
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Verifiably Safe Exploration for End-to-End Reinforcement Learning

Hunt, N.; Fulton, N.; Magliacane, S.; Hoang, T.N.; Das, S.; Solar-Lezama, A.
DOI
10.1145/3447928.3456653
Publication date
2021
Document Version
Final published version
Published in
HSCC2021
License
CC BY

Link to publication

Citation for published version (APA):
Hunt, N., Fulton, N., Magliacane, S., Hoang, T. N., Das, S., & Solar-Lezama, A. (2021).
Verifiably Safe Exploration for End-to-End Reinforcement Learning. In HSCC2021:
proceedings of the 24th International Conference on Hybrid Systems: Computation and
Control (part of CPS-IoT Week) : May 19-21, 2021, Nashville, TN, USA [14] The Association
for Computing Machinery. https://doi.org/10.1145/3447928.3456653

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1145/3447928.3456653
https://dare.uva.nl/personal/pure/en/publications/verifiably-safe-exploration-for-endtoend-reinforcement-learning(e4605542-c419-4304-bd2a-0d4e4dc12dbb).html
https://doi.org/10.1145/3447928.3456653

Verifiably Safe Exploration for End-to-End Reinforcement Learning
Nathan Hunt
nhunt@mit.edu

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Nathan Fulton
nathan@ibm.com

MIT-IBM Watson AI Lab, IBM Research
Cambridge, Massachusetts, USA

Sara Magliacane
sara.magliacane@gmail.com

MIT-IBM Watson AI Lab
University of Amsterdam

Trong Nghia Hoang
tnhoang@amazon.com

MIT-IBM Watson AI Lab, IBM Research
Cambridge, Massachusetts, USA

Subhro Das
subhro.das@ibm.com

MIT-IBM Watson AI Lab, IBM Research
Cambridge, Massachusetts, USA

Armando Solar-Lezama
asolar@csail.mit.edu

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Abstract
Deploying deep reinforcement learning in safety-critical settings
requires developing algorithms that obey hard constraints during
exploration. This paper contributes a first approach toward enforcing
formal safety constraints on end-to-end policies with visual inputs.
Our approach draws on recent advances in object detection and
automated reasoning for hybrid dynamical systems. The approach
is evaluated on a novel benchmark that emphasizes the challenge
of safely exploring in the presence of hard constraints. Our bench-
mark draws from several proposed problem sets for safe learning
and includes problems that emphasize challenges such as reward
signals that are not aligned with safety constraints. On each of these
benchmark problems, our algorithm completely avoids unsafe behav-
ior while remaining competitive at optimizing for as much reward
as is safe. We characterize safety constraints in terms of a refine-
ment relation on Markov decision processes – rather than directly
constraining the reinforcement learning algorithm so that it only
takes safe actions, we instead refine the environment so that only
safe actions are defined in the environment’s t ransition structure.
This has pragmatic system design benefits and, more importantly,
provides a clean conceptual setting in which we are able to prove
important safety and efficiency properties. These allow us to trans-
form the constrained optimization problem of acting safely in the
original environment into an unconstrained optimization in a refined
environment.

CCS Concepts: • Theory of computation → Logic and verifi-
cation; • Computing methodologies → Reinforcement learning;
Markov decision processes; Neural networks.

Keywords: formal verification, reinforcement learning, neural net-
works, hybrid systems, safe artificial intelligence, differential dy-
namic logic

ACM Reference Format:
Nathan Hunt, Nathan Fulton, Sara Magliacane, Trong Nghia Hoang, Subhro
Das, and Armando Solar-Lezama. 2021. Verifiably Safe Exploration for
End-to-End Reinforcement Learning. In 24th ACM International Conference
on Hybrid Systems: Computation and Control (HSCC ’21), May 19–21,
2021, Nashville, TN, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3447928.3456653

HSCC ’21, May 19–21, 2021, Nashville, TN, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8339-4/21/05.
https://doi.org/10.1145/3447928.3456653

1 Introduction
Deep reinforcement learning algorithms [46] are effective at learning,
often from raw sensor inputs, control policies that optimize for
a quantitative reward signal. Learning these policies can require
experiencing millions of unsafe actions. Even if a safe policy is
finally learned – which will happen only if the reward signal reflects
all relevant safety priorities – providing a purely statistical guarantee
that the optimal policy is safe requires an unrealistic amount of
training data [24]. The difficulty of establishing the safety of these
algorithms makes it difficult to justify the use of reinforcement
learning in safety-critical domains where industry standards demand
strong evidence of safety prior to deployment [23].

Formal verification provides a rigorous way of establishing safety
for traditional control systems [5]. The problem of providing for-
mal guarantees in RL is called formally constrained reinforcement
learning (FCRL). Existing FCRL methods such as [2, 7, 10, 15–
17, 19, 20, 35] combine the best of both worlds: they optimize for a
reward function while safely exploring the environment.

Existing FCRL methods suffer from two significant disadvan-
tages that detract from their real-world applicability: a) they enforce
constraints over a completely symbolic state space that is assumed
to be noiseless (e.g. the position of the safety-relevant objects are
extracted from a simulator’s internal state); b) they assume that the
entire reward structure depends upon the same symbolic state-space
used to enforce formal constraints. The first assumption limits the
applicability of FCRL in real-world settings where the system’s state
must be inferred by an imperfect and perhaps even untrusted percep-
tion system. The second assumption implies a richer symbolic state
that includes a symbolic representation of the reward, which we ar-
gue is unnecessary and may require more labelled data. Furthermore,
this means these approaches may not generalize across different envi-
ronments that have similar safety concerns, but completely different
reward structures.

The goal of this paper is to safely learn a safe policy without
assuming a perfect oracle that identifies the positions of all safety-
relevant objects. I.e., unlike all existing FCRL methods, we do not
rely on the internal state of the simulator. Prior to reinforcement
learning, we train an object detection system to extract from RGB
images the 2D positions of safety-relevant objects up to a certain
precision. The pre-trained object detection system is used during
reinforcement learning to extract the positions of safety-relevant
objects, and that information is then used to enforce formal safety
constraints. Absolute safety in the presence of untrusted perception
is epistemologically challenging, but our formal safety constraints
do at least account for a type of noise commonly found in object
detection systems. Finally, although our system (called Verifiably

1

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3447928.3456653
https://doi.org/10.1145/3447928.3456653
https://doi.org/10.1145/3447928.3456653
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current

HSCC ’21, May 19–21, 2021, Nashville, TN, USA Hunt et al.

Safe Reinforcement Learning, or VSRL) uses a few labeled data to
pre-train the object detection, we still learn an end-to-end policy that
may leverage the entire visual observation for reward optimization.

Prior work from the formal methods community has demonstrated
that safe RL is possible with full symbolic characterization of the
environment and precise observations of the entire state. However,
this is not realistic for actual robotic systems which have to inter-
act with the physical world and can only perceive it through an
imperfect visual system. This paper demonstrates that techniques
inspired by formal methods can provide value even in this situation.
First, we show that by using existing vision techniques to bridge
between the visual input and the symbolic representation, one can
leverage formal techniques to achieve highly robust behavior. Un-
der certain assumptions on the vision system, we prove that our
approach will learn safely. Second, we propose a new method of
enforcing constraints which refines the environment instead of the
learning algorithm. We prove that all policies are safe in this refined
environment and that learning in this refined environment preserves
expected rewards.

We also show that our method is capable of optimizing for re-
ward even when significant aspects of the reward structure are not
extracted as high-level features used for safety checking. Our experi-
ments demonstrate that VSRL is capable of optimizing for reward
structure related to objects whose positions we do not extract via
supervised training. This is significant because it means that VSRL
needs pre-trained object detectors only for objects that are safety-
relevant.

Finally, we provide a novel benchmark suite for Safe Exploration
in Reinforcement Learning that includes both environments where
the reward signal is aligned with the safety objectives and environ-
ments where the reward-optimal policy is unsafe. Our motivation
for the latter is that assuming reward-optimal policies respect hard
safety constraints neglects one of the fundamental challenges of Safe
RL: preventing “reward-hacking". For example, it is fundamentally
difficult to tune a reward signal so that it has the “correct" trade-off
between a pedestrian’s life and battery efficiency. We show that in
the environments where the reward-optimal policy is safe (“reward-
aligned”), VSRL learns a safe policy with convergence rates and
final rewards which are competitive or even superior to the baseline
method. More importantly, VSRL learns these policies with zero
safety violations during training; i.e., it achieves perfectly safe explo-
ration. In the environment where the reward-optimal policy is unsafe
(“reward-misaligned”), VSRL successfully avoids “reward-hacking"
by violating safety constraints, optimizing only for the subset of
reward that can be achieved without violating safety constraints.

Summarily, this paper contributes: (1) VSRL, a new approach to-
ward formally constrained reinforcement learning that makes more
realistic assumptions about access to symbolic features. This ap-
proach requires minimal supervision before reinforcement learning
begins and explores safely while remaining competitive at optimiz-
ing for reward. (2) a new method of enforcing safety constraints by
refining the environment so all policies are safe while preserving
expected rewards (3) a novel benchmark suite for safe exploration
in reinforcement learning with hard constraints that includes both
properly specified and mis-specified reward signals.

2 Problem Definition
A reinforcement learning (RL) system can be represented as a
Markov Decision Process (MDP) (S,A,𝑇 , 𝑅,𝛾) which includes a
(possibly infinite) set S of system states, an action space A, a transi-
tion function 𝑇 (𝑠, 𝑎, 𝑠 ′) which specifies the probability of the next
system state being 𝑠 ′ after the agent executes action 𝑎 at state 𝑠, a
reward function 𝑅(𝑠, 𝑎) that gives the reward for taking action 𝑎 in
state 𝑠, and a discount factor 0 < 𝛾 < 1 that indicates the system
preference to earn reward as fast as possible. We denote the set of
initial states as S𝑖𝑛𝑖𝑡 ⊆ S.

In our setting, S are images and we are given a safety specifi-
cation safe : O → {0, 1} over a set of high-level observations O,
specifically, the positions (planar coordinates) of the safety-relevant
objects in a 2D or 3D space. Since S ≠ O, it is not trivial to learn
a safe policy 𝜋 such that safe(O) = 1 along every trajectory. We
decompose this challenge into two well-formed and tractable sub-
problems:

1. Pre-training a system𝜓 : S → O that converts the visual in-
puts into symbolic states using synthetic data (without acting
in the environment);

2. Learning policies over the visual input space S while enforc-
ing safety in the symbolic state space O.

This problem is not solvable without making some assumptions, so
here we focus on the following:

Assumption 1 (𝜖-Bounded Detection Errors). The symbolic map-
ping𝜓 is correct up to 𝜖. More precisely, the true position of every
object 𝑜𝑖 can be extracted from the image 𝑠 through the object de-
tector𝜓 (𝑠)𝑖 so that the Euclidean distance between the actual and
extracted positions is at most 𝜖, i.e. ∀𝑖 | |𝜓 (𝑠)𝑖 − 𝑜𝑖 | |2 ≤ 𝜖.

Assumption 1 is strong for two reasons. First, there is currently
no method for verifying that an object detector has 𝜖-bounded errors.
Second, there is no compelling empirical evidence that 𝜖-bounded
errors provide an exhaustive model of modern object detectors’
failure modes. However, without any assumption on the fault model
for the vision system, safety cannot be guaranteed. Our assumption
that errors are 𝜖-bounded, although not exhaustive, does capture one
of the most common failure modes for all object detection algorithms.
We leave exploration of more sophisticated fault models for specific
object detectors as future work, and note that the parametric nature
of our approach allows us to integrate more complex and specific
fault models into VSRL.

Assumption 2 (Liveness of Safe Action). Initial states, described
by a set of properties denoted as init, are safe, i.e. ∀𝑠 ∈ S𝑖𝑛𝑖𝑡 :
safe(𝜓 (𝑠)) = 1 . Moreover, every state we reach after taking only
safe actions has at least one available safe action.

Assumption 3 (Correctness up to Simulation of Dynamical Model).
We are given a dynamical model of the safety-relevant dynamics in
the environment, given as either a discrete-time dynamical system or
a system of ordinary differential equations, denoted as plant. We
assume that model is correct up to simulation; i.e., if 𝑇 (𝑠𝑖 , 𝑎, 𝑠 𝑗) ≠ 0
for some action 𝑎, then the dynamical system plant maps𝜓 (𝑠𝑖) to
a set of states that includes𝜓 (𝑠 𝑗).

For example, the model may be a system of ODEs that describes
how the acceleration and angle impact the future positions of a robot,
as well as the potential dynamical behavior of some hazards in the

2

Verifiably Safe Exploration for End-to-End Reinforcement Learning HSCC ’21, May 19–21, 2021, Nashville, TN, USA

environment. Note that this model only operates on O (the symbolic
state space), not S (low-level features such as images or LiDAR).

The “up to simulation" portion of our assumption is simply a tech-
nical artifact that aligns the reachability structure of the dynamical
system described by a hybrid program to the probabilistic structure
of the dynamical system described by a Markov decision process.
Up to simulation means that if there is a non-zero probability of
action 𝑎 transitioning from 𝑠𝑖 to 𝑠 𝑗 , then there is a flow of the ODEs
from the state obtained by performing action 𝑎 in state 𝑠𝑖 , to the state
𝑠 𝑗 . That is, the assumption that this model is correct up to simulation
simply means that we assume the discrete transition relation 𝑇 is a
subset of the relation obtained by following the flows of the ODEs
in the dynamical model.

Assumption 4 (Correctness up to Simulation of Controller). We
have an abstract model of the agent’s behavior, denoted as ctrl,
that is correct up to simulation: if 𝑇 (𝑠𝑖 , 𝑎, 𝑠 𝑗) ≠ 0 for some action 𝑎,
then𝜓 (𝑠 𝑗) is one of the possible next states after 𝑎(𝜓 (𝑠𝑖)) by ctrl.

An abstract model of the agent’s behavior describes at a high-
level a safe controller behavior, disregarding the fine-grained details
an actual controller needs to be efficient. An example is a model that
brakes if it is too close to a hazard and can have any other type of
behavior otherwise. Note that ctrl is very different from a safe
policy 𝜋 , since it only models the safety-related aspects of 𝜋 without
considering reward optimization.

Assuming a known and correct model for both the environment
and the agent up to simulation is necessary to fully characterize safe
actions. This assumption is reasonable whenever accurate dynamical
models of the system under control are available, which is often
the case in traditional control systems. The success of model-based
approaches toward controller design provides evidence for the rea-
sonableness of this assumption. Notice that the model only needs
to accurately describe safety-relevant portions of the environment’s
dynamics; in particular, we make no assumption about the accuracy
of the plant model for potions of the state space that aren’t relevant to
safety. This paper assumes accurate environmental models are given;
learning or repairing a model of the environment during exploration
is an interesting direction for future work.

3 Background
The goal of an RL agent in an environment specified by an MDP
(S,A,𝑇 , 𝑅,𝛾) is to find a policy 𝜋 that maximizes its expected total
reward from an initial state 𝑠0 ∈ S𝑖𝑛𝑖𝑡 :

𝑉 𝜋 (𝑠) ≜ E𝜋

[∑∞
𝑖=0

𝛾𝑖𝑟𝑖

]
(1)

where 𝑟𝑖 is the reward at step 𝑖. In a deep RL setting, we can use
the DNN parameters \ to parametrize 𝜋 (𝑎 |𝑠;\). One particularly
effective implementation and extension of this idea is proximal
policy optimization (PPO), which improves sample efficiency and
stability by sampling data in batches and then optimizing a surrogate
objective function that prevents overly large policy updates [45].
This enables end-to-end learning through gradient descent which
significantly reduces the dependency of the learning task on refined
domain knowledge. Deep RL thus provides a key advantage over
traditional approaches which were bottle-necked by a manual, time-
consuming, and often incomplete feature engineering process.

To ensure formal guarantees we use differential Dynamic Logic
(dL) [36–38, 40], a logic for specifying and proving reachabil-
ity properties of hybrid dynamical systems, which combine both

Program Statement Meaning
𝛼 ; 𝛽 Run first 𝛼 and then 𝛽

𝛼 ∪ 𝛽 Execute either 𝛼 or 𝛽
𝛼∗ Repeat 𝛼 0 or more times
𝑥 := \ Assign evaluation of \ to 𝑥

𝑥 := ∗ Assign any real value to 𝑥

{𝑥 ′1 = \1, ..., 𝑥 ′𝑛 = \𝑛 &𝐹 } ODE evolution in domain 𝐹

?𝐹 Abort if formula 𝐹 not true
Table 1. Definition of Hybrid Programs in dL. 𝛼 and 𝛽 are HPs, 𝑥𝑖
are variables, 𝑥 ′ = 𝜕𝑥

𝜕𝑡 , and \𝑖 are terms.

discrete-time (e.g. a robot that decides actions at discrete times)
and continuous-time dynamics (e.g. an ODE describing the position
of the robot at any time). Hybrid systems can be described with
hybrid programs (HPs), for which we give an informal definition
in Table 1. Notably, besides the familiar program syntax, HPs are
able to represent a non-deterministic choice between two programs
𝛼 ∪ 𝛽, and a continuous evolution of a system of ODEs for an arbi-
trary amount of time, given a domain constraint 𝐹 on the state space
{𝑥 ′1 = 𝜏1, ..., 𝑥 ′𝑛 = 𝜏𝑛 & 𝐹 } where 𝜏𝑖 are terms.

Formulas of dL are generated by the following grammar where
𝛼 ranges over HPs:

𝜑,𝜓 ::= 𝑓 ∼ 𝑔 | 𝜑 ∧𝜓 | 𝜑 ∨𝜓 | 𝜑 → 𝜓 | ∀𝑥 .𝜑 | ∃𝑥 .𝜑 | [𝛼]𝜑
where 𝑓 , 𝑔 are polynomials over the state variables, 𝜙 and𝜓 are for-
mulas of the state variables, ∼ is one of {≤, <,=, >, ≥}. The formula
[𝛼]𝜑 means that a formula 𝜑 is true in every state that can be reached
by executing the hybrid program 𝛼 .

Given a set of initial conditions init for the initial states, a
discrete-time controller ctrl representing the abstract behaviour of
the agent, a continuous-time system of ODEs plant representing
the environment and a safety property safe we define the safety
preservation problem as verifying that the following holds:

init → [{ctrl;plant}∗]safe (2)

Intuitively, this formula means that if the system starts in an intial
state that satisfies init, takes one of the (possibly infinite) set of
control choices described by ctrl, and then follows the system of
ordinary differential equations described by plant, then the system
will always remain in states where safe is true.

Example 1 (Hello, World). Consider a 1D point-mass 𝑥 that must
avoid colliding with a static obstacle (𝑜) and has perception error
bounded by 𝜖

2 . The following dL model characterizes an infinite set
controllers that are all safe, in the sense that 𝑥 ≠ 𝑜 for all forward
time and at every point throughout the entire flow of the ODE:

init → [{ctrl; 𝑡 := 0;plant}∗]𝑥 − 𝑜 > 𝜖

where

SB(𝑎) ≡ 2𝐵(𝑥 − 𝑜 − 𝜖) > 𝑣2 + (𝑎 + 𝐵) ∗ (𝑎𝑇 2 + 2𝑇𝑣))
init ≡ SB(−𝐵) ∧ 𝐵 > 0 ∧𝑇 > 0 ∧𝐴 > 0 ∧ 𝑣 ≥ 0 ∧ 𝜖 > 0
ctrl ≡ 𝑎 := ∗; ? − 𝐵 ≤ 𝑎 ≤ 𝐴 ∧ SB(𝑎)

plant ≡ {𝑥 ′ = 𝑣, 𝑣 ′ = 𝑎, 𝑡 ′ = 1&𝑡 ≤ 𝑇 ∧ 𝑣 ≥ 0}
and where 𝑥 is the 1D coordinate of the point-mass under control,
𝑣 is the velocity of 𝑥 , 𝑎 is the acceleration action taken by 𝑥 , 𝐵
is the maximum deceleration (i.e., maximum braking force), 𝐴 is
the maximum acceleration, 𝑇 is the maximum time between control

3

HSCC ’21, May 19–21, 2021, Nashville, TN, USA Hunt et al.

decisions, 𝑡 is the time elapsed during the current control step, and
𝑜 is the 1D coordinate of the obstacle.

Starting from any state that satisfies the formula init, the
(abstract/non-deterministic) controller chooses any acceleration
satisfying the SB constraint. After choosing any 𝑎 that satisfies SB,
the system then follows the flow of the system of ODEs in plant
for any positive amount of time 𝑡 less than 𝑇 . The constraint 𝑣 ≥ 0
simply means that braking (i.e., choosing a negative acceleration)
can bring the pointmass to a stop, but cannot cause it to move
backwards.

The full formula says that no matter how many times we execute
the controller and then follow the flow of the ODEs, it will always
be the case – again, for an infinite set of permissible controllers –
that 𝑥 − 𝑜 > 𝜖.

Theorems of dL can be automatically proven in the KeYmaera X
theorem prover [8, 9]. [33] explains how to synthesize action space
guards from non-deterministic specifications of controllers (ctrl),
and Fulton and Platzer [10, 11] explains how these action space
guards are incorporated into reinforcement learning to ensure safe
exploration.

3.1 Using Safe Controller Specifications to Constrain
Reinforcement Learning

Hybrid programs have a denotational semantics that defines, for
each program, the set of states that are reachable by executing the
program from an initial state. A state is an assignment of variables
to values. For example, the denotation of 𝑥 := 𝑡 in a state 𝑠 is:

J𝑥 := 𝑡K(𝑠) (𝑣) = 𝑠 (𝑣) for 𝑣 ≠ 𝑥

J𝑥 := 𝑡K(𝑠) (𝑥) = 𝑡

Composite programs are given meaning by their constituent parts.
For example, the meaning of 𝛼 ∪ 𝛽 is:

J𝛼 ∪ 𝛽K(𝑠) = J𝛼K(𝑠) ∪ J𝛽K(𝑠)
A full definition of the denotational semantics corresponding to

the informal meanings given above is provided by [39].
Given a hybrid program and proven dL safety specification, Ful-

ton and Platzer [10] explains how to construct safety monitors (which
we also call safe actions filters in this paper) for reinforcement
learning algorithms over a symbolic state space. In this section, we
summarize their algorithm.

As opposed to our approach, Fulton and Platzer [10] employs
both a controller monitor (that ensures the safety of the controller)
and a model monitor (that ensures the adherence of the model to the
actual system and checks for model mismatch).

The meaning of the controller monitor and model monitor are
stated with respect to a specification with the syntactic form 𝑃 →
[{ctrl; plant}∗]𝑄 where 𝑃 is a dL formula specifying initial condi-
tions, plant is a dynamical system expressed as a hybrid program that
accurately encodes the dynamics of the environment, and𝑄 is a post-
condition. [10] assumes that ctrl has the form ?𝑃1;𝑎1 ∪ · · · ∪ 𝑃𝑛 ;𝑎𝑛 ,
where 𝑎𝑖 are discrete assignment programs that correspond to the
action space of the RL agent. For example, an agent that can either
accelerate or brake has action space 𝐴 = {𝐴,−𝐵}. The correspond-
ing control program will be ?𝑃1;𝑎 := 𝐴∪?𝑃2;𝑎 := −𝐵 where 𝑃1 is
a formula characterizing when it is safe to accelerate and 𝑃2 is a
formula characterizing when it is safe to brake.

Given such a formula, [10] defines the controller and model
monitors using the following conditions:

Corollary 1 (Meaning of Controller Monitor). Suppose 𝐶𝑀 is a
controller monitor for 𝑃 → [{ctrl; plant}∗]𝑄 and 𝑠 ∈ 𝑆 . Let 𝑢 : 𝑆 →
𝑆 be a deterministic controller. Then 𝐶𝑀 (𝑢, 𝑠) implies (𝑠,𝑢 (𝑠)) ∈
JctrlK.

Corollary 2 (Meaning of Model Monitor). Suppose 𝑀𝑀 is a model
monitor for init → [{ctrl; plant}∗]𝑄 , that𝑈 is a sequence of actions,
and that 𝑠 is a sequence of states. If 𝑀𝑀 (𝑠𝑖−1,𝑈𝑖−1, 𝑠𝑖) for all 𝑖
then 𝑠𝑖 |= 𝑄 , and also (𝑠𝑖 ,𝑈𝑖 (𝑠𝑖)) ∈ JctrlK implies (𝑈𝑖 (𝑠𝑖), 𝑠𝑖+1) ∈
JplantK.

4 VSRL: Verifiably Safe RL on Visual Inputs
We present VSRL, a framework that can augment any deep RL
algorithm to perform safe exploration on visual inputs. As discussed
in Section 2, we decompose the general problem in two tasks:

1. learning a mapping of visual inputs 𝑠 into a symbolic state
𝑜 for safety-relevant properties using only a few examples
(described in Section 4.1 and shown in Figure 1a);

2. learning policies over visual inputs, while enforcing safety in
the symbolic state space (described in Section 4.2 and shown
in Figure 1c).

This latter task requires a controller monitor, which is a function
𝜑 : 𝑂 × 𝐴 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} that classifies each action 𝑎 in each
symbolic state 𝑜 as “safe” or not. In this paper this monitor is syn-
thesized and verified offline following [10, 11]. In particular, as
discussed in the previous sections, the KeYmaera X theorem prover
solves the safety preservation problem presented in Eq. (2) for a set
of high-level reward-agnostic safety properties safe, a system of
differential equations characterizing the relevant subset of environ-
mental dynamics plant, an abstract description of a safe controller
ctrl and a set of initial conditions init (shown in Figure 1b).

4.1 Object Detection
In order to remove the need to construct labelled datasets for each
environment, we only assume that we are given a small set of images
of each safety-critical object and a set of background images (in
practice, we use 1 image per object and 1 background). We generate
synthetic images by pasting the objects onto a background with
different locations, rotations, and other augmentations. We then train
a CenterNet-style object detector [50] which performs multi-way
classification for whether each pixel is the center of an object. For
speed and due to the visual simplicity of the environments, the
feature extraction CNN is a truncated ResNet18 [21] which only
keeps the first residual block. The loss function is the modified
focal loss [29] from [26]. See Appendix A of [22] for full details
on the object detector. Detection adds some run-time overhead for
all environments, but many object detectors run quickly enough
for real-time control. Section 4.4 contains a detailed discussion of
scalability issues with object detection.

4.2 Enforcing Constraints
While VSRL can augment any existing deep RL algorithm, this
paper extends PPO [44]. The algorithm performs RL as normal
except that, whenever an action is attempted, the object detector and
safety monitor are first used to check if the action is safe. If not, a
safe action is sampled uniformly at random from the safe actions in
the current state. This happens outside of the agent and can be seen
as refining the environment using a safety check. Pseudocode for

4

Verifiably Safe Exploration for End-to-End Reinforcement Learning HSCC ’21, May 19–21, 2021, Nashville, TN, USA

Environment wrapper

b) Offline verification and controller monitor synthesis

KeYmaera
X

Safety Properties (safe):

dist(robot, hazard) > 𝜀

Model dynamics (plant)
robot.x’= robot.v * dx
robot.y’= robot.v * dy

robot.v’ = a;
…

Abstract controller behavior (ctrl)
?noreach(robot.x, hazard.x, robot.v) a || -B

…

a) Offline training of SOTA object detector

Randomly generated sample observations

Object
detection

ψ

Symbolic state o
robot.xy = (11,4)

hazard1.xy = (3,10)
hazard2.xy = (7,10)

…

c) Safe exploration with controller monitor

0.6 0.1 0.2 0.1

P(at)

Substitute
safe action a’

t Perform a’
t

Controller
monitor

Object
detection

ψ

st+1, rt+1

Initial conditions (init)
robot.x > 0
robot.v < B

….

Controller
monitor

Sample
actionat

No

Symbolic state ot
robot.xy = (11,4)

hazard1.xy = (3,10)
hazard2.xy = (7,10)

…

Is at

safe?
Yes

Perform at

ot st+1, rt+1

Environment E

st

st

Figure 1. VSRL The left panels a) and b) represent offline pre-processing (described in Section 4.1) and verification. The right panel c) shows
how these components are used to safely explore, as described in Section 4.2.

performing this refining is in Algorithm 1. The controller monitor is
extracted from a verified dL model (see Page 3 of [10] for details).

Algorithm 1 The VSRL safety guard.

Input: 𝑠𝑡 : input image; 𝑎𝑡 : input action; 𝜓 : object detector; 𝜑:
controller monitor; 𝐸 = (S,A, 𝑅,𝑇): MDP of the original envi-
ronment
if ¬𝜑 (𝜓 (𝑠𝑡), 𝑎𝑡) then

Sample substitute safe action 𝑎𝑡 uniformly from
{𝑎 ∈ A | 𝜑 (𝜓 (𝑠𝑡), 𝑎)}

Return 𝑠𝑡+1 ∼ 𝑇 (𝑠𝑡 , 𝑎𝑡 , ·), 𝑟𝑡+1 ∼ 𝑅(𝑠𝑡 , 𝑎𝑡)

4.3 Safety and Learning Results
We establish two theoretical properties about VSRL. First, we show
that VSRL safely explores. Second, we show that using VSRL does
not interfere with optimizing for the original reward objective.

If the object detector produces an accurate mapping, then Al-
gorithm 1 will preserve the safety constraint associated with the 𝜑
monitor. We state this property formally in Theorem 1.

Theorem 1. VSRL will remain safe if the following conditions hold
along a trajectory 𝑠0, 𝑎0, . . . , 𝑠𝑛 with 𝑠0 ∈ S𝑖𝑛𝑖𝑡 :

A1 Initial states are safe: 𝑠 ∈ S𝑖𝑛𝑖𝑡 implies𝜓 (𝑠) |= init.
A2 The model and symbolic mapping are correct up to simulation:

If 𝑇 (𝑠𝑖 , 𝑎, 𝑠 𝑗) ≠ 0 for some action 𝑎 then
(𝜓 (𝑠𝑖), 𝑎(𝜓 (𝑠𝑖))) ∈ JctrlK and (𝜓 (𝑠𝑖),𝜓 (𝑠 𝑗)) ∈ JplantK.

Proof. We begin the proof by pointing out that our assumption about
how

init → [{ctrl; plant}∗]safe

was proven provides us with the following information about some
formula 𝐽 :

⊢ init → 𝐽 (LI1)
⊢ 𝐽 → safe (LI2)
⊢ 𝐽 → [{ctrl; plant}∗] 𝐽 (LI3)

Now, assume 𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑛 with 𝑠0 ∈ S𝑖𝑛𝑖𝑡 is a trajectory
generated by running an RL agent with actions selected by Algo-
rithm 1 and proceed by induction on the length of the sequence with
the inductive hypothesis that𝜓 (𝑠𝑖) |= 𝐽 .

If 𝑖 = 0 then 𝑠0 ∈ S𝑖𝑛𝑖𝑡 by assumption. Therefore, 𝜓 (𝑠0) |= init
by A1. We know by LI1 that ⊢ init → 𝐽 . Therefore, 𝜓 (𝑠0) |= 𝐽 by
Modus Ponens and the soundness of the dL proof calculus.

Now, suppose 𝑖 > 0. We know 𝜓 (𝑠𝑖) |= 𝐽 by induction. Fur-
thermore, we know 𝑇 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1) ≠ 0 because otherwise this tra-
jectory could not exist. By A2 and the denotation of the ; oper-
ator, we know (𝜓 (𝑠𝑖),𝜓 (𝑠𝑖+1)) ∈ Jctrl; plantK. By LI3, we know
⊢ 𝐽 → [ctrl; plant] 𝐽 Therefore, 𝜓 (𝑠𝑖) |= 𝐽 and (𝜓 (𝑠𝑖),𝜓 (𝑠𝑖+1)) ∈
Jctrl; plantK implies 𝜓 (𝑠𝑖 + 1) |= 𝐽 by the denotation of the box
modality and the soundness of dL.

We have now established that 𝜓 (𝑠𝑖) |= 𝐽 for all 𝑖 ≥ 0. By LI2,
Modus Ponens, and soundness of the dL proof calculus, we finally
conclude that𝜓 (𝑠𝑖) |= safe. □

Note that if all actions 𝑎𝑖 along the trajectory are generated using
Algorithm 1, and if the model is accurate, then A2 will hold.

4.3.1 Learning with Safety. In order to enforce safety, we refine
the original environment to create an environment without unsafe
actions. By not modifying the agent or training algorithm, any the-
oretical results (e.g. convergence) which the algorithm already has
will still apply in our safety-refined environment, provided these
do not rely on specific properties of the original MDP. However, it
is still necessary to show the relation between the (optimal) poli-
cies that may be found in the safe environment and the policies
in the original environment. We show that 1) all safe policies in
the original environment have the same transition probabilities and

5

HSCC ’21, May 19–21, 2021, Nashville, TN, USA Hunt et al.

expected rewards in the refined environment and 2) all policies in
the refined environment correspond to a policy in the original envi-
ronment which has the same transition probabilities and expected
rewards. This shows that making progress (finding a policy with
higher expected reward) in the safe environment leads to an equiva-
lent amount of progress in the original environment. In particular,
the optimal policies in the safe environment are optimal among safe
policies in the original environment.

Let the original environment be the MDP 𝐸 = (S,A,𝑇 , 𝑅) where
S is the set of states, A the set of actions, 𝑇 the transition function,
and 𝑅 the reward function. Recall that we have a controller monitor
𝜑 : S×A → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} such that 𝜑 (𝑠, 𝑎) is𝑇𝑟𝑢𝑒 if taking action
𝑎 is safe in state 𝑠 in 𝐸 and 𝐹𝑎𝑙𝑠𝑒 otherwise (for simplicity, we won’t
worry about extracting symbolic states from visual observations here;
that can be seen as happening inside of 𝜑). When we refer to an
action as safe or unsafe, we always mean in the original environment
𝐸. A policy 𝜋 in 𝐸 is safe iff

∀𝑠 ∈ S ∀𝑎 ∈ A 𝜋 (𝑎 |𝑠) > 0 =⇒ 𝜑 (𝑠, 𝑎) .
The safety-refined environment will be 𝐸 ′ = (S,A,𝑇 ′, 𝑅′) where

the transition and reward functions will be modified to ensure 1)
there are no unsafe actions and 2) expected rewards in 𝐸 ′ correspond
with those from acting safely in 𝐸.

For actions that are safe in 𝑇 , we keep 𝑇 ′ identical. For actions
that are unsafe in 𝑇 , we modify their effects in 𝑇 ′ to be the same
as taking a safe action in 𝑇 . Without prior knowledge about which
safe actions are better, we have 𝑇 ′ emulate the effects of uniformly
sampling a safe action and following 𝑇 . Thus we set

𝑇 ′(𝑠, 𝑎, 𝑠 ′) =
{
𝑇 (𝑠, 𝑎, 𝑠 ′) if 𝜑 (𝑠, 𝑎)

1
|A𝜑 (𝑠) |

∑
𝑎′∈A𝜑 (𝑠) 𝑇 (𝑠, 𝑎

′, 𝑠 ′) otherwise

where A𝜑 (𝑠) = {𝑎 ∈ A | 𝜑 (𝑠, 𝑎)} is the set of safe actions in
state 𝑠.

𝑅′ is defined similarly so that it simulates the reward achieved by
replacing unsafe actions with safe ones uniformly at random:

𝑅′(𝑠, 𝑎) =
{
𝑅(𝑠, 𝑎) if 𝜑 (𝑠, 𝑎)

1
|A𝜑 (𝑠) |

∑
𝑎′∈A𝜑 (𝑠) 𝑅(𝑠, 𝑎

′) otherwise
.

Lemma 1. For every safe policy 𝜋 in E, following that policy in 𝐸 ′

leads to the same transitions with the same probabilities and gives
the same expected rewards.

Proof. By definition of safety, 𝜋 has zero probability for any (𝑠, 𝑎)
where 𝜑 (𝑠, 𝑎) isn’t true. Thus actions sampled from 𝜋 lead to tran-
sitions and rewards from the branch of 𝑇 ′ and 𝑅′ where they are
identical to 𝑇 and 𝑅. □

Lemma 2. For every policy 𝜋 ′ in 𝐸 ′ there exists a safe policy 𝜋 in
𝐸 such that 𝜋 ′ has the same transition probabilities and expected
rewards in 𝐸 ′ as 𝜋 does in 𝐸.

Proof. For any 𝜋 ′ in 𝐸 ′, let 𝑔(𝜋 ′) = 𝜋 be defined such that

𝜋 (𝑎 |𝑠) =
{
𝜋 ′(𝑎 |𝑠) + 1

|A𝜑 (𝑠) |
∑
𝑎′∈A𝜑 (𝑠)

𝜋 ′(𝑎′ |𝑠) if 𝜑 (𝑠, 𝑎)
0 otherwise

where A𝜑 (𝑠) = {𝑎 ∈ A | ¬𝜑 (𝑠, 𝑎)} is the set of unsafe actions in
state 𝑠. This evenly redistributes the probability that 𝜋 ′ assigns to
actions which would be unsafe in 𝐸 among the safe actions.

We show first that the transition probabilities of 𝜋 in 𝐸 and 𝜋 ′ in
𝐸 ′ are the same.

𝑃𝜋,𝐸 (𝑠 ′ |𝑠)

=
∑
𝑎∈A

𝜋 (𝑎 |𝑠)𝑇 (𝑠, 𝑎, 𝑠 ′)

=
∑

𝑎∈A𝜑 (𝑠)

𝜋 (𝑎 |𝑠)𝑇 (𝑠, 𝑎, 𝑠 ′) +
∑

𝑎∈A𝜑 (𝑠)

𝜋 (𝑎 |𝑠)︸ ︷︷ ︸
=0

𝑇 (𝑠, 𝑎, 𝑠 ′)

=
∑

𝑎∈A𝜑 (𝑠)

©«𝜋 ′(𝑎 |𝑠) + 1
|A𝜑 (𝑠) |

∑
𝑎′∈A𝜑 (𝑠)

𝜋 ′(𝑠, 𝑎′)
ª®®¬𝑇 (𝑠, 𝑎, 𝑠 ′)

=
∑

𝑎∈A𝜑 (𝑠)

𝜋 ′(𝑎 |𝑠)𝑇 (𝑠, 𝑎, 𝑠 ′)

+
∑

𝑎′∈A𝜑 (𝑠)

𝜋 ′(𝑠, 𝑎′) 1
|A𝜑 (𝑠) |

©«
∑

𝑎∈A𝜑 (𝑠)

𝑇 (𝑠, 𝑎, 𝑠 ′)ª®¬
=

∑
𝑎∈A𝜑 (𝑠)

𝜋 ′(𝑎 |𝑠)𝑇 ′(𝑠, 𝑎, 𝑠 ′)

+
∑

𝑎∈A𝜑 (𝑠)

𝜋 ′(𝑎 |𝑠) 1
|A𝜑 (𝑠) |

©«
∑

𝑎′∈A𝜑 (𝑠)

𝑇 (𝑠, 𝑎′, 𝑠 ′)ª®¬
=

∑
𝑎∈A𝜑 (𝑠)

𝜋 ′(𝑎 |𝑠)𝑇 ′(𝑠, 𝑎, 𝑠 ′) +
∑

𝑎∈A𝜑 (𝑠)

𝜋 ′(𝑎 |𝑠)𝑇 ′(𝑠, 𝑎, 𝑠 ′)

=
∑
𝑎∈A

𝜋 ′(𝑎 |𝑠)𝑇 ′(𝑠, 𝑎, 𝑠 ′)

= 𝑃𝜋 ′,𝐸′ (𝑠 ′ |𝑠)

Let E𝜋,𝐸 [𝑅𝑠] be the expected reward of following the policy 𝜋 in
environment 𝐸 at state 𝑠. The equality of the expected reward for 𝜋
in every state of 𝐸 and 𝜋 ′ in every state of 𝐸 ′ can be shown similarly:

6

Verifiably Safe Exploration for End-to-End Reinforcement Learning HSCC ’21, May 19–21, 2021, Nashville, TN, USA

E𝜋,𝐸 [𝑅𝑠]

=
∑
𝑎∈A

𝜋 (𝑎 |𝑠)𝑅(𝑠, 𝑎)

=
∑
𝑎∈A

𝑅(𝑠, 𝑎)
{
𝜋 ′(𝑎 |𝑠) + 1

|A𝜑 (𝑠) |
∑
𝑎′∈A𝜑 (𝑠)

𝜋 ′(𝑎′ |𝑠) if 𝜑 (𝑠, 𝑎)
0 otherwise

=
∑

𝑎∈A𝜑 (𝑠)

𝑅(𝑠, 𝑎)
©«𝜋 ′(𝑎 |𝑠) + 1

|A𝜑 (𝑠) |
∑

𝑎′∈A𝜑 (𝑠)

𝜋 ′(𝑎′ |𝑠)
ª®®¬

=
©«

∑
𝑎∈A𝜑 (𝑠)

𝜋 ′(𝑎 |𝑠)𝑅(𝑠, 𝑎)ª®¬
+

∑
𝑎∈A𝜑 (𝑠)

𝑅(𝑠, 𝑎) 1
|A𝜑 (𝑠) |

∑
𝑎′∈A𝜑 (𝑠)

𝜋 ′(𝑎′ |𝑠)

=
©«

∑
𝑎∈A𝜑 (𝑠)

𝜋 ′(𝑎 |𝑠)𝑅(𝑠, 𝑎)ª®¬
+

∑
𝑎∈A𝜑 (𝑠)

𝜋 ′(𝑎 |𝑠) 1
|A𝜑 (𝑠) |

∑
𝑎′∈A𝜑 (𝑠)

𝑅(𝑠, 𝑎′)

=
∑
𝑎∈A

𝜋 ′(𝑎 |𝑠)
{
𝑅(𝑠, 𝑎) if 𝜑 (𝑠, 𝑎)

1
|A𝜑 (𝑠) |

∑
𝑎′∈A𝜑 (𝑠) 𝑅(𝑠, 𝑎

′) otherwise

=
∑
𝑎∈A

𝜋 ′(𝑎 |𝑠)𝑅′(𝑠, 𝑎)

= E𝜋 ′,𝐸′
[
𝑅′
𝑠

]
□

Lemma 3. Running Algorithm 1 on 𝐸 produces 𝐸 ′, where 𝐸 ′ is as
defined at the beginning of this section.

Proof. Trivial. □

Theorem 2. Let E𝜋,𝐸 [𝑅] be the expected reward of following policy
𝜋 in environment 𝐸. Given two policies 𝜋 ′

1, 𝜋
′
2 in 𝐸 ′ with E𝜋 ′

1,𝐸
′ [𝑅] −

E𝜋 ′
2,𝐸

′ [𝑅] = 𝑐, the corresponding policies 𝜋1 = 𝑔(𝜋 ′
1), 𝜋2 = 𝑔(𝜋 ′

2) in
𝐸 have E𝜋1,𝐸 [𝑅] − E𝜋2,𝐸 [𝑅] = 𝑐.

Proof. Trivial by Lemma 2 which gives us that E𝜋 ′,𝐸′ [𝑅] = E𝑔 (𝜋),𝐸 [𝑅]
for any 𝜋 ′. □

Theorem 3. Any optimal policy in 𝐸 ′ is optimal among the safe
policies in 𝐸.

Proof. Let 𝜋 ′∗ be an optimal policy in 𝐸 ′ and 𝜋∗ be optimal among
the safe policies in 𝐸. By Lemma 1, we know that the expected
reward of 𝜋∗ in 𝐸 ′ is the same as in 𝐸 (E𝜋∗,𝐸′ [𝑅] = E𝜋∗,𝐸 [𝑅]). Be-
cause 𝜋 ′∗ is optimal in 𝐸 ′, we have E𝜋 ′∗,𝐸′ [𝑅] ≥ E𝜋∗,𝐸′ [𝑅]. Because
𝜋∗ is optimal in 𝐸, we have E𝜋∗,𝐸 [𝑅] ≥ E𝑔 (𝜋 ′∗),𝐸 [𝑅]. By Lemma
2, E𝑔 (𝜋 ′∗),𝐸 [𝑅] = E𝜋 ′∗,𝐸′ [𝑅]. Combining gives E𝑔 (𝜋 ′∗),𝐸 [𝑅] =

E𝜋∗,𝐸 [𝑅]. □

Theorem 3 shows that we can find the optimal policy in 𝐸 by
learning the optimal policy in 𝐸 ′. Theorem 2 means that any progress
we make in finding a better policy in 𝐸 ′ translates to an equivalent
amount of progress at optimizing for the objective in 𝐸. These results

show that using 𝐸 ′ to safely learn a policy that optimizes reward in
𝐸 is reasonable.

A few notes regarding this approach:

• The intuitive approach to making an agent safe, if we know
the set of safe actions in each state, might be to sample from
the safe subset of the agent’s policy distribution (after renor-
malization). Because this is not actually sampling from the
distribution the agent learned, this may interfere with training
the agent.

• While we keep S the same in 𝐸 and 𝐸 ′, there may be states
which become unreachable in 𝐸 ′ because only unsafe transi-
tions in 𝐸 lead to them. Thus the effective size of 𝐸 ′’s state
space may be smaller which could speed up learning effective
safe policies.

• Our approach can be viewed as transforming a constrained
optimization problem (being safe in 𝐸) into an unconstrained
one (being safe in 𝐸 ′).

4.4 Scalability of VSRL
There are three sources of scalability concerns in VSRL: object
detection, offline verification, and online controller monitoring.

We use neural networks for object detection. Fast and real-time
inference for neural networks operating on rich visual inputs is
an active line of research. Note that many object detection papers
do achieve excellent results on very complex visual environments
including in 3D environments. For example, there are many object
detection methods that are designed to run at over 100 frames per
second. In this work we use CenterNet, which runs in between
52 and 142 frames per second (depending on the amount of pre-
processing, the number of passes, the resolution of the input images,
etc.). Centernet works on real world images.

A second source of scalability challenges is in offline verification
of safety-relevant dynamics (Box b in Figure 1). The models that this
paper are based on were verified by writing Bellerophon tactics in
KeYmaera X [8]. The work in this paper assumes an a priori verified
hybrid systems model. Naturally, applying this work to different
environment requires first building and verifying a model of the
environment. Verifying hybrid systems is undecidable in theory and
difficult in practice.

Given a verified model, constraint checking is not a source of
scalability issues. A larger state-space or 3-dimensional environment
would have minimal impact on constraint checking at runtime due
to the nature of the runtime monitors extracted from KeYmaera X.
These monitors are quantifier-free formulas of real arithmetic; there-
fore, checking that the monitor evaluates to true in a specific state
and for a given action involves simply evaluating a single boolean
expression. The size of this safety check grows linearly in the num-
ber of types of objects, these checks are trivially parallelizable, and
the constant time is quite small as it only requires plugging into and
evaluating one quantifier-free expression.

Although checking constraints is not a significant source of scal-
ability challenges, sampling points from an arbitrary set such that
those points match the safety constraint can be challenging. In all
of the environments considered in this paper, the action space con-
straints are simple enough that we can explicitly characterize the
set of safe actions in each state and sample uniformly from that set.
However, in environments with more complex constraints, efficiently

7

HSCC ’21, May 19–21, 2021, Nashville, TN, USA Hunt et al.

(a) (b) (c) (d)

Figure 2. Visualizations of evaluation environments. (a) XO environment (b) ACC environment (c) Goal-finding environment (d) Pointmess
environment.

sampling from arbitrary semi-algebraic sets becomes an important
algorithmic consideration.

5 Experimental Validation of VSRL
We evaluate VSRL on four environments: a discrete XO environ-
ment [13], an adaptive cruise control environment (ACC), a 2D
goal-finding environment (GF) similar to the Open AI Safety Gym
Goal environment [43] but without a MuJoCo dependency and with
simpler dynamics, and a pointmesses environment that emphasizes
the problem of preventing reward hacking in safe exploration sys-
tems (PM). VSRL explores each environment without encountering
any unsafe states.

The XO Environment is a simple setting introduced by [13] for
demonstrating symbolic reinforcement learning algorithms (the im-
plementation by Garnelo et al. [13] was unavailable, so we reim-
plemented this environment). The XO environment, visualized in
Figure 2(a), contains three types of objects: X objects that must be
collected (+1 reward), O objects that must be avoided (-1 reward),
and the agent (marked by a +). There is also a small penalty (-0.01)
at each step to encourage rapid collection of all Xs and completion
of the episode. This environment provides a simple baseline for
evaluating VSRL. It is also simple to modify and extend, which we
use to evaluate the ability of VSRL to generalize safe policies to en-
vironments that deviate slightly from implicit modeling assumptions.
The symbolic state space includes the position of the + and the O,
but not the position of the Xs because they are not safety-relevant.
The purpose of this benchmark is to provide a benchmark for safe
exploration in a simple discrete setting.

The remainder of our experimental environments consider control
of a point mass in 1D or 2D space. We extract positions from RGB
images, and also assume independent sensors for both velocity and
heading of the agent, so that these values do not have to be inferred
from visual inputs. Inferring this information from visual inputs is
possible, but assuming separate sensors for velocity and heading is
reasonable.

The adaptive cruise control (ACC) environment has two objects:
a follower and a leader. The follower must maintain a fixed distance
from the leader without either running into the leader or following
too far behind. We use the verified model from [42] to constrain the
agent’s dynamics.

The 2D goal-finding environment consists of an agent, a set of
obstacles, and a goal state. The obstacles are the red circles and
the goal state is the green circle. The agent must navigate from its

(random) starting position to the goal state without encountering
any of the obstacles. Unlike the OpenAI Safety Gym, the obstacles
are hard safety constraints; i.e., the episode ends if the agent hits a
hazard. We use the verified model from [32] to constrain the agent’s
dynamics.

The 2D pointmesses environment consists of an agent, a set of
obstacles, a goal state, and a set of pointmesses (blue Xs). The agent
receives reward for picking up the pointmesses, and the episode ends
when the agent picks up all messes and reaches the goal state. Unlike
the 2D goal-finding environment, hitting an obstacle does not end the
episode. Instead, the obstacle is removed from the environment and
a random number of new pointmesses spawn in its place. Notice that
this means that the agent may reward hack by taking an unsafe action
(hitting an obstacle) and then cleaning up the resulting pointmesses.
We consider this the incorrect behavior. We use the verified model
from [32] to constrain the agent’s dynamics.

We compare VSRL to PPO using two metrics: the number of
safety violations during training and the cumulative reward. These
results are summarized in Table 2. VSRL is able to perfectly preserve
safety in all environments from the beginning of training even with
the 𝜖-bounded errors in extracting the symbolic features from the
images. In contrast, vanilla PPO takes many unsafe actions while
training and does not always converge to a policy that entirely avoids
unsafe objects by the end of training.

In some environments, preserving safety specifications also sub-
stantially improves sample efficiency and policy performance early
in the training process. In the ACC environment, in particular, it is
very easy to learn a safe policy which is reward-optimal. In the GF
and PM environments, both the baseline agent and the VSRL agent
struggle to learn to perform the task well (note that these tasks are
quite difficult because encountering an obstacle ends the episode).
However, VSRL remains safe without losing much reward relative
to the amount of uncertainty in both policies.

6 Related Work
Recently, there has been a growing interest in safe RL, especially in
the context of safe exploration, where the agent has to be safe also
during training. A naive approach to RL safety is reward shaping, in
which one defines a penalty cost for unsafe actions. This approach
has several drawbacks, e.g. the choice of the penalty is brittle, so a
naive choice may not outweigh a shorter path to the reward, as shown
by Dalal et al. [6]. Therefore, recent work on safe RL addresses
the challenge of providing reward-agnostic safety guarantees for

8

Verifiably Safe Exploration for End-to-End Reinforcement Learning HSCC ’21, May 19–21, 2021, Nashville, TN, USA

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Empirical evaluation of VSRL on all environments. All plots show the median and interquartile range of 4+ repeats. The return is the sum of the
reward over an entire episode.

XO ACC GF PM

Method R U R U R U R U

PPO 10 14108 529 13983 0.233 3733 -0.25 3819
VSRL 14.5 0 967 0 0.228 0 -0.225 0

Table 2. Final reward (R; higher is better) and total number of unsafe actions (U; lower is better) on all environments. All results are the median
over at least 4 replicates.

deep RL [12, 47]. Many recent safe exploration methods focus on
safety guarantees that hold in expectation (e.g., [1, 44]) or with high
probability (e.g., [3, 4, 6, 25]. Some of these approaches achieve
impressive results by drawing upon techniques from control theory,
such as Lyapunov functions [3] and control barrier certificates.

On the other hand, ensuring safety in expectation or with high
probability is generally not sufficient in safety-critical settings where
guarantees must hold always, even for rare and measure-zero events.
Numerical testing alone cannot provide such guarantees in practice
[24] or even in theory [41]. The problem of providing formal guar-
antees in RL is called formally constrained reinforcement learning
(FCRL). Existing FCRL methods such as [2, 7, 10, 15, 17–20, 35]
combine the best of both worlds: they optimize for a reward function
while still providing formal safety guarantees. While most FCRL
method can only ensure the safety in discrete-time environments
known a priori, Fulton and Platzer [10, 11] introduce Justified Spec-
ulative Control, which exploits Differential Dynamic Logic[39] to
prove the safety of hybrid systems, systems that combine an agent’s

discrete-time decisions with a continuous time dynamics of the
system.

A major drawback of current FCRL methods is that they only
learn control policies over handcrafted symbolic state spaces. Rela-
tive to Fulton and Platzer [10, 11], our primary contribution is that
we learn end-to-end policies instead of assuming that an oracle ex-
tracts a state-space from visual inputs. This has two advantages –
unlike the approach in Fulton and Platzer [10, 11], VSRL considers
the challenge of imperfect perception and is able optimize for latent
features that are not in the symbolic safety model’s state space. Sim-
ilarly, while many methods extract a symbolic mapping for RL from
visual data, e.g. [13, 14, 27, 28, 30, 31, 48, 49], they all require that
all of the reward-relevant features are explicitly represented in the
symbolic space. As shown by the many successes of Deep RL, e.g.
[34], handcrafted features often miss important signals hidden in the
raw data.

Our approach aims at combining the best of FCRL and end-to-end
RL to ensure that exploration is always safe with formal guarantees,

9

HSCC ’21, May 19–21, 2021, Nashville, TN, USA Hunt et al.

while allowing a deep RL algorithm to fully exploit the visual inputs
for reward optimization.

7 Conclusion and Discussions
Safe exploration in the presence of hard safety constraints is a chal-
lenging problem in reinforcement learning. We contribute VSRL, an
approach toward safe learning on visual inputs. Through theoreti-
cal analysis and experimental evaluation, this paper establishes that
VSRL maintains perfect safety during exploration while obtaining
comparable reward. Because VSRL separates safety-critical object
detection from RL, next steps should include applying tools from
adversarial robustness to the object detectors used by VSRL.

References
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In International Conference on Machine Learning (ICML
2017) (Proceedings of Machine Learning Research, Vol. 70), Doina Precup and
Yee Whye Teh (Eds.). PMLR, 22–31.

[2] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding. In
AAAI Conference on Artificial Intelligence.

[3] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause.
2017. Safe model-based reinforcement learning with stability guarantees. In
Advances in neural information processing systems. 908–918.

[4] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. 2019. End-
to-end safe reinforcement learning through barrier functions for safety-critical
continuous control tasks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 3387–3395.

[5] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem
(Eds.). 2018. Handbook of Model Checking. Springer.

[6] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Padu-
raru, and Yuval Tassa. 2018. Safe exploration in continuous action spaces. arXiv
preprint arXiv:1801.08757 (2018).

[7] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. 2019.
Foundations for Restraining Bolts: Reinforcement Learning with LTLf/LDLf
Restraining Specifications. In International Conference on Automated Planning
and Scheduling (ICAPS 2019).

[8] Nathan Fulton, Stefan Mitsch, Brandon Bohrer, and André Platzer. 2017.
Bellerophon: Tactical Theorem Proving for Hybrid Systems. In International
Conference on Interactive Theorem Proving.

[9] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer.
2015. KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems.
In CADE.

[10] Nathan Fulton and André Platzer. 2018. Safe Reinforcement Learning via Formal
Methods: Toward Safe Control Through Proof and Learning. In AAAI Conference
on Artificial Intelligence.

[11] Nathan Fulton and André Platzer. 2019. Verifiably Safe Off-Model Reinforcement
Learning. In TACAS 2019 (Lecture Notes in Computer Science, Vol. 11427), Tomás
Vojnar and Lijun Zhang (Eds.). Springer, 413–430. https://doi.org/10.1007/978-
3-030-17462-0_28

[12] Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research (2015).

[13] Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. 2016. Towards deep
symbolic reinforcement learning. arXiv preprint arXiv:1609.05518 (2016).

[14] Vikash Goel, Jameson Weng, and Pascal Poupart. 2018. Unsupervised video object
segmentation for deep reinforcement learning. In Advances in Neural Information
Processing Systems.

[15] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi,
and Dominik Wojtczak. 2019. Omega-Regular Objectives in Model-Free Rein-
forcement Learning. In TACAS 2019.

[16] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2018.
Logically-constrained reinforcement learning. arXiv preprint arXiv:1801.08099
(2018).

[17] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2018.
Logically-Correct Reinforcement Learning. CoRR abs/1801.08099 (2018).
arXiv:1801.08099

[18] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2019.
Certified Reinforcement Learning with Logic Guidance. CoRR abs/1902.00778
(2019). arXiv:1902.00778 http://arxiv.org/abs/1902.00778

[19] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2020.
Cautious reinforcement learning with logical constraints. arXiv preprint
arXiv:2002.12156 (2020).

[20] Mohammadhosein Hasanbeig, Yiannis Kantaros, Alessand ro Abate, Daniel
Kroening, George J. Pappas, and Insup Lee. 2019. Reinforcement Learning
for Temporal Logic Control Synthesis with Probabilistic Satisfaction Guarantees.

arXiv e-prints, Article arXiv:1909.05304 (Sept. 2019), arXiv:1909.05304 pages.
arXiv:1909.05304 [cs.LO]

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 770–778.

[22] Nathan Hunt, Nathan Fulton, Sara Magliacane, Nghia Hoang, Subhro Das, and
Armando Solar-Lezama. 2020. Verifiably Safe Exploration for End-to-End Rein-
forcement Learning. arXiv:2007.01223 [cs.AI]

[23] ISO-26262. 2011. International Organization for Standardization 26262 Road
vehicles – Functional safety. (2011).

[24] Nidhi Kalra and Susan M. Paddock. 2016. Driving to Safety: How Many Miles of
Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? RAND
Corporation.

[25] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. 2018.
Learning-based model predictive control for safe exploration. In 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 6059–6066.

[26] Hei Law and Jia Deng. 2018. Cornernet: Detecting objects as paired keypoints. In
European Conference on Computer Vision.

[27] Yuezhang Li, Katia Sycara, and Rahul Iyer. 2018. Object-sensitive deep reinforce-
ment learning. arXiv preprint arXiv:1809.06064 (2018).

[28] Junchi Liang and Abdeslam Boularias. 2018. Task-Relevant Object Discov-
ery and Categorization for Playing First-person Shooter Games. arXiv preprint
arXiv:1806.06392 (2018).

[29] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In IEEE international conference on com-
puter vision.

[30] Keting Lu, Shiqi Zhang, Peter Stone, and Xiaoping Chen. 2018. Robot represent-
ing and reasoning with knowledge from reinforcement learning. arXiv preprint
arXiv:1809.11074 (2018).

[31] Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. 2019. SDRL:
interpretable and data-efficient deep reinforcement learning leveraging symbolic
planning. In AAAI’19.

[32] Stefan Mitsch, Khalil Ghorbal, and André Platzer. 2013. On Provably Safe
Obstacle Avoidance for Autonomous Robotic Ground Vehicles. In Robotics:
Science and Systems, Paul Newman, Dieter Fox, and David Hsu (Eds.).

[33] Stefan Mitsch and André Platzer. 2016. ModelPlex: Verified Runtime Validation
of Verified Cyber-Physical System Models. Form. Methods Syst. Des. 49, 1 (2016),
33–74. Special issue of selected papers from RV’14.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari With
Deep Reinforcement Learning. In NIPS Deep Learning Workshop.

[35] Dung Phan, Nicola Paoletti, Radu Grosu, Nils Jansen, Scott A. Smolka, and
Scott D. Stoller. 2019. Neural Simplex Architecture. (2019).

[36] André Platzer. 2008. Differential Dynamic Logic for Hybrid Systems. J. Autom.
Reas. 41, 2 (2008), 143–189.

[37] André Platzer. 2010. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg.

[38] André Platzer. 2012. Logics of Dynamical Systems. In LICS. IEEE, 13–24.
[39] André Platzer. 2015. A Uniform Substitution Calculus for Differential Dynamic

Logic. In CADE.
[40] André Platzer. 2017. A Complete Uniform Substitution Calculus for Differential

Dynamic Logic. J. Autom. Reas. 59, 2 (2017), 219–266.
[41] André Platzer and Edmund M. Clarke. 2007. The Image Computation Problem in

Hybrid Systems Model Checking. In HSCC (LNCS, Vol. 4416), Alberto Bemporad,
Antonio Bicchi, and Giorgio Buttazzo (Eds.). Springer, 473–486. https://doi.
org/10.1007/978-3-540-71493-4_37

[42] Jan-David Quesel, Stefan Mitsch, Sarah M. Loos, Nikos Arechiga, and André
Platzer. 2016. How to model and prove hybrid systems with KeYmaera: a tutorial
on safety. STTT 18, 1 (2016), 67–91.

[43] Alex Ray, Joshua Achiam, and Dario Amodei. 2019. Benchmarking Safe Explo-
ration in Deep Reinforcement Learning. (2019).

[44] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp
Moritz. 2015. Trust Region Policy Optimization. In Proceedings of the 32nd
International Conference on Machine Learning (ICML 2015) (JMLR Workshop
and Conference Proceedings, Vol. 37), Francis R. Bach and David M. Blei (Eds.).
1889–1897.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. (2017). arXiv:1707.06347
http://arxiv.org/abs/1707.06347

[46] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA.

[47] Weiming Xiang, Patrick Musau, Ayana A Wild, Diego Manzanas Lopez, Nathaniel
Hamilton, Xiaodong Yang, Joel Rosenfeld, and Taylor T Johnson. 2018. Ver-
ification for machine learning, autonomy, and neural networks survey. arXiv
(2018).

[48] Fangkai Yang, Steven Gustafson, Alexander Elkholy, Daoming Lyu, and Bo Liu.
2019. Program Search for Machine Learning Pipelines Leveraging Symbolic
Planning and Reinforcement Learning. In Genetic Programming Theory and
Practice XVI.

10

https://doi.org/10.1007/978-3-030-17462-0_28
https://doi.org/10.1007/978-3-030-17462-0_28
https://arxiv.org/abs/1801.08099
https://arxiv.org/abs/1902.00778
http://arxiv.org/abs/1902.00778
https://arxiv.org/abs/1909.05304
https://arxiv.org/abs/2007.01223
https://doi.org/10.1007/978-3-540-71493-4_37
https://doi.org/10.1007/978-3-540-71493-4_37
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Verifiably Safe Exploration for End-to-End Reinforcement Learning HSCC ’21, May 19–21, 2021, Nashville, TN, USA

[49] Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. 2018. Peorl: In-
tegrating symbolic planning and hierarchical reinforcement learning for robust
decision-making. arXiv preprint arXiv:1804.07779 (2018).

[50] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. 2019. Objects as Points.
arXiv preprint arXiv:1904.07850 (2019).

11

	Abstract
	1 Introduction
	2 Problem Definition
	3 Background
	3.1 Using Safe Controller Specifications to Constrain Reinforcement Learning

	4 VSRL: Verifiably Safe RL on Visual Inputs
	4.1 Object Detection
	4.2 Enforcing Constraints
	4.3 Safety and Learning Results
	4.4 Scalability of VSRL

	5 Experimental Validation of VSRL
	6 Related Work
	7 Conclusion and Discussions
	References

