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AN ATTENTION-BASED DIFFUSION MODEL FOR PSYCHOMETRIC ANALYSES
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Gunter Maris
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The emergence of computer-based assessments has made response times, in addition to response
accuracies, available as a source of information about test takers’ latent abilities. The development of
substantively meaningful accounts of the cognitive process underlying item responses is critical to estab-
lishing the validity of psychometric tests. However, existing substantive theories such as the diffusion
model have been slow to gain traction due to their unwieldy functional form and regular violations of
model assumptions in psychometric contexts. In the present work, we develop an attention-based diffusion
model based on process assumptions that are appropriate for psychometric applications. This model is
straightforward to analyse using Gibbs sampling and can be readily extended. We demonstrate our model’s
good computational and statistical properties in a comparison with two well-established psychometric
models.

Key words: diffusion model, response time data, cognitive psychometrics.

The advent of computerised testing has made response time (RT), in addition to response
accuracy, available as a source of information about the test taker’s latent ability. Psychometricians
have generally taken one of two approaches to take advantage of this additional information;whilst
some psychometricians treat RTs as a purely statistical entity in their models, others aim to model
the cognitive processes underlying the observed RTs in a substantively meaningful way. This
latter approach largely relies on sequential sampling models from mathematical psychology (e.g.
Ranger & Kuhn, 2018; Rouder et al., 2015; Stone, 1960; Tuerlinckx & De Boeck, 2005; Van der
Maas et al., 2011) that were originally developed to account for RT and accuracy data in fast-
paced decision and memory tasks (Ratcliff & McKoon, 2008). Although these models have been
adopted for psychometric applications with some success, the original emphasis on experimental
tasks means that the substantive assumptions in the models are not appropriate for psychometric
settings. In the present work, we propose an attention-based diffusion model, which we derive
from cognitive process assumptions that are more appropriate in the psychometric setting of
performance tests.

Diffusion-type models conceptualise the process by which a test taker chooses between
two response options, A and B, as the noisy accumulation of information. In their most basic
mathematical form, diffusion-typemodels include five parameters, t0, v, s, a, and z (Fig. 1). These
parameters account for the joint distribution of response time t ∈ R

+ and choice x ∈ {0, 1}, where
x = 1 corresponds to choosing option A and x = 0 corresponds to choosing option B.
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Figure 1.
Structure of diffusion-type models. Distributions of decision times for option A and option B are shown above and below
the corresponding decision boundary.

For applications to experimental data, Ratcliff (1978) proposed a particular set of substantive
interpretations for the model parameters that, together with the mathematical form of the model,
gives rise to his diffusion model (DM). The DM decomposes response time as t = t0 + td . The
constant t0 is the non-decision time, which accounts for the time spent on cognitive processes not
related to the choice process, such as visual encoding and the execution of a motor response. The
distribution of the decision time td is determined by the remaining fourmodel parameters. TheDM
represents the choice process as a repeated sampling process where the decision maker samples
and integrates noisy information about the two response options from a normal distribution with
mean given by the drift rate parameter v and standard deviation given by the diffusion coefficient
s. The diffusion coefficient, which represents the within-trial volatility of the information being
sampled, is assigned a fixed value, typically 0.1 or 1. The drift rate, which represents the rate
at which the decision maker processes information, is estimated from the observed data. Each
response option is associated with a decision threshold, one located at 0 and the other located at
a, and a is referred to as the boundary separation. Boundary separation represents the response
caution the decision maker applies in a given decision problem, and this model parameter is
estimated from the observed data. Finally, the sampling process starts at the point z, located
between the two decision thresholds, and continues until a decision threshold is reached. The
starting point represents the decision maker’s a priori preference for one response option over
the other and is again estimated from the data. The final decision time td is determined by the
point where the accumulated evidence first crosses a decision threshold, upon which the test taker
commits to the corresponding response option.

Implicit in the DM’s interpretation of the model parameters are four assumptions that might
be plausible in an experimental context but appear less appropriate for data from a performance
test. These assumptions are the independence of decision and non-decision processes, a fixed
diffusion coefficient, independence of decision boundaries and diffusion coefficient, and biases in
the starting point of the decision process. Concerns about the applicability of the DM outside fast-
paced experimental tasks were also expressed by Ratcliff and McKoon (2008), who warned that
theDMwas developed for task settings that involve only a single processing stage, and is not suited
to tasks that elicit longer RTs (see also Lerche&Voss, 2019; Ratcliff & Frank, 2012; Ratcliff et al.,
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2004). To address these inadequacies of the DM, we propose four cognitive process assumptions
that are appropriate for the analysis of performance test data. These assumptions in conjunction
with the standard mathematical form of diffusion-type models constitute our Attention-Based
Diffusion Model (ABDM).

Firstly, the additive decomposition t = t0 + td in the DM embodies the assumption that
decision and non-decision processes are completely independent; the duration and number of
non-decision processes affect neither the duration nor the outcome of the decision process. This
assumption might be plausible in simple experimental tasks that involve only a single process-
ing stage, where non-decision processes can be reasonably assumed not to interrupt the decision
process. However, in more complex cognitive tasks that require multiple processing states, non-
decision processmight occur at the transition between different processing stages and can interrupt
ongoing cognitive processes. Hence, the duration and number of non-decision processes in com-
plex tasks are related to the duration and outcome of the decision process. A prime example of
an interruptive non-decision process is mind wandering, the diversion of attentional resources
away from an ongoing cognitive task to task-unrelated thoughts (Schooler et al., 2014). Several
studies have found that a higher frequency of mind-wandering is correlated with worse outcomes
on tests of cognitive performance such as sustained attention (Allan Cheyne et al., 2009), working
memory, and general intelligence (Mrazek et al., 2012; see Mooneyham & Schooler, 2013, for a
review). In the context of the DM, Hawkins et al. (2015) argue that mind-wandering is associated
with increased variability in drift rate across experimental trials. An association between drift rate
and non-decision processes is further supported by Voss et al. (2004) finding that an experimental
manipulation that increased the duration of non-decision processes also resulted in a lower drift
rate.

In our ABDM, we assume that lapses in attention directly affect the decision process. Rather
than additively decomposing RTs, we assume that non-decision processes lead to a decrease in the
rate of information processing. In more formal terms, this assumption can be understood via the
random walk approximation of Brownian motion (see Appendix A). The classic DM is the limit
of a random walk where, at each time step, the decision maker processes information that favours
response option A with probability pA and processes information that favours response option B
with probability pB = 1− pA. The time spent on non-decision processes is then accommodated
by adding a constant t0 to the decision time td . Our ABDM, on the other hand, is the limit of
a random walk where, at each time step, the decision maker processes information that favours
response option Awith probability pA, processes information that favours response option B with
probability pB , and engages in non-decision processes with probability 1− (pA + pB). The effect
of non-decision processes is manifested in a lower drift rate v and thus becomes an integral part
of the decision time. Although non-interruptive non-decision processes might be present, their
contribution to the observed RT is negligible. We will return to this point in our simulation studies
below.

Secondly, setting the diffusion coefficient s to a fixed value in the DM embodies the assump-
tion that the volatility of the information being accumulated is constant across experimental trials
and conditions. Setting the diffusion coefficient to a constant value is often justified by the need
to fix one of the DM parameters to identify the model. However, as pointed out by Donkin et al.
(2009), most applications of the DM make additional assumptions, such as equality of boundary
settings across experimental trials and conditions, that in themselves suffice to identify the model.
Hence, a fixed diffusion coefficient tacitly introduces the additional assumption that informa-
tion accumulation is equally volatile throughout the experiment. This assumption might often be
plausible in experimental settings where stimulus materials are simple and homogeneous across
trials, and researchers have full control over all statistical properties of the stimuli. In the popular
random dot motion task, for instance, stimuli consist of a cloud of pseudo-randomly moving dots
that is constructed to elicit the same level of visual noise across experimental trials (Britten et al.,
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1992). Researchers can control the difficulty of the experimental task by increasing or decreasing
the proportion of consistently moving dots independent of the level of visual noise. However,
in psychometric settings stimulus materials are complex and vary across items, and researchers
have limited control over the statistical properties of the stimuli. On a reading test, for instance,
words will differ in length and shape between items, which will introduce uncontrolled visual
noise. To accommodate this natural item-specific within-trial volatility in our ABDM, we allow
the diffusion coefficient s to vary across items.

Thirdly, the independence of boundary separation a and diffusion coefficient s in the DM
suggests that decision makers adjust their response caution irrespective of the volatility of the
information that becomes available. Although this assumption has been a default in applications
of the DM to experimental data, a recent debate in the literature has highlighted the controver-
sial nature of this assumption. Several authors have suggested that decision makers adjust their
boundary separation in response to changes in information volatility (e.g. Deneve, 2012; Dit-
terich, 2006; Shadlen & Kiani, 2013). Recent experimental results suggest that such adjustments
can even occur within a single decision, with decision makers lowering their response caution in
the face of lower signal-to-noise ratios (e.g. Drugowitsch et al., 2012; Hanks et al., 2011; Thura
et al., 2012).

In our ABDM, we assume that decision makers accommodate changes in information volatil-
ity across items by adjusting their response caution. Several authors have suggested different func-
tional relationships between volatility and response caution (e.g. Drugowitsch et al., 2012; Hanks
et al., 2011; Thura et al., 2012). Here, we assume that the decision maker’s response caution is a
fixed ratio of the volatility, that is, s/a = c. This assumption corresponds to linearly decreasing
decision boundaries with increasing volatility in the classic DM and yields a particularly simple
expression for the likelihood of our ABDM.

Finally, in the DM the starting point of the sampling process z is assumed unknown and is
estimated from the observed data. This assumption is reasonable in experimental settings that
manipulate the prior probability of one response option being correct or receiving a reward; the
strength of the a priori preference for a response option induced by the manipulation might vary
across decision makers and therefore needs to be estimated. However, in the absence of such
manipulations the sampling process is regularly found to be unbiased (e.g. Ratcliff et al., 2004;
Voss et al., 2004; Wagenmakers et al., 2008; see also Matzke and Wagenmakers’s (2009) review
of DM parameter values found in empirical studies). In psychometric applications to performance
tests, unbiasedness of the sampling process even becomes a necessity. An a priori preference for
one response option over another is indicative of a flawed test construction, and unbiasedness is
assumed by default in psychometric models (Haladyna, 2004; Osterlind, 1998). Therefore, we
assume in our ABDM that the psychometric test does not induce a response bias, that is, the
starting point of the accumulation process is in the middle of the decision boundaries, z = a/2.

Taken together, our ABDM assumes that decision makers choose between two response
options by accumulating noisy information about the options. Lapses in attention that interrupt
the accumulation process decrease the rate of information accumulation. The volatility of the
available information depends on the item, which decision makers accommodate by lowering
their response caution in proportion to the volatility. Moreover, assuming proper test construction,
decision makers exhibit no a priori preference for one response option over the other. A further
theoretical exploration of the relationship between the DM and our ABDM can be found in
Appendix B.

These assumptions yield a model with three parameters, namely the rate of information
accumulation v, the volatility parameter s and the ratio of response caution and volatility c. The
values of these parameters might vary across persons and items. The rate parameter v is clearly
subject to person and item effects as the rate at which person p, p = 1, . . . NP , answering item
i , i = 1, . . . , NI , depends on the person’s ability as well as the difficulty of the item. Following
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Tuerlinckx and De Boeck (2005), we assume additive effects of the person’s ability θp and the
item easiness βi on v:

vi p = βi + θp.

As pointed out above, information volatility varies across items, which is expressed in the item
effect αi on s:

sip = αi .

As we will see in the following, having additive person and item effects on s would yield an
unidentified model. Although identification of the model could also be achieved with a different
random and fixed effects structure for vi p and sip, our choice here yields a 2-PLM (Birnbaum,
1968) for the probability of a correct response.

Finally, the volatility-to-response caution ratio c represents the adjustment of a decision
maker’s response caution to the information volatility of an item, and c is therefore constant
across items but might differ across decision makers. Here, we will follow the approach recently
advocated in neuroscience (Cisek et al., 2009; Shadlen & Kiani, 2013; Thura et al., 2012; Thura
& Cisek, 2014; Thura et al., 2014), where the volatility-to-caution ratio is fixed to the same value
for all decision makers. This approach conveys considerable computational advantages, as we
discuss in the following.

The joint density of the response time t and choice x in diffusion-type models is given by
(Ratcliff, 1978):

f (t, x) = πs2

a2
exp

(
[ax − z] v

s2
− t

v2

2s2

)

×
∞∑
k=1

[
k sin

(
πk[ax − 2xz + z]

a

)
exp

(
−π2s2k2

2a2
t

)]
. (1)

From this density, expressions can be derived for the mean RT (Cox & Miller, 1970; Laming,
1973):

E(T ) = a

2v

1 − exp
(
− va

s2

)

1 + exp
(
− va

s2

) , (2)

and the probability of a correct response:

P(X = 1) =
exp

(
− 2zv

s2

)
− 1

exp
(
− 2av

s2

)
− 1

. (3)

The substantive assumptions derived above yield for the density of our ABDM:

f (t, x) = πc2 exp

(
[x − 1/2] v

cs
− t

v2

2s2

)
×

∞∑
k=1

[
k sin

(
πk

2

)
exp

(
−π2c2k2

2
t

)]
. (4)

The form of the model density (4) shows that additive person and item effects on s would lead to
an unidentifiable model because v and s always appear in a ratio where person and item effects
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on the two parameters cancel. Our substantive assumptions mean that the probability of a correct
response given in Eq. (3) becomes:

P(X = 1) = 1

1 + exp
(
− vi p

csi

) , (5)

which is a 2-PLM (see also Tuerlinckx & De Boeck, 2005).
Finally, the volatility-to-caution ratio c is the only model parameter that appears in the series

expression in Eq. (4), whilst s and v only appear in the exponential term. As c is assumed to be
constant across persons and items, the estimation of the person and item effects on s and v can be
separated from the estimation of c. This conveys a considerable computational advantage as the
costly evaluation of the series expression is limited to the estimation of c. In the next section, we
will first introduce a Bayesian implementation of our ABDM that enables efficient estimation of
the person and item effects on s and v, which we will subsequently use to estimate c.

1. Bayesian Implementation

Our ABDM lends itself naturally to Bayesian analysis due its functional form. Specifically,
assuming the parameterisation introduced above, where the rate of information accumulation for
person p answering item i is determined by the person’s ability θp and the item easiness βi ,
vi p = βi + θp, and the volatility varies across items, si = αi , the density of the ABDM is:

f (tip, xip | βi , θp, αi ) = πc2 exp

(
[xip − 1/2]βi + θp

cαi
− tip

(βi + θp)
2

2α2
i

)

×
∞∑
k=1

[
k sin

(
πk

2

)
exp

(
−π2c2k2

2
tip

)]
(6)

and dropping all constants not related to βi , θp, or αi and letting α̃i = α−1
i :

∝ exp

(
[xip − 1/2]α̃i

(βi + θp)

c
− tipα̃

2
i
(βi + θp)

2

2

)
.

If we assume for now that the value of c is known, then this form of the density suggests a
conjugate analysis for the estimation of the remaining parameters. Choosing amultivariate normal
distribution as joint prior for the model parameters βi , θp, and α̃i , and an inverse Wishart prior
for the variance–covariance matrix, will yield a multivariate normal posterior distribution for all
parameters. Due to the interpretation of the volatility α̃i as a standard deviation, only positive
values are admissible for this parameter and the prior distribution for α̃i needs to be truncated at
zero, which complicates the form of the joint posterior distribution considerably. Nevertheless,
conjugacy will still hold for the full conditional posterior distributions of βi , θp and α̃i . Hence,
our model can be straightforwardly analysed using Gibbs sampling.
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1.1. Random Effects

The likelihood function of our ABDM, Eq. (6), has a simple form that makes it amenable to
extension. The terms of the series expression do not depend on any of the model parameters and
can therefore be dropped in analyses of the likelihood function, which leaves a simple exponential
family model. Moreover, the item and person effects on drift rate, βi and θp, and the item effects
on the information volatility, α̃i , only appear in the first and second powers. Hence, the full-
conditional distributions we introduce below take the form of a normal kernel, which allows for
simple conjugate analysis and easy sampling-based estimation.

One problem that is regularly of interest in psychometrics is the modelling of unobserved
heterogeneity. We show here how our ABDM can be extended to accommodate a random effects
structure. Extensions to other statistical problems such as missing data, inclusion of manifest
predictor variables, or the addition of autoregressive components are straightforward.

To model heterogeneity in the data, we assume the following population-level distributions:

βi ∼ N (μI , σ
2
I ), θp ∼ N (μP , σ 2

P ), α̃i ∼ N (μA, γ 2
A)[0,∞).

Here, N (μ, σ 2) denotes the normal distribution with mean μ and variance σ 2. The expression
[0,∞) indicates the support of the truncated distribution. The population-level parameters can be
assigned prior distributions in a similar manner:

μP ∼ N (νP0, τ
2
P0), σ 2

P ∼ invG(aP0, bP0), μI ∼ N (νI0, τ
2
I0), σ 2

I ∼ invG(aI0, bI0).
μA ∼ N (νA0, τ

2
A0), γ 2

A ∼ invG(aA0, bA0).

Here, invG(a, b) denotes the inverse gamma distributionwith shape parameter a and scale param-
eter b.

The full-conditional conjugate posterior distributions for the person and item effects on drift
rate vi p for NP persons answering NI items are:

βi ∼ N (β̂i,NP , σ̂ 2
i,NP

), θp ∼ N (θ̂p,NI , σ̂
2
p,NI

),

where

σ̂ 2
i,NP

=
(∑NP

p=1
ti p
α2
i

+ 1
σ 2
I

)−1

, β̂i,NP =
(∑NP

p=1
(xip−1/2)

cαi
− ∑NP

p=1
ti pθp
α2
i

+ μI

σ 2
I

)
σ̂ 2
i,NP

σ̂ 2
p,NI

=
(∑NI

i=1
ti p
α2
i

+ 1
σ 2
P

)−1

, θ̂p,NI =
(∑NI

i=1
(xip−1/2)

cαi
− ∑NI

i=1
ti pβi
α2
i

+ μP

σ 2
P

)
σ̂ 2
p,NI

.

Similarly, the full-conditional conjugate posterior distribution for item effects on the reciprocal
volatility parameter s−1

i p is:

α̃i ∼ N (α̂i,NP , γ̂ 2
i,NP

)[0,∞),

where

γ̂ 2
i,NP

= γ 2
A

(∑NP
p=1 tip(βi + θp)

2γ 2
A + 1

)−1
,

α̂i,NP =
(
μA/γ 2

A + ∑NP
p=1(xip − 1/2)(βi + θp)/c

)
γ̂ 2
i,NP

.
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The full-conditional posterior distributions for the population-level parameters are:

μP ∼ N (νP,NP , τ 2P,NP
), where νP,NP = τ 2P

∑NP
p=1 θp+σ 2

PνP,0

τ 2P NP+σ 2
P

, τ 2P,NP
= τ 2Pσ 2

P
τ 2P NP+σ 2

P

σ 2
P ∼ invG(aP,NP , bP,NP ), where aP,NP = aP,0 + NP/2,

bP,NP = ∑NP
p=1(θp − μP )2/2 + bP,0

μI ∼ N (νI,NI , τ
2
I,NI

), where νI,NI = τ 2I
∑NI

i=1 βi+σ 2
I νI,0

τ 2I NI+σ 2
I

, τ 2I,NI
= τ 2I σ 2

I
τ 2I NI+σ 2

I

σ 2
I ∼ invG(aI,NI , bI,NI ), where aI,NI = aI,0 + NI /2,

bI,NI = ∑NI
i=1(βi − μI )

2/2 + bI,0

μA ∼ N (νA,NI , τ
2
A,NI

), where νA,NI = τ 2A
∑NI

i=1 α̃i+γ 2
AνA,0

τ 2ANI+γ 2
A

, τ 2A,NI
= τ 2Aγ 2

A
τ 2ANI+γ 2

A

γ 2
A ∼ invG(aA,NI , bA,NI ), where aA,NI = aA,0 + NI /2,

bA,NI = ∑NI
i=1(α̃i − μA)2/2 + bA,0.

Let �t = [t11, . . . , tI P ] be the vector of response times and let �x = [x11, . . . , xI P ] be the
vector of accuracies. Moreover, denote by 
 the set of all item, person, and population-level
parameters, then:

f (�t, �x | 
) f (
) ∝ exp

⎛
⎝ NI∑

i=1

NP∑
p=1

(
α̃i [xip − 1/2]βi + θp

c
− tipα̃

2
i
(βi + θp)

2

2

)⎞
⎠

× exp

⎛
⎝−

⎛
⎝ NI∑

i=1

(βi − μI )
2

2σ 2
I

+
NP∑
p=1

(θp − μP )2

2σ 2
P

+
NI∑
i=1

(α̃i − μA)2

2γ 2
A

⎞
⎠

⎞
⎠

× exp

(
−

(
(μI − νI0)

2

2τ 2I0
+ (μP − νP0)

2

2τ 2P0
+ (μA − νA0)

2

2τ 2A0
+ bI

σ 2
I

+ bP
σ 2
P

+ bA
γ 2
A

))

× σ
−2(aI+1+NI /2)
I σ

−2(aP+1+NP/2)
P γ

−2(aA+1+NI /2)
A .

This random effects extension of our model is not identified, which we address by fixing two
model parameters:

μP = 0, σ 2
P = 1.

The first constraint addresses the trade-off between the βi and θp, where adding a constant to
all βi and subtracting the same constant from all θp yields the same value for the likelihood as
the original values βi and θp. By requiring μP = 0, we fix the location of the person effects on
drift rate. The second constraint addresses the indeterminate scale of the item and person effects,
wheremultiplying all βi and θp by a constant is compensated for bymultiplying the corresponding
variance terms by the same constant.

1.2. Regression Models for Person Effects

Our ABDM allows for the inclusion of regression models for the latent person effects and can
also be extended to latent regression of item parameters on manifest covariates. We will illustrate
this for the case where the person effects θp are regressed on a set of covariates. A more complete
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discussion of latent regression models can be found in, for example, Fox (2001), Fox and Glas
(2006), Mislevy (1985), and Zwinderman (1991).

Due to the functional form of our ABDM, the addition of a regression extension is straight-
forward. The random effects structure for the latent variable of interest can be replaced by a
regression equation. For an appropriately chosen prior distribution on the regression coefficients
and residual variance, this yields normal–inverse gamma posterior distributions for the regression
coefficients and residual variance and leaves the normal–normal conjugacy for the latent variables
intact.

To regress the person effect θp on a set of covariates, we specify the regression model as:

θp = �λT �yp + εp, εp ∼ N (0, σ 2
res), (7)

where �yp is a (K + 1)× 1 vector with first entry equal to 1 and the remaining K entries being the
manifest covariate values for person p, �λ is a (K + 1) × 1 vector of regression weights, and εp is
a normally distributed error term with mean 0 and variance σ 2

res . If we assign the non-informative
prior distribution [�λ, σ 2

res] ∝ 1/σ 2
res and replace the random effects term for θp by the regression

model in Eq. (7), our model becomes:

f (�t, �x | �θ, �λ, σ 2
res) f (�λ) f (σ 2

res) ∝ exp

⎛
⎝−

NP∑
p=1

θ2p

( NI∑
i=1

tipα̃2
i

2
+ 1

2σ 2
res

)⎞
⎠

× exp

⎛
⎝2

NP∑
p=1

θp

( NI∑
i=1

α̃i
[xip − 1/2]

2c
−

NI∑
i=1

tipα̃
2
i
βi

2
+ �λT �yp

2σ 2
res

)⎞
⎠

× (σ 2
res)

−(Np/2+1).

Here, �θ denotes the Np×1 vector of person effects on drift rate. Note that replacing the expression
for the random effect on θp by the regression model replaces the variance term σ 2

P by the residual
variance σ 2

res . From the expression above, it can be seen that the full-conditional posterior distri-
butions for �λ, σ 2

res , and θp have the form (for details on the derivation, see chapter 14 in Gelman
et al., 2013):

�λ ∼ N (λ̂, Vλσ
2
res), σ 2

res ∼ invG( n2 , n−K
2 σ̂ 2

res), θp ∼ N (θ̂p,NI , σ̂
2
p,NI

),

where

λ̂ = (Y T Y )−1Y T �θ, Vλ = (Y T Y )−1, σ̂ 2
res = 1/(Np − K ) · (�θ − Y �λ)T (�θ − Y �λ)

σ̂ 2
p,NI

=
(∑NI

i=1
ti p
α2
i

+ 1
σ 2
res

)−1

, θ̂p,NI =
(∑NI

i=1
(xip−1/2)

cαi
− ∑NI

i=1
ti pβi
α2
i

+ �λT �yp
σ 2
res

)
σ̂ 2
p,NI

.

Here, Y is the Np × (K + 1) design matrix with all entries of the first column equal to 1 and the
remaining columns being the K vectors containing the values of the predictorsY1, . . . ,YK . Hence,
MCMC samples for latent regression in the ABDM can be easily obtained using Gibbs-sampling.

As before, this extended model is unidentified, which we address by fixing two parameters.
Firstly, we set λ0 = 0 to fix the location of the person effects θp, which we previously addressed
by setting μP = 0. Secondly, we set σ 2

res = 1 to fix the scale of the person effects θp, which we
previously addressed by setting σ 2

P = 1.
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1.3. MCMC Sampling

The analysis of our model relies on MCMC sampling from the posterior distribution. The
full-conditional posterior distributions for all parameters are conjugate to the prior distributions
and have standard functional forms. We can therefore easily obtain MCMC samples using the
Gibbs sampler (Gelfand & Smith, 1990), which is implemented by alternately sampling from
the full-conditional posterior distributions. Custom-written R code that implements the Gibbs
sampler for our ABDM is available on the project’s OSF page https://osf.io/fh4wp/.

1.4. Estimation of the Volatility-to-Caution Ratio

As pointed out above, estimation of the volatility-to-caution ratio c requires the evaluation
of the full density of the ABDM, including the series expression in Eq. (6). The assumption that
c is constant across persons and items means that the estimation problem is one dimensional.
Fully Bayesian estimation of c would be computationally intractable. However, simple iterative
optimisation can be carried out by estimating the person and item effects βi , θp, and α̃i for each
candidate value c̃ using Gibbs sampling and using the ABDM likelihood in Eq. (6) evaluated at
the posterior means as the objective function.

If the objective function has a unique global maximum, efficient adaptive estimation can be
achieved by the golden section algorithm (Kiefer, 1953). If the objective function does not have
a unique global maximum, other approaches such as a grid search or adaptive gradient descent
methods can be employed. Initial values for the latter type of search algorithm can be obtained
from the moment estimator of c. Specifically, if we fix all item and person effects on the ABDM
parameters and write p = P(X = 1) for the probability of a correct response, then Eq. (3) gives:

p = 1

1 + exp
(− v

cs

) ⇐⇒ v

cs
= log

(
p

1 − p

)
=:L .

Writing M for the mean RT and substituting L into the expression in Eq. (2) gives:

M = a

2v

1 − exp
(
− va

s2

)

1 + exp
(
− va

s2

) = 1

2Lc2
1 − exp (−L)

1 + exp (−L)
.

Solving for c and using the fact that c > 0, we get the estimator:

ĉ =
√

1

2LM

1 − exp (−L)

1 + exp (−L)
.

As the joint likelihood of the data conditional on c had a unique global maximum in all our
example applications, we used a golden section algorithm to estimate c.

2. Simulation Study

We tested the sampling behaviour of our ABDM in a simulation study. We used the
rdiffusion function from the RTdists R package (Singmann et al., 2016) to generate RT
and choice data for 120 persons answering 70 items. The generating population-level parameters

https://osf.io/fh4wp/
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Figure 2.
Simulation study with 120 persons answering 70 items. a Accuracy and mean RT for simulated items. b Marginal RT
distribution over items and persons. c Estimated and true values for the item (βi ) and person (θp) effects on the rate or
information accumulation, and for the item effects on the reciprocal volatility (α̃i ). d Example MCMC chains for item
and person effects after a burn-in period of 2,000 samples.

were set to μI = 1, σ 2
I = 1, μP = 0, σ 2

P = 1, μA = 1, and γ 2
A = 1/2. We truncated the gener-

ating distribution for α̃i at 1/2 instead of 0 to avoid unrealistically large values of the information
volatility in the simulated data. We furthermore set the caution-to-volatility ratio to c = 0.35.
Panel A of Fig. 2 shows the joint distribution of mean accuracies and mean RTs for the simulated
items. As can be seen, both variables spanned a realistic range of values. Panel B of Fig. 2 shows
the marginal distribution of RTs. All RTs fell in the range below 10s. Moreover, the distribution
exhibits the skew and long tail that is characteristic of RT data.

We implemented our random effects model using custom-written R code in combination with
the algorithm for sampling from truncated normal distributions implemented in the truncnorm
package (Mersmann et al., 2018). For the estimation of the volatility-to-caution ratio c, we used
the method described in the preceding section. R code for the simulations and model fitting is
available on OSF: https://osf.io/fh4wp/. We considered the search space C = [0.1, 1]. We set
the maximum number of iterations for the golden section algorithm to 10, and we terminated
the search if the relative change in the log-likelihood between iterations was less than 1%. To
estimate the person and item parameters for each candidate value of c, we generated a single chain
of 2,000 MCMC samples and discarded the first 1,000 samples as burn-in samples. Once we had
obtained an estimate of c, we generated the final set of three chains with 12000 MCMC samples.
We discarded the first 2000 samples as burn-in samples. The golden section algorithm yielded an
estimate of ĉ = 0.343. Panel C of Fig. 2 shows the posterior mean estimates of the person and
item effects θp, βi , and α̃i . As can be seen, all parameters could be recovered accurately. Panel
D of Fig. 2 shows three example chains for the person and item effects. All three parameters, β2,
θ2, and α̃2, showed good sampling behaviour with relatively small autocorrelations.

https://osf.io/fh4wp/
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Table 1.
Convergence results for simulated data.

Population parameter R̂ Person/item parameter R̂ Quantiles

μI 1.012 0.25 0.5 0.75
μA 1.004 βi 1.009 1.015 1.021
σ 2
I 1.002 θp 1.014 1.017 1.018

γ 2
A 1.002 α̃i 1.002 1.002 1.003

Quantiles are computed across persons or items.

Table 1 shows a summary of the potential scale reduction factor R̂ (Gelman & Rubin, 1992).
As can be seen, R̂ was below 1.02 for all population parameters. Moreover, R̂ did not exceed 1.03
for all chains for all parameters βi , θp, and α̃i . Taken together, the results of our simulation study
show that person and item effects on drift rate and item effects on the diffusion coefficient can be
estimated with good efficiency and generating values can be recovered with high accuracy.

In a further set of simulations, we explored the effect of a neglected additive non-decision
time on the ABDM parameter estimates. As pointed in the introduction, our ABDM assumes that
non-decision processes affect the decision time by interrupting decision processes, and changes
in non-decision time are therefore reflected by changes in the rate of information processing.
However, it might be argued that some quick-paced non-decision processes such as stimulus
encoding and response execution do not affect decision processes and result in a small additive
non-decision component of the observable response time. To gauge the effect of such a small
additive non-decision component on parameter estimates in our ABDM, we generated data from
the ABDM and added a small non-decision component to the generated RTs.

As in our first simulation, we generated RT and accuracy data for 120 persons answering 70
items with the same settings for the generating population parameters. We generated data with
four different values for the additive non-decision time component, t0 = 0.1, 0.5, 1, 2. Relative to
themean decision time (i.e. themean response timewithout the additive non-decision component)
of 1.1s, an additive non-decision component of 2s represents an extreme case where non-intrusive
non-decision processes triple the observable decision time. All fitting procedures were the same
as in the first simulation.

Figure 3 shows how the additive non-decision component affects estimates of the ABDM
parameters. Correlations ρ between generating and estimated parameter values are given in the
top left corner of each plot. As can be seen, item effects on the rate of information processing βi
(leftmost column) are largely unaffected by t0; but only extreme values of t0 lead to a noticeable
overestimation of large values of βi . This is also confirmed by the overall high correlation between
generating and estimated parameter values. Person effects on the rate of information processing θp
(second column from the left) are largely unaffected by small values of t0. Large values of t0 result
in an underestimation of large values of θp and an overestimation of small values of θp. However,
the bias is monotonic, which means that the order of θp across persons is not affected. Hence, even
in the presence of an unrealistically large additive non-decision component, inferences about the
relative rate of information processing among test takers are still valid. This is further confirmed
by the overall high correlation between generating and estimated parameter values. Item effects
on the volatility parameter α̃i (third column from the left) are largely unaffected by very small
values of t0. However, for larger values of t0, the α̃i tend to be underestimated and the precision
with which the generating value can be recovered decreases. This is also reflected in a sizeable
decrease in the correlation between generating and estimated parameter values for large values of
t0. Finally, estimates of the population-level parameters (rightmost column) are largely unaffected
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by small values of t0. For extreme values of t0, μI remains largely unaffected, whilst the variance
σ 2
I is overestimated, and μA and γ 2

A are considerably underestimated. Estimates of the boundary-
to-volatility ratio c are unaffected for small values of t0 but tend to be underestimated for larger
values of t0.

Taken together, the results of these simulations show that neglecting realistic, small additive
non-decision components in the ABDM does not significantly bias parameter estimates. Large
additive non-decision componentsmainly affect estimates of item volatility. However, these biases
only become significant when the additive non-decision component is at least as large as the mean
decision time. Substantively, thismeans that non-intrusive non-decision processes such as stimulus
encoding and response executionwould need to occupy asmuch time as decision processes, which
is implausible in realistic psychometric settings.

3. Application

We gauged the performance of our ABDM in realistic settings by re-analysing data sets used
in Van Rijn and Ali (2017) and Molenaar et al. (2015). Since Molenaar et al.’s (2015) data set
was considerably smaller, it provides little insight into the ABDM’s performance in the large-data
contexts for which the model was developed. Therefore, we only report our analysis of Van Rijn
and Ali’s (2017) data here, the analysis of Molenaar et al.’s (2015) data can be found in Appendix
C. The data set from Van Rijn and Ali (2017) consists of RT and accuracy data from 4899 first-
year students in teachers college who completed 50 spelling items as part of a Dutch language
test. Items had a two-alternative forced choice format and were presented in random order. There
were no time limits imposed for the completion of individual items, but the duration of the entire
language test was limited to 90 min. For our analysis, we only used data from the A version of the
test and excluded test takers with incomplete data, who spent less than 3 s per item on average,
or had taken (a version of) the test previously.

Figure 4 shows the marginal RT quantiles (0, 0.2, 0.4, 0.6, 0.8, and 1.0) for each of the 50
items and for the first 50 persons, ordered by mean RT. As can be seen, marginal RT distributions
for the items (left plot) had a sharp leading edge and a typical long tail. Minimum RTs were
generally small compared to the median RT; the ratio of the minimum observed RT to the median
RT ranged between 0.11 and 0.29, with a mean of 0.21. Since item-specific additive non-decision
components cannot exceed the minimum RT, this means that, in line with the assumptions of our
ABDM, any possible additive non-decision components were negligible relative to themedian RT.
Marginal RT distributions for the persons (right plot) also exhibited the typical skewed shape with
a long tail. The leading edge tended to be less steep compared to the marginal distributions for the
items. However, due to the small number of items, the exact shape of the marginal distributions
is insufficiently constrained by the data. Although the ratio of the minimum observed RT to the
median RT across all 4899 participants ranged between 0.10 and 0.80, for 90% of the participants
the minimum RT was smaller than half their median RT. This means that any potential person-
specific additive non-decision components were small relative to the median RT.

We aimed to compare the performance of our ABDM to Van der Linden’s (2009) popular
hierarchical model and to Van der Maas et al.’s (2011) Q-diffusion model. We compared our
ABDMto the twocompetitormodels in termsof relative and absolutemodel fit. For the comparison
of the relative model fit with the hierarchical model, we fitted both models to the full data set of
4899 persons and 50 items. For the comparison of the absolute model fit, we only used the data of
the first 50 persons on all 50 items due to the formidable computational costs of generating data
from the full ABDM. For the comparison of the relative as well as the absolute model fit with
the Q-diffusion model, we only used the data of the first 200 persons and the first 15 items due
to prohibitively long computing times of the Q-diffusion model (see also Van Rijn & Ali, 2017).
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Figure 3.
Parameter recovery simulation under additive non-decision time. Plots show the relationship between true and estimated
values of the ABDM parameters when the generating model includes an additive non-decision time component. The
generating population-level parameters were μI = 1, σ 2

I = 1, μA = 1, γ 2
A = 1/2, and c = 0.35.

Moreover, as the DM likelihood function approaches zero quickly for RTs above 10s, we fitted
all models to the RTs in tenths of seconds to guarantee numerical stability.

Van der Linden’s (2009) hierarchical model describes log-RTs as normally distributed, where
the RT for a person completing one item is described by a person-dependent speed parameter, and
item-dependent discrimination and time-intensity parameters. The probability of giving a correct
response is described by a normal ogive model with a person-dependent ability parameter and
two item-dependent discrimination and difficulty parameters. Dependencies between RTs and
accuracies are introduced through multivariate normal population-level distributions for the item
and person parameters. Hence, the model as implemented by Fox et al. (2019) describes a data
set with NI items and NP persons in terms of 2NI + 5NP + 25 parameters.
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Table 2.
Relative model fits.

AIC BIC DIC Log-likelihood No. of parameters

ABDM 695,714.2 747,799.8 690,607.5 −342,853.1 5,004
Hierarchical model 906,733.2 1,011,581.0 936,987.5 −443,293.6 10,073

Van der Maas et al.’s (2011) Q-diffusion model describes the joint distribution of RTs and
accuracies in terms of the classic DM. The Q-diffusion model describes the rate of information
processing and boundary separation as a ratio of a person and an item parameter. Moreover, non-
decision time is assumed to be an additive component of the observed RT and is determined by
an item parameter. Together with two parameters for the population-level variance of the person
parameters, themodel describes a data setwith NI items and NP persons in terms of 3NI+2NP+2
parameters.

For the comparison with the hierarchical model, we fitted our ABDM using the routine
described earlier. We first estimated the boundary-to-volatility ratio c to using the golden section
algorithm, where the algorithm terminated if either a maximum number of ten iterations had been
reached or the change in the log-likelihood between iterations was less than 1%. To estimate the
person and item parameters for each candidate value of c, we drew 2,000 posterior samples for
all other model parameters and discarding the first 1,000 samples as burn-in samples. The golden
section estimation of c was completed after seven iterations with a change in the log-likelihood
of less than 0.03%. In a second step, we obtained the desired number of posterior samples for the
best-fitting value of c. We sampled three chains with 12,000 posterior samples each of which we
discarded the first 2,000 samples as burn-in. All chains showed good convergence, with R̂ < 1.02.
We used the ddiffusion function implemented in the rtdists R package (Singmann et al., 2016)
to compute the ABDM likelihood.We fitted van der Linden’s hierarchical model using the LNIRT
function in Fox et al.’s (2019) LNIRT R package. We obtained three chains with 12,000 posterior
samples each of which we discarded the first 2,000 samples as burn-in. All chains showed good
convergence, with R̂ < 1.02.

We assessed relative model fit by means of AIC, BIC and DIC. For the computation of
AIC and BIC, we evaluated the conditional model likelihoods1 at the posterior means. We also
based our computation of DIC on the conditional likelihood for both models.2 Due to the long
computing times required for the evaluation of the full ABDM likelihood function, we based
the computation of the model selection criteria on the first 1,000 posterior samples after burn-in
from a single MCMC chain. Table 2 shows the relative fit of the two models. As can be seen,
the log-likelihood was larger for the ABDM than for the hierarchical model and all three model
selection criteria indicated that the ABDM also fitted the data better when model complexity was
taken into account.

We assessed the absolute model fit by means of the posterior predictive mean RTs and
accuracies for persons and items. Due to the high computational costs of generating samples from
the full ABDM, we limited our analysis to the first 50 items and persons in the data set. We
generated 500 posterior predictive samples for each item and person. We used the rdiffusion
function in the rtdists R package (Singmann et al., 2016) to generate posterior predictive samples

1Although DIC should preferably be computed based on the integrated likelihood (Celeux et al., 2006), integrating
the likelihood of the models under consideration here requires additional simplifying assumptions and might still yield
normalising constants that are not available in closed form (Marsman et al., 2019).

2As we estimated the boundary-to-volatility ratio for the ABDM before obtaining posterior samples, DIC neglects
the influence of this parameter on model fit.
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for the ABDM, and we used custom-written code to generate posterior predictive samples for the
hierarchical model.

Figure 5 shows the comparison of the data and the posterior predictive samples generated by
the two models, ordered by the mean RT in the data. As can be seen, the ABDM generated wider
posterior predictive intervals for RTs (left column in the left panel) than the hierarchical model
(left column in the right panel). Whereas the ABDM’s posterior predictives matched the mean
item RTs relatively closely (top left plot in the left panel), the hierarchical model systematically
underpredicted the mean item RTs (top left plot in the right panel). The ABDM overpredicted
some of the mean person RTs (bottom left plot in the left panel), whereas the hierarchical model
matched the mean person RTs closely (bottom left plot in the right panel). Both models matched
the mean item (top right plot in each panel) and person accuracies (bottom right plot in each
panel) closely, although the ABDM overpredicted some particularly low item accuracies. Taken
together, both models fitted the data well, although the hierarchical model showed a systematic
overprediction of mean item RTs that was not present in the ABDM.

As there are no Bayesian implementations available of the Q-diffusion, we developed a
maximum-likelihood fitting method for our ABDM to compare both models on an equal footing.
To avoid the computationally costly evaluation of the full ABDM likelihood required for the
maximum-likelihood estimation of the boundary-to-volatility ratio c, we fixed c to the value
estimated based on the complete data set in our comparison with the hierarchical model.

Joint maximum-likelihood estimates of the ABDM parameters can be obtained by differen-
tiating the logarithm of the likelihood (6) with respect to the person and item effects on the rate
of information processing and volatility, which yields:

∂

∂βi
log

(
f (�t, �x | 
)

) =
NP∑
p=1

xip − 1/2

c
α̃i − tip(βi + θp)α̃

2
i

∂

∂θp
log

(
f (�t, �x | 
)

) =
NI∑
i=1

xip − 1/2

c
α̃i − tip(βi + θp)α̃

2
i

∂

∂α̃i
log

(
f (�t, �x | 
)

) =
NP∑
p=1

xip − 1/2

c
(βi + θp) − tip(βi + θp)

2α̃i .

Equating to 0 and solving for βi , θp, and α̃i yields for the estimators:

β̂i =
∑NP

p=1(xip − 1/2) − ctipθpα̃i

c
∑NP

p=1 tipα̃i

θ̂p =
∑NI

i=1(xip − 1/2) − ctipβi α̃i

c
∑NP

p=1 tipα̃i

ˆ̃αi =
∑NP

p=1(xip − 1/2)

c
∑NP

p=1 tip(βi + θp)
,

which can be solved by iterative computation. To identify the model, we imposed the same
constraints on the θp as we imposed on the population mean and variance in our Bayesian

implementation, fixing the mean and variance of the θp to θ̄ = 1/NP

∑NP
p=1 θp = 0 and

σ 2 = 1/NP

∑NP
p=1(θp−θ̄ )2 = 1. Note that the remaining population-level parameters,μI , σ

2
I , μA,
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Table 3.
Relative model fits.

AIC BIC Log-likelihood No. of parameters

ABDM 7,994.8 9,370.2 −3,768.4 229
Q-Diffusion 7,679.7 10,364.6 −3,393.0 447

and γ 2
A, are not estimated in the JML approach.We obtainedmaximum-likelihood estimates of the

Q-diffusion parameters using the diffIRT function in the diffIRT R package (Molenaar, 2015).
We fitted both models to RTs divided by 10 to guarantee numerical stability when evaluating the
model likelihood. One reviewer pointed out that the selection of the 15 items might have affected
the outcomes of the model comparisons. We therefore repeated the model comparisons with a
different set of 15 items. As the results of both analyses agreed closely, we only report the results
for the first set of 15 items. The analysis for the second set of 15 items is reported in Appendix D.

We assessed relative model fit by means of AIC and BIC. Table 3 shows the relative fit of the
twomodels. As can be seen, the log-likelihoodwas smaller for the ABDM than for the Q-diffusion
model. AIC preferred the Q-diffusion model over the ABDM, whereas BIC preferred the ABDM
over the Q-diffusion model. This difference between the two criteria is due to the higher penalty
for model complexity imposed by BIC, which thus avoids selecting overly complex models at
small sample sizes. Moreover, the difference in AIC between the two models was considerably
smaller than the difference in BIC. These results suggest that the ABDM accounted as well for
the data as the Q-diffusion model when model complexity was taken into account.

We assessed absolute model fit through a cross-validation approach. To this end, we split up
the data in two ways. Firstly, we divided the data into five folds of 40 persons each, removed one
fold from the data and fitted both models to the remaining data (person-based fit). Secondly, we
divided the data into five folds of three items each, removed one fold from the data and fitted
both models to the remaining data (item-based fit). We used the results of the person-based fit
to compute the item parameters for the item fold removed in the item-based fit, and we used the
results of the item-based fit to compute the person parameters for the person-fold removed in
the person-based fit. We subsequently combined the person and item parameters obtained in the
two steps and used expressions (2) and (3) to predict RTs and accuracies for the person-by-item
combinations contained in the removed folds. This was repeated for all 25 person-by-item folds.

Figure 6 shows the deviation between observed and predicted RTs (top row of plots) and
accuracies (bottom row of plots) for the ABDM (left column of plots) and the Q-diffusion model
(right column of plots). Each column of dots shows the results for the 40 persons in one person-
fold, each cluster of five columns of dots shows the results for all five person folds on one item,
and each group of three items shows the results for all five person folds in one item fold. As
can be seen, the prediction errors for RTs for the ABDM clustered symmetrically around 0, with
a few large positive outliers. This means that the ABDM predicted RTs were largely unbiased,
except for very long RTs, in which case the ABDM tended to underpredict observed RTs. For the
Q-diffusion model, prediction errors also clustered symmetrically around 0, except for the third
item fold, for which the model systematically underpredicted the observed RTs. The spread of
the prediction error for the Q-diffusion model was comparable to that for the ABDM. Finally, the
Q-diffusion model showed a less pronounced tendency to underpredict long RTs than the ABDM;
the Q-diffusion model equally often overpredicted short RTs.

The results for the predicted accuracy are again similar between the two models. For the
ABDM prediction, errors tend to be positive, which indicates a tendency to underpredict accura-
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Figure 6.
Out-of-sample predictions in fivefold cross-validation for the ABDM and the Q-diffusion model. Predictions are based
on data from 200 persons and 15 items. Results for the ABDM are shown on the left results for the Q-diffusion model are
shown on the right. Each column of dots shows the results for one person fold, each cluster of five columns shows the
results for all five person folds in one item, and each group of three items shows the results for all five person folds on
one item fold.

cies. Nevertheless, most prediction errors are close to 0, which means that the ABDM generally
captured the probability of a correct response well. The Q-diffusion model showed a similar ten-
dency to underpredict accuracies but, in general, predicted the probability of a correct response
well, with most prediction errors being slightly larger than 0. The spread of the prediction errors
is also comparable to those observed for the ABDM. However, for the third item fold, the Q-
diffusion model showed a systematic underprediction of accuracies. Taken together, both models
provided a comparable absolute fit to the data.

To sum up, our comparison with the hierarchical model showed that our ABDM provides a
better relative fit and a comparable absolute fit to the data, with a considerably smaller number of
parameters. Our comparison with the Q-diffusion model further showed that the ABDM provides
a comparable relative and absolute fit to the data. This latter result indicates that our ABDM does
not lose much descriptive power compared to an instantiation of the classic DM, but requires
fewer parameters (NI + NP + 4, to be precise).
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Figure 7.
Relationship between person effect on drift rate and prior education. Posterior means from the model without regression
component are shown on the left. Data are jittered for improved visibility. Horizontal lines indicate the group means.
Posterior means (dots) and 95% equal-tailed credible interval (lines) for the regression coefficients are shown on the right.

3.1. Regression Model

As a final step in the assessment of our ABDM,we testedwhether the estimated person effects
on drift rate behave in accordance with their substantive interpretation. Van Rijn and Ali’s (2017)
data set included information on test takers’ prior education. If individual differences in the person
effects on drift rate θp do indeed reflect differences in the speed of information processing, one
would expect that θp is larger for test takers who completed a higher level of prior education. To
test this substantive hypothesis, we extended our ABDM with a regression model that described
the θp in terms of the dummy-coded prior education levels, with MBO as the reference level.

Prior education was categorised as MBO, HAVO, or VWO, which reflect increasing levels
in the Dutch education system. We excluded the data of 348 test takers from this analysis as there
were either no data available on their prior education or their prior education did not fall into
one of the three categories. As a first analysis step, we fitted the ABDM without the regression
component to the data. The left panel in Fig. 7 shows the posterior means of θp for the three
education levels. As can be seen, the estimated person effects were smallest for test takers with
MBO as their prior education and largest for test takers with a VWO education. As a second step,
we fitted the ABDMwith the regression extension to the data. The right panel in Fig. 7 shows the
equal-tailed 95% credible intervals for the regression coefficients. In line with the hypothesis, the
regression coefficient for the difference between HAVO and MBO was positive and the credible
interval did not include 0. The difference between VWO and MBO was considerably larger than
the difference between HAVO and MBO, and the credible interval again did not include 0. Taken
together, these results are in line with the substantive hypothesis that higher education levels are
associated with faster information processes, which is represented by the person effects on drift
rate.

4. Discussion

In the present paper, we developed the Attention-Based Diffusion Model. Based on cognitive
process assumptions that we believe to be appropriate in psychometric contexts, we derived a
substantively meaningful model with favourable computational properties. Our simulation study
demonstrated good parameter recovery and furthermore showed the robustness of ourmodel to the
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presence of non-intrusive non-decision processes. In our application to data from a performance
test, we compared our ABDM to Van der Linden’s (2009) popular hierarchical model and to Van
derMaas et al.’s (2011) Q-diffusion model.Whereas our ABDM and the hierarchical model could
be fitted to the complete data set, we had to limit our comparison with the Q-diffusion model to a
subset of the data due to the considerable computing time required to fit the Q-diffusion model to
data. Formal model comparisons showed that our ABDM provided a better fit to the data than the
hierarchical model and performed as well as the Q-diffusionmodel. These results indicate that our
ABDMprovides a substantively meaningful and computationally efficient model for performance
test data.

One limitation on the theoretical interpretation of our ABDM is the requirement that data
conform to a two-alternative forced choice format, where each decision threshold corresponds to
one response option and the sign of the rate parameter indicates which response option is favoured
by the accumulated information. However, this is rarely the case in psychometric settings, where
items typically have a multiple-choice format. In a multiple-choice setting, there is no such clear
correspondence between the response options, and the two decision thresholds and the sign of
the drift rate parameter. In some testing situations, this problem might be resolved by grouping
response options. Specifically, if there is only one correct option and the incorrect options are
equally attractive, that is, each incorrect option generates information at the same rate, all incorrect
options might be subsumed under one threshold and the correct response might be associated with
the other threshold (see also Van derMaas et al., 2011). However, in a setting with multiple correct
answers that differ in their attractiveness, as is typically the case in attitude or personality tests,
models based on a diffusion process with two thresholds will generally not be applicable (e.g.
Ratcliff et al., 2016).

An interesting theoretical aspect of our ABDM is the fixed volatility-to-response caution
ratio. This assumption corresponds to linearly decreasing decision boundaries (Hanks et al.,
2011). In the classic DM, the assumption that decision boundaries are constant is motivated by
a statistical optimality argument; constant boundaries yield the lowest mean decision time for
a given accuracy level if the stimulus strength and volatility are constant (Wald & Wolfowitz,
1948). However, in natural environments, as well as in psychometric settings, stimulus strength
and/or volatility varies between decisions. Under these circumstances, decision makers should
become increasingly willing to sacrifice decision accuracy as the decision time increases to avoid
unacceptably long mean decision times. An optimal trade-off between decision time and accuracy
can be achieved by decreasing the decision boundaries (Anderson, 1960; Shadlen &Kiani, 2013).

An important criterion in the development of latent trait models for RT data is the trade-off
between statistical convenience and substantive scope. At one end of the spectrum are highly
tractable statistical models that are void of any conceptual commitments. At the other of the
spectrumaremodels frommathematical psychology that are conceptually richbut computationally
inefficient. Purely statistical models are unsatisfactory as psychological theories. Because the
validity of psychometric tests hinges on the psychological processes that connect itempresentation
and item response, models should provide a substantively meaningful account of this connection
(Van der Maas et al., 2011). Although models from mathematical psychology provide this type
of substantively meaningful item response theory, their functional form precludes applications of
models from mathematical psychology to large psychometric data sets. To attain an acceptable
trade-off between computational efficiency and substantive scope, researchers typically remove
conceptual commitments that are embodied in the model’s functional form until the resulting
model is sufficiently tractable for psychometric applications. In recent years, several authors have
suggested such simplified cognitive models for psychometric applications. In the remainder of
this section, we will discuss how the trade-off between statistical convenience and substantive
scope in our ABDM compares to the trade-offs made in these models.
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Our development of the ABDM here is based on a diffusion process account of item respond-
ing with substantive assumptions that are adjusted to a psychometric context. A close relative
of our ABDM is the proportional-rate diffusion model suggested by Palmer et al. (2005). They
assume unbiased responding and a constant ratio of response caution to volatility which, unlike
our ABDM, they fix to 1. Moreover, Palmer et al. assume that drift rate is a constant multiple of
the known stimulus strength in a random dot motion task. These simplifying assumptions result
in a two-parameter model for psychophysical applications.

Other researchers have attempted to make the classic DM applicable to psychometric data
whilst retaining the model’s substantive commitments. Van der Maas et al.’s (2011) Q-diffusion
model imposes a random effects structure on the four parameters of the classic DM for psycho-
metric applications. A more flexible version of the classic DM is provided by Vandekerckhove
et al’s. (2010) hierarchical Bayesian diffusion model (HDM), which allows users to implement
custom random effects and regression components. Although both models provide a statistical
structure that is appropriate for psychometric applications, their substantive assumptions seem
to be inappropriate in psychometric contexts. Moreover, the functional form of the classic DM
used in HDM and Q-diffusion is computational intractable and thus precludes applications in
psychometric settings with large data sets, as demonstrated in our example application.

A further model that is based on the classic DM isWagenmakers et al. (2007) EZ model. The
EZ model uses moment estimators to efficiently fit a three-parameter version of the classic DM,
under the assumption that the starting point of the accumulation process is equidistant from the
decision thresholds. Estimation of the model parameters is highly efficient as it relies on closed-
form expressions for the model parameters in terms of the probability of a correct response and
the mean and variance of correct RTs. However, in addition to the questionable appropriateness
of the model’s process assumptions in psychometric contexts, the reliance on the moments of the
marginal likelihood functions for RT and accuracy severely limits themodel’s flexibility. The three
model parameters can only be estimated from either the marginal RT distribution for each item or
the marginal RT distribution for each test taker, which precludes the estimation of separate person
and item effects (see also Ratcliff, 2008). Moreover, the lack of a likelihood function means that
the model cannot be implemented hierarchically or extended in any meaningful way.

Another class of cognitive models that have been adapted for psychometric applications are
ballistic accumulator models. These models replace the stochastic information accumulation pro-
cess in the DM by a ballistic process and allow information to accumulate independently for
each choice option, which yields more tractable models (e.g. Brown & Heathcote, 2008). One
particular instantiation of a ballistic accumulator model, the log-normal race model (LNR; Heath-
cote & Love, 2012), has recently been adapted to account for RTs in attitudinal and personality
tests with multiple response categories (Ranger & Kuhn, 2018). Moreover, Rouder et al.’s (2015)
hierarchical Bayesian implementation of the LNR can account for RT data in ability tests with
multiple response options. Their model can furthermore be extended to include autocorrelation
and latent regression components and is straightforward to analyse using Gibbs sampling. How-
ever, although the LNR model parameters have a cognitive process interpretation similar to the
DM parameters, the LNR model lacks the key distinction between boundary separation and the
rate of information accumulation. Thus, whilst the LNR model shares the statistical convenience
of our ABDM and can readily be applied in settings with more than two choice options, the
lack of a differentiation between boundary separation and the rate of information accumulation
represents a considerable limitation of the substantive scope of the LNR.

Taken together, our ABDM combines a high level of computational efficiency and statis-
tical flexibility with a conceptually meaningful interpretation of its model parameters. It thus
outperforms earlier attempts to make diffusion-type models applicable in psychometric contexts.
Within the larger class of accumulator models of decision-making, only the LNR model provides
a similar level of statistical convenience but has a more limited substantive scope.
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Appendix A: Non-Decision Time in the ABDM

InourABDM,we assume that lapses in attention affect decision processes, decreasing the effective
rate of information accumulation. Our conceptualisation of these attentional lapses can be most
easily understood by contrasting the random walk approximation of the classic DM with the
random walk approximation of our ABDM. We begin by showing that the diffusion process in
the classic DM is the weak limit of a random walk in which the walker moves either up or down
at each time step. We base our exposition on Schilling and Partzsch (2014).
We discretise space into units of size �x and consider discrete time steps of size �t in an interval
[0, T ]. This means that there are N = 	T/�t
 time steps in total, where 	·
 denotes rounding
down to the nearest integer. Let En ∼ Bern(p), n = 1, . . . , N be independent Bernoulli random
variables with parameter p ∈ [0, 1] and define Xn = 2En − 1. At each time step n, the walker
moves Xn�x units up or down, depending on the sign of Xn . The random walk process is defined
as:

X (T ) =
N∑

n=1

Xn�x . (A1)

The mean and variance of X (T ) are:

E[X (T )] = N�x(2p − 1)

V[X (T )] = N (�x)24p(1 − p). (A2)

We now note that (i) X (0) = 0. If we let T ′ = M�t , M < N , we may write X (T ) = (X (T ) −
X (T ′))+(X (T ′)−X (0)). Since the En are independent, identically distributed random variables,
the increments X (T ) − X (T ′) and X (T ′) − X (0) are also (ii) independent and (iii) identically
distributed random variables. These are three of the four properties we require for X (T ) to
approximate a diffusion process as N → ∞. The last property we require is that increments
must be normally distributed with variance (T − T ′)σ 2, where the constant σ is the diffusion
coefficient. To show this,wefirst note that independence of the increments implies thatV[X (T )] =
V[X (T ) − X (T ′)] + V[X (T ′) − X (0)], that is, the variance of X (T ) is linear in T :

V[X (T )] = Tσ 2.

From Eq. (A2), we conclude that:

σ 2 = (�x)2

�t
4p(1 − p).

http://creativecommons.org/licenses/by/4.0/
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We now write:

X (T ) = X (T ) − N�x(2p − 1)√
Tσ 2

√
Tσ 2 + N�x(2p − 1), (A3)

and let p = 1/2 (μ (�t/�x) + 1), where the constant μ is the drift rate. Taking N → ∞ and
applying the central limit theorem to the first term shows that (iv) the limiting process has normally
distributed increments with mean Tμ and variance Tσ 2. This shows that the process X (T )

approximates a diffusion process.
In contrast to the classic DM, the random walk approximation to our ABDM allows the random
walker to remain at its current position with a certain probability at each time step. Nevertheless,
the weak limit of this random walk is again a diffusion process.
Using the same discretisation of space and time as above, we now consider two sets of independent
Bernoulli random variables E+,n ∼ Bern(p+) and E−,n ∼ Bern(p−) with n = 1, . . . , N and
p± ∈ [0, 1]. We now define Yn = �x(E+,n − E−,n) and note that:

P(Yn = �x) = p+(1 − p−)

P(Yn = 0) = p+ p− + (1 − p+)(1 − p−)

P(Yn = −�x) = p−(1 − p+).

That is, at each time step n the walker moves Yn�x units up, down, or remains at its current
position, depending on the value of Yn . The corresponding random walk process is defined as:

Y (T ) =
N∑

n=1

Yn�x . (A4)

The mean and variance of Y (T ) are:

E[Y (T )] = N�x(p+ − p−)

V[Y (T )] = N (�x)2
(
p+ + p− − (p2+ + p2−)

)
. (A5)

Clearly, (i) Y (0) = 0 and the independence of E+,n and E−,n means that Y (T ) has (ii) independent
and (iii) identically distributed increments. A similar argument as above furthermore shows that
the variance of Y (T ) is linear in T and:

σ 2 = (�x)2

�t

(
p+ + p− − (p2+ + p2−)

)
.

We now write:

Y (T ) = Y (T ) − N�x(p+ − p−)√
Tσ 2

√
Tσ 2 + N�x(p+ − p−), (A6)

and let p± = 1/2 ((1 − p0) ± μ (�t/�x)), where the constant μ is the drift rate and p0 = p+ p− +
(1 − p+)(1 − p−) is the probability that the random walker does not move at some time step.
Taking N → ∞ and applying the central limit theorem to the first term shows that (iv) the limiting
process has normally distributed increments with mean Tμ and variance Tσ 2. This shows that
the process Y (T ) approximates a diffusion process. Moreover, the expression for the expectation
in Eq. (A5) shows that information is accumulated at a lower rate if non-decision time is larger
(i.e. for larger p0).
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Appendix B: Relationship Between the Attention-Based and Classic Diffusion Model

Here, we explore how the parameters of the classic DM are related to the parameters of our
ABDM. From the expression for the mean RT and the probability of choosing option A given in
Eqs. (2) and (3), we can derive the corresponding expressions in our ABDM for the mean RT,
MRT ABDM :

MRT ABDM = E(t) = sABDM

2vABDMc

1 − exp
(
− vABDM

csABDM

)

1 + exp
(
− vABDM

csABDM

) , (B1)

and for the probability of choosing option A, PA ABDM :

PA ABDM = P(x = 1) = 1

1 + exp
(
− vABDM

csABDM

) . (B2)

These latter expressions provide a simple way to study the relationship between our ABDM
and the classic DM. Given a fixed value for c, say c = 1/8, the ABDM includes only two free
parameters, which, for the purpose of this comparison, are denoted vABDM and sABDM . As can
be seen from Eqs. (B1) and (B2), in the absence of further constraints on the model parameters,
MRT ABDM and PA ABDM are only determined up to a ratio of vABDM and sABDM . For our
comparison with the classic DM, we will, therefore, assume that sABDM = 1. Similarly, for this
comparison we denote the parameters of the DM as vDM , sDM , zDM , aDM , and t0DM . We adopt
the usual assumption that the diffusion coefficient3 sDM = 1, and we furthermore assume that the
decision process is unbiased, that is, zDM = aDM

2 (this corresponds to the EZ-diffusion model;
Wagenmakers et al., 2007). Thus, the DM has three free parameters, vDM , aDM , and t0DM . The
resulting expression in the DM for the mean response, MRT DM , is:

MRT DM = E(t) = t0DM + aDM

2vDM

1 − exp (−vDMaDM )

1 + exp (−vDMaDM )
, (B3)

and the expression for the probability of choosing option A, PA DM , is:

PA DM = P(x = 1) = 1

1 + exp (−vDMaDM )
. (B4)

We can now study the relationship between the two models by setting MRT = MRT ABDM =
MRT DM to a fixed value, and numerically solving Eq. (B1) for vABDM and numerically solving
Eq. (B3) for vDM whilst aDM and t0DM are held constant at different values.
Figure 8 shows the relationship between the ABDM parameters (x-axis) and the DM parameters
(y-axis). The grey curves show how vABDM relates to vDM as MRT decreases from 15 s (bottom
left on each curve) to t0DM s (top right on each curve). Each grey curve shows the relationship
between vABDM and vDM for a different fixed value of t0DM . Black dots show the values of
vABDM and vDM that produce a mean response time of MRT = 6 s. The left panel shows the
relationship when aDM = 8; the right panel shows the relationship when aDM = 12. As can
be seen, the qualitative pattern is the same for both values of aDM : vABDM and vDM increase
monotonically as MRT increases from left to right along any of the grey curves. Higher values of

3Note that, since we chose sABDM = 1 and c = 1/8, the corresponding value for the boundary separation in the
classic DM is acDM = 8.
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Figure 8.
Relationship between parameters of the DM and the ABDM. Solid lines show how the drift rate in the ABDM, vABDM ,
relates to the drift rate in the DM, vDM . Each grey line shows the relationship between the drift rate parameters of the
two models for a fixed value of non-decision time t0DM in the classic DM. The left panel shows the results for a boundary
separation value of aDM = 8 in the classic DM; the right panel shows the results for aDM = 12. Small black dots show
the drift rate values in each model that correspond to a mean response time of 6 s. Drift rates for the ABDM are shown
for a diffusion coefficient of sABDM = 1 and ratio of boundary separation to drift rate of c = 1/8. The bias parameter in
the classic DM was set to zDM = aDM/2.

boundary separation in the DMmerely scale up the x-axis, which means that larger values of vDM

are required to match the MRT produced by the ABDM. For instance, if aDM = 8 and t0DM = 0
s (leftmost straight line in the left panel), a mean response time of MRT = 6 s is produced by
the same drift rate of vDM = vABDM = 0.66 in the DM and in the ABDM. If aDM = 12 and
t0DM = 0 s (leftmost straight line in the right panel), a mean response time of MRT = 6 s is
produced by a drift rate of vDM = 1.00 in the DM but only requires a drift rate of vABDM = 0.66
in the ABDM.
The effect of t0DM for a fixed value of aDM is to modulate the slope and curvature of the grey
curves. For larger values of t0DM , the slope of the grey curves becomes shallower and small mean
response times are produced by much smaller values of vABDM compared to vDM . For instance,
if aDM = 8 (left panel) and t0DM = 0 s, a mean response time of MRT = 6 s is produced by
vABDM = vDM = 0.66. As the non-decision time increases to t0DM = 5 s, the DM requires
vDM = 4 to produce a mean response time of MRT = 6 s, whilst the ABDM produces the same
mean response time with vDM = 0.66.
Taken together, in the case of non-response time close to 0 s, the drift rate parameters in both
models are approximately linearly related. Hence, for small non-decision times the drift rate
parameter in the ABDM can be interpreted analogously to the drift rate parameter in the classic
DM. For higher values of boundary separation in the classic DM, the drift rate in the classic DM
corresponds to a lower ratio of boundary separation and diffusion coefficient c in the ABDM.
For larger values of non-response time, the relation between the drift rate parameters in both
models becomes increasingly nonlinear as the drift rate parameter in the ABDM accounts for
the combined effects of non-decision and decision processes. However, as already observed in
our simulation studies, the relationship between the drift rate parameters in both models remains
monotonic, which means that comparisons based on the ordering of different drift rate values in
the two models remain valid.
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Figure 9.
Marginal RT quantiles (0, 0.2, 0.4, 0.6, 0.8, and 1.0) for items (left plot) and 50 persons (right plot). Data are ordered by
mean RT.

Appendix C: Analysis of Data Set II From Molenaar (2015)

Data set II from Molenaar (2015) consists of RT and accuracy data of 121 test takers answering
ten items of a mental rotation test. Each item had a response deadline of 7.5s (Borst et al., 2011).
Twenty-six persons failed to complete all items, and we excluded these person’s data from our
analysis.
Figure 9 shows the marginal RT quantiles (0, 0.2, 0.4, 0.6, 0.8, and 1.0) for each of the ten items
and for each of the 95 persons, ordered by mean RT. As can be seen, marginal RT distributions
for the items (left plot) had a relatively shallow leading edge and a typical long tail. Compared
to Van Rijn and Ali’s (2017) data, the minimum RTs in this data set were longer relative to the
median RT; the ratio of the minimum observed RT to the median RT ranged between 0.25 and
0.45, with a mean of 0.35. Hence, item-specific additive non-decision components might have a
more pronounced effect the RT data.
Marginal RT distributions for the persons (right plot) again had a shallow leading edge and
exhibited a typical long tail. However, due to the small number of items, the exact shape of the
marginal distributions is insufficiently constrained by the data. The ratio of theminimum observed
RT to the median RT ranged between 0.28 and 0.93, with a mean of 0.58. This again means that
person-specific additive non-decision components might significantly affect the RT data.
We compared the relative and absolute fit of our ABDM to Van der Linden’s (2009) hierarchical
model and Van derMaas et al.’s (2011) Q-diffusion model in the same way as in the main text. For
the comparisonwith the hierarchicalmodel,we again used the golden section algorithm to estimate
the boundary-to-volatility ratio c with the same termination criteria as before. We subsequently
obtained 12,000 posterior samples from 3 MCMC chains for both models and discarded the first
2,000 samples as burn-in. All chains showed good convergence, with R̂ < 1.01 for both models.
We assessed relative model fit by means of AIC, BIC and DIC. Due to the long computing times
required for the evaluation of the full ABDM likelihood function, we based the computation of
the model selection criteria on the first 1,000 posterior samples after burn-in from a singleMCMC
chain. Table 4 shows the relative fit of the two models. As can be seen, the log-likelihood was
smaller for the ABDM. AIC and BIC indicated that the hierarchical model fitted the data better
than the ABDM, whereas DIC preferred the ABDM over the hierarchical model.
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Table 4.
Relative model fits.

AIC BIC DIC Log-likelihood No. of parameters

ABDM 4,182.2 4,760.1 4,013.2 −1,972.1 119
Hierarchical Model 2,687.5 3,974.5 5,775.4 −1,078.8 265

Table 5.
Relative model fits.

AIC BIC Log-likelihood No. of parameters

ABDM 3,812.9 4,366.5 −1,792.5 114
Q-Diffusion 3,377.3 4,455.4 −1,466.7 222

We assessed the absolute model fit by means of the posterior predictive mean RTs and accuracies
for persons and items. We generated 500 posterior predictive samples for each item and person.
Figure 10 shows the comparison of the data and the posterior predictive samples generated by
the two models, ordered by the mean RT in the data. As can be seen, the ABDM generated wider
posterior predictive intervals for RTs (left column in the left panel) than the hierarchical model
(left column in the right panel). Whereas the ABDM systematically underpredicted the mean
item RTs (top left plot in the left panel), the hierarchical model’s posterior predictives matched
the mean item RTs relatively closely (top left plot in the right panel). Both models’ posterior
predictives covered the mean person RTs well (bottom left plot in the both panels). The results
for the mean accuracies showed the opposite pattern. Whereas the ABDM matched the item and
person accuracies well (right column in the left panel), the hierarchical model underpredicted
both the mean item and person accuracies (right column in the right panel). Taken together, the
hierarchical model provided a better fit to the RT data, whereas the ABDM provided a better fit
to the accuracy data.
We compared our ABDM to the Q-diffusion model based on maximum-likelihood fits. We again
used the estimate of the boundary-to-volatility ratio c from the Bayesian implementation of the
ABDM to avoid the formidable computational costs associated with evaluating the complete
ABDM likelihood.
We assessed relative model fit by means of AIC and BIC. Table 5 shows the relative fit of the two
models. As can be seen, the log-likelihood was smaller for the ABDM than for the Q-diffusion
model. AIC preferred the Q-diffusion model over the ABDM, whereas BIC preferred the ABDM
over the Q-diffusion model. This difference between the two criteria is due to the higher penalty
for model complexity imposed by BIC, which aims to select simpler models at small sample sizes.
These results thus suggest that the ABDM provided a good account of the data at such a small
sample size, despite being much simpler than the Q-diffusion model.
We used fivefold cross-validation to assess the absolute model fit. Firstly, we divided the data
into five folds of 19 persons each, removed one fold from the data and fitted both models to
the remaining data (person-based fit). Secondly, we divided the data into five folds of two items
each, removed one fold from the data and fitted both models to the remaining data (item-based
fit). We used the results of the person-based fit to compute the item parameters for the item fold
removed in the item-based fit, and we used the results of the item-based fit to compute the person
parameters for the person fold removed in the person-based fit. We subsequently combined the
person and item parameters obtained in the two steps and used expressions (2) and (3) to predict
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Figure 11.
Out-of-sample predictions in fivefold cross-validation for the ABDM and the Q-diffusion model. Predictions are based
on data from 200 persons and 15 items. Results for the ABDM are shown on the left panel, and results for the Q-diffusion
model are shown on the right. Each column of dots shows the results for one person fold; each cluster of five columns
shows the results for all five person folds on one item, and each group of three items shows the results for all five person
folds on one item fold.

Table 6.
Relative model fits.

AIC BIC Log-likelihood No. of parameters

ABDM 8,798.3 10,173.8 −4,170.1 229
Q-Diffusion 8,341.4 11,026.3 −3,723.7 447

RTs and accuracies for the person-by-item combinations contained in the removed folds. This
was repeated for all 25 person-by-item folds.
Figure 11 shows the deviation between observed and predicted RTs (top row of plots) and accura-
cies (bottom row of plots) for the ABDM (left column of plots) and the Q-diffusion model (right
column of plots). Each column of dots shows the results for the 19 persons in one person fold,
each cluster of five columns of dots shows the results for all five person folds on one item, and
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Figure 12.
Out-of-sample predictions in fivefold cross-validation for the ABDM and the Q-diffusion model. Predictions are based
on data from 200 persons and a different set of 15 items from the main text. Results for the ABDM are shown on the left
panel, and results for the Q-diffusion model are shown on the right. Each column of dots shows the results for one person
fold, and each cluster of five columns shows the results for all five person folds on one item, and each group of three items
shows the results for all five person folds on one item fold.

each group of two items shows the results for all five person folds on one item fold. As can be
seen, the ABDM tended to slightly overpredict RTs and produced more extreme outliers than the
Q-diffusion model. For the Q-diffusion model, prediction errors clustered symmetrically around
0 with fewer outliers.
The results for the predicted accuracy show the opposite pattern of the response times. For the
ABDM, prediction errors clustered closely around 0 with a few negative outliers. For the Q-
diffusion model, prediction errors were larger and the model tended to underpredict accuracy.
Taken together, the comparison of the relative fits was ambiguous in that some criteria preferred
the ABDM, whilst others preferred the hierarchical model or the Q-diffusion model. In terms of
absolute fit, the ABDM tended to capture the accuracy data better than its competitor models,
whilst the hierarchical model and the Q-diffusion model provided a better account for the RT
data. A possible explanation for the worse performance of the ABDM is the very small number of
items, which might have compromised the estimation of the person parameters. This explanation
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is also supported by the fact that the posterior predictive ranges for the person RTs and accuracies
in Fig. 10 are much wider than the posterior predictive ranges for the item RTs and accuracies.

Appendix D: Further Cross-Validation Results for the comparison of the ABDM and the
Q-Diffusion Model

The comparison of the relative model fit by means of AIC and BIC is shown in Table 6. As
reported in the main text, the log-likelihood was smaller for the ABDM than for the Q-diffusion
model. Whilst AIC preferred the Q-diffusion model over the ABDM, BIC preferred the ABDM
over the Q-diffusion model. This difference between the two criteria is due to the higher penalty
for model complexity imposed by BIC.
The comparison of the absolute fit is presented in Fig. 12. As can be seen, the prediction errors
for RTs for the ABDM clustered symmetrically around 0, with a few large positive outliers. This
means that the ABDM predicted RTs were largely unbiased, except for very long RTs, in which
case theABDM tended to underpredict observedRTs. For theQ-diffusionmodel, prediction errors
also clustered symmetrically around 0. The spread of the prediction error for theQ-diffusionmodel
was comparable to that for the ABDM. Finally, the Q-diffusion model showed a similar tendency
to underpredict long RTs as the ABDM.
The results for the predicted accuracy are again similar between the two models. For the ABDM,
prediction errors tend to be positive, which indicates a tendency to underpredict accuracies.
Nevertheless,most prediction errors are close to 0,whichmeans that theABDMgenerally captured
the probability of a correct response well. The Q-diffusion model showed a similar tendency to
underpredict accuracies but, in general, predicted the probability of a correct response well,
with most prediction errors being slightly larger than 0. The spread of the prediction errors is also
comparable to those observed for the ABDM. Taken together, both models provided a comparable
absolute fit to the data.
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