of AMCs at
formation and therefore would be most suitable for the
lightest AMCs which have not undergone growth through
mergers.
The most massive AMCs are formed hierarchically

through mergers of smaller AMCs, as is generically
expected for cold DM substructures [62,63,78]. This
motivates model (ii), in which the density is described
by a NFW profile, defined in Eq. (8). The exact corre-
spondence between (MAMC, δ) and the NFW parameters is
somewhat arbitrary. We follow Ref. [63] and make the
identifications ρs ¼ ρAMCðδÞ and

rs ¼
�

MAMC

4πρAMCðδÞfNFWðcÞ
�

1=3
; ð11Þ

where the function fNFWðcÞ ¼ lnð1þ cÞ − c=ð1þ cÞ is
defined in terms of a “truncation” parameter c ¼ RAMC=
rs, which we fix to c ¼ 100.6 The AMC profile is truncated
at the radius

RNFW
AMC ¼ crs ∼ 6.5 × 1012 m

�
MAMC

10−10 M⊙

�
1=3

; ð12Þ

where the numerical result holds for δ ¼ 1. With these
choices, the mean density enclosed within rs is

3fNFWð1ÞρAMCðδÞ ≈ 0.58ρAMCðδÞ and the total mass
enclosed within RAMC is MAMC.
Numerical simulations suggest AMC concentrations of

c ∼Oð100Þ at z ¼ 99 [78], growing roughly as ð1þ zÞ−1
to c ∼Oð104Þ today [64]. However, AMCs with such large
concentrations would have a density in their outskirts
which is many orders of magnitude lower than that of
the host halo of the MW. We therefore fix c ¼ 100 to
account for the fact that such diffuse AMCs would have
been rapidly tidally truncated. This tidal truncation will
lead to a reduction in the AMCmass compared to the initial
mass described in Sec. II B. As described in more detail in
Sec. IVA and Appendix A, this amounts to a mass loss of
5%–40% (depending on the initial AMC mass). For NFW
AMCs, we therefore correct the initial HMF to account for
this mass loss, as described in Sec. VA. Note also that as
we show in Appendix E, fixing the truncation parameter to
c ¼ 104 instead should have a minimal impact on our
formalism and results.
Even fixing c ¼ 100, the above choices lead to NFW

miniclusters which are much more dilute than the PL case,
allowing us to also explore a more conservative scenario.
For a given MAMC and ρAMC, AMCs described by this
NFW profile (with c ¼ 100) will have a mean internal
density which is Oð105Þ times lower than the correspond-
ing PL profile, as illustrated in Fig. 1.
Recent N-body simulation [78] suggest that the tran-

sition from direct collapse (PL-like profiles) to hierarchical
structure formation (NFW-like profiles) should occur at
aroundM ∼ 10−13 M⊙ for an axion of mass ma ¼ 20 μeV.
However, dedicated cosmological simulations are required
to confirm the detailed behavior of AMC density profiles as
a function of MAMC. We therefore perform our analysis
assuming that either all AMCs have PL profiles or that all
have NFW profiles, in the spirit of bracketing the uncer-
tainties on the final AMC properties.

E. Axion stars

Nonrelativistic ASs are described by solitonic solutions
to the Schrödinger-Poisson equation and are expected to
form in the central regions of AMCs in the right conditions.
In particular, the central density of an AMC must be high
enough to allow two-to-two processes to cool their inner
core and lead to the formation of a Bose-Einstein con-
densate [53,88]. This process has been observed in recent
numerical simulations [70–72] and has shown a character-
istic core-halo mass relation [89]

MAS ¼ 1.56 × 10−13 M⊙

�
20 μeV
ma

��
MAMC

1 M⊙

�
1=3

; ð13Þ

where we have evaluated the expression today and ignored
Oð1Þ factors. The corresponding radius is given by [89]

FIG. 1. Models for the internal density profile of AMCs which
we consider in this work: power-law, Eq. (9), and NFW, Eq. (8).
Vertical dashed lines show the truncation radii RAMC. We fix the
characteristic mass and density to MAMC ¼ 10−10 M⊙ and
ρAMC ¼ 106 M⊙ pc−3 ðδ ≈ 1.55Þ respectively. In the NFW case,
the mean density is much lower and the AMC is much larger.

6This truncation parameter is analogous to the concentration
parameter used to characterize isolated NFW halos, and which
relates the virial radius of the halo to its scale radius, c ¼ Rvir=rs.
We will sometimes therefore refer to c as the “concentration” of
the AMC.
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RAS ¼ 3.85 × 10−8 m

�
20 μeV
ma

�
2
�
M⊙

MAS

�

¼ 2.47 × 105 m

�
20 μeV
ma

��
MAMC

1M⊙

�
−1=3

: ð14Þ

The inverse relationship between the AS’s mass and radius
leads to a problematic scenario for low-mass AMCs in
which the central AS’s radius would be larger than that of
the corresponding AMCs. To avoid this unphysical descrip-
tion of an AMC, we perform a cut on the overall population
in which we only consider miniclusters with a radius
larger than the radius of the corresponding AS at its
center, i.e.,

RAMCðδÞ > RAS: ð15Þ

These results will be referred to as the “AS cut.”
For the smallest overdensity parameter that we consider

δ ¼ 0.1, we find that no AMCs with masses below 5.0 ×
10−16 M⊙ pass the AS cut for PL profiles, while no AMCs
below 1.6 × 10−18 M⊙ pass in the case of NFW profiles.
In both cases, these minimum masses exceed the value
of Mmin in Eq. (5). Starting from the initial population of
AMCs described in this section, we then find the fraction of
AMCs which pass the AS cut is fPLcut ¼ 2.7 × 10−4 for PL
density profiles and fNFWcut ¼ 1.5 × 10−2 for NFW profiles.
The difference between the two density profiles arises
because for a fixed mass MAMC and characteristic density
ρAMC, PL profiles are more compact and the AS radius in
Eq. (16) is more likely to exceed the AMC radius.
We emphasize that current numerical simulations (for

example, Refs. [57,71,78]) do not have sufficient resolution
to observe the formation of ASs in the lightest AMCs and
therefore their existence and evolution has not yet been
confirmed. However, our aim is to cut out AMC-AS
systems which are likely to be most problematic. Even
with this cut, it is also possible that the central density core
produced by the presence of an AS may affect the stability
of AMCs to tidal perturbations. The treatment of light
AMC-AS systems requires dedicated study and is left to
future work.

III. TIDAL STRIPPINGOF AXIONMINICLUSTERS

AMCs can be disrupted by their encounters with stars
[90] as well as by tidal interactions with the gravitational
field of the disk [67]. In this section, we aim to model the
interactions of stars with AMCs. Importantly, we model
and track all interactions, including those that do not lead to
the total disruption of an AMC. Through many successive
weak interactions, these AMCs can lose mass and poten-
tially have greatly enlarged radii. This population of
perturbed AMCs may result in quantitatively distinct

observational signatures when compared to an unperturbed
population (see Sec. VI and Ref. [59]).7

First, we describe how to treat an individual AMC going
through a series of interactions. We then discuss in Sec. IV
our Monte Carlo procedure to model a population of AMCs
being perturbed.

A. Encounter dynamics

Stars are dense objects with relatively small radii.
Similarly, AMCs are small, meaning that the large majority
of encounters will occur when the separation between these
objects is significantly larger than their physical size. We
therefore work in the “distant-tide” approximation [92]. In
this approximation, a minicluster of mass MAMC going
through an encounter with a stellar object would increase
its internal energy by a quantity [93] (see alsoRefs. [94–97]):

ΔE ≈
�
2GM⋆
b2V

�
2MAMChR2i

3
; ð16Þ

where M⋆ is the mass of the stellar object, b is the impact
parameter of the interaction, V is the relative velocity
between the objects, and the mean squared radius hR2i
accounts for the mass distribution inside the AMCs [94]. We
parametrize the mean squared radius as hR2i ¼ α2RAMC

2,
with α2 ¼ 3=11 ≈ 0.27 for the PL profile and α2 ≈ 0.13
for the NFW profile. Such an encounter is illustrated in
Fig. 2.
The size of the energy injection, as described by Eq. (16),

should be compared with the binding energy of the AMC,
which we write as Ebind ¼ βGMAMC

2=RAMC. The Oð1Þ
prefactor β depends on the internal density profile for
which we find β ¼ 1.5 for the PL profile and β ¼ 3.46 for
the NFW profile. There are then two distinct regimes for the
energy injection8:

(i) An encounter with a sufficiently small impact
parameter will inject more energy than the binding
energy Ebind of the AMC leading to complete
disruption.

(ii) An encounter with a large impact parameter that
simply injects energy into the AMC but does not
completely unbind it.

The first regime ðΔE≳ EbindÞ can be reexpressed as
b≲ bmin, where we have defined the minimal impact
parameter that does not entirely disrupt the minicluster as

bminðδÞ ≈
ffiffiffiffiffiffiffi
M⋆
V

r �
α2G

βπρ̄ðδÞ
�

1=4

: ð17Þ

7These encounters may leave a stream of axions behind them
which can also lead to features in direct detection experiments
[68,91], but here we focus on the properties of surviving AMCs.

8We only split these two regimes for the purposes of dis-
cussion. Computationally, both are treated in the same way.
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Here, ρ̄ ¼ 3MAMC=ð4πRAMCðδÞ3Þ is the mean density of
the AMC. An encounter between a PL AMC with δ ¼ 1
and a perturbing object of massM⋆ ¼ 1 M⊙ with a relative
velocity V ¼ 10−3c gives bmin ≈ 0.01 pc, which is much
larger than the typical size of an AMC, as is required by the
distant-tide approximation. Note that this expression
depends only on the density of the minicluster, and not
on its size or mass separately. Indeed, the fractional energy
injected ΔE=Ebind depends on the AMC properties only
through the mean density, and we therefore expect that the
behavior of the AMCs under perturbations should be
independent of MAMC. As pointed out in Sec. II D, for a
given massMAMC and overdensity δ, the mean density of an
AMC is significantly lower for NFW profiles than for PL
profiles. As we will see, AMCs with NFW profiles are
much more easily disrupted than their PL counterparts.
The second regime occurs for larger values of the impact

parameter b > bmin. In this regime, a single encounter does
not completely unbind the AMC, but energy injected
through multiple encounters can lead to mass loss or a
change in radius and may eventually disrupt the AMC. We
study this second regime in more detail below.

B. Perturbing the miniclusters

To estimate the mass loss from a minicluster when it is
perturbed, we study the evolution of the phase space
distribution function of axions in the minicluster:

fðEÞ≡ma
dN

d3Rd3v
: ð18Þ

For isotropic, spherically symmetric distributions of par-
ticles, the distribution function depends only on their
specific relative energy

E ¼ −
E
ma

¼ ΨðRÞ − v2=2; ð19Þ

where ΨðRÞ ¼ −ΦðRÞ is the gravitational potential relative
to the boundary at infinity ([92], Chap. 4.3).
For spherically symmetric systems in equilibrium, the

potential is a monotonic function of the radius R, meaning
that the density profile can be expressed as a function of Ψ,
ρðRÞ ¼ ρðΨðRÞÞ. The distribution function can then be
determined from the density profile using the Eddington
inversion method ([92], p. 290):

fðEÞ≡ 1ffiffiffi
8

p
π2

Z
E

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
E −Ψ

p d2ρ
dΨ2

dΨ: ð20Þ

As discussed in Sec. II D, we will consider two possible
density profiles for the AMCs: PL and NFW. For the PL
profile, the distribution function can be computed analyti-
cally (see e.g., Ref. [98]) while the NFW distribution must
be computed numerically. See Appendix D for more
details.
Consider then a perturbation to the minicluster of total

size ΔE. Given that the critical impact parameter for
disrupting the minicluster is already much larger than
the minicluster size, we will assume that b ≫ RAMC.
Under this condition, the average energy injected per unit
mass increases with distance from the AMC center as R2

[93,94] and can be written:

ΔEðRÞ ¼ −
ΔE

MAMC

R2

hR2i : ð21Þ

Particles with E < 0 immediately after the perturbation can
be considered unbound; numerical simulations of the
disruption of stellar clusters suggest that the subsequent
relaxation of the system should not substantially change the
fraction of particles which are unbound [99,100]. So in
order to compute the mass loss we need only calculate the
minicluster mass in particles with energy E < ΔE. This is
given by

ΔM ¼ Mð< ΔEÞ ¼
Z
E<ΔEðRÞ

d3Rd3vfðEÞ

¼ 16π2
Z

RAMC

0

R2dR
Z

vmaxðRÞ

0

v2dvfðEÞΘðΔEðRÞ− EÞ

¼ 16π2
Z

RAMC

0

R2dR
Z

min½ΔEðRÞ;ΨðRÞ�

0

× dE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðRÞ− EÞ

p
fðEÞ; ð22Þ

where the escape speed is vmaxðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΨðRÞp

and we
have also used v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðΨðRÞ − EÞp
and dE ¼ −vdv. All

calculations in this section are done assuming a fixed
potential ΨðRÞ as given just before the interaction, which is
justified in the limit where the mass loss is small and mostly
happening at the outskirts of the object.

FIG. 2. Illustration of an AMC-star encounter taking place at a
distance r from the Galactic Center. An AMCwith radius RAMC is
passed by a star of massM⋆ with impact parameter b and relative
velocity V. The energy ΔE injected into the AMC is given in
Eq. (16).
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Note that we have defined the distribution function fðEÞ
for an isolated AMC which extends to infinity. In practice,
in Eq. (22), we implement a hard truncation of the AMC at
a radius R ¼ RAMC. We assume therefore that particles at
R > RAMC are no longer bound to the AMC but are instead
bound to the diffuse halo of the MW. Note also that our
definition of the distribution function is not strictly con-
sistent with a truncated density profile, as we have
calculated the potential assuming that the AMC extends
to infinity (for convenience). Physically, this means that
particles near R ¼ Rmax are moving more quickly (and are
therefore more easily unbound) than they would be in a self-
consistent model for the miniclusters. We therefore consider
this calculation as conservative from the perspective ofAMC
disruption. Nonetheless, the error induced by this approxi-
mation should be small because, as wewill see, these density
profiles are close to being in virial equilibrium.
In Fig. 3, we plot the mass loss as a function of the size of

the perturbation ΔE, expressed in terms of the binding
energy Ebind ¼ βGMAMC

2=RAMC. The fraction of mass lost
in an encounter grows with the size of the perturbation,
tending slowly to ΔM ∼M for ΔE ≫ Ebind. The “flat-
tening” in ΔM=M occurs because energy is predominantly
injected into particles in the outskirts of the AMCwhich are
only loosely bound. Very large amounts of energy are
required to strip away the tightly bound particles close to
the center. Our calculations are in line with results from
N-body simulations of stellar clusters, which show a mass
loss of 20%–30% for energy injections ΔE ∼ Ebind (see
e.g., Fig. 6 of Ref. [100]).

Once some mass has been stripped away from the
minicluster, we must compute the properties of the surviv-
ing object. The total energy of the minicluster is

Etotal ¼
1

2
MAMCσ

2 − Ebind: ð23Þ

The velocity dispersion squared σ2 can be computed from
the distribution function and may be parametrized as
σ2 ¼ κGMAMC=RAMC. The total energy can then be written

Etotal ¼
�
κ

2
− β

�
GM2

AMC

RAMC
¼

�
κ

2β
− 1

�
Ebind; ð24Þ

allowing the energy of the AMC to be related to its mass
and radius. Objects in virial equilibrium should have κ ¼ β.
As we have noted above, the artificially truncated profiles
we consider are not strictly in equilibrium, leading to values
of κ ¼ 1.15 β for PL profiles and κ ¼ 1.02 β for NFW
profiles. In Table I we collect the numerical values of the
prefactors obtained for each expression.
Energy conservation implies that

Ebound
i þ ΔE ¼ Ebound

f þ Eunbound
f ; ð25Þ

where the subscripts i and f denote quantities defined just
before and after the interaction. Superscripts “bound” or
“unbound” refer to the respective subsets of particles, as
defined through Eq. (22), and we use Ebound

i ≡ Ei and
Ebound
f ≡ Ef for clarity. We assume that unbound particles

are removed instantaneously to infinity. Energies include
both the kinetic energy of the particles as well as their
potential energy.
We can estimate Eunbound

f by taking the initial (preinter-
action) energy of the subset of particles that is going to be
unbound Eunbound

i and adding the energy that is transferred
to these particles during the interaction. This yields

Eunbound
f ¼ Eunbound

i þ fejΔE; ð26Þ

where fej is the fraction of the total injected energy that
goes to unbound particles. Putting these components
together, we can write the final energy of the AMC after
collision as

FIG. 3. Fractional mass loss (solid lines) for AMCs with power-
law and NFW profiles as a function of the size of the perturbation
ΔE, in units of the binding energy Ebind. Dashed lines show the
fraction of the injected energy which is carried away by the
ejected mass fej, while dotted lines show the fraction of the initial
AMC energy stored in particles which are eventually unbound in
the interaction.

TABLE I. Numerical values of the prefactors used for charac-
terizing the AMC properties: the mean-squared radius hR2i;
binding energy Ebind; and velocity dispersion squared σ2.

PL NFW Expression

α2 0.27 0.13 hR2i ¼ α2RAMC
2

β 1.5 3.47 Ebind ¼ βGMAMC
2=RAMC

κ 1.73 3.54 σ2 ¼ κGMAMC=RAMC
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Ef ¼ Ei þ ð1 − fejÞΔE − Eunbound
i : ð27Þ

The fraction fej can be calculated by performing a
similar calculation as for the mass loss in Eq. (22), but
weighting the integral by the amount of energy injected at
each radius ΔEðRÞ, as given in Eq. (21). We find that fej
depends on the size of the perturbation ΔE and is typically
a factor of a few times larger than the fraction ofmass ejected
ΔM=MAMC, as illustrated in Fig. 3. The initial energy of the
particles which will eventually be unbound Eunbound

i can be
taken as the sum of the kinetic energy of these particles plus
the change in the binding energy from removing these
particles. The final binding energy is calculated self-
consistently from the density profile immediately after the
interaction (see Appendix D for more details).
We assume that after the perturbation, the AMC will

relax on a short timescale to have the same density profile
(and for NFW profiles, the same truncation parameter
c ¼ 100), but described by a new mass and radius. This
assumption is made for computational simplicity—
however, there is some indication from N-body simulations
that perturbed DM substructures do retain a universal
density profile [97,100].9 The final mass is Mf

AMC ¼
Mi

AMC − ΔM, while the final radius can be calculated from
the total energy using Eq. (24):

Rf
AMC ¼

�
κ

2
− β

�
GðMf

AMCÞ2
Ef

: ð28Þ

We note that the internal relaxation time scale trel ∼
RAMC=σv ∼ 104 yr of the AMCs is several orders of

magnitude shorter than the average time between substan-
tial encounters, Δtenc ∼ tMW=Nenc ∼Oð106Þ yr, where
tMW ≈ 13.5 × 109 yr is the age of the MW and Nenc ∼
104 is the typical number of encounters (see Fig. 7). We
therefore assume that there should be sufficient time for
AMCs to relax between successive encounters.
The assumption that the AMCswill have the same density

profile after the perturbation allows us to follow the evolution
of a large number of AMCs under many perturbations in a
computationally feasible way. However, we note that this
assumption is conservative. FromEq. (21), energy is injected
into andmass is lost predominantly from the outer parts of the
AMC. The remnant should therefore be more dense after the
perturbation, making it more resistant to further perturba-
tions. Our assumption therefore leads to a smaller number of
surviving AMCs than a more detailed (but computationally
expensive) calculation.
In Fig. 4, we illustrate the evolution of the mass, radius,

and binding energy of a minicluster under repeated pertur-
bations.We fix the size of each perturbation to be 1000 times
smaller than the initial binding energy, ΔE ¼ 10−3Ebind;i. In
the PL case (left panel), we see that with each perturbation,
mass is lost but energy is also injected and as a result the
AMC becomes larger in size and is eventually disrupted
entirely. This typically takes place with fewer encounters
than expected without accounting for the evolution of the
minicluster properties [which would beOð103Þ in this case,
due to the fixed size of the perturbations]. Miniclusters with
NFW profiles (right panel) show a similar behavior.
Crucially, when ΔE becomes comparable to the remaining
binding energy [afterOð450Þ encounters in this example] the
AMC radius begins to decrease. This is because for large
ΔE=Ebind, almost all of the injected energy is carried away by
the ejected mass (fej tends to one in Fig. 3), leaving the
remnant smaller and more dense than before the interaction.

FIG. 4. Fractional change in the minicluster properties x ¼ fM;R; Ebindg under repeated perturbations for AMCs with power-law
profiles (left panel) and NFW profiles (right panel). We fix the size of each perturbation to be 1000 times smaller than the initial binding
energy, ΔE ¼ 10−3Ebind;i.

9Note, however that Ref. [97] uses different definitions for
binding energy and energy injections.
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This behavior—seen also in studies of tidal shocks in
globular clusters [101]—emphasizes why we must carefully
account for the redistribution of energy through Eq. (27).

IV. MONTE CARLO SIMULATIONS

Having described how individual miniclusters are per-
turbed, we now want to understand the overall population
of AMCs and their interactions over the history of the MW.
We therefore run Monte Carlo simulations for this pop-
ulation of AMCs. For simplicity, we make a distinct split
between structure formation and the stellar disruption of
AMCs—these two processes would typically happen con-
currently (see Sec. IVA). Our simulations are therefore
initialized with the expected properties of an AMC pop-
ulation today, at z ¼ 0. We will discuss how removing this
assumption could affect our results in Sec. IVA. N-body
simulations of a population of AMCs may be required to
fully understand the details of the population today.
Nevertheless, we attempt to capture the relevant physics
in a simple and interpretable process.
We perform two different simulations using either the PL

or NFW AMC density profiles. In reality, we expect the
majority ofAMCs to showanNFWprofile forM ≳M0 and a
PL profile for M ≲M0, with the intermediate mass region
being populated by both. Our simulations therefore attempt
to bound the range of possible AMC populations today. We
run the simulations for tMW ¼ 13.5 billion years, therefore
allowing for the maximum amount of disruption within the
lifetime of the MW. The stellar distribution in the MW is
assumed to be static in time and is modeled as a bulge plus a
disk, as described inAppendixB.Again,wewill discuss how
changing these assumptions could change our results in
Sec. IVA.
Our simulated miniclusters are distributed in a spheri-

cally symmetric halo and follow elliptic orbits with a focus
at the Galactic Center, where eccentricities follow the
distribution shown in the top panel of Fig. 5 [102]. We
show later in Fig. 10 that this reproduces the Galactic NFW
density profile. For a given orbit, the time variation of the
galactocentric radius r of the orbit is described by the
expression

dr
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMencl

�
2

r
−
1

a
−
að1 − e2Þ

r2

�s
; ð29Þ

where a and e are the semimajor axis and the eccentricity of
the elliptic orbit respectively. For simplicity, we take Mencl
to be the mass of the MWenclosed within a sphere of radius
a given by the NFW profile [84]. The orbital radius is
bounded by the values að1 − eÞ ≤ r ≤ að1þ eÞ and the
period is given by Torb ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3=ðGMenclÞ

p
. The proba-

bility of finding an AMC at a specific radius at a particular
instant in time is given by

Pðrja; eÞ ¼ 2

Torb

�
dr
dt

�
−1
: ð30Þ

In Fig. 6 we show the binned distribution of PðrÞ for the
values of the eccentricity e ¼ 0.1 (blue), e ¼ 0.5 (orange),
and e ¼ 0.9 (green). For small values of e, PðrÞ approaches
a delta function at r ¼ a, i.e., a circular orbit. The values of
PðrÞ are larger at the boundaries r ¼ að1� eÞ because the
radial motion of the minicluster vanishes at either apsis and
so dt=dr diverges. Figure 5 shows the joint probability
distribution for a and e given a particular galactocentric

FIG. 5. Top panel shows the eccentricity probability distribu-
tion for the orbits of AMCs taken from Ref. [102]. Bottom panel
shows the joint probability that an AMC will have a particular
semimajor axis and eccentricity given a particular galactocentric
radius r ¼ 8 kpc.

FIG. 6. The binned probability of finding an AMC at a
particular radius r with a fixed semimajor axis a ¼ 1. We show
distributions for eccentricity values: e ¼ 0.1 (blue), e ¼ 0.5
(orange), and e ¼ 0.9 (green).
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radius (assuming the distribution for e shown in the top
panel of Fig. 5 [102]). Importantly, it shows that the
majority of AMCs found at a particular radius will have
similar semimajor axes (r ∼ a) and relatively low eccen-
tricities e≲ 0.4. At the same time, Fig. 5 shows a non-
negligible fraction of the population of AMCs found at a
particular galactocentric radius will have highly eccentric
orbits and a variety of semimajor axes.
Our Monte Carlo simulations range over a logarithmic

grid of values for the semimajor axis a ∈ ½0.1; 50� kpc. For
each value of a, the simulation proceeds as follows:
(1) We generate a set of NAMC ¼ 105 AMCs where the

mass is sampled from a log-flat distribution between
Mmin and Mmax and in overdensity according to the
distribution dfAMC=dδ in Eq. (C1). The log-flat
sampling was used to ensure that we had a suffi-
ciently large number of high mass AMCs in our
simulations. We will discuss how to reweight the
results of the simulations (and how we apply the AS
cut) to recover the true distribution in Sec. V. We
draw the eccentricity of each AMC orbit from PðeÞ,
which we treat as independent of the galactocentric
radius. Finally, each AMC is also given a random
inclination angle ψ with respect to the Galactic
plane, uniformly sampled within ½−π=2; π=2�.

(2) For each AMC orbit, we compute the number
density of the stellar field encountered by the
AMC as a function of time n⋆ðtÞ over a full orbit
(see Appendix B). We then evaluate the total number
of encounters with stellar objects over an orbit as

N ¼
Z

Torb

0

dtn⋆ðtÞVAMCðtÞ · πb2max; ð31Þ

where bmax is the maximum impact parameter that we
consider (see below) and VAMCðtÞ is the velocity of
the AMC as a function of time. The total number of
interactions is then given as Nint ¼ N × ðtMW=TorbÞ.
We truncate the total number of interactions atNcut ¼
106 which we justify below.

(3) For each AMC, we sample Nint relative velocities
and impact parameters. From these we compute a list
of energies Elist to be injected with each encounter,
using Eq. (16). The relative velocities are calculated
by sampling from the integrand of Eq. (31) to
compute a distribution of the most likely interaction
times. These interaction times can then be converted
into a list of radii and AMC velocities using the Vis-
Visa equation [103]. To obtain the encounter veloc-
ities, we then add a random 3D velocity drawn from
the local stellar velocity distribution, whichwe take as
a Maxwell-Boltzmann distribution with dispersion
σv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMenclðrÞ=r

p
. The impact parameter is

randomly drawn from the probability distribution
defined as

dP
db

¼ 2b
b2max

: ð32Þ

We fix the maximum impact parameter bmax such that
the energy injected is 1=Ncut times smaller than the
initial binding energy of the minicluster,ΔEðbmaxÞ ¼
Ebind=Ncut ¼ 10−6Ebind. The truncation at Ncut is
therefore not physically relevant for completely dis-
rupted AMCs but is sufficiently large to capture the
effects of partial disruption. We find typical values of
bmax ∼ 10−2 pc and bmax ∼ 10−1 pc for PL and NFW
profiles respectively.

(4) We then iteratively perturb each AMC, through Elist,
using the prescription described in Sec. III A. We
recompute the new radius and mass after each
iteration. As we note in Sec. III B, in some cases
the density of a NFW minicluster can increase after
an encounter, making it more resistant to further
disruption. When this happens, we recompute bmax
using the procedure described in the previous step.
We then recompute the number of interactions in the
remaining simulation time and truncate this at Ncut.
If the total AMC energy, given in Eq. (23), climbs
above zero, we consider it to be completely dis-
rupted and remove it from the simulation. Note that
we do not keep track of which AMCs pass the AS
cut during the simulations, instead applying the AS
cut to the distribution of perturbed AMCs, as
described in Sec. VA.

Histograms of the number of interactions as a function of
the galactocentric radius can be seen in the upper two
panels of Fig. 7—to simplify the discussion, we show
results for AMCs on circular orbits only. Note that here we
count the number of simulated interactions for each AMC,
stopping either at the end of the simulation time or when the
AMC is disrupted. There is a clear difference between the
PL (top) and NFW (middle) simulations which can be seen
as a distinct shift to larger numbers of interactions for NFW
profiles for a fixed galactocentric radius. The shift origi-
nates from the smaller average density of the NFW
miniclusters, which is reflected as a lower average binding
energy. The reduced binding energy leads to more inter-
actions above the threshold of ΔE=Ebind > 10−6. In the
NFW case, we also see that the number of interactions
rarely extends beyond 104. This is because the AMCs are
either completely disrupted or are stripped to leave a high
density remnant (for which further interactions above the
threshold of ΔE=Ebind > 10−6 are rare).
The lower panel of Fig. 7 shows the value of ΔE=Ebind

for a sample of 105 interactions in the Monte Carlo
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simulation. The majority of interactions inject only a small
amount of energy, while about 1 in 1000 interactions are
strong enough to give rise to substantial mass loss
ΔE ∼ Ebind. This further justifies our cut on the maximum
number of interactions Ncut ¼ 106, as this is much larger
than the ∼1000 interactions which would typically be
required to unbind an AMC.

A. Assumptions and caveats

1. Milky way properties

We have so far neglected the disruption of AMCs due to
tidal stripping by the host halo of the Galaxy. The impact of
tidal stripping can be quantified by considering the tidal
radius of the AMCs, the distance from the center of the
AMC at which tidal forces from the MW halo become
comparable to the self-gravity of the bound AMC [104].
We find that for PL profiles, the tidal radius is several orders
of magnitude larger than the physical radius of the AMC,
making them robust to tidal stripping. Instead, NFW
profiles with c ¼ 100 may be comparable in size to their
tidal radius, especially at small Galactocentric radii. It is
therefore likely that NFW AMCs have undergone some
tidal stripping by this mechanism, from their initial con-
centration of c ∼ 104, to reach our assumed concentration
of c ¼ 100. We therefore apply a correction of 5% 40% to
the initial mass of NFW AMCs, to account for this mass
loss. However, given the small size of these corrections, we
conclude that complete disruption by this mechanism is
unlikely and subdominant to stellar disruption (see also
Ref. [104]). Full details concerning tidal stripping due to
the MW halo are given in Appendix A.
The orbital motion of an individual AMC is influenced

by dynamical friction exerted by the MW ([92], p. 644).
The orbit of an AMC with virial velocity vðrÞ at the
galactocentric radius r decays with a timescale

t−1frc ¼ ½4πGρðrÞ� GM
v3ðrÞ ξðrÞ; ð33Þ

where ξðrÞ ∼Oð10Þ is a dimensionless function and ρðrÞ is
the background density of the MW at the orbital radius r.
Setting ρðrÞ to the Galactic NFW distribution, with the
corresponding expression for the virial velocity, Eq. (33)
gives tfrc ≳ tMW for M ≲ 10−5 M⊙ and r≳ 0.1 pc.
Conversely, the orbits of the heaviest AMCs would be
destabilized at very small Galactocentric radii. However, as
we will see, tidal disruption by objects in the stellar bulge
would disrupt these AMCs well before tMW. We can
therefore ignore the effect of orbital decay.
Throughout this work, we only include tidal interactions

with stars. In particular, we account for ∼1011 stars and fix
their mass to be 1 M⊙. Since the stellar mass function is
relatively steep,10 the vast majority of stars are around
1 M⊙. We therefore expect that considering different stellar
masses will produce only a small correction to our results.
In addition, we have not considered tidal interactions with a
separate population of NSs or white dwarfs which, despite
having a mass of the same order as that of a typical star, are
at least an order of magnitude less numerous [106]. Again

FIG. 7. The top and central panels show the number of stellar
interactions with AMCs on circular orbits at various galactocen-
tric radii. Compared to AMCs with PL density profiles, mini-
clusters with NFW density profiles undergo significantly more
interactions with ΔE=Ebind at a fixed galactocentric radius. For
illustration, in the bottom panel we show the distribution of
injected energies for PL profiles (which is approximately inde-
pendent of galactocentric radii).

10The Salpeter initial mass function, which is used almost
universally, is given by dN=dM ∝ M−2.35 [105].
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we expect the corrections to our simulation results to be
small when accounting for these additional astrophysical
objects.
Finally, we neglect variations in the stellar density over

the lifetime of the MW. Since the lifetime of a solar mass
star isOð1010Þ years, the majority of stars born early in the
MW’s history will have finished their life cycle by today. It
is therefore important to understand whether changes to the
stellar abundance could affect our results. Luckily, the star
formation rate is much larger than the death rate [107],
meaning that the stellar density has been increasing
throughout the lifetime of the Galaxy. By using a stellar
density as measured today we are therefore overestimating
the amount of tidal stripping that could happen over the
lifetime of the Galaxy. Nevertheless, the total stellar mass
of galaxies like the MW is thought to be relatively constant
(within a factor of two) since z ∼ 1 [108]. Future work
should adopt a time varying model of the MW which
follows the cosmological star formation history [109].

2. Structure formation

As mentioned above, for computational simplicity we
made a distinct split between the hierarchical structure
formation that these AMCs will undergo and their tidal
stripping through interactions with stars. The interplay of
these two physical effects requires a detailed study which
we leave to future work. Nevertheless, our split represents a
conservative approach since we allow for the maximum
amount of tidal stripping to occur for all AMC masses.
Lighter AMCs are more abundant and are likely to have
experienced fewer merger events than their heavier counter-
parts. These lighter AMCs have therefore been present in
our Galaxy for the longest period of time—our procedure
should therefore be a good reflection of the tidal stripping
for lighter AMCs. Heavier miniclusters, on the other hand,
are less abundant and have been gradually merging
throughout the history of our Galaxy. Mergers gradually
increase the maximum mass that an AMC can achieve. For
the heaviest AMCs, our simulations overestimate the
amount of tidal stripping that may have occurred by today.
On the other hand, Figs. 5 and 7 of Ref. [63] show that
AMCs with M ≲ 105M0 ≈ 10−6 M⊙ collapsed before z ≈
10 and therefore substantially before the formation of the
MW. For these lower masses our simulations should
capture the effects of stellar tidal interactions very well
throughout the MW halo.
For the most massive AMCs, from 10−6 M⊙ up to

Mmax ≈ 5 × 10−5 M⊙, there is still some uncertainty. At
smaller galactocentric radii the survival probability is low
(r≲ 10 kpc for NFW profiles and r≲ 3 kpc for PL
profiles). For high mass AMCs (which formed through
mergers) in these regions, we neglect the effects of
concurrent structure formation and stellar interactions,
leaving this to future work. In the outskirts of the MW
halo r≳ 30 kpc, stellar encounters are quite rare and will

therefore not dramatically affect the growth of more
massive AMCs. Fortunately, the high mass AMCs in the
inner regions of the MW are a tiny proportion of the total
number of miniclusters [[Oð10−9Þ] so we therefore con-
clude that our simulations are accurate for the majority of
the AMC population.

3. Mutual AMC collisions

Throughout our simulations, we do not consider the
mutual interactions between miniclusters. To see that this
is a good approximation, we estimate the encounter rate
of two AMCs at the galactocentric radius r as Γ ∼
nðrÞvðrÞhR2i where nðrÞ ∼ ρMWðrÞ=hMAMCi and vðrÞ is
the virial velocity associated with the NFW profile. These
encounters occur rather frequently, for instance at r ≈ 4 kpc
the encounter rate is Γ ≈ ð105 yearsÞ−1. For comparison,
the same computation for the encounter of a minicluster
with a star yields Γ ≈ ð1019 yearsÞ−1. However, mutual
AMC encounters only deposit a small amount of energy
during an interaction—this can be seen from Eq. (16)
which scales as the square of the mass of the perturbing
object. The mean mass of an AMC is ∼10−14 M⊙, meaning
that a typical AMC-AMC interaction will deposit 10−28

times less energy than a typical AMC interaction with a
star. Therefore, despite their large interaction rate, mutual
AMC encounters will not significantly contribute to the
tidal disruption of miniclusters.
In addition to AMC collisions that lead to tidal dis-

ruption, mutual miniclusters interactions can also lead to
mergers. Importantly, the increased background density
within the MW with respect to the critical density will
cause these merger interactions to happen more regularly
than in typical simulations. Fortunately, this effect will be
most prominent in the Galactic Center where the density is
largest, but also where stellar disruption will be dominant.
We leave a complete study of this effect to future work.

4. Minicluster substructure

As discussed in Sec. II D, we expect the most massive
AMCs to form from hierarchical mergers of lighter ones.
Numerical simulations of AMC clustering show that an
internal granular structure is expected on top of an overall
NFW distribution [78]. We have not considered such a
granular substructure, since lighter AMCs are expected to
be dissolved within the larger minicluster over the lifetime
of the MW due to the effects of dynamical friction [65].

V. AXION MINICLUSTERS TODAY

In this section we first discuss how to construct the true
AMC population distributions today from our Monte Carlo
simulations followed by a discussion of the results. Note
that although we present results for a specific choice of
HMF, the reconstruction procedure allows us to use the
same Monte Carlo results for arbitrary HMFs. In particular,
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this could include changes in the mass cutoffs Mmin and
Mmax, changes to the AS cut, or the introduction of
correlations between the minicluster mass MAMC and
overdensities δ.

A. Reconstructing physical properties

Each of our Monte Carlo samples corresponds to N ¼
105 AMCs with orbits of a given semimajor axis a. In order
to calculate the survival probability and AMC properties as
a function of galactocentric radius r, we must assign each
sample a weight w, proportional to the time that AMC
spends at a given value of r, from Eq. (30). With this, we
essentially “smear” each AMC sample over a range of radii
r, allowing us to estimate the properties as a function of r
(instead of a). We assume that the initial number density of
miniclusters as a function of semimajor axis nAMCðaÞ
follows an NFW profile. For a single AMC with semimajor
axis ai and eccentricity ei, the weight assigned in some
radial bin Δr is then

w ¼
�
Δai
N

�
× ½4πa2i nAMCðaiÞ� × hPðrjai; eiÞiΔr: ð34Þ

The first term accounts for the fact that the Monte Carlo
samples are not uniformly distributed in a, but concentrated
on logarithmically spaced grid points, with spacing Δai.
The second term is the assumed initial probability distri-
bution for the semimajor axis PðaÞ, with nAMC defined in
Eq. (7). The final term is the fraction of time spent at a
given radius, defined in Eq. (30), averaged over the radial
bin of interest. The AMC number density at a given
galactocentric radius can be obtained by summing over
the weights of all AMCs (with potential contributions from
all values of a). This smearing procedure gives rise to an
approximately NFW profile as a function of galactocentric
radius nAMCðrÞ, as shown by the black dashed line
in Fig. 10.
The number density of AMCs at a galactocentric radius r

can be written as

dn
dMdR

ðrÞ ¼ psurvðrÞnAMCðrÞPðM;RjrÞ; ð35Þ

where the survival probability is defined as the ratio of the
number of surviving AMCs NsurvðrÞ to the number
NinitialðrÞ at a given radius: psurvðrÞ ¼ NsurvðrÞ=NinitialðrÞ.
The probability distribution for the minicluster mass and
radius at a given galactocentric radius PðM;RjrÞ can be
extracted from the Monte Carlo simulations.11

Our Monte Carlo simulations were performed with a log-
flat distribution of AMC masses. The results must then be
adapted to reflect the true mass function of the AMCs.

From our simulations, we obtain the final density ρ and the
mass-loss fraction ν ¼ Mf=Mi of each AMC in a sample.12

The simulations confirm that the distribution of ρ and ν do
not depend on the initial AMC mass but only on the initial
density, as discussed in Sec. III A.
For a given initial mass function PiðMiÞ, the final

distribution of masses can be obtained by integrating over
all possible initial masses Mi, selecting only those which
produce the correct final mass Mf. The joint distribution
of AMC mass and density after disruption can then be
written as

PðMf; ρjrÞ ¼
Z

δðMf − νMiÞPiðMiÞPðρ; νjrÞdνdMi

¼
Z

1

ν
PiðMf=νÞPðρ; νjrÞdν: ð36Þ

Here, Pðρ; νjrÞ is the final probability distribution for the
density and mass-loss fraction at a given galactocentric
radius. We can now write the final mass function as a
Monte Carlo integral:

PðMfjrÞ ¼
Z Z

1

ν
PiðMf=νÞPðρ; νjrÞdν dρ

≈
X
k

wk

νk
PiðMf=νkÞ; ð37Þ

where we have replaced the integral by a sum over the N
surviving AMCs, with properties ðρk; νkÞ, distributed
according to Pðρ; νÞ. The index k runs over the AMCs
in the sample, with the weights wk calculated at a given
galactocentric radius, as described above. Here, AMCs
which have been completely disrupted are excluded from
the integral (or the corresponding sum). The distribution of
final radii Rf can also be written as

PðRfjrÞ ≈
X

k

wk

νk

�
3Mf

Rf

�
PiðMf=νkÞ

����
Mf¼4π

3
ρkRf

3

; ð38Þ

and similarly for any other distribution of interest. We fix
the initial mass function according to Eq. (4), with slope
γ ¼ −0.7. For NFWAMCs, we also apply a correction of
5%–40% to the initial AMC mass to account for tidal
stripping due to the MW host halo. This is implemented
directly in the definition of PiðMÞ for NFW AMCs. Full
details are given in Appendix A.
Since the disruption process is mainly sensitive to the

densities of the AMCs (and not the AMC masses), we do
not expect a significant difference to our results when
changing the HMF. For consistency, we therefore re-run the
entire pipeline using a different slope γ ¼ −0.5 and find

11For clarity, we now drop the subscript AMC from MAMC,
RAMC, etc.

12For AMCs with PL density profiles, there is no mass loss, so
νk ¼ 1 for all AMCs.
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only a ∼10% increase in the survival probability (compared
to γ ¼ −0.7) for NFWAMCs at the solar position. This is
not due to a change in the disruption properties of the
AMCs but rather a change in the fraction of AMCs passing
the final AS cut. There is no appreciable change for PL
miniclusters. We therefore do not consider γ ¼ −0.5
further.
In our numerical results, we assume that all axions are

bound in AMCs ðfAMC ¼ 1Þ with masses between Mmin
andMmax, given in Eq. (5). For our “AS cut” results we use
the total perturbed sample of AMCs and require that the AS
radius be smaller than the AMC radius. This reduced
sample is then compared to the unperturbed sample with
the same cut applied (as described in Sec. II E). As
mentioned in Sec. II E, this cut effectively reduces the
fraction of axions bound in AMCs.
The AS radius in Eq. (16) can be rewritten as

RAS ¼ R⋆
�
MAMC

M⋆

�
−1=3

; ð39Þ

where we define the constants R⋆ ¼ 1.7 × 10−6 pc and
M⋆ ¼ 10−16 M⊙. The AS cut therefore requires that

Rf > RASðMiÞ ¼ R⋆
�
Mi

M⋆

�
−1=3

; ð40Þ

where we calculate the AS radius using the initial AMC
mass, assuming that the properties of the central AS are
unaffected by perturbations. In Eq. (37) and Eq. (38), this
cut is equivalent to summing only over those samples
which satisfy

ρ ≤
1

ν

3M⋆
4πR3⋆

�
Mf

M⋆

�
2

≈ 4.66 M⊙ pc−3
1

ν

�
Mf

M⋆

�
2

: ð41Þ

B. Results

In Fig. 8, we show an example of the reconstructed
probability distributions of AMC properties at the end of
our Monte Carlo simulations. Specifically, we show results
for AMCs with NFW density profiles and, for simplicity, on
circular orbits withGalactocentric radius of r ¼ 6.96 kpc. In
this case, only around 9%ofminiclusters are destroyed—this
can be seen in Fig. 9 from the olive dashed line—but the
properties of those which survive are drastically altered. The
results in Fig. 8 do not include the AS cut. However, the
shaded areas indicate regions of the parameter space which
are progressively removed by this cut. In particular, no
AMCs pass the AS cut to the left of the vertical white lines.
Focusing on the left panel of Fig. 8, we see that the low-

mass tail of the distribution of AMC masses extends to
lower values after disruption is taken into account. This is
due to mass loss from miniclusters which are perturbed but
not completely disrupted (see Sec. III B). In some cases, the
final mass of an AMC is reduced by several orders of
magnitude compared to its initial mass. We have verified
also that the fractional mass loss does not depend on the
initial mass of the minicluster but only on its density.
The right panel in Fig. 8 demonstrates the strong depend-

ence of the disruption on the initial AMC density. From our
discussion in Sec. III, we expect the amount of energy
injected per encounter to scale as ΔE=Ebind ∼ R3

AMC=
MAMC ∼ 1=ρAMC. Indeed, we see that very dense miniclus-
ters undergo little disruption. Instead, less denseminiclusters
(e.g., around 1 M⊙ pc−3) have a low survival probability and
those which survive lose mass. If the AMCs undergo only
small perturbations, they may increase in radius through
energy injection, leading to a tail of diffuse miniclusters
(down to ∼10−3 M⊙ pc−3). Instead, large perturbations can
cause substantial mass loss from the AMCs, but very little
energy is injected into the remnant. This leads to an overall
increase in the typical AMC density. The distribution of

FIG. 8. Example of AMC properties from our Monte Carlo simulations before (black dashed) and after (solid olive) disruption. We
show the probability distributions of the massMAMC, radius RAMC, and mean density ρ̄. We assume these to have NFW internal density
profiles and to be on circular orbits with a galactocentric radius of r ¼ 6.96 kpc, leading to a survival probability psurv ¼ 0.91. These
probability distributions are obtained through the reconstruction procedure described in Sec. VA. The grey shading indicates the regions
of the parameter space that are removed by the AS cut. The white lines shows the smallest value of the corresponding parameter that
passes the AS cut.
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AMC radii (central panel in Fig. 8) follows from this same
argument. The typical AMC is more dense after accounting
for stellar interactions, leading to a reduction in the AMC
radius.
In Fig. 9, we show the survival probability of our

simulated miniclusters as a function of both their semi-
major axes (left) and galactocentric radii (right) for both PL
and NFW internal density profiles. The right panel shows
results for both eccentric and circular orbits where the
former is constructed using the prescription described in
Sec. VA. In both panels we see that there is a characteristic
transition from the high stellar density inner region r≲
Oð1Þ kpc (where the number of interactions between stars
and AMCs is so high that almost all miniclusters are
completely disrupted) to a low stellar density outer region
r≳Oð10Þ kpc (where interactions are rare). This change in
the number of interactions can be seen clearly in Fig. 7.
Focusing on the left panel of Fig. 9 we see a distinct shift of
the transition region to larger radii from the PL to NFW
density profiles. This shift comes from the enhanced
number of interactions at a fixed galactocentric radius
for NFW miniclusters—this can also be seen in Fig. 7.
In the right panel of Fig. 9, we see this same distinct shift

from PL to NFW profiles for both eccentric and circular
orbits. Moving from circular to eccentric orbits produces a
smearing of the transition region caused by the distribu-
tions of semimajor axes and eccentricities that contribute to
the AMCs at a particular galactocentric radius, as shown in
Fig. 5. For example, at low galactocentric radii, the AMC
density will have contributions from both quasicircular
orbits which spend a large amount of time in dense stellar
regions and highly eccentric orbits that spend the majority

of their time in low density stellar environments at
larger radii.
We also show results for the survival probability of

AMCs which pass the AS cut (solid lines). In this case, we
normalize the survival probability to one at large galacto-
centric radii, which is equivalent to factoring out the initial
fraction of AMCs which pass the cut, fPLcut ¼ 2.7 × 10−4 for
PL density profiles and fNFWcut ¼ 1.5 × 10−2 for NFW
profiles. The survival probability with the AS cut is always
smaller than without the cut. This is because stellar
perturbations can strip the AMCs until their radius drops
below the corresponding AS radius. This demonstrates that
the AMC properties can be substantially altered by stellar
interactions. At the solar radius, we find a survival
probability (including the AS cut) of 99% for AMCs with
PL profiles and 46% for AMCs with NFW profiles.
Finally, Fig. 10 shows the density of AMCs as a

function of the galactocentric radius. First, we show that
we are able to correctly reconstruct the Galactic NFW
profile (gray dotted line) using the initial sample of
unperturbed miniclusters with NFW-distributed semima-
jor axes (gray solid line). The fraction of AMCs that are
removed through the AS cut is indicated by the reduced
normalization of the dot-dashed lines. The density of
perturbed miniclusters passing the AS cut is shown by
the solid lines. The PL profile AMCs (blue solid line)
maintain a population down to small radii—these AMCs
are still likely to have undergone many interactions and
therefore may have significantly different properties to
those at the start of the simulation. In contrast, the NFW
miniclusters (olive solid line) show a sharp reduction in
density at around r ∼ 10 kpc.

FIG. 9. Survival probability of AMCs as a function of their galactocentric semimajor axes (left) and galactocentric radii (right). The
vertical dashed line marks the position of the Solar System. In the right panel we show the survival probability for both circular (dotted)
and eccentric (dashed) orbits. The eccentric orbits are smeared out according to the proportion of time they spend at a given
galactocentric radius (as described in Sec. VA). Finally, we show the survival probability for miniclusters with eccentric orbits that pass
our AS cut (solid line) where we have normalized this to be one at large galactocentric radii.
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VI. APPLICATIONS

Many experimental probes of axion DM require one to
make assumptions about both the large scale halo distri-
bution of DM and its structure on small scales.
Here we briefly investigate the phenomenological con-

sequences of our results for a few primary observational
channels.

A. Lensing

Gravitational lensing has been used to constrain the
fraction of DM in the form of faint compact objects [110].
Surveys actively search for microlensing events caused by
objects passing through the line of sight between the Earth
and stars in target structures like the Magellanic System
[111–115], the inner Galactic bulge [113–115], and M31
[116,117].
For simplicity, we limit our discussion to microlensing

from a pointlike lens of mass M with a pointlike back-
ground source—in reality both the lensing AMC and the
background galaxy are extended objects. To assess the
impact of our Monte Carlo results we compute the differ-
ence between the expected number of lensed events,
perturbed and unperturbed, for a variety of observational
targets. We leave a more detailed analysis for future work.
We denote the observer-source, observer-lens, and lens-

source distances as DS, DL ≡ xDS, and DLS ¼ ð1 − xÞDS
respectively with 0 ≤ x ≤ 1. We expect the set of micro-
lensing events over some observation time to be Poisson
distributed with the expected number of events given
by [112]

N̄ex ∝
Z

dt
Z

dx
d2Γ
dxdt

: ð42Þ

The differential event rate for a single source star with
respect to distance and event time, d2Γ=ðdxdtÞ, depends on
the mass distribution of AMCs, their velocity distribution,
and is proportional to the number density of lenses along
the line of sight nAMCðxÞ. Here we treat nAMCðxÞ as a proxy
for the expected number of lensing events.
We consider microlensing events from sources residing

in the following targets: the MW Galactic bulge, M31, and
the Large Magellanic Cloud (LMC). Miniclusters in either
the halo of the MW or in the target’s halo could lead to
lensing events. We model the DM halo distribution in each
target galaxy and in the MWaccording to the NFW density
profile in Eq. (8). In Table II we report the distances
between the Solar System and the source DS, together with
the Galactic longitude and the latitude ðlg; bgÞ and the
parameters used to model the NFW profile. For the LMC
and M31 we use the AMC survival probability obtained in
the MW but rescaled by the scale factor rs of the target
galaxy. The distribution of AMCs between the Solar
System and the source is given by the sum of the profiles
along the line of sight.
Results are shown in Fig. 11 for the LMC (top), the MW

bulge (middle), and M31 (bottom). We show the number
density of AMCs as a function of the ratio of the lens
distance to the source distance x ¼ DL=DS for the per-
turbed population derived from our simulations (solid line),
assuming NFW (olive) and PL (blue) AMC density
profiles, including the AS cut, and using the same color
code as in Fig. 9. For comparison, we also show the results
when perturbations are neglected (dot-dashed line).
In Fig. 11, considering observations of the LMC (top

panel), the number density of the NFWAMC population is
strongly suppressed both towards the inner region of the
MW ðx ≪ 1Þ and the LMC ðx ≈ 1Þ, with respect to the
unperturbed one. This behavior is evident also for AMCs
along the line of sight towards the Galactic Center (middle
panel), for both PL and NFW profiles. For M31 (bottom
panel) the difference between the populations is not clearly
visible, except near the center of M31 where the number
density is significantly affected. This is because we fix the
line of sight to end at the center of the target galaxy, where

FIG. 10. Density of simulated AMCs before taking into account
stellar interactions (solid gray), compared with the expected
NFW profile for the DM halo (dotted gray). The spatial
distribution of AMCs with PL and NFW internal density profiles
are shown as blue and olive lines respectively. The density
profiles are extracted from the Monte Carlo simulations accord-
ing to the weighting procedure in Sec. V. We also show the
distribution of unperturbed and perturbed AMCs passing the AS
cut (dot-dashed and solid lines respectively).

TABLE II. Parameters used for the source location and halo
modeling. We report the distances of the LMC [118] and M31.
We also specify the NFW parameters used for the MW [119], for
the LMC [120], and for M31 [121].

DS½kpc� ðlg; bgÞ rs½kpc� ρs½M⊙=kpc3�
MW bulge 8.3 ð1.09°;−2.39°Þ 16.1 11.8 × 106

LMC 48 ð280.5°;−32.9°Þ 12.6 2.6 × 106

M31 780 ð121.2°;−21.6°Þ 25.0 5.0 × 106
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the distribution of perturbed AMCs drops significantly.
Fixing the line of sight to point at other regions of the target
galaxies, where the survival probability of AMCs is higher,
would lead to smaller differences. Note that for PL profile
AMCs, the number density closely follows the unperturbed
distribution for x ≪ 1, i.e., within the MW. Compared to
those with PL profiles, NFW miniclusters show a more
dramatic reduction in the number density along the line of

sight for all three sources. This is due to the difference in
survival probabilities shown in Fig. 9.
Using Eq. (42), we denote the fractional decrease in the

expected number of lensing events before and after tidal
interactions as δN ≡ ΔN̄ex=N̄ex. For sources in M31 we
expect δN ≈ 0.5% (PL) or δN ≈ 18% (NFW), where the
discrepancy is almost entirely due to the AMC disruption in
the target galaxy. When considering the LMC as a source,
we find δN ≈ 1% (PL) or δN ≈ 32% (NFW). The largest
difference is clearly seen in searches towards the MW bulge
where δN ≈ 12% (PL) or δN ≈ 92% (NFW). Even when the
fractional decrease in the number of events is small, the
properties of these events could change dramatically. For
instance, the duration of the microlensing events can be
significantly shortened since the surviving AMCs are each
less massive than in the unperturbed case. A more careful
analysis would be required to determine the predicted
properties of AMC microlensing events.

B. Direct detection

The main direct detection experiments that would be
affected by the presence of AMCs are “haloscopes.”
Haloscopes convert cosmic axions into a detectable signal
inside a resonant cavity immersed in a strong magnetic field
[9,10]. Once the settings for the cavity have been fixed, the
power output Pa from the conversion of the cosmic axions
in the magnetic field of the cavity is proportional to the
local energy density of axions ρa times g2aγγ [9,10]. The value
of the local energy density has contributions from a smooth
component in the solar neighborhood and from substructures
like streams and AMCs. This means that for a fixed value of
gaγγ , Pa can still vary significantly. In particular, an AMC
passing near theEarthwould enhance the power output of the
cavity for a short amount of time. This is expected to be a
rather rare event, as estimates show that an encounter would
occur only every 104 106 years [58,80].
Here, we compute the encounter rate for AMCs of radius

RAMC with the geometrical cross section of the Earth
σ ¼ πR2

AMC. In principle, a correction due to gravitational
focusing becomes important for miniclusters with radii
smaller than R̄ ¼ 2GNM⊕=σ2u ≈ 10 km, where M⊕ is the
mass of the Earth and σu ≈Oð200 km=sÞ is the velocity
dispersion at the Earth’s location. Since miniclusters are
much larger than R̄, we neglect this focusing contribution.
The encounter rate between the Earth and the population of
miniclusters is

Γ⊙ ¼ nAMCðr⊙Þhσuiðr⊙Þ; ð43Þ

where nAMCðr⊙Þ is the local number density of AMCs,
r⊙ ¼ 8.33 kpc is the distance of the Solar System from the
MW Galactic Center [122] and ¯hσuiðr⊙Þ is the velocity-
averaged cross section weighted with the probability
distribution of RAMC at r⊙.

FIG. 11. The number density of AMCs (in kpc−3) as a function
of the distance of the lens x ¼ DL=DS for the unperturbed
population (dot-dashed line) and for the total population of
perturbed AMCs (solid lines). We show the results for target
sources placed in the LMC (top), in the MW bulge (middle), and
in M31 (bottom). For the both perturbed and unperturbed
populations, we have applied to AS cut.
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The local number density is given by Eq. (7) times the
fraction fcut that accounts for the AS cut in the HMF given
in Sec. II E. We compute ¯hσuiðr⊙Þ from the distribution of
AMC radii at r ¼ r⊙ obtained from the Monte Carlo
simulations for both the unperturbed and the perturbed
populations, taking into account the full distribution of
masses and densities. The number densities of perturbed
AMCs are also weighted by the survival probability in
Fig. 9. Two competing effects combine in the computation
of the encounter rate for the perturbed population. In
general, successive perturbations tend to puff up AMCs,
making their mean radius larger and encounters with Earth
more probable. On the other hand, stellar encounters destroy
some of the AMCs (or strip them to below the AS cut),
thereby lowering the chance of encounters. For the PLprofile
the two effects compensate, leading to the same encounter
rate Γ⊙ ≈ ð4 × 106 yearsÞ−1 for both the unperturbed and
the perturbed AMC distributions. For the NFW profile, the
first effect dominates, leading to Γ⊙ ≈ ð103 yearsÞ−1 for
unperturbed AMCs and Γ⊙ ≈ ð4 × 103 yearsÞ−1 for per-
turbed AMCs. The difference in the magnitude of the results
between the NFWand the PL populations is due to the larger
fraction of NFWAMCs which pass the AS cut as well as the
larger typical radius for NFW profiles. Recall that the results
for Γ⊙ are inversely proportional to the AMC fraction, which
we set to fAMC ¼ 1.
In Fig. 12, we show the enhancement of the local energy

density of axions, ρa=ρ⊙, during an encounter with an
AMC, as a function of time. We fix ρ⊙ ¼ 0.45 GeVcm−3

and we show time in days. The energy density ρa is given
by Eq. (9) for miniclusters with a PL profile (top panel) and
by Eq. (8) for miniclusters with an NFW profile (bottom
panel). We have considered an overdensity δ ¼ 1 and
masses M ¼ 10−10 M⊙ (red and black lines) and M ¼
10−12 M⊙ (blue line), with an impact parameter b ¼
0.1RAMC (red and blue lines) and b ¼ 0.5RAMC (black
line). The maximum enhancement is regulated solely by the
ratio between the density of the AMC, which is propor-
tional to ρAMCðδÞ in Eq. (2), and ρ⊙, while the mass of the
AMC controls the duration of the encounter. Encounters
with PL profile miniclusters are shorter and have greater
enhancements than those with NFW miniclusters.
The small rate and short duration of these interactions

makes AMC encounters with Earth mostly irrelevant for
direct axion searches. We find that an encounter has a
typical duration of Oð10Þ days, giving a probability of
Oð10−5Þ and Oð10−8Þ that the Earth is currently inside
such an AMC for NFW and PL AMCs, respectively.
Nevertheless, the AMC fraction fAMC and its evolution
in the MW is an important quantity for direct detection. If
all axions are locked up in AMCs, direct searches may be
ineffective. In addition, the disruption of miniclusters can
lead to streams of axions, which can produce an important
contribution to the local density [68,91]. We will assess
these streams more carefully in future work.

C. Indirect detection

Axion-photon conversion in astrophysical magnetic fields
can lead to potentially detectable radio-wave signals. For
example, axions can resonantly convert into photons in the
magnetic field of aNS [38] and nonresonantly in theGalactic
Center of target galaxies [123]. The latter process is severely
suppressed in favor of photon-photon pair production [124–
126]. The search for these radio signals is complementary to
laboratory experiments and might help disentangle the
coupling gaγγ from the cosmic axion abundance.
The photon production rate in these astrophysical envi-

ronments depends on the local number density of axions,
which is enhanced in the presence of an AMC. In Ref. [59],
we compute the expected signals from encounters between
miniclusters and NSs.

FIG. 12. The enhancement in the local axion density due
to the encounter of Earth with an AMC, in units of
ρ⊙ ¼ 0.45 GeV=cm3, as a function of the duration of the
encounter in days. We separately show the impact of a minicluster
that follows a PL profile (top panel) and an NFW profile (bottom
panel). We have considered an overdensity δ ¼ 1 and masses
M ¼ 10−10 M⊙ (red and black lines) and M ¼ 10−12 M⊙ (blue
line), with an impact parameter b ¼ 0.1RAMC (red and blue lines)
and b ¼ 0.5RAMC (black line). We have considered AMCs which
have not been perturbed. As we show in the main text, these
AMC encounters with Earth would be rare.
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VII. DISCUSSION AND CONCLUSION

In this paper we quantified the degree to which tidal
interactions with stars can affect the final distributions of
AMCs in the MW. We performed Monte Carlo simulations
for AMCs on circular and eccentric orbits, and with PL and
NFW density profiles. Importantly, we quantified the
survival probability of AMCs as a function of the gal-
actocentric radius (Fig. 9), showing that in the inner regions
of the MW, r≲Oð1Þ kpc, AMCs are substantially
depleted. At larger radii, r≳Oð10Þ kpc, AMCs have a
high probability of surviving.
The interactions of AMCs with stars can also alter the

properties of the surviving AMCs (Fig. 8) through partial
mass loss and energy injection. We have presented the
procedure for deriving these properties using the results of
our Monte Carlo simulations (with accompanying code
and distributions at github.com/bradkav/axion-miniclusters
[128]). This allows our results to be reinterpreted for an
arbitrary initial distribution of AMCs in the MW.
As discussed in Sec. IVA, for computational simplicity

we made a number of assumptions. We reiterate two
assumptions here as they are of primary importance for
future work. First, we decoupled structure formation from
our tidal interactions by initially populating the MW with
AMCs following a halo mass function evaluated today.
Fortunately, the majority of AMCs (in particular the less
massive ones) form before the formation of the MW halo,
meaning that we expect only small changes to our final
distributions of miniclusters if we were to follow both
structure formation and tidal interactions. This concurrent
evolution should be investigated more precisely in future
work. Unfortunately, it may be difficult to simultaneously
obtain the necessary scale and resolution needed to
simulate both stars and AMCs. Second, we assumed a
static MW halo with a fixed stellar population as measured
today (see Fig. 15). Future work should replace this
assumption with a coevolving stellar population that
follows the cosmic star formation rate [109] and an
evolving MW halo model such as Ref. [127].
Throughout the disruption calculations, we neglected the

effect of ASs, which may form in the centers of AMCs. The
formation and evolution of these ASs is still uncertain.
Since we do not account for these ASs, we instead place a
cut on the AMC parameter space which requires the central
AS to have a smaller radius than the host AMC (referred to
as “AS cut” and described in Sec. II E). For those that pass
the AS cut, we neglect the potential effects of a solitonic
core on the stability of the minicluster. Future work should
study the response of an AMC-AS system to tidal pertur-
bations and extend our prescription to account for this more
complete description of the axion substructure population.
Throughout this paper, we assumed that the entire

population of AMCs in the MW had either a PL or
NFW internal density profile. As discussed in Sec. II D
and Sec. IVA, it is still unclear which density profile best

describes the overall population of miniclusters—in fact it
is likely that the high-mass miniclusters have more NFW-
like profiles, while the lowest-mass miniclusters have PL-
like profiles. Here, we have tried to bracket the uncertainty
on the final distributions of miniclusters by using a very
concentrated profile (PL) which is robust to perturbations
and a more loosely bound profile (NFW) which is more
easily disrupted. More work is needed to assess how the
structure of these miniclusters evolves and, in particular,
which AMC masses are better described by NFW or PL
profiles (or perhaps some intermediate profile). By con-
struction, our results are reinterpretable, allowing us to use
this information to directly build more accurate descrip-
tions of AMCs today when it becomes available.
In the postinflationary scenario considered, the mass of

the QCD axion has to be tuned to a specific value m̃a in
order to reproduce the present DM abundance. If we were
to set the mass of the QCD axion to be heavier than m̃a, the
axion would not be the dominant component of DM in the
Universe. This means that the predictions for the axion
mass enclosed at tosc, i.e., the AMC mass, and the
distribution of overdensities would have to be recomputed
from new simulations taking into account the growth of
axion overdensities around the dominant DM component.
Such scenarios have never been considered in the literature,
nor are they taken into account in the present work. On the
other hand, an axion of massma < m̃a is not allowed, as its
present energy density would be larger than what is
observed for DM. For this reason, we have chosen ma ¼
m̃a throughout the paper. Another subtlety lies in the
possible range of m̃a. We have set m̃a ¼ 20 μeV following
recent estimates in the literature [57,75]. However, uncer-
tainties in the numerical computations hint at a range m̃a ¼
Oð10 − 100Þ μeV where the KSVZ axion mass could lie,
see Ref. [35]. Possible scaling violations in the string
dynamics could also suggest that a largenumber of axions are
produced from decaying strings in the early Universe,
leading to a value of the axion mass m̃a ≈ 500 μeV that
differs from the one we have set here [76]. Assuming a
different value of m̃a would lead to a different characteristic
mass M0, which would cause the related expressions for
Mmin and Mmax to be modified. However the analysis we
have presented could be straightforwardly reapplied—as
we have stressed—and the results would not change
qualitatively.
Previous work has considered the effects of tidal

interactions on AMCs [66,68]. In particular, Ref. [66]
considered AMCs with PL profiles ∝ r−1.8 and found that
around 2%–5% are destroyed at the solar position. At the
same position, we find that > 99% of AMCs with a PL
profile survive, while those with NFW profiles are more
easily stripped with a survival probability ∼94% (see Fig. 9
without AS cut). This difference can easily be explained by
the fact that our PL profile is significantly steeper than the
one considered in Ref. [66], making our AMCs more robust
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to perturbations from stellar encounters. We also build upon
Ref. [66] in two key ways: first, we extend the calculation
of the properties of AMCs beyond the solar position to the
entire Galaxy; and second, we account for the injection of
energy from nonfatal interactions, allowing us to more
realistically describe disruption probabilities and the prop-
erties of AMCs today.
In our companion Letter [59], we use the results of our

Monte Carlo simulations to predict indirect signals from
AMCs interacting with NSs.More precisely we: (i) simulate
the expected encounter rate for NSs passing through
AMCs; and (ii) estimate the expected radio signal from
the conversion of axions within the minicluster into
photons as they interact with the NS magnetosphere.
These results are complementary to the continuous radio
emission that is expected to come from axions in the
Galactic halo interacting with NSs [38–41].
As we showed in Sec. VI, correctly calculating the AMC

population today can have significant implications for a
variety of observational channels. It is therefore of upmost
importance to understand the interactions of these struc-
tures with their environment. Our results represent a
fundamental step towards characterizing these interactions
within the MW.

All code associated with this work (and the companion
Letter, Ref. [59]) is available online at github.com/bradkav/
axion-miniclusters [128].
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APPENDIX A: TIDAL STRIPPING FROM THE
MILKY WAY HOST HALO

Here, we quantify the impact of tidal stripping of AMCs
by the Milky Way host halo. For a point mass MAMC on a
circular orbit at a galactocentric radius r, the tidal radius
can be written as [104]

Rt ¼ r

�
MAMC=MMWðrÞ
3 − d lnMMW

d ln r jr

�
1=3

; ðA1Þ

where MMWðrÞ is the mass of the Milky Way DM halo
enclosed within a radius r. At the tidal radius, the tidal
forces due to the host halo exceed the self-gravity from the
orbiting point mass. If the AMC radius exceeds the tidal
radius, then the AMC is likely to undergo tidal stripping by
the host halo.
In Fig. 13, we compare this tidal radius (solid black) with

our assumed AMC radius for PL (dashed blue) and NFW
(dashed olive) AMCs, fixing MAMC ¼ 10−10 M⊙ and
δ ¼ 1.0. Both the tidal radius and AMC radius scale in
the same way with M1=3

AMC, so this comparison extends
straightforwardly to other AMC masses. For larger values
of the overdensity δ, the AMC radius would be smaller,
making such AMCs more robust to tidal stripping. This
means that the results we show in Fig. 13 for δ ¼ 1 are
conservative.

FIG. 13. Tidal radius Rt for AMCs in the Milky Way. We also
show the AMC radii assumed in the main text for PL (blue
dashed) and NFW (olive dashed) AMC density profiles, fixing
MAMC ¼ 10−10 M⊙ and δ ¼ 1.0.
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For PL profiles, we see that the tidal radius is signifi-
cantly larger than the size of the AMC, even down to small
galactocentric radii, meaning that PL AMCs should be
robust to tidal stripping. We therefore ignore any tidal
stripping by the MW host halo in the case of PL AMCs. For
NFW profiles, instead, the tidal radius may be comparable
to the size of the AMC, particularly in the inner Galaxy.
These estimates were calculated assuming a concentration
of c ¼ 100, while AMCs are expected to have a much
larger concentration ðc ∼ 104Þ before they are accreted into
the MW. The picture we consider then is that initially large
AMCs were accreted and then tidally stripped by the MW
halo, down to a concentration of c ∼ 100, at which point
their physical radius becomes comparable to the tidal
radius. Mass is lost by the AMCs in this process, meaning
that the c ∼ 100 AMCs we consider should have a smaller
mass than objects drawn from the initial HMF described in
Sec. II B.
Analytic arguments and numerical simulations of DM

substructure suggest that the rate of mass loss due to tidal
stripping is suppressed by ðm=MÞζ, for a substructure of
mass m and host halo of massM [133]. More carefully, we
can write ([134], Sec. II A)

_m ¼ −A
m
τdyn

�
m
M

�
ζ

; ðA2Þ

where τdyn is the dynamical time of the MW halo
(approximately 2.4 Gyr today).13 FixingA ¼ 1.34 and ζ ¼
0.07 [134] and assuming a static MW, we can solve
Eq. (A2) to obtain an estimate for the fractional mass loss
over the age of the Galaxy. Given an initial AMC mass of
Mi, we find that the mass after stripping is

Mstripped ¼ Mi

�
1þ ζ

�
Mi

MMW

�
ζ
�
AtMW

tdyn

��
−1=ζ

; ðA3Þ

where tMW ¼ 13.5 × 109 yr and MMW ¼ 1012 M⊙.
The AMC mass after tidal stripping due to the host halo

is illustrated in Fig. 14. We see that NFW AMCs should
lose 5%–40% of their initial mass in this way. For
comparison, we show also the mass loss which would
be estimated by starting with an NFW density profile with
concentration c ¼ 104 (as expected for field AMCs at
z ¼ 0) and truncating the profile at R ¼ RAMC=100
(leading effectively to a profile with c ¼ 100, as we
assume in the main text). This leads to a mass loss of
fNFWð100Þ=fNFWð104Þ ∼ 50% (orange dashed line), in
rough agreement with the results of Eq. (A3) for the
heaviest AMCs.

We incorporate this tidal stripping of NFW AMCs by
correcting the initial HMF using Eq. (A3):

PðMstrippedÞ ¼ PðMiÞ
dMi

dMstripped
: ðA4Þ

We then use this distribution PðMstrippedÞ as the initial
distribution PiðMÞ described in Sec. VA of the main text.
This amounts to assuming that the tidal stripping from the
MW halo happens first, followed by perturbations from
stars. Of course, these effects will occur concurrently over
the age of the MW. However, as we have demonstrated, the
disruption of AMCs due to stellar encounters is largely
independent of AMC mass (depending instead predomi-
nantly on the mean AMC density), so we do not expect a
mass loss of Oð10 − 40Þ% due to the host halo to
substantially impact the survival probability of AMCs.

APPENDIX B: STELLAR POPULATION IN THE
MILKY WAY

We assume that the Galactic distribution of stars can be
decomposed into an axially symmetric bulge in the inner-
most region and an axially symmetric stellar disk. We
model these distributions in terms of the galactocentric
cylindrical coordinates rcyl and zcyl, which describe the
radial distance from the axis of symmetry and the height
from the Galactic plane respectively. In more detail:
(1) The essential features of the stellar bulge can be

captured by fitting the stellar density profile by a
truncated power-law distribution [136,137]

FIG. 14. Mass of NFW-profile AMCs after tidal stripping by
the host haloMstripped (solid blue). For NFWAMCs, we apply this
mass-loss fraction as a correction to the initial mass function in
the main text. For comparison, we also show the mass loss
expected by stripping an NFW halo from c ¼ 104 to c ¼ 100.

13Note that Ref. [135] demonstrated the validity of Eq. (A2) for
the mass ratios considered in this work.
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ρbulge⋆ ðrcyl; zcylÞ ¼ ρbulge0

e−ðr0=rcutÞ2

ð1þ r0=r0Þλ
; ðB1Þ

where we fix the parameters according to Ref. [138],
namely the core density ρbulge0 ≈ 99.3 M⊙=pc3, the

radius r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cyl þ ðzcyl=qÞ2

q
withq ¼ 0.5, the bulge

cutoff r0 ¼ 0.075 kpc, the exponent λ ¼ 1.8, and
rcut ¼ 2.1 kpc. Note that different models exist in
the literature that provide fits which deviate from an
axially symmetric solution, for example including
triaxality, see Refs. [136,139–141].

(2) The stellar disk component in the MW can be further
subdivided into a thin (t) and a thick (T) disk, as
inferred by the different chemical compositions and
spatial distributions [142,143], with the thin disk
hosting younger stars which are more concentrated
around the Galactic plane with respect to the thick
disk counterpart. Both disk distributions are com-
monly described by a double exponential model
[144,145],

ρdisk⋆ ðrcyl; zcylÞ ¼
Σ⋆
2H

exp

�
−
rcyl
L

−
jzcylj
H

�
; ðB2Þ

where H and L are the scale height and the scale
length, respectively, and Σ⋆ is the surface stellar
density. We fix the parameters as in the best-fitting
model presented in Table 2 of Ref. [138], namely the
surface densities Σt⋆ ¼ 816.6 M⊙ pc−2 and ΣT⋆ ¼
209.5 M⊙ pc−2, together with the scale lengths Lt ¼
2.90 kpc andLT ¼ 3.31 kpc. Similarly to Ref. [138],
we use the bias-corrected values of the scale heights
from Table 10 of Ref. [143], namely Ht ¼ 0.3 kpc
and HT ¼ 0.9 kpc. These values are consistent with
other independent analyses [146].

In principle, a halo component dominates the stellar density
in the outskirts of the MW, see for example Ref. [143].
However, using the parametrization in Ref. [143], we find
that the halo component only becomes important for radii
r≳ 30 kpc at which point the effect of tidal stripping from
stars is negligible. In addition, we were unable to find a
consistent model that simultaneously fit halo, bulge, and
disk components to the MW stellar population. For these
reasons, we have not included this additional component.
In our work, we then define the total stellar energy density
profile as ρ⋆ ¼ ρbulge⋆ þ ρdisk⋆ . Figure 15 shows the stellar
distribution used for this paper averaged over the cylin-
drical Galactic height zcyl, as a function of the galactocen-
tric radius r. We show the density of stars in the bulge
Eq. (B1) (red line), in the disk Eq. (B2) (blue line), and the
sum of the two (black line).

APPENDIX C: OVERDENSITY EXPRESSIONS

We report the expression used in this work for the
distribution of overdensities, which we based on the results
in Ref. [57]:

dfAMC

dδ
¼ PδA

1þ ðδ=δFÞS
; ðC1Þ

where S ¼ 4.7, A ¼ 1=2.045304, and δF ¼ 3.4. We also
set

Pδ ¼
� exp ½−ð x2

2σ2
Þd=2�; x ≤ σαd;

B1ðσCþx
σB2

Þ−n; x > σαd;
ðC2Þ

where x ¼ ln ðδ=δGÞ with δG ¼ 1.06, and where d ¼ 1.93,
αd ¼ −0.21, n ¼ 11.5, σ ¼ 0.448, and

B1 ¼ exp

�
−
�
α2d
2

�
d=2

�
; ðC3Þ

B2 ¼
�
2

α2

�
d=2 njαdj

d
; ðC4Þ

C ¼ B2 þ jαdj: ðC5Þ

Note that we use a slightly amended functional form
compared to Ref. [57], in order to ensure that the function
is smooth and continuous.

APPENDIX D: AMC DISTRIBUTION FUNCTIONS

Here, we elaborate on the evaluation of the initial AMC
distribution functions for the PL and NFW internal density
profiles. Assuming isotropic and spherically symmetric

-

–

–

–

–

–

–

–

FIG. 15. Stellar density used in the Monte Carlo simulations as
a function of the galactocentric radius r, averaged over the
cylindrical Galactic height. We show the density of stars in the
bulge (red line), in the disk (blue line), and the sum of the two
(black line).
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orbits, we begin with the Eddington inversion formula
([92], p. 290):

fðEÞ≡ 1ffiffiffi
8

p
π2

Z
E

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
E −Ψ

p d2ρ
dΨ2

dΨ: ðD1Þ

It is cumbersome to recompute the distribution function
for different choices of the AMC mass MAMC and radius
RAMC, so it will be more useful to work in terms of the
dimensionless energy, potential, and density: ϵ ¼ E=Ψ0,
ψ ¼ Ψ=Ψ0, and ϱ ¼ ρ=ρAMC respectively, with Ψ0≡
GMAMC=RAMC.

14 With these definitions, Eq. (D1) becomes

fðEÞ ¼ ρAMC

Ψ0
3=2 f̂ðE=Ψ0Þ; with

f̂ðϵÞ ¼ 1ffiffiffi
8

p
π2

Z
ϵ

0

1ffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ

p d2ϱ
dψ2

dψ : ðD2Þ

For the power-law profile, defining x ¼ R=RAMC, we
have

ϱPLðxÞ ¼
� 1

4
x−9=4 for x < 1

0 for x > 1

ψPLðxÞ ¼
�
1þ 4ðx−1=4 − 1Þ for x < 1

x−1 for x > 1
: ðD3Þ

For the NFW profile,

ϱNFWðxÞ ¼
� 1

cxð1þcxÞ2 for x < 1

0 for x > 1

ψNFWðxÞ ¼
�
1þ c

fNFWðcÞ ðlnð1þxÞ
x − ln2Þ for x < 1

x−1 for x > 1
; ðD4Þ

where c ¼ 100 is the assumed truncation parameter and
fNFWðcÞ ¼ lnð1þ cÞ − c=ð1þ cÞ. In both cases, we have
implemented a hard truncation of the density profile by
setting ϱðx > 1Þ ¼ 0. With these expressions, the density
cannot be written analytically in terms of the potential, so
the integral in f̂ðϵÞ must be evaluated numerically for both
PL and NFW profiles.
Using these forms for the distribution function, we can

estimate the mass loss in a given encounter. We can also
estimate the velocity dispersion (as a function of radius) of
the AMC as:

σ2ðxÞ ¼ Ψ0

ϱðxÞ 4π
Z

ψðxÞ

0

½2ðψðxÞ − ϵÞ�3=2f̂ðϵÞdϵ; ðD5Þ

from which we obtain the mean velocity dispersion of the
AMC, which we evaluate numerically.
The gravitational binding energy is calculated as

Ebind ¼
Z

RAMC

0

GM<ðRÞ
R

× 4πR2ρðRÞdR; ðD6Þ

with the enclosed mass

M<ðRÞ ¼
Z

R

0

4πR2ρðRÞdR: ðD7Þ

Immediately after the stellar interaction, we can calculate
the final density profile ρfðRÞ by assuming that unbound
particles are instantaneously removed to infinity. The
change in density due to the removal of these particles is

ΔρðRÞ ¼ 4π

Z
min½ΔEðRÞ;ΨðRÞ�

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðRÞ− EÞ

p
fðEÞdE; ðD8Þ

such that:

ρfðRÞ ¼ ρiðRÞ − ΔρðRÞ; ðD9Þ

for initial density ρi. The binding energy of the AMC
immediately after the interaction can then be calculated by
substituting ρf into Eqs. (D6) and (D7).
Given an AMC density distribution ρðrÞ, we have

defined the quantities

α2 ¼ 4π

MAMCR2
AMC

Z
RAMC

0

drr4ρðrÞ; ðD10Þ

β ¼ 4πRAMC

MAMC
2

Z
RAMC

0

drrρðrÞMencðrÞ; ðD11Þ

whereMAMC is the mass of the AMC, RAMC the truncation
radius, and MencðrÞ the mass enclosed in the distribution
within the radius r. More specifically, for the distributions
we have adopted in this paper, we find

α2 ¼
(

3
c2 þ 1

2fNFWðcÞ
c−3
cþ1

ðNFWÞ;
3
11

ðPLÞ;
ðD12Þ

and

β ¼
(

c3−2cð1þcÞfNFWðcÞ
2ð1þcÞ2fNFWðcÞ2 ðNFWÞ;

3
2

ðPLÞ;
ðD13Þ

where the function fNFWðcÞ has been defined after Eq. (11).
For a detailed study of the NFW case, see also Ref. [147].

14Recall here that ρAMC is the characteristic AMC density. In
the case of PL profiles, this is equal to the mean density
ρAMC ¼ ρ̄, while for NFW profiles ρAMC ¼ ρ̄c3=ð3fNFWðcÞÞ,
with c ≈ 100 [see Eq. (11) and surrounding text].
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APPENDIX E: COMPARING NFW INTERNAL
DENSITY PROFILES

In the main text, we make an identification between then
AMC properties (MAMC, δ) and the corresponding internal
NFW profile (ρs, rs) by assuming a fixed truncation
parameter c ¼ RAMC=rs ¼ 100. In this Appendix, we
explore the impact of varying the truncation parameter c.
Specifically, we consider also the case of an NFW profile
with a truncation parameter c ¼ 104, typical of the concen-
tration of isolated AMCs at z ¼ 0 [64]. Figure 16 shows a
comparison of NFW profiles with truncation parameters of
c ¼ 100 and c ¼ 104, for a particular choice of characteristic
density ρAMC ¼ 106 M⊙ pc−3. For the PL and c ¼ 104 NFW
profiles, we assume an AMC mass of MAMC ¼ 10−10 M⊙.
For c ¼ 100, we assumeMAMC ¼ 0.44 × 10−10 M⊙, which
leads to the same central density as the c ¼ 104 model. This
reflects the physical motivation for the c ¼ 100 model: a
diffuse AMC is likely to be tidally stripped by the MW halo
(as described in Appendix A) resulting in a mass loss of
Oð50%Þ and leaving behind a more compact AMC.
We have repeated the procedure described in Appendix D

to determine the distribution function and properties of this
more diffuse c ¼ 104 NFW profile. For the case of c ¼ 104,
we find a mean squared radius of hR2i ¼ α2R2

AMC with α
2 ¼

0.061 and a binding energy of Ebind ¼ βGMAMC
2=RAMC

with β ¼ 74.0. For a given stellar encounter, the injected
energy scales as

ΔE
Ebind

∝
α2

β

1

ρ̄
; ðE1Þ

where ρ̄ is the mean density of the AMC. The ratio α2=β is
roughly 200 times smaller for NFW profiles with c ¼ 104

than thosewith c ¼ 100. However, the mean density for c ¼
104 is ∼106 times smaller than for c ¼ 100, meaning that a
given stellar encounter injects a much larger amount of
energy (as a fraction ofEbind) into anAMCwith c ¼ 104.We
might therefore expect that miniclusters with larger values of
c will be more easily disrupted in the Milky Way.
Following the discussion in Sec. III, we can then

determine the response of c ¼ 104 miniclusters to pertur-
bations. In Fig. 17 we show the fraction of mass lost from
the minicluster (solid lines), the fraction of injected energy
carried away by ejected particles (dashed lines), and the
fraction of the initial minicluster energy stored in particles
which will eventually become unbound (dotted lines). At
small values of ΔE=Ebind, we find that a larger fraction of
mass is lost from AMCs with c ¼ 104 compared to
c ¼ 100; this is because in the former case particles in
the diffuse outskirts of the minicluster can be more easily
unbound. However, we also find that the fraction of energy
carried away by unbound particles fej is always larger for
c ¼ 104. As a result, we expect that the “remnant” AMC
left behind after the stellar interaction will typically be
more dense than before the interaction. Similar behavior
was described in the main text for c ¼ 100 NFW profiles,
though the effect should be even more pronounced here for
c ¼ 104 profiles.
In order to explore the behavior of the AMCs under

repeated perturbations, we consider a toy setup. We
generate two sets of 105 AMCs with NFW internal density
profiles, one set with (c ¼ 104, Mi ¼ 10−10 M⊙) and the
other with (c ¼ 100,Mi ¼ 0.44 × 10−10 M⊙Þ. In all cases,
we fix the initial overdensity parameter to be δ ¼ 1.55

FIG. 16. Examples of AMC density profiles. The NFW profile
with truncation parameter c ¼ RAMC=rs ¼ 100 assumed in the
main text can be compared with the more diffuse profile with
c ¼ 104 which we also consider here. In the case of c ¼ 100, we
assume a total mass of MAMC ¼ 0.44 × 10−10 M⊙, to give the
same central density as the c ¼ 104 profile.

FIG. 17. Response of NFW miniclusters with different trunca-
tion parameters c to stellar perturbations, as a function of the
injected energy ΔE. We plot the fractional mass loss (solid lines),
the fraction of injected energy carried away by ejected particles
(dashed lines) and the fraction of the initial AMC energy in
particles which will eventually be unbound (dotted lines). See
Sec. III B for more details.
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ðρAMC ¼ 106 M⊙pc−3Þ. We then apply the Monte Carlo
procedure described in Sec. IV to evolve the AMCs to
today, assuming circular orbits at a galactocentric radius of
rGC ¼ 8 kpc. In this case, we do not include the correction
due to tidal stripping from the MW halo, as described in
Appendix A.
In Fig. 18, we show the final distributions of AMC

masses MAMC, radii RAMC and mean internal density ρ̄.
Dashed vertical lines mark the initial values of each
property at the start of the simulations. We find that the
typical final mass of the c ¼ 104 miniclusters is smaller
than for c ¼ 100 by a factorOð3Þ, as more mass is stripped
away from these more diffuse objects. However, we find
that the final radius and final mean density of the AMCs is
similar in the two cases. This is particularly striking in the
case of ρ̄, for which the c ¼ 104 AMCs begin the
simulations with a mean density which is a factor of
∼106 smaller. As described above, the stellar interactions
which may efficiently strip mass from the outskirts of the
c ¼ 104 miniclusters do not inject large amounts of energy

into the remnant. These interactions therefore substantially
increase the mean AMC density. It therefore appears that
NFWs with different concentrations are likely to be
stripped to leave behind remnants of similar densities.
Finally, extrapolating these results to the full AMC mass

function in Eq. (4) (but still keeping a single fixed initial
density), we can calculate the fraction of AMCs which
would survive and also pass the axion star (AS) cut. We
find very similar survival probabilities for the two concen-
trations, pc¼100

surv ¼ 9.7 × 10−3 and pc¼104
surv ¼ 1.0 × 10−2

(where we have not factorized out the fraction of AMCs
which initially pass the AS cut). We therefore conclude that
the initial choice of the truncation parameter for the NFW
density profile does not strongly influence the survival
probability or the final properties of the perturbed mini-
clusters, save for a correction factor ofOð3Þ to the finalAMC
mass. This difference is at least partially compensated for in
the main analysis by the initial mass loss of 5% 40% which
we apply toNFWprofiles, coming from tidal stripping due to
the host halo of the MW (Appendix A).
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