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a b s t r a c t 

Adversarial attacks are considered a potentially serious security threat for machine learning systems. 

Medical image analysis (MedIA) systems have recently been argued to be vulnerable to adversarial at- 

tacks due to strong financial incentives and the associated technological infrastructure. 

In this paper, we study previously unexplored factors affecting adversarial attack vulnerability of deep 

learning MedIA systems in three medical domains: ophthalmology, radiology, and pathology. We focus 

on adversarial black-box settings, in which the attacker does not have full access to the target model 

and usually uses another model, commonly referred to as surrogate model, to craft adversarial exam- 

ples that are then transferred to the target model. We consider this to be the most realistic scenario for 

MedIA systems. Firstly, we study the effect of weight initialization (pre-training on ImageNet or random 

initialization) on the transferability of adversarial attacks from the surrogate model to the target model, 

i.e., how effective attacks crafted using the surrogate model are on the target model. Secondly, we study 

the influence of differences in development (training and validation) data between target and surrogate 

models. We further study the interaction of weight initialization and data differences with differences 

in model architecture. All experiments were done with a perturbation degree tuned to ensure maximal 

transferability at minimal visual perceptibility of the attacks. 

Our experiments show that pre-training may dramatically increase the transferability of adversarial ex- 

amples, even when the target and surrogate’s architectures are different: the larger the performance gain 

using pre-training, the larger the transferability. Differences in the development data between target and 

surrogate models considerably decrease the performance of the attack; this decrease is further amplified 

by difference in the model architecture. We believe these factors should be considered when developing 

security-critical MedIA systems planned to be deployed in clinical practice. We recommend avoiding us- 

ing only standard components, such as pre-trained architectures and publicly available datasets, as well 

as disclosure of design specifications, in addition to using adversarial defense methods. When evaluating 

the vulnerability of MedIA systems to adversarial attacks, various attack scenarios and target-surrogate 

differences should be simulated to achieve realistic robustness estimates. The code and all trained mod- 

els used in our experiments are publicly available. 3 

© 2021 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Deep learning (DL) has been shown to achieve close or even su- 

erior performance to that of experts in many medical image anal- 

sis (MedIA) applications, including in ophthalmology ( Gulshan 

t al., 2016; Ting et al., 2017 ), radiology ( Rajpurkar et al., 2017 ), and

athology ( Bejnordi et al., 2017; Bulten et al., 2020; Wetstein et al., 

020 ). This has created an opportunity to automate certain medical 

asks and integrate DL systems in clinical settings ( Abràmoff et al., 

018; Murphy et al., 2020; GE Reports, 2019 ). However, a threat to 

L systems is posed by so-called adversarial attacks ( Szegedy et al., 

013 ). Such attacks apply a carefully engineered, subtle perturba- 

ion to the input of the target model to cause misclassification. 

hose perturbed inputs, referred to as adversarial examples , have 

een shown effective in forcing state-of-the-art systems to produce 

ncorrect predictions ( Goodfellow et al., 2014; Madry et al., 2017 ). 3 

Adversarial attacks are not the only kind of malicious manipu- 

ation of input to DL models that changes their predictions. Adver- 

arial attacks are manipulations that aim to preserve the seman- 

ic contents of a given image, e.g., whether it is healthy or dis- 

ased, while changing the prediction of the network for the im- 

ge. Apart from this type of attack, images can also be manipu- 

ated to change their content: for example, signs of disease can 

e removed from a diseased image or added to a healthy image 

 Xia et al., 2020; Sun et al., 2020; Baumgartner et al., 2018; Becker 

t al., 2019 ), which, in turn, can change network predictions. How- 

ver, developing these synthetically changed images remains chal- 

enging ( Xia et al., 2020 ), as it is hard to guarantee they look re-

listic, hard to control which image structures are changed, and 

hese algorithms may be difficult to train and require large train- 

ng datasets. In contrast, adversarial examples generated by adding 

oise of bounded, small magnitude are guaranteed to look real- 

stic and do not induce any unpredictable changes in the image. 

herefore, we consider adversarial attacks to be a more feasible, 

nd thus more likely type of attack on MedIA systems, which is 

hy we have limited our scope to adversarial attacks. 

.1. Context of adversarial attacks in MedIA 

A recent market report has predicted that through 2022, 30% 

f all cyberattacks against systems powered by artificial intelli- 

ence (AI) will leverage training-data poisoning, AI model theft, 

r adversarial examples ( Cearley et al., 2019 ). This results espe- 

ially alarming for the healthcare industry, considering that it is 

redicted to suffer two to three times more cyberattacks than the 

verage amount for other industries ( Cisco and Cybersecurity Ven- 

ures, 2019, 2019 ). Limited resources and fragmented governance 

n cybersecurity ( Martin et al., 2017; Ghafur et al., 2019 ), and 

arger consequences at both financial ( IBM, 2020 ) and human lev- 

ls ( Martin et al., 2017 ) make healthcare particularly vulnerable to 

yberattacks. 

Adversarial attacks may therefore pose a large threat in the 

edical domain ( Finlayson et al., 2019; 2018 ). This is due to two

ain factors: financial interests and technical sources of vulnera- 

ility. 

Firstly, some parties involved in healthcare systems have a fi- 

ancial interest in manipulating patient diagnosis and prognosis. 

ealthcare fraud has been shown to be committed by large com- 

anies as well as individuals ( Rudman et al., 2009; Kalb, 1999 ). 

hen expressed as a proportion of the global healthcare expen- 

iture estimated by the World Health Organisation in 2013 ($7.35 

rillion or € 5.65 trillion), the global average healthcare fraud and 
3 https://github.com/Gerda92/adversarial _ transfer _ factors , https://doi.org/10.5281/ 

enodo.4792375 

D

n

f

2 
rror loss equates to 6.19% ($455 billion or € 350 billion) ( Gee and 

utton, 2015 ). In the future, adversarial attacks could be used as a 

ool to manipulate MedIA systems supporting insurance, clinical, or 

rug/device approval decisions. Adversarial attacks can boost exist- 

ng fraudulent behavior in fee-for-service healthcare systems, such 

s the one in the United States, where healthcare providers and 

nsurance companies manipulate diagnostic codes of patients to 

ffect reimbursement decisions. Fraudulent behavior involving ad- 

ersarial attacks could potentially be more difficult to detect com- 

ared to manipulating diagnostic codes directly. Adversarial attacks 

an also be used to bias patient diagnosis towards false referrals 

r unnecessary prescriptions of medication or treatment. Similarly, 

ompanies could bias trial outcomes and gain the favor of regu- 

atory bodies, such as the United States Food and Drug Adminis- 

ration, by showing the desired effect of a drug/device to be ap- 

roved. It is important to emphasize that these attacks would be 

acilitated because the attacker would be already inside the health- 

are infrastructure. These situations can result in deteriorated qual- 

ty of healthcare, financial loss, decreased trust in MedIA systems 

nd hence impediments to their integration into clinical practice. 

The second factor that may facilitate adversarial attacks in the 

edical domain concerns technical sources of vulnerability. These 

nclude domain-specific characteristics of medical images, such as 

ighly-standardized image acquisition protocols, and the security 

f technological infrastructure into which MedIA systems will be 

mbedded ( Ma et al., 2021; Finlayson et al., 2019 ). In this case, 

he attacks would be performed most commonly from outside the 

ealthcare infrastructure, by means of a breach. In a recent inves- 

igation, more than 45 million medical images and their patient 

etadata were found to be exposed and freely accessible, without 

acking tools required, on over 2,0 0 0 unprotected medical servers 

cross 67 countries, including the United States, United Kingdom, 

rance, and Germany ( CybelAngel, 2020 ). A survey from 2017 re- 

ealed that healthcare data breaches have affected one in four con- 

umers in the United States ( Accenture, 2017 ). The security risks of 

uch breaches include blackmail and ransomware ( Forbes, 2021 ), as 

ell as malicious data manipulation. Among deployed connected 

edical devices, imaging systems (including systems for image ac- 

uisition, viewers, workstations, and servers) have been found to 

ave the most security issues, mainly derived from user practice 

nd outdated infrastructure ( Healthcare Innovation, 2018 ). This last 

spect is strongly related to widely used software and protocols, 

uch as DICOM, which were developed before cybersecurity was 

 concern and leave serious security gaps ( Eichelberg et al., 2020; 

tites and Pianykh, 2016 ). 

.2. Adversarial attacks and defenses 

Multiple methods to generate adversarial attacks have been 

roposed in the literature and can be categorized following dif- 

erent taxonomies ( Yuan et al., 2019; Akhtar and Mian, 2018; Big- 

io and Roli, 2018 ). As an example, some methods perform one- 

hot attacks ( Szegedy et al., 2013; Goodfellow et al., 2014 ), whereas 

ther methods optimize the attack in an iterative way ( Madry 

t al., 2017; Kurakin et al., 2016; Papernot et al., 2016b; Moosavi- 

ezfooli et al., 2016; Carlini and Wagner, 2017b; Su et al., 2019; 

oosavi-Dezfooli et al., 2017 ). Similarly, there are methods that 

enerate a specific perturbation for each input ( Szegedy et al., 

013; Goodfellow et al., 2014; Madry et al., 2017; Kurakin et al., 

016; Papernot et al., 2016b; Moosavi-Dezfooli et al., 2016; Car- 

ini and Wagner, 2017b; Su et al., 2019 ) and methods that generate 

niversal perturbations that can be applied to any image ( Moosavi- 

ezfooli et al., 2017; Brown et al., 2017 ). 

Furthermore, adversarial attack methods can be applied in sce- 

arios with different degrees of knowledge of the target system: 

rom having full knowledge ( white-box attacks ) ( Goodfellow et al., 

https://github.com/Gerda92/adversarial_transfer_factors
https://doi.org/10.5281/zenodo.4792375
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014 ) to being agnostic to the (hyper)parameters of the target 

odel ( black-box attacks ) ( Papernot et al., 2017 ). The latter usually 

se another model, commonly referred to as surrogate model , to 

raft adversarial examples that are then transferred to the target 

odel. The effectiveness of a black-box attack is determined by its 

ransferability between the surrogate model and the target model 

 Papernot et al., 2017 ). 

Several studies have investigated the impact of adversarial 

ttacks on MedIA systems specifically. This has been studied 

or classification and segmentation problems in different imag- 

ng modalities, including color fundus imaging ( Finlayson et al., 

018; Ma et al., 2021; Ozbulak et al., 2019 ), chest X-ray ( Finlayson

t al., 2018; Taghanaki et al., 2018; Ma et al., 2021 ), dermoscopy 

 Finlayson et al., 2018; Ma et al., 2021; Paschali et al., 2018; Ozbu- 

ak et al., 2019 ), and brain MRI ( Paschali et al., 2018 ). In these stud-

es, adversarial attacks were proven effective in both white- and 

lack-box settings. 

Correspondingly, numerous defense methods ( Yuan et al., 2019; 

apernot et al., 2017; Biggio and Roli, 2018 ) have been proposed to 

rotect DL systems from adversarial attacks by training networks 

o as to robustify them against adversarial attacks ( Goodfellow 

t al., 2014; Papernot et al., 2016c ) or by detecting adversarial ex- 

mples or neutralizing adversarial noise ( Lu et al., 2017; Song et al., 

017 ). Defense methods have also been considered to protect Me- 

IA systems from adversarial attacks ( Ma et al., 2021 ). Neverthe- 

ess, almost all proposed countermeasures have been shown to be 

nly effective against some attacks ( Yuan et al., 2019 ), hardly work 

gainst infinitesimal perturbations ( Papernot et al., 2017 ), or can 

asily be made ineffective if the attacker is aware of them ( Uesato 

t al., 2018; Athalye et al., 2018; Carlini and Wagner, 2017a ). 

.3. Adversarial vulnerability of MedIA systems 

A better understanding of factors affecting the vulnerability of 

edIA systems is therefore crucial to inform and improve the eval- 

ation of their robustness against adversarial attacks, as well as 

he design of new MedIA systems. There are several factors related 

o the design of the target model, such as network architecture 

 Szegedy et al., 2013; Su et al., 2018 ), and the attack scenario, such

s disparity in the development data, i.e., difference in the data 

sed for training and validation, between the target and the at- 

acker ( Szegedy et al., 2013 ), that affect the transferability of adver- 

arial attacks and thus the vulnerability of the systems. Although 

actors such as network architecture disparity (i.e. having different 

etwork architectures) ( Paschali et al., 2018; Taghanaki et al., 2018 ) 

re sometimes considered when evaluating vulnerability of MedIA 

ystems against adversarial attacks, the impact of other crucial as- 

ects of real-world MedIA scenarios has not been explored yet. 

In this paper, we focus on two unexplored factors that can po- 

entially influence adversarial attack transferability in MedIA sys- 

ems: ImageNet pre-training and development data disparity. The 

ey contributions of our paper are: 

• We study the effect of ImageNet pre-training on adversarial at- 

tack transferability. Since systems pre-trained on natural im- 

ages have shown to achieve improved performance in shorter 

training times in several medical applications ( Gulshan et al., 

2016; Wang et al., 2017 ), pre-training on ImageNet has become 

a common design choice for development of MedIA systems 

( Litjens et al., 2017 ). Pre-trained models may be more similar 

to each other compared to randomly initialized models due to 

retaining information learned from ImageNet. However, to the 

best of our knowledge, no studies (of MedIA or any other DL 

systems) have compared transferability of adversarial attacks 

between pre-trained models to that between randomly initial- 

ized models. 
3 
• We study the effect of disparity in the data used for develop- 

ment of the target and surrogate models. With increasing avail- 

ability of high-quality, large public datasets, it becomes more 

likely that MedIA systems will, at least partly, rely on these eas- 

ily accessible data in order to fulfill the requirement of large 

datasets for DL development. Simultaneously, MedIA systems in 

the deployment stage might also make use of larger amounts 

of private data ( Abràmoff et al., 2016; González-Gonzalo et al., 

2020; Murphy et al., 2020 ). Comparing adversarial transfer- 

ability in scenarios of development data parity and disparity 

may provide further insight on how vulnerable MedIA systems 

are. Additionally, we study adversarial robustness of ImageNet 

pre-trained and randomly initialized networks trained using 

smaller development sets under an attack scenario of data dis- 

parity, simulating target models developed with small, private 

datasets. 
• We investigate these factors in three popular medical applica- 

tions: detection of referable diabetic retinopathy in color fundus 

images, classification of pathologies in chest X-Ray, and breast 

cancer metastasis detection in histological lymph node sections. 

We used the following methodology to study the effect of Im- 

geNet pre-training and development data disparity on adversarial 

ransferability. We implemented different adversarial attack meth- 

ds and applied them to different state-of-the-art network archi- 

ectures, which allows us to additionally evaluate the effect of net- 

ork architecture disparity: i.e., the effect of target and surrogate 

odels having a different architecture as compared to them hav- 

ng the same architecture. We perform our experiments in varying 

lack-box settings, which we consider to be the most realistic at- 

ack scenario for MedIA systems. In contrast to previous studies, 

e analyze and adjust the perturbation degree used in our experi- 

ents so as to ensure optimal transferability at minimal visual per- 

eptibility of the adversarial attacks, considering human input is 

ften required in MedIA settings. We thoroughly examine the im- 

lications of our results on the design of MedIA systems, as well as 

rovide recommendations for evaluating their robustness against 

dversarial attacks. 

. Related work 

Black-box attacks can have varying degrees of interaction with 

he target model: from having no interaction at all to unlim- 

ted querying of the model and using its predictions in craft- 

ng adversarial perturbations (for example, one-pixel attacks by 

u et al. (2019) , or oracle attacks such as the one proposed by 

apernot et al. (2016a) ). The non-query-based type of black-box at- 

acks is the focus of this work and is, perhaps, the most commonly 

tudied ( Akhtar and Mian, 2018; Yuan et al., 2019 ), including in the 

edIA field ( Finlayson et al., 2018; Paschali et al., 2018; Taghanaki 

t al., 2018 ). 

Black-box attacks that do not allow querying the target model 

ypically rely on the transferability of adversarial perturbations 

rom a surrogate model to the target model. Adversarial examples 

ave been shown to be transferable between highly distinct mod- 

ls ( Szegedy et al., 2013; Liu et al., 2016; Moosavi-Dezfooli et al., 

017 ). The transferability of adversarial examples between different 

odels can be explained by the similarity of their decision bound- 

ries ( Tramèr et al., 2017b ) and depends on how similar their de- 

ign and training are ( Uesato et al., 2018 ). Perhaps, the most well-

tudied factor affecting adversarial transferability is disparity in 

odel architecture ( Su et al., 2018 ). Relatively few studies have in- 

estigated the influence of other kinds of target-surrogate differ- 

nces on the success of adversarial attacks: most studies trained 

heir target and surrogate models on exactly the same subset of 

he same dataset, and use the same pre-processing, data augmen- 
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ation, weight initialization, training loss function, and other train- 

ng parameters. 

In this study, we focus on the effects of two previously unex- 

lored factors in MedIA settings on the transferability of black- 

ox attacks: pre-training on ImageNet and disparity in the devel- 

pment data between target and surrogate models. We also study 

he interaction of both factors with network architecture disparity. 

elow we provide an overview of the literature related to these 

actors: 

Pre-training on ImageNet. In the MedIA field, DL methods 

ommonly use pre-training on natural images to improve perfor- 

ance ( Litjens et al., 2017 ). Pre-trained networks have also often 

een used in studies on adversarial robustness ( Finlayson et al., 

018; Paschali et al., 2018; Ma et al., 2021 ). However, all studies 

ither considered target and surrogate models that were both pre- 

rained or both randomly initialized. To our knowledge, no studies 

ave compared adversarial attack transferability between DL net- 

orks pre-trained on ImageNet (or any other dataset used for per- 

ormance boosting) to that between randomly initialized networks. 

e hypothesize that the transferability of adversarial examples be- 

ween pre-trained target and surrogate models may be larger than 

hat between randomly initialized models, since pre-training might 

ncrease the similarity between models due to retaining informa- 

ion learned from ImageNet. 

Although the effect of ImageNet pre-training was not studied 

n the black-box attack scenario, its effect on white-box adversar- 

al robustness was studied by Hendrycks et al. (2019) for networks 

hat were adversarially fine-tuned: i.e., trained using adversarial 

raining ( Madry et al., 2017 ) on the target data after pre-training. 

n their study, regular ImageNet pre-training had no positive ef- 

ect on the white-box robustness of networks adversarially fine- 

uned on CIFAR. However, adversarial ImageNet pre-training in- 

reased the robustness substantially. The effect on robustness of 

dversarial pre-training for networks that are fine-tuned normally 

not adversarially) was not reported by Hendrycks et al. (2019) or 

thers. 

Disparity in development data. Szegedy et al. (2013) reported 

hat adversarial examples crafted using a surrogate model trained 

n a different (similarly sized) data subset as the target model are 

ubstantially less transferable than those crafted using the same 

raining data for the target and surrogate model. However, they 

nly demonstrated this for simple fully-connected models trained 

n MNIST. No further studies have focused on the effect of training 

ata disparity, including in the MedIA field: all studies of black-box 

ttacks on MedIA DL assumed perfect data parity ( Finlayson et al., 

018; Paschali et al., 2018; Taghanaki et al., 2018 ). This factor is 

articularly important to study in the context of MedIA systems, 

here some systems are trained on easily accessible public data, 

hereas others rely on private data. In the case of using only pub- 

ic data for development, we can assume that surrogate models can 

e trained with the same dataset as the target (data parity), while 

n the case of using private data, this is not possible (data dispar- 

ty). We believe it is important to consider these different scenar- 

os and study the influence of data (dis)parity on transferability of 

dversarial examples in MedIA systems. 

Disparity in model architecture. Su et al. (2018) studied the 

dversarial robustness of 18 well-known image classification mod- 

ls trained on ImageNet. Their findings suggest that adversarial ex- 

mples crafted from one model can only be transferred within the 

ame family (e.g. VGGs or Densenets). They also found that deeper 

odels within the same family are slightly more robust than shal- 

ower models, but differences in model architecture were found 

o affect transferability more than differences in model size. There 

ave been no similarly comprehensive studies on architecture dis- 

arity or adversarial example transferability between different ar- 

hitectures for MedIA systems. However, some studies reported 
4 
ttack performance under both architecture parity and disparity 

 Paschali et al., 2018 ) or under disparity only ( Taghanaki et al., 

018 ). Szegedy et al. (2013) found that having architecture dis- 

arity in addition to development data disparity further reduced 

he transferability of attacks. In this study, we investigate the in- 

eraction of architecture (dis)parity with weight initialization (pre- 

raining on ImageNet or random initialization) and development 

ata (dis)parity. 

. Methods 

.1. Threat model 

The security of any system is measured in relation to the capa- 

ilities and goals of its potential adversaries. The limits to the at- 

ackers capabilities, including their knowledge, and their goals are 

aptured by the concept of a threat model . In the context of evalu- 

ting adversarial robustness of machine learning systems, explicitly 

pecifying the considered threat model helps to clearly delineate 

he scope of attacks against which robustness is studied and thus 

llows for falsifiable claims ( Carlini et al., 2019 ). The threat model 

onsidered in this study is the following: 

Goal. We assume the attackers goal is to cause general misclas- 

ification, which is usually called an untargeted adversarial attack. 

n an untargeted adversarial attack the goal is to modify the input 

n a way that it will be classified as any class but the ground-truth 

lass, whereas in a targeted adversarial attack the goal is to modify 

he input in a way that it will be classified as a specific class. 

Capability. We assume the attacker’s capabilities are: 

• The attacker can only manipulate the input to the target sys- 

tem (we assume this input is directly fed into DL networks) and 

only at inference time. 
• The attacker is allowed to modify the input images in a way 

that appears very subtle or even imperceptible to the human 

eye. 
• The attacker cannot query the target model. 

Knowledge. We simulate scenarios of the attacker lacking 

nowledge of the following features of the target model: weight 

nitialization (pre-trained on ImageNet or randomly initialized), 

ata used for development, and network architecture. The weights 

f the target model cannot be accessed by the attacker in all attack 

cenarios we consider. 

.2. Adversarial attacks 

In this study, we used two adversarial attack methods that were 

ost commonly and effectively used in the literature: fast gradient 

ign method (FGSM) ( Goodfellow et al., 2014 ) and projected gradi- 

nt descent (PGD) ( Madry et al., 2017 ). 

Fast gradient sign method. FGSM is a one-shot attack method 

n which the adversarial perturbation is computed as the sign of 

he gradient of the loss with respect to the input image. The sign 

f the gradient in every pixel determines whether ε, the parame- 

er regulating the maximum amount of perturbation, is added or 

ubtracted from every pixel in the target image x to create an ad- 

ersarial example: 

 adv = x + ε · sign 

(∇ x L ( f (x ; θ ) , y ) 
)
, (1) 

here L represents the loss, f the selected network architecture, 

the corresponding parameters, and y the image label. 

Projected gradient descent. PGD is an iterative version of 

GSM, in which several steps for computing the perturbation and 

dding it to the input are performed: 

 

(i +1) 
adv = clip εx 

{
x (i ) + α · sign 

(∇ x L ( f (x (i ) ; θ ) , y ) 
)}

, (2)
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Table 1 

Size of development and testing subsets for each dataset. In order to study the effect of development data disparity on adversarial attack transferability, development 

sets were divided into two equal-sized parts: d1 and d2; d1 was subsequently subsampled to obtain small datasets which contained 10% of the data d1/10; d2 was 

subsequently subsampled to obtain a half-sized subset d2/2 . 

Ophthalmology Radiology Pathology 

Development d1 79,058 (88%) 39,030 86,524 (80%) 43,657 294,912 (90%) 147,456 

d2 39,028 42,867 147,456 

d1/10 3,906 3,989 14,892 

d2/2 19,514 23,666 73,728 

Test 10,644 (12%) 25,596 (20%) 32,768 (10%) 

Total 88,702 (100%) 112,120 (100%) 327,680 (100%) 
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here α controls the step size; ε is the parameter regulating the 

aximum degree of perturbation added to every pixel; clip εx func- 

ion clips its input so that it does not deviate from x more than ε
s measured by � ∞ 

norm. 

In the black-box setting, f ′ (·, θ ′ ) , where f ′ is the surrogate net-

ork architecture and θ ′ are the corresponding parameters, is used 

o compute the attack, which is then transferred to the target 

odel. 

.3. Network architectures, training, and data 

We selected Inception-v3 ( Szegedy et al., 2016 ) and Densenet- 

21 ( Huang et al., 2017 ) as the base architectures for our experi-

ents. Both architectures were previously applied in the selected 

edical applications and achieved good performance ( Gulshan 

t al., 2016; Rajpurkar et al., 2017; Guendel et al., 2018; Veeling 

t al., 2018 ). All networks were trained until convergence on a val- 

dation set using Adam optimization with learning rate decay and 

inary cross-entropy loss. 

For the dataset used in each application, a development and 

 test set were defined. The development set was used for train- 

ng and validation. The independent test set was used to measure 

he performance of each model on clean and adversarial exam- 

les. We randomly divided all development sets, at patient-level, 

nto two non-overlapping, equal-sized parts — d1 and d2 — to be 

ble to study the influence of data parity on attack transferability. 

wo more sets, d2/2 and d1/10 , were created by randomly sam- 

ling at patient level half of d2 and 10% of d1 , respectively. This

as done to study the influence of dataset size. The description 

f each dataset and dataset-specific network parameters is stated 

elow. Table 1 provides an overview of data partitioning for each 

ataset. 

Ophthalmology. We used the Kaggle dataset for diabetic 

etinopathy detection ( Kaggle, 2015 ), which contains 88,702 color 

undus images with manually-labeled diabetic retinopathy severity. 

n order to have more images available for development, as pro- 

osed in Finlayson et al. ( Finlayson et al., 2018 ), we merged the

riginal training (35,126 images) and test sets (53,576 images) and 

plit the images randomly at patient-level subsets for development 

88%) and testing (12%). 

Pre-processing included extracting the field of view and rescal- 

ng to 512 × 512 pixels. The networks were trained to distin- 

uish between non-referable (stages 0 to 1) and referable diabetic 

etinopathy (stages 2 to 4) using batch class balancing. For data 

ugmentation, we used flipping and rotation. 

Radiology. We used the ChestX-Ray14 dataset ( Wang et al., 

017 ), consisting of 112,120 frontal-view X-rays annotated with 

4 non-mutually-exclusive pathology labels. The official data split 

80%-20%) was used to define our development and test sets. 

Pre-processing included downsampling images to 256 × 256 

esolution. The architectures were trained using binary cross- 

ntropy loss to predict 14 pathology classes and one “no finding”

lass. For data augmentation, we used translation and horizontal 

ipping. 
5 
Pathology. We used the PatchCamelyon (PCam) ( Veeling et al., 

018 ) dataset, which contains 327,680 patches extracted from 

istopathology whole-slide images of lymph node sections. The of- 

cial data split (90%-10%) was used to define our development and 

est sets. 

The networks were trained to distinguish between the presence 

r absence of metastatic tissue in the patch center. For data aug- 

entation, we used horizontal and vertical flipping and random 

olor augmentations. 

. Experimental setup 

In all experimental setups, the performance of the target mod- 

ls on the test set of each dataset was measured using the area un- 

er the receiver operating characteristic curve (AUC) or mean AUC 

or the multi-class case. 

.1. Perturbation degree 

Firstly, we analyzed the effect of perturbation degree on the ad- 

ersarial attacks to ensure maximal transferability at minimal vi- 

ual perceptibility in further experiments. To our knowledge, only 

ne study has systematically analyzed the effect of perturbation 

egree in MedIA settings ( Ma et al., 2021 ), although it was only 

one for white-box attacks. We believe perturbation degree is a 

arameter that should be further investigated to yield more accu- 

ate estimations of robustness against adversarial attacks. In this 

tudy, we analyzed the performance of FGSM and PGD attacks and 

he visual perceptibility under different degrees of perturbation, 

ontrolled by ε: 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06. These val- 

es were applied to image intensities rescaled between -1 and 1. 

e assessed visual perceptibility of attacks bounded by different 

psilons in two different ways. Firstly, the first authors used their 

wn visual perception to judge how subtle adversarial perturba- 

ions appear when adversarial and original images were viewed in 

uxtaposition. Due to impracticality of assessing every adversarial 

nput to our models, this was evaluated in a subset of images of 

ach modality and for each epsilon. Secondly, we computed mean 

tructural Similarity Index Measure (SSIM) ( Wang et al., 2004 ) 

etween adversarial and original versions of all images for each 

odality and epsilon. SSIM is based on a hypothesized character- 

stic of the human visual system to be sensitive to structural infor- 

ation in images and was previously shown to be a robust mea- 

ure of perceptual quality of images ( Wang et al., 2004 ). 

For the PGD attacks, we used step size α = 0 . 01 and 20 itera-

ions. In this experiment, all models were randomly initialized and 

rained on the same partition of the development set, d1 . 

To ensure that the decrease in target model performance after 

n adversarial attack is due to the adversarial nature of the per- 

urbation and not solely due to added noise, we additionally com- 

uted “control” noise. While existing works chose standard noise 

istributions such as Gaussian for this purpose ( Paschali et al., 

018 ), we chose to compare adversarial perturbations with their 

andomly spatially shuffled versions to ensure the same degree of 
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Table 2 

Effects of perturbation degree on attack transferability. Average performance (AUC) over two model architectures is shown when using 

FGSM, PGD or control noise (spatially shuffled black-box adversarial perturbations) with varying perturbation degrees. The target and 

surrogate model were both trained with the same dataset, d1 . The lowest AUC value (highest attack transferability) in each application 

is shown in bold. 

Data Noise FGSM PGD 

ε = 0.01 0.02 0.03 0.04 0.05 0.06 0.01 0.02 0.03 0.04 0.05 0.06 

Ophthalmology None 0.86 

Ophthalmology Adversarial 0.56 0.44 0.37 0.32 0.32 0.33 0.72 0.56 0.44 0.37 0.35 0.34 

Ophthalmology Control 0.85 0.85 0.84 0.79 0.76 0.73 0.86 0.85 0.85 0.84 0.84 0.84 

Radiology None 0.75 

Radiology Adversarial 0.61 0.55 0.52 0.51 0.51 0.52 0.65 0.57 0.52 0.49 0.47 0.45 

Radiology Control 0.75 0.75 0.75 0.74 0.73 0.72 0.75 0.75 0.75 0.75 0.74 0.74 

Pathology None 0.87 

Pathology Adversarial 0.70 0.56 0.45 0.38 0.35 0.33 0.73 0.56 0.47 0.41 0.38 0.36 

Pathology Control 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 
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erturbation in adversarial and “control” examples. Spatial shuf- 

ing was performed by randomly permuting perturbation values 

or all pixels. 

.2. Pre-training on ImageNet 

In this set of experiments, we measured the attack effective- 

ess when target and surrogate were both pre-trained on Ima- 

eNet, both randomly initialized, or had different initializations 

pre-trained or random). We measured this for target-surrogate 

airs with the same and different architectures separately. For this 

urpose, we trained four versions of each architecture (two pre- 

rained and two randomly initialized) to cover all possible target- 

urrogate combinations in black-box settings, using the same par- 

ition of the development set, d1 . 

.3. Development data disparity 

This experimental setup focused on the effect of disparity in the 

ata used for the development of the target and surrogate mod- 

ls, as well as its interaction with architecture disparity. For the 

rst part of this set of experiments, we trained four randomly ini- 

ialized versions of each architecture: a target model trained and 

alidated on d1 and three surrogate models trained and validated 

n d1, d2 , and d2/2 , respectively. For every development dataset, 

he same split between training and validation images was used to 

rain every model. 

For the second part, we experimented with target models 

rained on small datasets attacked by surrogate models trained on 

arger, non-overlapping datasets. Since pre-training on ImageNet 

s often needed to reach good performance in models trained on 

mall datasets, we have included it in this experiment. As target 

odels, we trained pre-trained and randomly initialized versions 

f each architecture on d1/10 ; as surrogate models, we trained pre- 

rained and randomly initialized versions of each architecture on 

2 . For every development dataset, the split between training and 

alidation images was the same as in previous experiments. 

. Results 

.1. Perturbation degree 

The results of our experiments with different attack methods 

FGSM and PGD) at different perturbation degrees can be found 

n Table 2 . The results for individual models are included in the 

upplementary Material. Increasing adversarial perturbation de- 

ree decreased the target model’s performance in most cases. The 

xperiments with control noise (spatially shuffled noise) showed 

hat in the ophthalmology and radiology datasets the decrease in 
6 
he performance of the target could be partially attributed to im- 

ge corruption. However, this effect was quite small, except for the 

GSM attack in the ophthalmology dataset. FGSM and PGD attacks 

erformed similarly for the radiology and pathology dataset. For 

he ophthalmology dataset, the FGSM attack decreased the perfor- 

ance of the target model more than the PGD attack. We chose to 

se both attacks in our subsequent experiments and report average 

esults. 

Fig. 1 shows original images and their adversarial counterparts 

omputed using FGSM attacks at different perturbation degrees. 

ig. 2 shows mean SSIM values across all images for FGSM and 

GD attacks. SSIM values for individual models are included in 

he Supplementary Material. As can be seen, applying the same 

mount of perturbation to different imaging modalities has a dif- 

erent effect on human visual perceptibility and the measured 

SIM. Adversarial perturbations were the most noticeable in the 

adiology images, with ε = 0 . 02 yielding an already visible, albeit 

uite subtle perturbation. For the ophthalmology and pathology 

mages, at the same perturbation degree, perturbations were al- 

ost imperceptible and became noticeable with higher epsilon val- 

es. Perturbations computed by FGSM had lower SSIM than those 

omputed by PGD in all three datasets. This is an expected result, 

ince PGD optimizes perturbations according to both their impact 

n model predictions and their size. 

For our further experiments, we chose to report attacks using 

= 0 . 02 , as this was the highest perturbation degree that was still

isually subtle for all applications and attack methods, and it had 

ubstantially better transferability than an epsilon of 0.01 in most 

f the studied applications. 

.2. Pre-training on ImageNet 

Table 3 summarizes our experiments on the effect of pre- 

raining on adversarial attack transferability and its interaction 

ith model architecture parity. The results for individual mod- 

ls and different attack methods can be found in the Supplemen- 

ary Material. In the ophthalmology and radiology datasets, the at- 

ack transferability between pre-trained models was substantially 

igher than that between randomly initialized models. In both 

atasets, the effect was consistent: for all eight combinations of 

ttack method and target and surrogate pairs (including pairs hav- 

ng a different architecture), pre-trained targets had lower per- 

ormance when attacked by pre-trained surrogates, compared to 

heir randomly initialized counterparts. In the pathology dataset, 

owever, the opposite effect was observed with similar consis- 

ency. It is noteworthy that the effect of pre-training on transfer- 

bility seemed to correlate to the performance increase resulting 

rom pre-training: in the ophthalmology dataset, both the perfor- 

ance boost obtained by using pre-training and the transferability 
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Fig. 1. Original and adversarial images created with fast gradient sign method attacks using different perturbation degrees ( ε). The images in the top row are the original 

images. The red squares indicate the location of the patches that we show in the rest of the figure. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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f adversarial examples between pre-trained networks were high; 

n the radiology dataset, the performance boost was smaller and 

he transferability was also smaller; in the pathology dataset, pre- 

raining yielded no benefit and the effect on transferability was re- 

ersed. 

Fig. 3 includes two examples from the ophthalmology dataset 

hat illustrate attack transferability when both target and surrogate 

re pre-trained on ImageNet and when both are randomly initial- 

zed. 

All the aforementioned effects held similarly for the scenarios 

here the target and surrogate model had the same or different 

rchitecture. 
7 
.3. Development data disparity 

The effects of data disparity on adversarial attack transferabil- 

ty and its interaction with model architecture disparity can be 

een in Table 4 . The results for individual models and different 

ttack methods are included in the Supplementary Material. For 

ll datasets, networks were substantially less susceptible to attacks 

rafted using surrogates with the same architecture but trained on 

 different data subset ( d2 or d2/2 ). This held for both target archi-

ectures and both attack methods. Decreasing the surrogate train- 

ng set size (from d2 to d2/2 ) led to a further drop in the attack

ransferability for the ophthalmology and radiology datasets. 
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Fig. 2. Mean Structural Similarity Index Measure (SSIM) computed between original images in the test sets and adversarial examples generated using FGSM or PGD with 

varying perturbation degree ε. Points represent SSIM values averaged over two model architectures (Inception-v3 and Densenet-121).. 

Table 3 

Effects of pre-training and the interaction between pre-training and model architecture par- 

ity on attack transferability. Average performance (AUC) over FGSM and PGD ( ε= 0.02) and 

two model architectures (Inception-v3 and Densenet-121) is shown. The target and surrogate 

model were both trained with the same dataset, d1 . Average relative performance with re- 

spect to the no-attack setting is shown in brackets. The lowest AUC value (highest attack 

transferability) in each application is shown in bold. . 

Architecture Target Surrogate Ophthalmology Radiology Pathology 

No attack Imagenet - 0.94 (100%) 0.78 (100%) 0.87 (100%) 

No attack Random - 0.86 (100%) 0.75 (100%) 0.87 (100%) 

Same Imagenet Imagenet 0.00 (0%) 0.31 (40%) 0.61 (70%) 

Same Random Random 0.44 (51%) 0.48 (64%) 0.41 (47%) 

Same Random Imagenet 0.63 (74%) 0.63 (83%) 0.60 (69%) 

Same Imagenet Random 0.80 (85%) 0.55 (71%) 0.71 (82%) 

Different Imagenet Imagenet 0.24 (25%) 0.50 (65%) 0.75 (86%) 

Different Random Random 0.55 (64%) 0.64 (86%) 0.71 (82%) 

Different Random Imagenet 0.71 (83%) 0.65 (86%) 0.69 (80%) 

Different Imagenet Random 0.86 (92%) 0.59 (76%) 0.75 (86%) 

Table 4 

Effects of data and model architecture parity on attack transferability. Average per- 

formance (AUC) over FGSM and PGD ( ε= 0.02) and two model architectures is 

shown, with surrogate models trained on different sets while the target model is 

trained on d1 . Average relative performance with respect to the no-attack setting 

is shown in brackets. The lowest AUC value (highest attack transferability) in each 

application is shown in bold. 

Architecture Training set Ophthalmology Radiology Pathology 

No attack - 0.86 (100%) 0.75 (100%) 0.87 (100%) 

Same d1 0.44 (51%) 0.48 (64%) 0.41 (47%) 

Same d2 0.56 (65%) 0.56 (75%) 0.67 (77%) 

Same d2/2 0.75 (88%) 0.59 (79%) 0.65 (75%) 

Different d1 0.55 (64%) 0.64 (86%) 0.71 (82%) 

Different d2 0.66 (77%) 0.65 (87%) 0.74 (85%) 

Different d2/2 0.80 (93%) 0.69 (91%) 0.71 (81%) 
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When the architecture of the surrogate was different, however, 

dditional data disparity between the target and surrogate sub- 

tantially decreased the attack performance only for the ophthal- 

ology dataset. Disparity in the model architecture had greater ef- 

ect on attack performance than disparity in data for the radiology 

nd pathology datasets; for the ophthalmology dataset, data and 

odel architecture disparity had similar effects. 

The transferability of attacks on models trained on small 

atasets in a data disparity scenario is reported in Table 5 . The 

upplementary Material contains the results for individual mod- 

ls and different attack methods. For the ophthalmology and radi- 
8 
logy datasets, the pre-trained models clearly outperformed their 

andomly initialized counterparts on clean images. For the pathol- 

gy dataset, pre-trained models performed slightly worse than ran- 

omly initialized ones. These results are similar to ones we ob- 

erved for models trained on larger sets (see Table 3 ). On ad- 

ersarial images, pre-trained models performed worse than their 

andomly initialized counterparts in all three datasets, both in 

bsolute terms and relative to their performance on clean im- 

ges. These results were mostly similar to the results for networks 

rained on larger data ( Table 3 ). For the ophthalmology and radiol- 

gy datasets, adversarial attack transferability between pre-trained 

odels was higher than that between randomly initialized models, 

nd this effect was stronger in the ophthalmology dataset. There 

as an interesting difference, however: for the pathology dataset, 

re-training increased transferability, whereas in our experiments 

ith networks trained on larger data it was the other way around. 

ttacks on randomly initialized models trained on small datasets 

ardly have any effect ( Table 5 ), while attacks on randomly ini- 

ialized models trained on larger sets can lead to performance de- 

reases of up to 35% ( Table 4 ). 

. Discussion 

In this study, we have demonstrated that ImageNet pre-training 

ay substantially affect transf erability of adversarial examples, 

ven between networks with different architecture. This effect var- 

ed substantially across the applications and appeared to be re- 
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Fig. 3. Original images, adversarial images and corresponding adversarial noise created with FGSM ( ε= 0.02) in different black-box settings: target and surrogate pre-trained 

on ImageNet; target and surrogate randomly initialized; target and surrogate randomly initialized plus surrogate developed using a different and reduced dataset (d2/2). The 

average area under the receiver operating characteristic curve (AUC) is indicated above of each configuration for the clean and the black-box settings. Green frame indicates 

correct classification of referable or non-referable diabetic retinopathy (DR); red frame, incorrect classification. The adversarial noise shown is equivalent to the difference 

between the original and the adversarial image.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ated to the gain in performance resulting from pre-training. We 

ave also shown that differences in development data between tar- 

et and surrogate models reduce transferability substantially, even 

hen development sets are equally sized and sampled from the 

ame distribution. This effect was in some cases comparable to 

hat of architecture disparity. All experiments were performed us- 
9 
ng a perturbation degree tuned to be visually subtle and perform 

ptimally in the black-box attack setting. 

In this section, we discuss the importance of perturbation de- 

ree tuning and the influence of pre-training and data disparity on 

ransferability of adversarial attacks. Based on the results of our 

tudy, we make recommendations for developers of MedIA sys- 
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Table 5 

Transferability of attacks on models trained on small datasets in a data disparity scenario. 

Average performance (AUC) over FGSM and PGD ( ε= 0.02) and two model architectures is 

shown, with surrogate models trained on d2 and target models trained on d1 / 10 . Average 

relative performance with respect to the no-attack setting is shown in brackets. The lowest 

AUC value (highest attack transferability) in each application is shown in bold. 

Architecture Target Surrogate Ophthalmology Radiology Pathology 

No attack Imagenet - 0.88 (100%) 0.69 (100%) 0.79 (100%) 

No attack Random - 0.61 (100%) 0.64 (100%) 0.81 (100%) 

Same Imagenet Imagenet 0.13 (15%) 0.58 (84%) 0.73 (93%) 

Same Random Random 0.60 (99%) 0.63 (99%) 0.78 (96%) 

Different Imagenet Imagenet 0.45 (51%) 0.62 (90%) 0.75 (96%) 

Different Random Random 0.60 (100%) 0.63 (99%) 0.79 (98%) 
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ems, as well as for future evaluation of adversarial robustness of 

hese systems. 

.1. Perturbation degree 

Our experiments confirmed that perturbation degree is an im- 

ortant attack parameter to take into account to obtain more ac- 

urate estimates of adversarial robustness of DL systems. Using a 

ower-than-optimal perturbation degree may lead to an underper- 

orming attack and hence an overestimated robustness; using a 

igher-than optimal perturbation degree may make the adversar- 

al perturbation visually perceptible. We observed differences in vi- 

ual perceptibility of adversarial perturbations in different imaging 

odalities as estimated by both our visual perception and SSIM. 

his could occur because of differences in color, homogeneity, con- 

rast, and resolution between the imaging modalities. Since these 

haracteristics may affect visual perceptibility of adversarial at- 

acks, it is important to optimize the perturbation degree to the 

mage type and task, as well as for the considered attack sce- 

ario (e.g., whether adversarial examples are likely to be inspected 

y a human). Quantitative measures, such as SSIM, could also be 

sed to ensure minimal visual perceptibility of adversarial pertur- 

ations. However, since there is not an accepted threshold value 

o determine whether a perturbation is imperceptible for SSIM 

r other quantitative perceptibility measures, an optimal thresh- 

ld value would still need to be found and ensured to agree with 

uman visual perception. Moreover, to our knowledge, no quan- 

itative metric can perfectly capture human visual perceptibility 

 Chandler, 2013 ). Therefore, we think the best way to assess vi- 

ual perceptibility of different degrees of adversarial perturbations 

ould be a blinded observer study involving medical experts. Such 

 study is beyond the scope of this paper. 

Ma et al. (2021) experimented with different perturbation de- 

rees in the white-box attack setting and concluded that MedIA 

ystems are “easier to attack” than systems trained on natural im- 

ges, based on their observation that for MedIA systems far smaller 

erturbations were needed to reach near-maximal attack perfor- 

ance. In our study, we considered the more realistic black-box 

etting, in which perturbations became visually perceptible be- 

ore yielding high attack performance. This suggests that, firstly, in 

lack-box settings, MedIA systems may not be very easy to attack. 

econdly, it suggests it is harder to compare the difficulty of attack- 

ng systems in different applications: for example, in applications 

here a given perturbation degree yields better attack effective- 

ess, the perturbations may also be more perceptible. 

.2. Pre-training on ImageNet 

In the ophthalmology and radiology applications, we observed 

hat transferability between pre-trained models, including the ones 

ith different architectures, was substantially larger than that be- 

ween randomly initialized models: 20–50% difference in AUC was 
10 
bserved. These results motivate caution in generalizing perfor- 

ance of black-box adversarial attacks from pre-trained networks 

o randomly initialized ones and vice versa. For example, an attack 

hat was only shown effective on pre-trained targets and surro- 

ates may be substantially less effective when applied to randomly 

nitialized targets and surrogates in the same application or to net- 

orks in applications that do not benefit from pre-training. 

We believe increased transferability between pre-trained mod- 

ls may be explained by increased closeness of their decision 

oundaries. Tramèr et al. (2017b) showed empirically that deci- 

ion boundaries of DL models are on average closer to each other 

han to data points, which implies that adversarial perturbations 

ausing data points to cross one model’s decision boundary would 

ikely cause them to cross another model’s decision boundary as 

ell. There are several possible mechanisms through which pre- 

raining may increase closeness of decision boundaries of mod- 

ls. Firstly, pre-trained networks with the same architecture start 

ith the same weight initialization (whereas randomly initialized 

etworks in our experiments started with different initializations), 

hich may increase the similarity of the features they learn. The 

act that pre-training speeds up convergence may amplify this. Sec- 

ndly, pre-trained networks may be more similar because they re- 

ain some features from ImageNet pre-training. As, in our experi- 

ents, pre-training also increased transferability between models 

ith different architectures, same weight initialization is likely not 

he only cause of increased similarity between pre-trained net- 

orks. The correlation between the strength of the performance 

oost from pre-training and the increase in transferability also sup- 

orts the second mechanism: the higher the performance gain 

rom pre-training, the more the network retains from its ImageNet 

re-training. 

Our observations put into an interesting perspective the ones 

ade in the study by Hendrycks et al. (2019) the only study on 

he effects of pre-training on adversarial robustness we are aware 

f. Hendrycks et al. (2019) found that adversarial pre-training on 

mageNet can increase adversarial robustness for networks adver- 

arially fine-tuned on the target data in the white-box attack set- 

ing. We found that regular ImageNet pre-training can decrease 

dversarial robustness in the black-box setting. Whether adver- 

arial pre-training could instead improve robustness in the black- 

ox setting remains an open question. On the one hand, adversar- 

al training is substantially less successful in preventing attacks in 

he black-box than in the white-box setting ( Tramèr et al., 2017a ) 

nd these results could be expected to extend to adversarial pre- 

raining. Furthermore, if any kind of pre-training increases vulner- 

bility to black-box attacks by similarly pre-trained networks, for 

xample, by increasing similarity between the decision boundaries 

f the target and the surrogate, adversarial pre-training could be 

ess beneficial or even detrimental to black-box robustness. On the 

ther hand, even if adversarial pre-training facilitated transferabil- 

ty to some degree, it could still be overall beneficial due to the 

act that the network would be trained to be adversarially robust 
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n a larger and more variable set of images. Future research could 

ocus on answering these questions. 

.3. Development data disparity 

Data parity is assumed, to our knowledge, by all studies 

n black-box adversarial attack robustness of MedIA systems 

 Finlayson et al., 2018; Taghanaki et al., 2018; Paschali et al., 2018 ).

ur results, however, indicate that black-box attacks may be less 

ffective when using a surrogate trained on a different dataset, 

ven if it is a large dataset of the same size as the development

ata of the target and it is sampled from the same distribution. A 

0–40% increase in AUC of the attacked models in the ophthalmol- 

gy and pathology datasets was observed when the surrogate was 

rained on a disjoint subset. This data disparity effect may be as 

trong or even stronger than the effect of architecture disparity, as 

bserved in the ophthalmology dataset. 

The data disparity effect is even stronger when the target model 

s trained on a small dataset, in which case attacks are gener- 

lly quite ineffective, especially when performed against randomly 

nitialized target models. However, pre-trained models trained 

n small datasets can still be vulnerable to adversarial attacks. 

his vulnerability increases for applications where ImageNet pre- 

raining provides a significant boost in clean performance, similar 

o what was observed in the experiments with models trained on 

arger datasets. 

These results suggest that MedIA systems that use private de- 

elopment data are less susceptible to adversarial attacks than 

ystems that use public development data (assuming attacks per- 

ormed by an external party who cannot access the private data 

nd assuming other properties of the systems are equal). Simulat- 

ng data disparity between the target and surrogate model yields a 

ore realistic estimate of adversarial robustness for such systems. 

tudies on adversarial robustness would therefore benefit from in- 

luding different attack scenarios assuming data parity and dispar- 

ty, including differences in development data sizes of target and 

urrogate networks, in their evaluation. 

.4. Adversarial robustness: Inception-v3 vs Densenet-121 

Considering the results included in the Supplementary Mate- 

ial for each implemented model architecture, Inception-v3 and 

ensenet-121, we observed that, in the ophthalmology application, 

arget models based on Inception-v3 tended to be more vulnera- 

le when attacked by surrogate models with the same architecture, 

hereas target models based on Densenet-121 were slightly more 

ulnerable when attacked by surrogate models based on Inception- 

3 (compared to Inception-v3 attacked by Densenet-121 models). 

n the radiology application, target models based on Inception- 

3 were observed to be on average more vulnerable than those 

ased on Densenet-121, although no substantial differences were 

bserved for ImageNet pre-trained versions of the models. In the 

athology application, target models based on Densenet-121 were 

ound to be slightly more vulnerable in most scenarios. Further- 

ore, when there was development data disparity between tar- 

et and surrogate models, only small differences in robustness be- 

ween architectures were observed in all applications. 

Su et al. (2018) studied transferability of adversarial attacks be- 

ween popular architectures trained on ImageNet. Densenet-121 

as observed to be more robust, often substantially, to FGSM 

nd PGD attacks by Inception-v3 than the other way around. Si- 

ultaneously, there was almost perfect transfer between different 

ariants of Densenet: Densenet-121, Densenet-161, and Densenet- 

69 (although transferability between the same version of archi- 

ectures were not reported). Our results showed different trends 
11 
hen comparing Densenet-121 and Inception-v3 in different appli- 

ations, for different weight initializations (ImageNet pre-training 

r random initialization), and for different target-surrogate devel- 

pment data configurations. For example, we observed perfect or 

igh transferability between Densenet-121 models only for oph- 

halmology and radiology applications and only for the ImageNet- 

retrained versions. It is thus difficult to conclude whether either 

f these architectures is innately more robust to black-box attacks 

han the other. 

.5. Recommendations for developers of MedIA systems 

We recommend developers of all MedIA systems to be deployed 

n clinical practice to consider the environment their system will 

e used in and assess whether the following holds: 

1. Users of these systems may have a motivation (financial or oth- 

erwise) to manipulate their output. 

2. Users may have the capacity to manipulate their input without 

being detected. 

For MedIA systems satisfying these criteria, especially those 

ystems that significantly affect clinical or financial decision- 

aking, we recommend taking proactive measures to mitigate the 

isk of successful adversarial attacks. 

Many different methods have been proposed to defend DL sys- 

ems from adversarial attacks ( Yuan et al., 2019; Akhtar and Mian, 

018; Biggio and Roli, 2018 ). Although all defense methods pro- 

osed to date are only partially effective ( Yuan et al., 2019 ), ap-

lying the most successful methods is likely to increase the diffi- 

ulty of manipulating DL systems. We thus recommend develop- 

rs of security-critical MedIA systems to consider employing some 

f these strategies. In addition to strategies purposefully designed 

o defend against adversarial attacks, quantifying uncertainty and 

sing techniques for interpreting predictions may aid in detecting 

dversarial attacks ( Li and Gal, 2017; Tao et al., 2018 ). It was shown

hat adversarial perturbations can increase the model’s uncertainty 

 Li and Gal, 2017 ) and cause discrepancies in interpretations of the 

odel’s predictions ( Tao et al., 2018 ). However, detection of ad- 

ersarial examples based on uncertainty and interpretability also 

rovides only partial protection against adversarial attacks ( Carlini, 

019; Smith and Gal, 2018 ), and can be easily circumvented when 

aken into account in the attack method ( Zhang et al., 2020 ). 

Given that adversarial defense methods are not fully reli- 

ble, and given that increased transferability between similar 

odels was observed in this and other studies (for example, 

u et al. (2018) ), we also recommend taking measures to increase 

he difficulty of training a surrogate model similar to the target. As 

ne such measure, we recommend restricting the amount of infor- 

ation on the design of the system available to the public. This in- 

ludes information on the methodology components of the system, 

uch as network architecture and weight initialization. We also rec- 

mmend avoiding disclosing extensive details on the systems data: 

or example, names and identifying details of used public data, de- 

ailed information on distribution of subjects, scanning modalities, 

nd protocols. However, we do not recommend keeping secret the 

ethods, procedures, and description of datasets used to evaluate 

he system, since this would make it harder to ensure the system 

s safe and has the desired performance level. 

To further increase the difficulty of emulating the target model 

or an attacker, we recommend considering re-designing MedIA 

ystems to reduce the use of standard components, such as pop- 

lar network architectures, and components that facilitate trans- 

erability, such as pre-training, as well as reducing the reliance of 

hese systems on publicly available development data. For exam- 

le, standard architectures could be replaced by customized archi- 

ectures and pre-training may be substituted by random initializa- 
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ion. However, we recommend this strategy only as a complement 

o more explicit defense strategies and only if it does not lead to 

 significant decrease in the system performance or substantially 

low down its development. 

We acknowledge that our recommendation to avoid using stan- 

ard components, such as pre-training on ImageNet and publicly 

vailable development datasets might hamper performance. How- 

ver, for MedIA systems planned to be deployed in clinical prac- 

ice, robustness needs to be considered in addition to performance. 

he trade-off between performance and robustness has already 

een discussed by others ( Zhang et al., 2019; Tsipras et al., 2018; 

aschali et al., 2018 ). The decision on how much performance to 

acrifice for robustness will differ per case depending on the like- 

ihood of adversarial attacks against the given system and their po- 

ential consequences. 

We believe a combination of several defense strategies would 

rovide the most comprehensive security. Thus, we recommend 

ombining multiple methods for detecting, neutralizing, or robusti- 

ying against adversarial perturbation, with measures that increase 

he difficulty of modeling the target system for a potential attacker. 

We would like to emphasize that all recommendations above 

nly apply to systems that are planned to be deployed in practice. 

owever, we believe they are also relevant to researchers develop- 

ng models at earlier stages, or performing research not specifically 

ocused on adversarial attacks. We consider it important that Me- 

IA researchers are aware of the effect that commonly used design 

omponents, such as pre-training on ImageNet or public datasets, 

ave on attack transferability and the existing trade-off between 

erformance and robustness of DL systems. This way, researchers 

ill acknowledge the role of adversarial vulnerabilities in model 

evelopment, with the capability of shifting what is currently stan- 

ard in MedIA towards components that acknowledge these vul- 

erabilities as well. 

.6. Recommendations for evaluating adversarial robustness of MedIA 

ystems 

Carlini et al. (2019) presented a detailed discussion on best 

valuation practices to conduct reproducible, falsifiable studies on 

dversarial robustness of DL systems. They place an emphasis on 

stimating the upper bound of adversarial robustness: that is, ad- 

ersarial robustness measured against attacks of the maximally 

nowledgeable and capable attacker. Below is a condensed list of 

heir general recommendations: 

• State a precise threat model that the target system is supposed 

to be robust under. 
• Perform adaptive attacks to estimate the upper bound of ro- 

bustness: test attacks that have full access to the defense mech- 

anisms the target system might use and adapt attacks to the 

target system so as to maximize their effectiveness. This in- 

cludes carefully investigating the attack parameters to ensure 

optimal attack performance. 
• Perform various sanity checks on the success rates of the 

attacks to ensure they are correctly implemented and their 

methodology is valid (for example, white-box iterative attacks 

should perform better than one-step attacks; attacks adapted 

to the studied system should perform at least as good as any 

other). 
• Test diverse attacks (e.g. one-shot attacks and iterative attacks). 
• Describe the attacks studied fully, including parameters. 
• Compare against prior work and explain important differences. 

Current studies on adversarial attacks on MedIA systems do not 

ollow all of these practices. To the best of our knowledge, no pub- 

ished studies investigating robustness of MedIA systems formu- 

ate an explicit threat model, and thus do not clearly define the 
12 
onsidered attack scenarios; many do not tune the parameters of 

heir attacks, including perturbation degree ( Paschali et al., 2018; 

aghanaki et al., 2018; Finlayson et al., 2018 ); and some do not re- 

ort all attack parameters ( Paschali et al., 2018; Taghanaki et al., 

018 ). 

Inspired by the results in our study, we have developed several 

dditional recommendations and suggestions for evaluating adver- 

arial robustness of DL systems. Note that while recommendations 

f Carlini et al. (2019) (particularly the recommendation on per- 

orming adaptive attacks) have as their aim estimating the upper 

ound of adversarial robustness, our recommendations have a dif- 

erent scope. We aim at investigating factors that may affect ad- 

ersarial vulnerability of real-world DL systems, which are unlikely 

o be completely known by the attacker, as well as at obtaining 

ealistic estimates of robustness of such systems. 

• For image analysis (including MedIA) applications, we recom- 

mend tuning the perturbation degree ( ε or another parame- 

ter controlling it) to the target image type or modality, so that 

the attack yields maximal performance while the perturbations 

still satisfy a chosen criterion for bounding perturbation degree, 

such as visual perceptibility. Such criterion should be explicitly 

defined and measured. For example, if the criterion is visual 

perceptibility, we suggest the studies to describe how percep- 

tibility was judged and to provide fully-sized or zoomed-in ver- 

sions of images that the reader can also examine. 
• We encourage researchers to consider design components 

shared by both target and surrogate that may increase the sim- 

ilarity between them and study the effect of changing such set- 

tings on attack transferability. For example, pre-training on Im- 

ageNet, development data parity, and architecture parity could 

be considered as similarity-promoting components as in our 

study. Other similarity-promoting settings could focus on reg- 

ularization techniques, which encourage networks to have spe- 

cific properties (e.g. weight decay, deformation consistency reg- 

ularization), loss function, pre-processing, data augmentation 

protocol, or popular network architectures other than the ones 

we used and their properties (such as ResNets and skip con- 

nections, found to increase adversarial vulnerability ( Wu et al., 

2020 )). 

The recommendations developed by Carlini et al. (2019) and by 

s are aimed at public scientific studies on adversarial robustness. 

owever, we can envision a different setting for evaluating robust- 

ess of DL systems where most of this advice may also be useful: 

 private evaluation setting in which the robustness of a closed- 

ource DL system is evaluated by the developing company or a dif- 

erent organization. In this setting, it may be of interest to estimate 

obustness under the most likely attack scenarios, which may ex- 

lude scenarios where the attacker has complete or very compre- 

ensive knowledge of the target system. Therefore, recommenda- 

ions aimed at obtaining realistic robustness estimates, as opposed 

o the upper bound estimates, may be the most applicable. Rec- 

mmendations we would not advise to apply in this setting are 

hose concerning public disclosure of robustness evaluation proce- 

ure, including tested attacks and their parameters. 

. Conclusion 

In this paper, we studied the influence of two previously un- 

xplored factors on the transferability of black-box adversarial at- 

acks in three different MedIA applications. We observed that pre- 

raining on ImageNet may dramatically increase the transferability 

f adversarial examples in MedIA systems; the larger the perfor- 

ance gain achieved by pre-training, the larger the transfer and 

hus the more vulnerable the pre-trained system is to attacks by 
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re-trained surrogate models. We also showed that disparity in de- 

elopment data and model architecture between target and sur- 

ogate models can substantially decrease the success of attacks. 

e believe these factors should be considered in the design of 

ecurity-critical MedIA systems, especially those planned to be de- 

loyed in clinical practice. In order to reduce the transferability 

f potential attacks, in addition to using techniques developed for 

efending DL models against adversarial attacks, we recommend 

estricting the disclosure of information on design specifications, 

s well as considering reducing the use of standard components 

such as pre-training on ImageNet and popular network architec- 

ures) and publicly available datasets for development. Finally, we 

elieve future studies on adversarial robustness of MedIA systems 

ay benefit from simulating various attack scenarios and target- 

urrogate disparities. This may facilitate a better understanding of 

ttack transferability and the factors that determine it, as well as 

ore realistic robustness estimates for MedIA systems. 
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