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THEBIGGERPICTURE Many computational models rely on real-world data, and the steps required in mov-
ing fromdata collection, to data preparation, tomodel calibration and input are becoming increasingly com-
plex. Errors in data can lead to errors in model output that might invalidate conclusions in extreme cases.
While the impact of errors in data (e.g., in sampling) have been analyzed in the literature, here we highlight
the importance of data handling in the modelling and simulation process, and how particular data-handling
errors can lead to errors in model output. We develop a framework for assessing the impact of potential
data-handling errors for models of spreading processes on networks, a broad class of models that capture
many important real-world phenomena, such as epidemics. We apply this framework to test data-handling
errors on various standard models. Our results demonstrate that data-handling errors can have significant
impact on model conclusions, especially in critical regions of a system.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY
Many computational models rely on real-world data, and the steps required in moving from data collection, to
data preparation, tomodel calibration, and input are becoming increasingly complex. Errors in data can lead to
errors inmodel output that might invalidate conclusions in extreme cases.While the challenge of errors in data
collectionhavebeenanalyzed in the literature, herewehighlight the importanceofdatahandling in themodeling
and simulation process, and howparticular data handling errors can lead to errors inmodel output.Wedevelop
a framework for assessing the impact of potential data errors formodels of spreadingprocessesonnetworks, a
broad class of models that capture many important real-world phenomena (e.g., epidemics, rumor spread,
etc.).We focus on the susceptible-infected-removed (SIR) andThresholdmodels andexamine howsystematic
errors indatahandling impact thepredictedspreadof a virus (or information).Our results demonstrate thatdata
handling errors can have significant impact on model conclusions especially in critical regions of a system.
INTRODUCTION

The modern computing revolution has led to data science tech-

niques, and in particular computational modeling, being applied

in a wide range of fields including sociology,1 psychology,2

chemistry,3 and physics.4 The influence of computational

models can also be felt in society, for example, with the ongoing

COVID-19 crisis. In the last year, epidemiologists and modelers

have usedmodels to predict the spread of this virus, as well as to

test the effectiveness of various measures, such as vaccinations

and isolation, on controlling this spread. Governments are

relying on models to help make decisions that affect every citi-

zen’s way of life.5
This is an open access article und
Inherent in the modeling process is the principle of abstrac-

tion, a process that aims to condense processes and phenom-

ena into their most basic ingredients. The dangers and risk of

modeling have long been understood6 and it is vital that mod-

elers explicitly describe their assumptions and reasoning so

that models are used in the right way to understand the right

phenomena.7

It is not just the underlying assumptions that modelers need to

take into account. The modeling process has inherent uncer-

tainties and errors that can influence the model and its subse-

quent predictions. In general, errors can originate at all stages

in themodeling and simulation dataflow process. Figure 1 shows

a general data pipeline for the process of executing a data-driven
Patterns 2, 100397, December 10, 2021 ª 2021 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. General data pipeline for the process of executing a data-

driven computational model
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computational model. First, the relevant data are produced

through measurement—this can be done using, for example,

surveys or instruments. Frequently, measurement may not be

performed by the modeler—instead they may reuse existing

data. Second, the various data sources need to be brought

together, cleaned, integrated, and processed. We refer to this

as data handling. These data can then be used as input to, and

to build, amodel, which can be run to produce its output results.

Clearly, the quality of a model’s output requires the data to be as

accurate as possible and hence a minimization of error is desir-

able. However, total elimination of error is not a realistic or worth-

while objective; instead, it is important to understand and quan-

tify how error propagates through this pipeline to provide some

indication of the certainty or reliability of the model output.

Such quantification is a well-studied topic in particular for the

measurement and modeling steps. There are a wide variety of

techniques for determining the influence of data measurement

errors on models and their outputs.8 This also holds for errors

introduced at the modeling stage. Techniques, such as uncer-

tainty quantification,9 sensitivity analysis, and methods for verifi-

cation and validation,10 provide ways to analyze these errors in a

quantitative way. These methods describe systematic ap-

proaches to understand how accurately a model describes the

phenomena of interest, how that accuracy changes with

changes in parameter values, and how errors propagate from er-

rors in the model input (data) to errors in the model output.

That being said, the impact of the data handling step on

models and their output has not been explicitly considered in

the literature. This despite the fact that data handling has

become ever more common (through data reuse and sharing)

and complex (larger more integrated datasets). Furthermore,

large amounts of data are being shared and reused in contexts

outside of that for which they were designed. Many of these

data are also not well documented, and handling errors can be

compounded as one repurposes the same dataset numerous

times.11

Hence, in this paper, we draw attention to the potential errors

that can be introduced in the data handling step, and how they

can influence model output. We argue that explicitly treating er-

rors in data handling is important for two reasons. First, data

handling and the common pitfalls therein, lead to particular types

of errors (e.g., incorrect aggregation) that may generate errors

that are more systematic compared with measurement errors.

Second, by understanding these errors explicitly, we may be

able to develop or adapt existing techniques to minimize their

impact on the eventual model output.

We consider these errors within the context of models of net-

works, and, in particular, models of spreading processes (epi-

demics) and opinion formation (i.e., network diffusion models).

While this represents a subset of potential models, it is one where

the impactof thesedatahandlingerrors ismoreeasily understood.

Our findings can be extended to data-driven models in general.
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The contributions of this paper are as follows:

1. A framework for quantitative analysis of the impact that

data handling errors can have on network diffusion models.

2. Results showing the impact of data handling errors on

several standard network models. The results demon-

strate that models can be impacted in a non-linear fashion

and that data handling errors’ impact on network structure

is not necessarily an indication of subsequent changes in

model output.

The remainder of this paper is structured as follows: ‘‘back-

ground and related work’’ highlights work on the impact of mea-

surement error on networks; ‘‘basics of data handling and com-

mon pitfalls’’ introduces the basics of data handling and how it

applies to networks; ‘‘methodology’’ describes our framework

for evaluating the effect of data handling on network models,

and the parameters and models used in our simulations;

‘‘results’’ details the results of our simulations. Finally, in ‘‘con-

clusions’’, we summarize our findings.

Background and related work
Before describing the related work, we briefly introduce the

network terminology used in this paper.

Network terminology

A network is a graph,G, made up of a pair ðV;EÞ, where V is a set

of vertices (nodes), and E is a set of paired vertices called edges

(links).12 The links in a network can be directed or undirected.

When applied to real-world systems, nodes represent entities

and edges represent links between those entities. For example,

if modeling the spread of a virus transmitted through contact, a

network can be constructed with nodes representing persons

and edges between them representing contact.

We list here some key basic network properties:

d We can define the number of nodes N, and the number of

links L.Generally, onemight label one’s nodes as i = 1;2;3;

.;N

d The degree of a node is the number of links it has to other

nodes. For directed links, we can differentiate between the

in-degree (number of links that point to the node) and out-

degree (number of links that start at the node and point to

another node). Henceforth, we limit our definitions and

study to networks with only undirected links, known as un-

directed networks

d We can label the degree of the ith node as ki. The average

degree of a network, CkD, is the average degree of all the no-
des = 2L

N = 1
N

PN
i = 1ki

d Degree distribution, pk , is the probability that a random

node in the network has degree k

d The neighborhood of a node i, NðiÞ, is the set of nodes to

which i has a link

When considering network models and data handling, the

network structure is often constructed from the data itself.

Thus, errors in measurement and handling can propagate

through incorrect network structure.

Measurement error and networks

The impact of measurement error (mistakes in the collecting or

coding of a network dataset13) on network properties has been
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well studied. Thesemeasurement errors can result in false-nega-

tive (missing) nodes and edges, false-positive (should not be

there) nodes and edges, and falsely aggregated and disaggre-

gated nodes.

Wang et al.13 simulated different measurement errors on real-

world networks and analyzed their impact on the properties of

the networks, such as degree centrality, clustering coefficient,

and eigenvector centrality. Smith and Moody14 and Smith

et al.15 performed similar analyses, also simulatingmeasurement

errors and studying their effect on network parameters. These

studies concluded that measurement errors can have significant

impact on network parameters, and that this impact can be

dependent on the structure and properties of the network.

All of these studies focused on the impact of data measure-

ment errors on network properties and not on the data

handling step. In addition, these papers consider only the

impact of the errors on metrics of network structure and not

model output.

We differentiate from this related work in two ways. First, we

consider errors arising during the data handling step of executing

a data-dependent model. When viewed exclusively through the

lens of impact on the network, some of these errors might look

identical to measurement errors (false-positive/negative nodes

and edges); however, the systematic nature of the errors can

be vastly different. Often, modelers will have limited agency in

how the data measurement is done, while they may have more

control of the data handling step (for example, by changing

how they clean and integrate data).

Second, we focus on how these errors can impact models run

on the network, rather than simple structural metrics of the

network. To do this, we execute simulations using synthetic

and real-world data, creating networks of various topologies.

The impact of these errors will differ according to the network’s

topology, model parameters, and the model itself.
Basics of data handling and common pitfalls
In this section, we introduce the key approaches to data

handling, focusing on data cleaning and data integration in

particular. We detail some of the most common issues that arise

in the data handling process and describe how data issues can

affect networks.

Data cleaning

There are numerous data issues that need to be dealt with be-

tween the collection of the data and supplying it to a model.

One of these primary issues is data cleaning. Abedjan et al.16

offer an overview of the state of the art in data cleaning methods,

and an analysis of various techniques on numerous real-world

datasets.

Data cleaning is the process of identifying and correcting data

errors. Data errors are defined as deviations from the ground

truth: given a dataset, a data error is an atomic value (or a cell)

that differs from its given ground truth.16 Four types of error

are identified:

1. Outliers: data values that deviate from the distribution of

values in a column of a table

2. Duplicates: distinct records that refer to the same real-

world entity. If attribute values do not match, this could

signify an additional error
3. Rule violations: values that violate any kind of integrity con-

straints, such as ‘‘not null’’ or uniqueness requirements

4. Pattern violations: values that violate synthetic and seman-

tic constraints, such as alignment, formatting, misspelling,

and semantic data types

The outlier issues are quantitative in nature, while the other

three are qualitative. Numerous data cleaning tools exist to

address these concerns. They can generally be categorized

as: rule-based detection algorithms (such as NADEEF17); pattern

enforcement and transformation tools (OPENREFINE18, Data

Wrangler19); quantitative error detection algorithms; and record

linkage and de-duplication algorithms (Data Tamer20). However,

these tools tend to have their own problems:

d Most algorithms are evaluated on synthetic data or real-

world data with synthetically injected errors. This makes

it difficult to assess how effective they are in the real-world.

In addition, there are few, if any, real-world dirty data with a

known ground truth or some sort of universal data cleaning

benchmark.

d Real-world data often have multiple types of error. The

tools often focus on particular types of error, and there

are many tools that address each error, making the pro-

cess of tool-selection more difficult.

d Many enterprises involve humans in the process of data

cleaning. Since human capital is more expensive/limited

than computational capital, it is becoming increasingly

important to automate the data cleaning process as

much as possible.

Abedjan et al.16 highlight how these tools and problems

impact real datasets. There is no dominant tool to solve all

data cleaning issues; different tools work well on different data-

sets, and typically a combination of tools is necessary to

achieve good coverage of errors. In addition, the distribution

of errors can vary significantly from one dataset to another,

meaning the optimal combination of tools will not necessarily

always be the same. Adding to this challenge, the ordering in

which the tools are applied also has an impact on data cleaning

effectiveness, and this will also vary based on dataset. Even

with all of these factors optimized for a particular dataset, the

coverage of errors is still well below 100%, with the algorithms

missing errors that could be detected by humans. Tools such

as ‘‘openclean’’21 are currently being developed to address

these issues.

Data integration

Dong and Srivastava22 and Doan et al.23 offer overviews of data

integration. Data integration is the process of creating a single,

unified view of multiple data sources. There are three common

difficulties, which arise sequentially:

d Semantic ambiguity: differences arise in the attributes

modeled in various sources. An example of this may be

flight takeoff times versus flight gate departure times

modeled by different airlines

d Instance representation ambiguity: the same instance or

attribute is represented differently by different sources,

such as modeling an ID with only digits versus with alpha-

numerics
Patterns 2, 100397, December 10, 2021 3
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d Data inconsistency: different sources report different

values for the same attribute

These problems become even more challenging as the num-

ber of data sources and the quantity of data provided by each

increases. Many data-dependent models utilize data from a va-

riety of sources and in ways in which the data were not originally

intended, drastically increasing the likelihood and severity of

these issues.

To perform data integration, Dong andSrivastava identify three

basic steps: schema alignment, record linkage, and data fusion.

Schema alignment is the process of creating a mediated

scheme of all relevant attributes and a mapping from each

source to this mediated scheme.

Record linkage identifies which entries from one or many

sources correspond to the same entity. It does so by

comparing two records and deciding whether they refer to

the same entity (termed pairwise-matching). This technique

could be rule based (such as some ID attribute needing to be

the same), classification based (training a classification algo-

rithm using examples), or distance based. Importantly, with

large amounts of data it becomes computationally infeasible

to perform matching between all possible pairs of records;

thus, blocking algorithms are employed to partition the records

before comparison.

Data fusion aims to address differences in reported values

for records that refer to the same entity. In brief, a common

approach is to allow sources to ‘‘vote’’ on what the true

value for the attribute is, with voting repeated iteratively until

convergence, or until a certain number of iterations have

passed.

Again, we emphasize that in all these steps errors may arise.

Real-world examples

In this section we describe some issues that arise in real-world

practice.

Döhmen et al.24 ran a detailed analysis UK open government

data distributed as comma separated value (CSV) files. CSV is

one of the most common formats in which data are provided,

but can lack potentially crucial information. This can result in

incorrect parsing and interpretation decisions, ultimately leading

to incorrect downstream decisions.

They identify four categories of common CSV problems

1. CSV Syntax issues: CSVs can have different encodings

and different dialects (e.g., what symbol is used as a

delimiter), but meta-data on these is not included by

default in the file

2. CSV file-level issues: some CSVs do include meta-data,

but it is at the top, bottom, or sides of the tables, and

thus may need human input to interpret. There are also

often empty rows or columns, and files sometimes contain

multiple tables

3. Table-level issues: header rows are optional and need to

be inferred, with multiple header rows adding to the confu-

sion. Table orientation can vary, and aggregate columns,

rows, or cells can disrupt the shape of the table and

contain redundant information

4. Column/cell-level issues: CSVs do not support spanning

cells, so converting from spreadsheets to CSV may not
4 Patterns 2, 100397, December 10, 2021
work correctly. Whitespace is sometimes used, which

can impede data type prediction. There are numerous

other possible cell-level issues, such as numerics with

units, no standard data type encoding (such as dd-mm-

yyyy versus mm-dd-yyyy), inconsistent formatting, and

confusion over missing values (for example, some CSVs

may use special values such as �1 to denote missing

values, which the interpreter may not recognize as such)

While common CSV libraries do a good job of parsing and in-

terpreting CSVs, many of these issues can only be resolved

through human analysis.

The COVID-19 pandemic has resulted in a multitude of

studies highlighting the importance and current lack of effective

data handling. Kraemer et al.25 argue for the necessity of global

data curation and standardization in the handling of disease

outbreaks. Shankar et al.26 describe the need for cooperation,

communication of data to the public, data privacy, and prepar-

ing for the future. Costa-Santos et al.27 analyze a Portuguese

surveillance dataset and identify numerous data quality con-

cerns, and the need for improvement in data management pro-

cesses. Guidotti and Ardia28 attempt to offer a unified dataset

combining different countries’ case numbers and government

policies. Davenport et al.29 highlight how data issues have

impacted the handling of the COVID-19 pandemic in the United

States. Differences in state reporting make it difficult for deci-

sions to be made at a national level, since they will impact the

outcome of the relevant models. These examples highlight the

increasing need for effective data handling in addressing urgent

concerns.

Data issues on networks

These same data issues can arise when dealingwith networks. In

general, one wishes to study real-world networks; that is, net-

works whose nodes and links represent real-world entities and

their relationships. For example, people and their friendships.

Creating these types of networks requires real-world data. How-

ever, as detailed previously, a number of issues can arise in the

handling and application of data. These data issues can impact

how accurately the network that one constructs reflects reality.

Advani and Malde30 provide an overview of network data

collection and the possible resultant measurement error. They

identify six possible sources of measurement error:

1. Missing data due to sampling method

2. Mis-specification of the network boundary

3. Top-coding of the number of edges

4. Miscoding and misreporting of errors (respondent or inter-

viewer error; may forget nodes or become interview

fatigued, may report desired rather than true edges)

5. Spurious nodes (spelling mistakes or multiple names may

lead to spurious nodes, especially a concern when reus-

ing data)

6. Non-response

They note that different sampling measures can result in

different direction and magnitude of error in network statistics.

Parameters in economic models on the network can have sub-

stantial bias due to mismeasurement of network statistics, and

this error is not independent of the true network statistics.



Table 1. Possible resultant errors on networks

Nodes Edges

Missing Missing (not present when should be)

Should not be there Should not be there

Incorrect attributes Incorrect weighting

Incorrect direction

Incorrect type
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Networks are fully defined by their links and nodes; these are

the two things that can be inaccurate as a result of data issues

(Table 1).

Different data handling errors could result in different network

errors. For example, incorrect record linkage in data integration

could lead to duplicate nodes. In this paper, we focus on the

resultant issues in the network, rather than the data-specific

cause, but note that all of these potential network issues can

be mapped back to a data handling issue.

Another important consideration is how the same network er-

ror can be a product of a data handling error or a product of a

data measurement error.

For example, onemight miss nodes in the network due to poor

sampling. Alternatively, nodes might be missed due to poor data

cleaning leading to the data parser being unable to read the data

correctly. The root cause of the issue is different, but the change

observed in the network of concern is the same. In both of these

cases, the network built using the data is incorrect—it does not

accurately reflect the real network (ground truth). It is important

that one accounts for these possible errors when one draws con-

clusions about the network/system as a whole based on the

network constructed using the data.

Another consideration is how the cumulative effect on the

network, frommultiple data issues, could be the same as inten-

tional interventions made to the network. As an example, in

modeling the spread of a disease on a network, vaccinating

or quarantining a person/node may be modeled through the

removal of a node in the network—this node is no longer at

risk of being infected, and thus also no longer poses a risk of

spreading infection. Likewise, limiting or removing the contact

between certain nodes (through, for example, not allowing

certain nodes/persons to interact) is the same as removing links

in the network. These interventions will often be applied to the

network to understand the impact of different interventions.

The resultant changes to the network may be equivalent to

those caused through data handling errors. The impact of mea-

sures, such as immunization and isolation, on networks and

diffusion models, particularly for epidemic modeling, have

been well studied,31 and so we can utilize some of these results
and analyses, while focusing on a different root cause (data

handling errors).

An important part of a network is its robustness. That is, its

ability to withstand random failures and attacks in the network.

As one removes nodes or edges from a network, one risks

‘‘damaging’’ it—the network may change from connected to

disconnected, or some of its properties, such as average de-

gree, diameter, degree distribution, etc., may change drasti-

cally. This could have an impact in particular on our under-

standing of real-world networks, and how processes on them

play out.

Percolation theory studies how clusters form on a lattice as

one places pebbles with some probability. It shows that there

tend to be critical thresholds—points at which the system transi-

tions from many small clusters to one large cluster. What this

means for networks, is that removing nodes will initially not break

the network up; however, there will be some critical point at

which removing just one/a few more nodes will drastically

change the network. The greater this threshold (i.e., the greater

proportion of nodes that need to be removed for the network

to break up), the more robust the network.

Finally, it is important to consider cascading failures. Nodes/

entities tend not to fail completely at random; their failure can

be influenced by their neighbors. For example, a failure in one

link in a power grid will put more strain on the neighboring links,

which may lead to more failure. We often want to study how

these failures can propagate through the network, which can

be done through diffusion models.
Methodology
Figure 2 outlines a framework for testing diffusion model sensi-

tivity to data handling issues. First, graphs are obtained to test

with; these graphs could be real-world or synthetic graphs.

Following this, a model of data handling is applied to the graph,

which results in a set of degraded/inaccurate graphs. Finally,

diffusion models can be run on the degraded graphs. The model

output on the degraded graphs can then be compared with the

output on the original graph, which produces a measure of the

sensitivity of the model to the data handling issues.

The framework can be applied to testing the effect of data

handling on any diffusion model. One can source synthetic or

real-world networks of varying topologies and apply data

handling models on top of them before running the diffusion

model. This allows for the identification of which data handling

errors a diffusion model is most susceptible to, and how network

structure interacts with these data handling errors within the

context of the diffusion model being considered.

Here, we employ this framework to test the sensitivity of

two diffusion models: a susceptible-infected-recovered (SIR)
Figure 2. General framework for testing
sensitivity of network diffusion models to

data handling

Patterns 2, 100397, December 10, 2021 5



Figure 3. Generated random variables (2,500)

from the skew normal distribution with a = 4
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model and a Threshold model. For our data handling models,

we focus in particular on the loss of nodes in the network

and the aggregation of nodes based on their neighborhoods.

As noted previously, the loss of nodes is something that has

been studied in some detail within the context of immuniza-

tion/isolation and data mismeasurement,13 but can still help

illustrate the importance of dealing with data correctly. The

aggregation of nodes has also been analyzed; however, this

analysis has been limited to random aggregation, rather than

systematic aggregation based on node attributes or properties

as is done in this paper.

Graph sourcing

In the first step of the framework, graphs are sourced to test on.

These graphs could be created using real-world data, or created

synthetically. Here, we focus primarily on synthetic graphs gener-

ated using three different algorithms: Erd}os-Rényi (ER) graphs,

Watts-Strogatz (WS) graphs, and Barabási-Albert (BA) graphs.

These synthetic networks aim to reflect a broad class of networks

seen frequently in real-world scenarios. The synthetic networks

are generated to mimic particular properties of real-world net-

works, while being easier to study/manipulate. In our analysis,
Algorithm 1. Shared neighbor proportion of nodes i and j

1: neighbours i = array of neighbors of node i, not including node j

2: neighbours j = array of neighbors of node j, not including node i

3: shared neighbours = array of elements in both neighbours i and neighbours j

4: Return max

�
jshared neighboursj

jneighbours ij ; jshared neighboursj
jneighbours jj

�
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we highlight how data errors and decisions

can impact diffusion models in different

ways for different network topologies, and

the implications this has when deciding

upon a data handling approach.

d The ER graph32,33 has N nodes, and the

possible link between each pair of nodes

exists with probability p. Alternatively,

the number of nodes and edges is spec-

ified, and the graph chosen at random

from all possible graphs with this num-

ber of nodes and edges. Both definitions

generate graphs with similar properties.

We focus on ones generated through the

latter definition

d The WS graph34 is a graph with the

small-world property, meaning random

pairs of nodes are not often connected,

but will usually share connections with

other nodes, and thus have short paths

(routes) between them

d The BA graph35 has the scale-free prop-

erty, meaning its degree distribution
follows a power law, with many low-degree nodes and few

high-degree nodes. This results in ‘‘hubs’’ forming in the

network—nodes with significantly larger degree than the

average

Our experiments follow the design found in Carro et al.36: we

generate networks with 2,500 nodes, and generate 20 networks

per test. The parameters for the networks are chosen so as to

have a similar average degree. The ER graphs are generated

with 312,500 edges. The WS graphs are generated with each

node initially attached to its 250 nearest neighbors, and a rewir-

ing probability of 0.1. The BA graphs are generated with new no-

des being attached to 132 other nodes. All networks thus have

an average degree of roughly 250, or a normalized average de-

gree of approximately 0.1. The networks are generated using

the python package ‘‘networkx’’37 (https://networkx.org/).

Data handling model

Once the graph(s) has been sourced, we apply a model of data

handling that simulates data handling errors or decisions, result-

ing in an adjusted network. We simulate two data handling er-

rors/decisions: node removal and node aggregation.

https://networkx.org/


Algorithm 2. Systematic aggregation of graph G, with shared neighbor threshold p and K bins

1: for k = 1; 2;.;K do

2: For nodes i and j in bin k, isj do

3: if Shared neighbor proportion of nodes i and j (Alg. 1) >p then

4: Reattach all edges from node j to node i

5: Delete node j

6: end if

7: end for

8: end for
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Node removal. To test the effects of data mishandling, we

delete nodes at random from the networks. We remove nodes

in batches, running our diffusion model on the network after

each batch removal. Nodes are removed until 125 nodes remain

(this is 5%of the total initial number of nodes, as inWang et al.13),

with batch sizes chosen based on our applied diffusion model.

We use 35 and 50 batches for the SIR and Threshold models,

respectively, with these sizes chosen to balance smoothness

of resulting curves and running time.

We note that node removal is also used in the control of ep-

idemics. However, in that case the removals are intentional,

whereas here we have unintentional removal due to a data

handling error. In addition, the intentional removal is usually

not at random; rather, nodes are removed so as to minimize

the spread of a virus. As we are focusing on nodes missing

due to error, we limit our simulations to missing at random no-

des. We also repeat these experiments with random edge

removal in ‘‘edge removal’’ of the supplemental experimental

procedures, where the results and interpretation are fairly

similar to what is observed in the node removal case.

Aggregation. To test the effects of data integration decisions,

we simulate the aggregation of nodes using node neighbor-

hoods and randomized attributes. We note that the algorithm

detailed below is not intended to replicate perfectly how this

might be done in practice, only to illustrate the differences that

can arise when one aggregates, whether in some systematic

way or with random aggregation.

For each node, we sample a random variable from the skew

normal distribution,with probability density function (pdf) given by:
Figure 4. Shared neighbors example graph
fðxÞ = 24ðxÞ
Z ax

�N

4ðtÞdt; (Equation 1)

with 4ðxÞ= 1ffiffiffiffi
2p

p e�
x2

2 (the standard normal pdf). We set a = 4, and

bin the realizations into 50 bins of equal length. Figure 3 shows

an example of this. This distribution and binning emulates en-

tities (nodes) having similar attribute values, where one might

check whether they refer to the same real-world entity. We

choose a skew distribution because many real-world attribute

distributions are skewed.38 This is a simplification of the entity

similarity testing process, but serves to illustrate the effect it

may have on network diffusion models. The exact magnitude

of the impact made by the aggregation decisions can vary, but

we simply aim to show that these decisions can have an impact.

Similarly to the methodology used in Bilgic et al.,39 we

compare the neighborhoods of nodes sharing similar attribute

values to the decide whether they refer to the same entity. No-

des are binned together based on their simulated attribute

values, with 50 bins of equal length, resulting in bins having

between 1 and 160 nodes in each from our 2,500 node net-

works. The neighbors of any two nodes in the same bin are

compared; if the proportion of neighbors in common exceeds

some shared neighbor threshold, p, we assume that the no-

des refer to the same entity (we ignore direct edges between

the two nodes being compared when considering neighbors).

Nodes assumed to refer to the same entity are aggregated by

deleting one of the nodes and attaching all of its edges to the

other node. Algorithm 2 describes this shared neighbor aggre-

gation algorithm, with Algorithm 1 calculating the proportion of

neighbors shared.

The proportion of neighbors shared between two nodes may

differ based on the degree of the nodes; in this case, we always

consider the larger proportion. Figure 4 shows an example of

this: suppose we are deciding whether to aggregate nodes 1

and 2 based on their shared neighbors. From the perspective

of node 2, 100% of its neighbors (nodes 3 and 4) are shared

with node 1; however, from node 1’s perspective, only 50% of

its neighbors (nodes 3, 4, 5, and 6) are shared with node 2. We

will always consider the greater of the two values in these sce-

narios, and so would aggregate nodes 1 and 2.

We do not address the transitivity issue: pairwise comparisons

in each bin are made systematically, with each node being

compared once with every other node, and aggregations are

done as soon as the conditions are met, without consideration

of previous or future pairwise comparison results. Using Figure 4

again for an example, suppose nodes 1, 2, and 5 all belong to the
Patterns 2, 100397, December 10, 2021 7



Algorithm 3. SIR diffusion model

1: Let Statej denote the state of node j

2: Set Statej = s for nodes j = 1;2;.;n

3: Let S = fj : Statej = sg
4: Define infection rate, b, and recovery rate, g

5: Set Statej = i for initially infected nodes j

6: Let I = fj : Statej = ig
7: for Number of iterations do

8: for j˛I do
9: Let NðjÞ be the set of neighbors of j

10: for k˛ðNðjÞXSÞ do
11: Set Statek = i with probability b

12: end for

13: Set Statej = r with probability g

14: end for

15: end for
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same bin, andwe use a shared neighbor threshold of 80%.When

we compare nodes 1 and 2, we would conclude that they refer to

the same entity (since the maximum of their shared neighbors

proportion is 100% > 80%); likewise with nodes 1 and 5. Howev-

er, we would not conclude that nodes 2 and 5 refer to the same

entity, since they have no neighbors in common. Thus we have

node 1 = node 2, node 1 = node 5, but node 2 s node 5. While

this is an issue that needs to be dealt with in reality, we avoid ad-

dressing it here, and instead simply make aggregation decisions

based on the order in which the pairwise comparisons are made.

So if we compare nodes 1 and 2 first, we would consider them

the same entity and immediately aggregate them (this would

essentially delete node 2 and/or relabel node 1 as node 2). We

would them compare node 1 with node 5, and would conclude

that they are the same and aggregate them. Again, this is a

simplification of the entity resolution process but still serves

the purpose of emulating how it might affect the network. For

each test, we create multiple graphs, which helps address vari-

ance concerns arising from this issue.

When running our models on each simulated network, we also

consider the network resulting from random node aggregation,

as was studied in Smith and Moody.14 We perform the same
Algorithm 4. Threshold diffusion model

1: Let Statej denote the state of node j

2: Set Statej = s for nodes j = 1;2;.;n

3: Let S = fj : Statej = sg
4: Let Threshj denote the threshold of node j

5: Set Statej = i for initially infected nodes j

6: Let I = fj : Statej = ig
7: for Number of iterations do

8: for j˛S do

9: Let NðjÞ be the set of the neighbors of j

10: if jIXNðjÞj
jNðjÞj >Threshj then

11: Set Statej = i

12: end if

13: end for

14: end for
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number of aggregations as was observed by applying the algo-

rithm above, only now at random.

Diffusion model

Once we have sourced a network and applied a data handling

model to it, a diffusionmodel is run on it. Network diffusionmodels

represent a broad class of models that can be used to model

some form of spreading phenomenon. As opposed to traditional

diffusion (e.g., on a lattice), the network structure provides a spec-

ification of connectivity between the entities and hence defines

the pathways by which the spreading (or diffusion) may progress.

This spread could represent many different real-world processes:

the spreading of failures on a power grid; the spread of a rumor at

a party; the spread of a disease through a community.

We are interested in the impact of data on network-based

models and how data handling may impact conclusions drawn

from these models. While there are other classes of models that

can be applied on networks, we restrict our analysis to diffusion

models (spreading processes) as they represent a broad class

of relevant applications (e.g., epidemics, information spreading,

rumor spread, etc.). For succinctness, we primarily use terminol-

ogy for the spreading of a disease, but the models addressed

could equally be applied to any spreading phenomenon.



Figure 5. Summary of simulation parameters

and models for synthetic networks
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There is a vast array of spreading processes used tomodel ep-

idemics.40,41 As stated previously, we focus on two common

diffusion processes: the SIR model and the Threshold model.

The SIR model. The SIR model was introduced by Kermack

and McKendrick.42 In this model, each node can be in one of

three states: susceptible, meaning they have not yet been in-

fected; infected; and removed, meaning they were previously in-

fected. We assume that removed nodes cannot be infected

again, i.e., they become immune to reinfection. The only transi-

tions allowed for nodes is from susceptible to infected, and

from infected to removed. Susceptible nodes can become in-

fected when they have contact with other infected nodes.

The model is a Markovian process run with discrete time

steps, and can be executed on a network as per Algorithm 3.

The Threshold model. The Threshold model was introduced by

Granovetter.43 In this model, each node/individual has a binary

choice/state: either they are infected or not, they believe and

spread the rumor or not, they have failed or not. In most cases,

we will consider one of the states as positive and one as nega-

tive, and study how the number of positive nodes changes

over time. For example, we may say an infected node is positive,

and study how many nodes become positive in the equilibrium.

This model has a susceptible-infected form, with nodes only

able tomove from the susceptible (negative) to infected (positive)

states. Each node has a threshold: the proportion of their neigh-

boring nodes that need to have a positive state for them to switch

from the negative state to the positive state. In the power grid

example, we might say that a power station fails if 50% of its

neighboring stations fail.

Algorithm 4 describes the implementation of this model on a

network.

Diffusionmodel parameters. To illustrate the impact of the data

handling model, we run the diffusion models on both the
Algorithm 5. Node removal diffusion

1: Set parameters of diffusion model, M

2: for Desired number of graphs do

3: Generate graph, G, with desired topology

4: Run M on G with n random initializations and compute avera

5: for Number of removal batches do

6: Remove nodes at random from G

7: Run M on G with n random initializations and compute ave

8: end for

9: end for
adjusted and the initial networks, and compare the diffusion

model outputs. We again follow Carro et al.36 by using 10

random initializations for every graph and diffusionmodel tested.

Simulations are always run until stability is reached (up to 30 iter-

ations for the Threshold model, and up to 2,500 iterations for the

SIR model). All parameter value choices are made for illustrative

purposes; we simply wish best to highlight the impact that data

handling can have on downstream model output. The impact of

the data handling seen when using these models in reality may

be greater or lesser than shown here, depending on the data

handling performed and the diffusion model chosen.

When testing node removal, we use the following parameters:

for theSIRmodel,b is set to0.001,g to0.01, and the initial fraction

infected to 0.05. For the Threshold model, the threshold for each

node is set to 0.5, with 0.36 of the population being initially in-

fected. These parameters are chosen simply to illustrate the

impact missing nodes might have; a different set parameter

values could result in the data mishandling having a greater or

lesser impact.

When testing node aggregation, we choose model parameters

that result in a roughly 50% spread on the non-aggregated

network.We choose these target infection rates as they best illus-

trate the differences that can arise; in networks or regions where

there is extremely high or extremely low spread, how one aggre-

gates is likely to have little to no impact. The 50% case represents

scenarioswhere one’s data handling decisionsmayhave themost

significant impact. For theSIRmodel,weadjustg = 0:2, and leave

b= 0:001 and 5% initial infection. This results in approximately

50% of the population becoming infected in the non-aggregated

network. For the Thresholdmodel,wechange to42%of the nodes

initially infected, and leave each node’s threshold at 50%. This re-

sults in a full spread of the infection in roughly 50% of trials on the

WS non-aggregated network.
ge infection

rage infection
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Algorithm 6. Node aggregation diffusion

1: Set parameters of diffusion model, M

2: for Desired number of graphs do

3: Generate graph, G, with desired topology

4: Run M on G with n random initializations and compute average infection

5: Create a copy of G, G’

6: Bin the nodes of G’ into K bins using some distribution, D

7: Perform systematic aggregation of graph G’ (Alg. 2), with shared neighbor threshold p and K bins calculated previously, and

calculate total number of aggregations, N

8: Run M on G’ with n random initializations and compute average infection

9: Create another copy of G, G’’

10: Perform N random aggregations on graph G’’

11: Run M on G’’ with n random initializations and compute average infection

12: end for
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Figure 5 summarizes all models, graphs, and parameter

values tested in our simulations on synthetic networks. Algo-

rithms 5 and 6 describe our algorithms used for testing diffusion

models with node removal and node aggregation respectively.

Génois et al.44 note that missing nodes correspond to immuni-

zation in the network, since a virus cannot spread through, for

example, a vaccinated person. Recognizing this, they empha-

size that, while the results from the deleting of nodes are the

same regardless of why those nodes are deleted, they represent

different realities. Nodes removed due to immunization change

the real-world network, and thus the diffusion model results on

this network are accurate to reality. Nodes removed due to the

data being missing, however, lead to an inaccurate network;

hence, one can have inaccurate diffusion model results. Génois

et al.44 argue that this difference in cause justifies studying these

missing nodes. Because of this, we also include the study of

missing nodes, but with a view to understanding missing ele-

ments due to data mishandling, as opposed to data mismea-

surement as in Génois et al..44

Real-world networks

To verify the results on synthetic networks, we also study

the impact of node removal on two real-world networks. We use

the same networks as were chosen by Wang et al.13: a friendship

network from Slashdot.org 45 (http://snap.stanford.edu/data/

soc-sign-Slashdot081106.html); and a citation network from

the e-print repository ArXiv46,47 (http://snap.stanford.edu/data/

cit-HepTh.html). As described by Wang et al.,13 these two net-

works represent different types of commonly analyzed networks,

with similar size but different structural properties, making them

good candidates for testing. Similarly to their experiments, we
Algorithm 7. Node removal diffusion (Real-world network)

1: Set parameters of diffusion model, M

2: for Desired number of trials do

3: Load real-world graph, G

4: Run M on G with n random initializations and compute avera

5: for Number of removal batches do

6: Remove nodes at random from G

7: Run M on G with n random initializations and compute ave

8: end for

9: end for
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treat the data as ground truth and error free, and transform the

networks to be undirected.

For succinctness, we limit our analysis to the SIR model, and

provide results for the ‘‘threshold model on real-world net-

works’’ of the supplemental experimental procedures. When

using the model parameters tested on synthetic networks, the

spread on the real-world networks without any data handling

errors applied is much lower than in the synthetic networks

(with approximately 0.3 and 0.6 of the population becoming in-

fected in the Slashdot.org and ArXiv networks, respectively). As

the region of most concern when applying epidemic models in

reality is when one is in a critical region of full spread, we also

test SIR model parameters that place the model in these critical

regions. We set g= 0:01 and the initial proportion of the popu-

lation infected to 5%. We then adjust the b value to reach re-

gions of critical spread. We note that the two networks used

are not connected, so in many cases it may be impossible to

infect 100% of the population. Hence, we choose the minimum

b value (using 0.005 increments) so that at least 95% of the

population becomes infected on average. For the Slashdot.

org network, this b value is 0.085; for the ArXiv network, it is

0.015. These values correspond to R0 values of 8.5 and 1.5,

respectively.

Our node removal simulations in the real-world networks

proceed similarly as described in ‘‘node removal’’: nodes are

removed in batches until 5% of nodes remain. After each batch

removal, the model is run with 10 different random initializations.

We follow the experimental design of Wang et al.13 and perform

this procedure with 10 trials on each of the real-world networks.

Algorithm 7 describes this process.
ge infection

rage infection

http://Slashdot.org
http://snap.stanford.edu/data/soc-sign-Slashdot081106.html
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http://Slashdot.org
http://Slashdot.org
http://Slashdot.org


A B Figure 6. Total infection for SIR model on

synthetic networks with random node

removal

(A and B) Proportion of nodes infected for varying

nodes remaining (A); change in proportion of pop-

ulation becoming infected for varying nodes re-

maining (B).
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RESULTS

We report the results for node removal and node aggregation

using the two diffusion models discussed above. As the ef-

fects of these types of errors on network properties are well

understood (‘‘measurement error and networks’’), we focus
A

C D

B

on the impact on model output, with brief

additional results in the ‘‘network prop-

erty changes’’ of the supplemental

experimental procedures. We also note

that we consider primarily high-level

model metrics, such as proportion of

population infected. The conclusions

drawn here may differ when studying

more detailed metrics.

Node removal
For each of the 20 initial networks of each

topology, we ran the model 10 times after

each batch of random node removal. In
the SIR case, we first removed 1,250 nodes, since the model

always had full spread when there were more nodes.

SIR model

Figure 6A shows the proportion of the population becoming in-

fected as one removes nodes at random. We track this relative

to the number of nodes remaining in the network. As we remove
Figure 7. Peak infection and stability time for

SIRmodel on synthetic networkswith random

node removal

(A–D) Peak proportion of population infected at

same time (A); change in peak proportion of popu-

lation infected at same time (B); number of time

steps to stability (C); number of time steps to peak

infection (D).
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B

A

C

Figure 8. Threshold model on synthetic net-

works with random node removal

(A–C) ER network (A); BA network (B); WS

network (C).
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nodes, there is a reduction in the spread of the infection. The rate

at which this change in spread happens is almost identical be-

tween the ER and WS networks, but differs in the BA network;

in the BA network, the spread starts to reduce earlier as one re-

moves nodes, but does not change as rapidly as in the ER and

WS networks. In addition, this change in spread is not linear,

beginning more slowly as one removes nodes and gradually

increasing. This can be seen in Figure 6B, where the change in

proportion of the population infected is plotted for varying nodes

remaining. We can see that this change is highly non-linear, with

an initially slow change that grows as nodes are removed. Again,

we note that there are slight differences between the BA network

and the ER and WS networks; the BA change graph starts

increasing sooner as nodes are removed, but peaks later.

This illustrates an important point: the influence of removing

nodes on the model output differs depending on the number of

nodes in the network. If one is in a region with many nodes,

missing nodes will not have a significant impact on the model

output; however, in a region with few nodes, these same

missing nodes could have a large impact on the model. This

highlights the need for careful data handling in these critical re-

gions. It is also likely that one might find oneself in and around

these regions in reality—the usefulness and interest in these

models is typically when there is some uncertainty about the

potential outcome, since they do not provide much value

when one has a large number of nodes and the virus always

spreads fully.

In Figure 7, we look at the effect of removing nodes on the

peak proportion of the population being infected at the same
12 Patterns 2, 100397, December 10, 2021
time and the times taken to reach stability

and this peak infection rate. As nodes are

removed, the peak proportion of the popu-

lation infected decreases. Once again, this

change is not linear, with a generally

sharper decrease at fewer nodes. Both

the time to stability and the time to peak

infection follow a similar trend, with both

generally increasing as nodes are

removed, peaking at around 300 nodes;

once nodes are removed past this point,

the times start to decrease. In both the

time measurements and the peak infection

rates, we see the trend of the BA network

results differing from the ER and WS re-

sults. Once again, the BA shows lower

peaks and less steep changes, but the

impact of node removal begins sooner.

Noticing the non-linear nature of the

peak infection rate, we again see the

importance of data handling in certain re-

gions. Modelers need to mindful of all

steps and possible problems in the
modeling process, but especially in their data handling, as

this is where they have the most freedom to make changes.

The Threshold model

Figure 8 shows the proportion of the population above the initial

infected becoming infected as we remove nodes. The colored

plotted points represent the average proportion infected over

themultiple trials performed at each number of nodes remaining,

with the gray points representing individual trial outcomes; in

each individual trial, usually either close to none or close to all no-

des become infected. In each plot, a sigmoid function of the form

fðxÞ = 1

1+ expð � kðx � x0ÞÞ; (Equation 2)

is fitted, where k and x0 are least-squares estimates.

All three scatterplots have the same form, with a high number

of nodes resulting in little to no spreading of the disease past the

initial infections, and low number of nodes having spread to the

entire population. In the WS networks, a very low number of no-

des leads to a decrease in the number of infected. In all topol-

ogies, there is a transition zone, where one changes from no

nodes being infected to all nodes being infected; the length

and steepness of this zone varies according to topology. In the

ER network, this transition takes place over a small change in

number of nodes, while in the WS network it happens over a

much larger change.

We see here how the network structure influences the

approach modelers need to take to their data handling. In the

WS network, there is a large region of nodes remaining where



Figure 9. Number of aggregations for various

shared neighbor thresholds
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small changes can influence the outcome; however, the rate of

this change is relatively low. In contrast, in the ER network it is

a small region where changing the number of nodes has an

impact. In this small region, a change in nodes can drastically

shift model outcome. Thus we see that the impact of data

handling on model output can be highly network dependent.
Node aggregation
Entity resolution, and thus node aggregation, form critical parts

of the data handling process. The modeler is able to make their

own decisions in this, with fewer limitations as might be used in

data measurement. Here, we show how decisions made can

have a greater impact on the downstream model than might be

expected based on simply the change in parts of the network

structure. We do this through two different decisions: choosing

to aggregate nodes using bins and a shared neighbor threshold,

and choosing to aggregate nodes at random. This is different
Table 2. Impact of node aggregation on network properties

Network topology

BA WS

Average number of aggregations 731.175 948.725

Standard deviation of number of

aggregations

377.102 105.549

Unaggregated average degree 0.100064 0.100040

Shared neighbor aggregation average

degree

0.108332 0.120772

Random aggregation average degree 0.189071 0.220768
from a data measurement issue; we have

the full network data, but may have beliefs

about nodes representing the same en-

tities, and can decide how or whether to

combine them.

We first tested the results of performing

the aggregation algorithm prior to running

models on the resultant networks. Fig-

ure 9 shows the number of aggregations

for varying shared neighbor thresholds

required to aggregate. The points indicate

the results for individual networks, with the

lines showing the average over four net-

works for the two different topologies.

For the ER network, aggregations only

happened when we set the threshold

very low (<0.25), and so we limited our

analysis to WS and BA networks only.

The WS and BA networks show drasti-

cally different behavior for the given aggre-

gation algorithm. The WS network has a

significantly higher threshold (0.8 versus

0.6) where it starts to have aggregations.

In addition, there is less variance in the
number of aggregations in different graphs for the same shared

neighbor threshold, and the change in number of aggregations

as one varies the shared neighbor threshold is smoother.

When running models on the aggregated networks, we choose

a shared neighbor threshold of 0.8 for the WS networks, and

0.57 for the BA networks. These shared neighbor thresholds

were chosen to have a moderate number of aggregations. We

do not say which of the aggregated or unaggregated networks

are the ground truth, if either. We only wish to illustrate how ag-

gregation (with this algorithm in particular) can affect model

output.

Table 2 shows the means and standard deviations in the num-

ber of aggregations for the shared neighbor thresholds

described above, as well as how the aggregation affects the

normalized average degree of the networks. These results are

for the total of 40 networks used to test the SIR and Threshold

models (20 networks each). The chosen shared neighbor thresh-

olds give a similar average number of aggregations, but the BA

networks have a much larger variance. Both networks start

with a normalized degree of approximately 0.1 (meaning that

the average node has 10% of all its possible edges); when one

aggregates the nodes using the shared neighbor algorithm, the

normalized degree increases slightly (more so for the WS net-

works); when one performs the same number of aggregations

at random, the normalized average degree increases by signifi-

cantly more. The shared neighbor aggregation does not drasti-

cally change the network structure in terms of the average

degree measurement, but the random aggregation does. How-

ever, both have a significant impact on the outcome of models

on the network.
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Figure 10. Proportion of population infected

for different aggregation techniques

(SIR model)
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The SIR model

When testing the SIR model with the aggregation algorithm, we

choose parameters that result in approximately half of the pop-

ulation becoming infected on the unaggregated network: b =

0:001, g = 0:2, and 5% of the population initially infected. Fig-

ure 10 shows the boxplots of the proportion of the nodes

becoming infected for different aggregation techniques, while

Table 3 shows the means and variances for these proportions.

As in the edge removal section, 20 networks were generated

for each topology, and the SIR model run 10 times on each

with different random initializations. Performing the neighbor-

hood-based aggregation generally leads to a lower overall

infection; however, in the BA network there is now far more

variance—this can be attributed to the higher variance in the

number of aggregations that one has with this network topol-

ogy. This is similar in the case where one aggregates at

random, only now the proportion of the population becoming

infected increases.

We see that the neighborhood-based aggregation has a far

larger effect on model output than one may suspect based on

the changes in the normalized average degree. The directions

of the change in the BA and WS networks are the same, but
Table 3. Impact of node aggregation on SIR model population

infection rates

Network topology

BA WS

No aggregation 0.510338

(0.000054)

0.460504

(0.000238)

Shared neighbor aggregation 0.368343

(0.00468)

0.250969

(0.000240)

Random aggregation 0.626075

(0.002753)

0.692722

(0.000314)

Proportion infected average values are reported in the ‘‘mean (variance)’’

format.
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the WS change is of a greater magnitude.

The change with random aggregation is

also sizeable and of similar magnitude,

only in the opposite direction. However,

this change is more expected, considering

the greater impact seen on the normalized

average degree. This shows that the

impact of aggregation on model output

may not necessarily be known in advance

when one only considers its impact on

certain network properties, and that how

one chooses to do aggregation can lead

to drastically different results in model

output.

The Threshold model

For the Threshold model and node ag-

gregation, we chose parameters so that
roughly half of trials on the initial WS networks would have

no spread, and half would have full spread. This corresponded

to each node having a threshold of 50%, and 42% of nodes

being infected at initialization, which resulted in roughly 15%

of trials on the BA networks having full spread. Figure 11

shows the additional proportion (above the initial infected)

becoming infected for different aggregation techniques, with

Table 4 showing the means and variances. With the Threshold

model, there is more variance in the output when compared

with the SIR. The impact of the two aggregation techniques

is reversed from the SIR model, with the shared neighbor ag-

gregation resulting in a greater proportion of the population

becoming infected, and the random aggregation resulting in

a smaller proportion becoming infected.

The results from the Threshold model show that not only

does the aggregation technique have an impact on model

output but that this impact can also be dependent on the

model. In the SIR case, the shared neighbor aggregation re-

duces the spread, while in the Threshold model it increases

the spread.

Real-world networks
Figure 12 shows the proportion of the population becoming in-

fected as we remove nodes from the network. Here, the SIR pa-

rameters used are the same as in the synthetic networks: g =

0:01, b = 0:001, and 5% of the population initially infected. In

the synthetic networks, this resulted in the population becoming

fully infected when no nodes had been removed; instead, in this

case either 30%or 60%become infected. The impact of the data

handling errors is now fairly linear, unlike what was observed in

the synthetic networks. This suggests there may be a certain

level of interaction between network properties and model pa-

rameters when considering data handling’s impact on a diffusion

model.

Figure 13 replicates Figure 6 for the two real-world networks

with adjusted b values. Shown in Figures 13A and 13C are the



Figure 11. Additional proportion of popula-

tion infected for different aggregation tech-

niques (Threshold model)
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proportions of the population infected as one varies the num-

ber of nodes remaining in the network; the change/approxi-

mate derivatives of these function are shown in Figures 13B

and 13D. As intended, approximately 95% of the population

becomes infected when no nodes are removed from the

network. We see similar behavior as was observed in the

synthetic networks: the change in the proportion of the popu-

lation becoming infected as one removes nodes is non-linear,

with more drastic changes taking place as more nodes are

removed. The level of non-linearity differs in the two

networks, with the ArXiv network showing greater non-line-

arity. The derivatives of the proportion infected are also

different orders of magnitude, with far greater changes in

the ArXiv network. Part of this can be attributed to the differ-

ence in size of the networks (the Slashdot.org network has

roughly 2.5 times the number of nodes as the ArXiv network),

but there are still unexplained differences. Another possible

factor in these differences is the density of the two networks:

the ArXiv network has a normalized average degree 6.5 times

that of the Slashdot.org network. The density of both real-

world networks is significantly lower than the synthetic net-

works tested, where we also saw much larger derivative
Table 4. Impact of node aggregation on Threshold model

population infection rates

Network topology

BA WS

No aggregation 0.135021

(0.014993)

0.545207

(0.026795)

Shared neighbor

aggregation

0.407204

(0.038125)

0.885116

(0.008692)

Random aggregation 0.044241

(0.003478)

0.295018

(0.024666)

Additional proportion of population infected average values are reported

in the ‘‘mean (variance)’’ format.
values. While these results do not constitute a proof, they

do suggest that network properties, such as density and

size, play a role in the effect that data handling errors can

have on models.

These results further confirm what was observed in the syn-

thetic networks: the impact of data handling on network diffusion

models is dependent on network structure and properties. Again

we see that the impact of data handling can be non-linear, and

the level of non-linearity is also dependent on the network. This

non-linearity also seems more pronounced in regions where

modelers may be most concerned in reality, i.e., where there is

full spread. While further experiments are required to confirm

this, properties such as network size and density may have an ef-

fect on the impact of data handling errors. We also see an inter-

action between diffusion model parameters and data handling

error impact.

DISCUSSION

Having highlighted the complexity and concerns of data

handling, we provide a framework for testing whether a diffu-

sion model is susceptible to these handling errors. Our frame-

work shows how a modeler can insert data handling errors

into networks and run the diffusion model of concern on

them, testing the impact on model output. We provide exam-

ples by applying this framework to both synthetic and real-

world networks, with different data handling and diffusion

models applied.

Our results highlight the importance of effective data handling

when using data-driven models. In particular, the simulated ex-

amples show the quantifiable impact that poor data handling

can have. For example, we see that one’s perception of the

risk-level of a disease turning into a pandemic can be highly

dependent on the proportion of the nodes in a network correctly

modeled. The outcome of themodel changes in a non-linear way

as one removes nodes, where removing even small numbers of
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A B Figure 12. SIR model on real-world network

with old parameters

(A and B) Real-world networks’ proportion of popu-

lation becoming infected for varying nodes remain-

ing, using the model parameters tested in the

synthetic networks; ArXiv network (A); Slashdot.org

network (B).
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nodes in regions with a few nodes can lead to vastly different

predictions for total infections. How severe these changes are

is dependent on both the infectiousness of the diseases, and

the underlying network structure—both of these need to be

taken into account when making decisions based on the avail-

able data.

In addition, we show how data integration decisions can

have a far-reaching impact on a model’s output, and that

this impact may not be immediately recognizable based on

changes in some network structure properties alone. When

aggregating using a shared neighbor approach, there can be

very limited changes in the average degree of the network;

however, the results of a diffusion model run on this aggre-

gated network can differ significantly from those seen on the

unaggregated network. We also show that using random ag-

gregations can have a more noticeable effect on the average

degree, but with a similar sized impact on model output. This

reinforces the point: data handling decisions can have mean-

ingful impact on model output, and this impact can differ from

data mismeasurement impact.
Conclusions
With the increase in the number, diversity, and size of datasets

being used for computational modeling, data handling has

become increasingly important. This importance will only grow

as researchers increasingly reuse data.48 However, the impact

of data handling on computational models is, as of yet, a poorly

studied area.

Hence, we introduced a framework for quantitatively analyzing

the impact that data handling errors can have on network diffu-

sionmodels. We used this framework to examine a class of stan-

dard network models. We find that:

d the impact of data errors (missing nodes) can create similar

impact to simulated interventions (e.g., vaccinations or

quarantine in epidemics)
16 Patterns 2, 100397, December 10, 2021
d data handling algorithms, such as data integration, can

have non-trivial impact onmodel output and in some cases

conclusions of model runs

d network models (in particular) are highly sensitive to errors

in certain connectivity regimes and these regimes are

where models transition between qualitatively different

outcomes (e.g., full infection versus no infection), hence,

the network structure produced by integrating and clean-

ing data is crucial in these transition situations

There are many avenues for potential research arising from

these findings. The devised framework can be applied in various

additional ways: on a greater variety of real-world datasets; us-

ing more sophisticated, industry-level data integration tools;

and on more complex diffusion models. There is also the possi-

bility to develop a set of guidelines for how different types of

diffusion models may be affected by data handling, and provide

recommendations for how to address potential impacts.

We believe that these findings have important impli-

cations for data-driven modelers and again emphasize the

important role that data management plays in simulation-

based science.
EXPERIMENTAL PROCEDURES
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A B

C D

Figure 13. Total infection for SIR model on real-world networks with random node removal

(A–D) Proportion of population becoming infected for varying nodes remaining on ArXiv network and Slashdot.org network (A) and (C), respectively; change in

proportion of population becoming infected for varying nodes remaining on ArXiv network and Slashdot.org network (B and D), respectively.
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