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Social Fabric: Tubelet Compositions for Video Relation Detection

Shuo Chen, Zenglin Shi, Pascal Mettes, and Cees G. M. Snoek
University of Amsterdam

a person swordfighting with another person

"approach" "clash" "fall"

an adult chasing a child

"run""greet"

Figure 1: Social Fabric encodes compositions of interaction primitives defined over tubelet pairs. The primitives are data
driven and may correspond to interactions like “greet”, “clash” and “fall”. Using the primitives, our two-stage network can
classify, detect, and search for complex relations across entire videos.

Abstract

This paper strives to classify and detect the relation-
ship between object tubelets appearing within a video as
a 〈subject-predicate-object〉 triplet. Where existing works
treat object proposals or tubelets as single entities and
model their relations a posteriori, we propose to classify and
detect predicates for pairs of object tubelets a priori. We
also propose Social Fabric: an encoding that represents a
pair of object tubelets as a composition of interaction primi-
tives. These primitives are learned over all relations, result-
ing in a compact representation able to localize and clas-
sify relations from the pool of co-occurring object tubelets
across all timespans in a video. The encoding enables our
two-stage network. In the first stage, we train Social Fabric
to suggest proposals that are likely interacting. We use the
Social Fabric in the second stage to simultaneously fine-
tune and predict predicate labels for the tubelets. Experi-
ments demonstrate the benefit of early video relation mod-
eling, our encoding and the two-stage architecture, leading
to a new state-of-the-art on two benchmarks. We also show
how the encoding enables query-by-primitive-example to
search for spatio-temporal video relations. Code: https:
//github.com/shanshuo/Social-Fabric.

1. Introduction

To understand what is happening where in videos, it is
necessary to detect and recognize relationships between in-
dividual instances. Effectively capturing these relationships
could improve captioning [55], video retrieval [41], vi-
sual question answering [1] and many other visual-language
tasks. In this paper, we strive to classify and detect the
relationship between object tubelets appearing throughout
a video as a 〈subject-predicate-object〉 triplet, like 〈dog-
chase-child〉 or 〈horse-stand behind-person〉.

Shang et al. [38, 39] pioneered this challenging problem
by their definition of video datasets with dense bounding
box annotations, temporal bounds, and relationship-triplet
labels. Following their guidance, a leading approach to date
is to generate proposals for individual objects on short video
snippets, encode the proposals, predict a relation and asso-
ciate the relations over the entire video, e.g. [34, 42, 53]. To
better detect long-term interactions, Liu et al. [30] forego
the need for snippets by first localizing individual object
tubelets throughout the entire video, filter out unlikely pairs
and predict predicates for the remaining ones. Different
from all these existing works on video relation prediction,
which treat object proposals or tubelets as single entities
and model their relations a posteriori, we propose to clas-
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sify and detect predicates for pairs of object tublets a priori.
Considering objects as tubelet pairs from the start re-

quires an encoding that enables us to localize and classify
interactions from the pool of all co-occurring object tubelets
across all timespans in a video. This is reminiscent of many
classical problems in computer vision that need to aggre-
gate spatial, e.g. [2, 22, 40, 47], temporal, e.g. [28,50, 57] or
spatio-temporal, e.g. [15, 16, 32] primitives into a common
representation. We take inspiration from ActionVLAD by
Girdhar et al. [16], which encodes actions as a composi-
tion of local action primitives to capture the entire spatio-
temporal extent of actions. In this paper, we also learn to
encode local spatio-temporal video features in a composi-
tional manner. Different from ActionVLAD, which oper-
ates on an entire video, our Social Fabric encoding operates
on tubelet pairs, i.e. on inputs from multiple object tubelets
and multiple modalities, with a set of interaction primitives
that is dynamically learned during video relation training.
Social Fabric captures information across the entire scope
of tubelet pairs, which is especially beneficial when inter-
actions last long. See Figure 1 for an illustrative example.

We make three contributions. First, we propose to clas-
sify and detect video relations for pairs of object tubelets
from the start. Second, we introduce Social Fabric, a
compositional encoding suited for multi-tubelet and multi-
modal inputs. The interaction primitives that form the en-
coding are learned and updated dynamically, akin to the
NetVLAD layer from Arandjelović et al. [2] for visual place
recognition. Third, to leverage the Social Fabric, we pro-
pose a two-stage network for video relation classification
and detection. In the first stage, we localize interactions by
training Social Fabric to propose tubelet pairs that are likely
interacting. In the second stage we use the Social Fabric to
simultaneously fine-tune and learn to predict predicate la-
bels for the tubelets. Experiments on the benchmarks for
video relation detection of Shang et al. [38, 39] show the
benefits of our approach, especially when interactions are
long and complex. Social Fabric outperforms alternative
video encodings and our two-stage architecture sets a new
state-of-the-art for both video relation classification and de-
tection. Besides classification and detection, we show that
our encoding enables searching for relations in videos by
providing primitive-examples as queries.

2. Related Work
Image relation detection. Visual relation recognition

has a long-standing tradition for static images [8,17, 18,20,
21, 26, 27, 31, 49, 56]. Besides recognizing visual relation-
ships between objects, Chao et al. [7] introduce the prob-
lem of detecting human-object-interactions in static im-
ages and contribute a corresponding dataset. It inspired
many to contribute to human-object-interaction detection,
e.g. [10, 26, 49, 51, 54]. Li et al. [26], for example, learn the

knowledge between human and object categories from the
provided datasets and use this knowledge as a prior while
performing detection. Wan et al. [49] introduce a pose-
aware network that employs a multi-level feature strategy.
Where image-based relation detection requires two boxes
(subject and object) and a predicate, we aim to perform
video-based relation detection, which requires us to also lo-
calize and track subjects and objects over time.

Snippet relation detection. Many before us have in-
vestigated relation detection in videos [5, 11, 25, 30, 34, 38,
39, 42, 43, 44, 46, 53, 59]. Relation in videos provide addi-
tional temporal information, important for interactions such
as pushing or pulling a closed door. Shang et al. [39] pio-
neered this problem and introduced the ImageNet-VidVRD
dataset, the first video relation detection benchmark in
which all video relation triplets, along with their object and
subject trajectories, are labelled. Building on the founda-
tional work of Shang et al. [39], Tsai et al. [46] propose
a gated spatio-temporal energy graph using conditional ran-
dom fields to model video relations. In a similar spirit, Qian
et al. [34] built a spatio-temporal graph between adjacent
video snippets and used multiple layers of graph convolu-
tional networks to pass messages between nodes. Shang
et al. [38] later introduced VidOR, the largest video relation
detection benchmark to date. On this dataset, Sun et al. [43]
utilize language context features along with spatio-temporal
features for predicate prediction.

All the aforementioned methods adopt a three-stage
framework. A video is first split into short snippets and
subject/object tubelets are generated per snippet. Then,
short-term relations are predicted for each tubelet. The sub-
ject/object proposals are obtained in the short snippets us-
ing an image object detector and tracker [34, 39, 46]. In the
second stage, spatio-temporal features of each pair of object
tubelets are extracted and used to predict short-term relation
candidates. Xie et al. [53] combine a wide variety of multi-
modal features for each pair to predict the relations with im-
pressive relation classification accuracy. In the third stage,
the short-term relation proposals are merged by a greedy re-
lational association algorithm. Su et al. [42] maintain mul-
tiple relation hypotheses during the association process to
accommodate for inaccurate or missing proposals in the ear-
lier steps. Instead of treating the relations independently at
the various analysis stages, we consider the objects tubelets
as interacting pairs from the start.

Proposal relation detection. Liu et al. [30] are the first
to avoid the need to split videos into snippets. In a first stage
they generate object tubelets for the whole videos. The sec-
ond stage refines the tubelet-features and finds relevant ob-
ject pairs using a graph convolutional network. The third
stage focuses on predicting the predicates between related
pairs. In this manner, interactions can be detected without a
need for snippet splitting. Like Liu et al., we also avoid the
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need for snippets. Different from them, we view subjects
and objects as interactions from the start. As a result, we
only need two stages, one for interaction proposal genera-
tion from the tubelet pairs and one for predicting the appro-
priate predicate. At the core of both our stages is the Social
Fabric, which allows us to encode a set of interaction prim-
itives, like the ones in Figure 1, from which we classify and
detect different video relations.

3. Social Fabric Encoding
The goal in video relation detection is to localize in-

teractions between two entities in space and time. For-
mally, a spatio-temporal interaction I is defined as a triplet
I = {O1, P,O2}, with subject tubelet O1 ∈ R4×(T2−T1),
object tubelet O2 ∈ R4×(T2−T1) and their relation predi-
cate category P . Here, T1 and T2 denote the start and end
frame of the interaction and each frame contains box coor-
dinates. To address both video relation classification and
detection, we propose a two-stage approach that encodes
subjects and objects as pairs from the start. Central to both
stages is our Social Fabric encoding for representing com-
positions of tubelet pairs. Below, we outline how to learn
the encoding, how to use it to represent tubelet pairs and
how the encoding relates to existing video encodings.

Learning the encoding. The idea behind the encod-
ing is that a pair of tubelets, which form a video rela-
tion triplet, are composed of multiple interaction prim-
itives. These primitives can represent different rela-
tions by varying their combinations. For example, let
{“approach”,“run”,“watch”,“touch”} denote a set of prim-
itives, then a hugging relation can be represented by
{“watch”,“approach”,“touch”}, while a chasing relation
can be represented by {“run”,“approach”}. In the object
detection and action recognition literature, compositional
learning and encoding is well established, with advantages
such as sharing components amongst categories e.g. [13],
efficient and compact encoding e.g. [58], and high discrim-
inative ability e.g. [23, 24]. By introducing a composi-
tional encoding for video relation detection we share the
same benefits and show some examples of the primitives
we learned in Figure 2.

For each task, we are given a training set of tubelet pairs,
denoted as R, where the input representation of each tubelet
pair is denoted as Si ⊂ R ∈ RN×F , with N the number of
frames of the tubelets and F the feature dimensionality for
each frame, denoting the combined subject and object rep-
resentations. On top of the features, we apply layer normal-
ization [3], followed by a linear layer to obtain embedded
representation Ri ⊂ R ∈ RN×D. In this D-dimensional
embedding space, we learn a set C ∈ RK×D consisting of
K primitives. The idea behind our encoding is to describe
a tubelet pair entirely as a weighted combination of these
primitives. So tubelet pair i is encoded with our approach

“subject on object”

“moving up and down”

“subject holds stick-like object”

Figure 2: Interaction primitives that our Social Fabric en-
coding learns when trained for multi-modal features. Each
row shows several frames from videos that get assigned to
one specific primitive. Blue boxes indicate the subject while
red boxes denote the object. Here we show some easy to in-
terpret primitives.

as a concatenation of weighted primitive locations:

Ei=[Ei,1, · · · , Ei,K ], Ei,k=

N∑
j=1

zijkCk, (1)

where the weight is inversely proportional to the distance
between a local relational feature vector and the primitive:

zijk =
exp

[
−β ∥Rij − Ck∥2

]
∑K

l=1 exp
[
−β ∥Rij − Cl∥2

] , (2)

where β > 0 denotes a temperature parameter to tune how
soft or hard the assignments should be, fixed to 1/

√
D

throughout this work. Intuitively, our encoding describes
how much a relation is in line with each primitive in C.
Each portion Ei,k of the encoding forms a line between the
primitive Ck and the origin; the stronger the agreement, the
closer Ei,k is to the primitive and the more its values con-
tribute to the next layer. The diagram of the Social Fabric
Encoding is shown in Figure 3.

On top of the representation Ei, we learn a fully-
connected layer classification head, which can be used to
determine whether a tubelet pair makes for a good proposal
or to predict its predicate using a shallow network head. The
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Figure 3: Social Fabric Encoding.
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motion

Feature

Interaction proposals
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Figure 4: Two-stage video relation network. We first obtain interaction proposals and then predicate predictions. Social
Fabric Encoding (SFE) is essential to both stages as to represent an object tubelet with a composition of interaction primitives.
BCE loss and CE loss represents binary cross-entropy loss and cross-entropy loss separately.

layers of the network and the set C are jointly learned dur-
ing the optimization.

Relation to alternative encodings. A common encod-
ing in video-based representations is average pooling [57].
In our encoding, average pooling is a special case where
the codebook contains a single primitive. Average pooling
implicitly assumes that the features of the input representa-
tion follow a single mode. Video relations, however, con-
sist of multiple interaction primitives that evolve over time.
Moreover, these primitives are shared between different re-
lations, which we capture. Encodings such as transformers
follow the self-attention architecture, where each feature is
a weighted sum of other features [48]. Compared to trans-
formers, our approach provides a fixed-sized representation,
important because tubelet pairs are of varying length. Other
encodings like NetVLAD [2] and ActionVLAD [16] oper-
ate on whole images and videos, while residuals between
local features and clusters are used to obtain a representa-
tion. In contrast, our encoding operates on pairs of spatio-
temporal tubelets, accepts multi-modal features, and we di-
rectly use the primitives to encode inputs. Lastly, we are
the first to rely on a compositional encoding for the task of
video relation detection.

4. Two-stage video relation network
We utilize the Social Fabric Encoding to both classify

and detect video relations using two stages, rather than three
stages common in the literature. In the first stage, we sift
through all combinations of co-occurring tubelets across
all timesteps to obtain a set of interaction proposals that
likely cover all ground truth video relations. In the second
stage, we classify each proposal with a predicate label. An
overview of our approach is visualized in Figure 4. Next,
we detail both stages and show how to obtain the final clas-
sification and spatio-temporal detection results.

Stage 1: Interaction proposals. We initialize the video
relation optimization by performing object detection in each
frame, followed by linking over time based on [52]. For

a video V , this results in M object tubelets. We consider
all unique combinations of tubelets for proposal genera-
tion and train a binary classifier to determine interactivi-
tyness at the frame-level using a local window around the
box pairs in a frame [9]. For the two objects (O1, O2) in a
tubelet pair and frame f , we consider a neighbourhood of
m/2− 1 frames in both temporal directions of the tubelets.
We compute and stack the multi-modal features for the win-
dowed tubelet pair, resulting in R1

f (O1, O2) ∈ Rm×D for
frame f . We feed this as input to Social Fabric, resulting
in E1(O1, O2) ∈ RK×D. During training, the encoding is
used to train a binary classifier to separate potential inter-
actions from non-interactions with a binary cross-entropy
loss L=

(
y log(s) + (1 − y) log(1 − s)

)
, where s denotes

the interactivityness. Simultaneously, the primitives in the
Social Fabric are learned. For each frame in a tubelet pair,
this results in a score indicating its interactivityness. Over
the array of scores over all timesteps of the tubelet pair, we
employ a 1D watershed algorithm [9,36] to generate spatio-
temporal interaction proposals. We repeat this procedure
for all co-occurring tubelets and combine the outputs per
pair into a final set of interaction proposals for a video.

Stage 2: Predicate prediction. Once a video is decom-
posed into a set of interaction proposals, each consisting of
two tubelets with a similar start and end time, we seek to
score all proposals for their predicate. For interaction pro-
posal (O1, O2), we sample n frames uniformly. For each
sampled frame, we extract a single uni-modal or several
multi-modal features. Then we stack the features over all
frames and obtain R2(O1, O2) ∈ RN×D for this tubelet.
This is fed into Social Fabric and the output representation
is in E2(O1, O2) ∈ RK×D. In stage 2 we fine-tune the So-
cial Fabric trained in stage 1 to accelerate the convergence.
After encoding each proposal, we feed the representation
into a final linear layer to obtain predicate scores. The pred-
icate prediction is optimized with softmax cross-entropy.
After obtaining predicate predictions, we multiply the pred-
icate score and corresponding subject and object scores as
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the relation triplet prediction score. The subject and object
scores are obtained from the tubelet pairs in stage 1. Rela-
tion triplets are the predicted results for relation classifica-
tion. The relation triplet associated with subject and object
tubelets act as the predicted results for relation detection.

Search-by-primitive-example. The Social Fabric en-
coding is optimized for video relation classification and de-
tection, but is not limited to these tasks. Here, we show how
we can also search for spatio-temporal video relations in a
collection of videos by querying primitive examples. As in-
put, a user can provide one or more frames with a subject
and object performing a basic interaction. We compute the
non-temporal features for each input and use it to find the
nearest learned primitive. To find the interaction proposal
across all videos that best describes the primitive examples,
we use the weights from Equation 2 to score the relevance
of each primitive for an entire proposal. In turn, we sim-
ply sum the scores for the few primitives determined by
the user and output the interaction proposal with the highest
score. As a result, we can search on-the-fly for video rela-
tions that are composed of example primitives provided by
a user, without the need for search optimization.

5. Experimental setup
5.1. Datasets

To evaluate the proposed methods, we perform experi-
ments on ImageNet-VidVRD [39] and Video Object Rela-
tion (VidOR) [38].

ImageNet-VidVRD. [39] consists of 1,000 videos, cre-
ated from the ILSVRC2016-VID dataset [37]. There are 35
object categories and 132 predicate categories. The videos
are densely annotated with relation triplets in the form of
〈subject-predicate-object〉 as well as the corresponding sub-
jects and objects trajectories. Following [39,46], we use 800
videos for training and the remaining 200 for testing.

VidOR. [38] contains 10,000 user-generated videos se-
lected from YFCC-100M [45], for a total of about 84 hours.
There are 80 object categories and 50 predicate categories.
Besides providing annotated relation triplets, the dataset
also provides the bounding boxes of objects. The dataset
is split into a training set with 7,000 videos, validation set
with 835 videos, and a testing set with 2,165 videos. Since
the ground truth of the test set is not available, we use the
training set for training and the validation set for testing,
following [30, 34, 42, 53].

5.2. Implementation and evaluation details

Tubelet pairing. We first detect all the objects per video
frame by Faster R-CNN [35] with a ResNet-101 [19] back-
bone. The detector is trained on MS-COCO [29]. The
detected bounding boxes are linked with the Deep SORT
tracker [52] to obtain individual object tubelets. Finally,

each tubelet is paired with any other tubelet to generate the
tubelet pairs. We use the object trajectories of ImageNet-
VidVRD and VidOR adopted in [34,39,42,43] for fair com-
parison.

Feature extraction. In the video relation literature, fea-
tures from multiple modalities are commonly used, e.g. Sun
et al. [43] use motion features and language features. Liu
et al. [30] use motion features, visual features and I3D fea-
tures. Xie et al. [53] use motion features, visual features,
language features and location mask features. We consider
all features and arrive at motion features, visual features,
language features, I3D features, and location mask features.
We follow [43] to calculate the spatial location feature as
motion features. The visual features are extracted using
the detection backbone in Faster R-CNN and followed by
an RoI pooling layer. For the language features we use a
word2vec module, pre-trained on GoogleNews [33], to en-
code the subject and object classes into language features
with dimension of 600. We use the I3D module from [6]
to extract I3D features with fixed dimension of 832. We
follow the method of [53] to generate a mask based on the
bounding boxes of the subject and object in the tubelet pair.

Two-stage network optimization. The size of the lin-
ear layer for embedding representation is D=512. In the
first stage, we consider m=30 neighbourhood frames on
both temporal directions. The interaction proposal gener-
ation network is trained for 20 epochs using an SGD op-
timizer with a mini-batch of 128. We use a fixed learning
rate and set its value to 0.01. In the second stage, we sample
n=25 frames for each interaction proposal. The predicate
prediction network is trained for 10 epochs using an SGD
optimizer with a mini-batch of 128. We use a fixed learning
rate and set its value to 0.01.

Evaluation metrics. Following [39], we adopt
Precision@1, Precision@5 and Precision@10 to measure
the ability of classifying visual relations. We will refer
to the classification task as relation tagging in the experi-
ments for consistency with current literature. For video re-
lation detection we report mAP (mean Average Precision),
Recall@50 and Recall@100.

6. Results
Benefit of multi-modal features. We first evaluate the

benefit of the use of multi-modal features on VidOR in Ta-
ble 1. With only motion features, our method achieves a
P@1 of 50.97 for relation tagging and an mAP of 6.14 for
relation detection. With all features included, the perfor-
mance is clearly improved with a P@1 of 68.86 for relation
tagging and an mAP of 11.21 for relation detection. The
results show that our encoding benefits from incorporating
information from many modalities. In the following abla-
tions, we use all features.

Influence of encoding size. Next, we evaluate the influ-
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Feature type Relation tagging Relation detection

motion visual language I3D mask P@1 P@5 P@10 mAP R@50 R@100

✓ 50.97 39.57 31.58 6.14 6.74 8.70
✓ ✓ 56.89 44.76 34.07 8.93 7.38 9.22
✓ ✓ ✓ 59.24 47.24 35.99 9.54 8.49 10.17
✓ ✓ ✓ ✓ 61.52 50.05 38.48 10.04 8.94 10.69
✓ ✓ ✓ ✓ ✓ 68.86 55.16 43.40 11.21 9.99 11.94

Table 1: Benefit of multi-modal features on VidOR. More is better. The increasing gaps indicate Social Fabric effectively
captures multi-modal features for relation classification and detection.

Clusters 1 8 32 64 128

mAP 10.05 10.69 10.91 11.21 11.01

Table 2: Influence of encoding size on VidOR for relation
detection. Using multiple primitives results in a more ac-
curate predicate prediction, where we achieve best perfor-
mance for 64 primitives.

ence of the number of interaction primitives in the Social
Fabric Encoding. Intuitively, the more primitives, the finer
commonalities between interactions are modelled. In Ta-
ble 2, we find that multiple primitive components indeed
improves over a single component (which resembles con-
ventional average pooling). When increasing the number of
primitives, we further improve the performance. The So-
cial Fabric Encoding performs best at K=64, where it pro-
vides a balance between coverage of the space and sharing
amongst relations. We use this encoding size for further
experiments.

Importance of two stages. Next, we show the impor-
tance of the interaction proposal stage and the predicate
predication stage on VidOR in Table 3. The baseline (first
row) splits the video into short snippets. Relationships are
separately detected in each snippet and merged afterwards,
akin to [34,42,53]. It average pools the features before pred-
icate prediction. With the interaction proposal stage added
(second row), we have spatio-temporal proposals covering
long-range interactions. It provides the necessary context to
recognize long duration interactions. Accordingly, both re-
call and precision improve. The Recall@50 is improved by
1.09 and P@1 is improved by 3.47 compared to the base-
line. Upon adding the second stage (Third row), the P@1
increases by 4.67 compared to when we only use interaction
encoding in proposal generation. We conclude that both
stages matter in combination with our encoding.

Comparison with alternative encodings. We compare
to the following encodings on VidOR: average pooling,
transformer encoding, NetVLAD [16], NetRVLAD [32].
Average pooling corresponds to our encoding with a single

Relation tagging Relation detection

Stage 1 Stage 2 P@1 P@5 P@10 mAP R@50 R@100

60.72 46.40 36.62 9.61 8.73 10.81
✓ 64.19 49.60 39.22 10.16 9.62 11.63
✓ ✓ 68.86 55.16 43.40 11.21 9.99 11.94

Table 3: Importance of two stages on VidOR. Incorporat-
ing Social Fabric into the two stages of our pipeline (third
row) is preferred over baselines based on average pooling of
features with video snippet proposals (first row) and using
Social Fabric only for the proposals (second row).

Relation tagging Relation detection

Encoding P@1 mAP

average pooling 62.73 10.05
transformer 63.86 10.07
NetVLAD 65.34 10.15
NetRVLAD 66.80 10.55
Social Fabric 68.86 11.21

Table 4: Comparison with alternative encodings on Vi-
dOR. Social Fabric performs well.

mixture component. Transformers were proposed in [48]
for textual sequence-to-sequence tasks and recently adopted
in video tasks [4, 14, 15]. Here, we investigate their poten-
tial for interaction detection. We feed the frame-level rep-
resentations to the transformer encoder. The output repre-
sentation is average pooled and then fed into the predicate
classifier. NetVLAD was first introduced for place recogni-
tion and later adopted for video action classification in [16].
We train a classifier over the NetVLAD layer initialized by
k-means on all features to initialize the cluster centroids
(and keep it fixed). As our method, we use 64 cluster cen-
troids. NetRVLAD [32] is a simplification of the original
NetVLAD architecture that averages the actual descriptors
instead of the residuals.

We report the P@1 and mAP on VidOR dataset in Ta-
ble 4. All encodings take the same multi-modal representa-
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ImageNet-VidVRD VidOR

Relation tagging Relation detection Relation tagging Relation detection

P@1 P@5 P@10 mAP R@50 R@100 P@1 P@5 mAP R@50 R@100

Shang et al. [39] 43.00 28.90 20.80 8.58 5.54 6.37 - - - - -
Tsai et al. [46] 51.50 39.50 28.23 9.52 7.05 8.67 - - - - -
Qian et al. [34] 57.50 41.00 28.50 16.26 8.07 9.33 - - - - -
Sun et al. [43] - - - - - - 51.20 40.73 6.56 6.89 8.83
Su et al. [42] 57.50 41.40 29.45 19.03 9.53 10.38 50.72 41.56 6.59 6.35 8.05
Liu et al. [30] 60.00 43.10 32.24 18.38 11.21 13.69 48.92 36.78 6.85 8.21 9.90
Xie et al. [53] - - - - - - 67.43 - 9.93 9.12 -

This paper, features as Su et al. [42] 57.50 43.40 31.90 19.23 12.74 16.19 54.57 43.58 8.93 9.15 11.13
This paper, features as Liu et al. [30] 61.00 47.50 36.60 19.77 12.91 16.32 55.40 45.74 9.13 9.36 11.30
This paper, features as Xie et al. [53] - - - - - - 68.62 53.34 11.05 9.91 11.89
This paper, our features 62.50 49.20 38.45 20.08 13.73 16.88 68.86 55.16 11.21 9.99 11.94

Table 5: Comparison with state-of-the-art for relation tagging and detection on ImageNet-VidVRD and VidOR. We out-
perform the recent snippet relation detection methods of both Su et al. and Xie et al. for almost all metrics when using their
features. We also outperform the proposal relation detection method of Liu et al. when using their features. When we rely on
our full set of features results improve further and set a new state-of-the-art on both tasks for both benchmarks.

tions as input. The transformer and average pooling base-
lines obtain similar performance. NetVLAD improves over
average pooling and transformers, highlighting the effec-
tiveness of codebook-based encodings. NetRVLAD fur-
ther improves over NetVLAD, potentially because aggre-
gating the actual feature instead of residuals may benefit
the performance [12]. Our encoding uses a similar strat-
egy with a dynamic learning scheme and outperforms all
baselines, with an mAP of 11.21% compared to 10.55% for
NetRVLAD as the best performing alternative.

Comparison with state-of-the-art. We compare with
the state-of-the-art in video relation classification and de-
tection in Table 5 for both ImageNet-VidVRD and VidOR.
Liu et al. [30] report good results for relation classification
and detection on both sets. When we compare with them us-
ing the same input features, i.e. visual, I3D and motion fea-
ture, we improve over their work on all metrics. Most no-
tably, the mAP for relation detection improves from 18.38
to 19.77 on ImageNet-VidVRD and from 6.85 to 9.13 on Vi-
dOR. We also compare favorably against the recent snippet-
based video relation detection of Su et al. [42] using their
features. We are on par for the relation classification P@1
on ImageNet-VidVRD, but outperform them on all other
metrics and datasets, demonstrating the benefit of detecting
predicates for social tubelets from the start. Xie et al. [53]
improved the state-of-the-art considerably by combining a
motion feature, visual feature, language feature and location
mask feature for each trajectory pair before predicting their
relation. Our method profits from such a rich set of multi-
modal features also. When we use the same features as Xie
et al. our results get better as well, obtaining 68.62 P@1 and
11.05 mAP for relation classification and detection respec-
tively. Our features adds I3D feature to the feature set used
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Figure 5: Comparison along relation duration on VidOR.
We observe our method’s performance improves over alter-
natives as the duration of the video relation increases.

by Xie et al. [53]. Using our features we obtain state-of-
the-art performance with 11.21 mAP and 68.86 P@1. We
also consider the computational aspects of our method. We
test using a GTX 1080 Ti GPU. With the same features as
Liu et al. [30], the average time to process one ImageNet-
VidVRD validation video is 58.2s for Liu et al. [30], and
48.3s for our method.

Comparison along relation duration. To verify the ef-
fectiveness of our approach on long-range relations. we
break down the performance into three bins according to
the duration of the relation instances: “short”, “medium”
and “long”. We compare our method with Liu et al. [30]
and Xie et al. [53] on the VidOR validation set. Results
are shown in Figure 5. The three methods use the same
features as Xie et al. [53] for fair comparison. The re-
sults of Xie et al. [53] are provided by the authors. The
results of Liu et al. [30] are obtained by running the pro-
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Ground truth
adult-clean-horse

Prediction
adult-clean-horse

Ground truth
child-chase-adult  adult-hug-child  adult-next to-child

Prediction
car-toward-adult   car-behind-adult                     ✗

Ground truth
car-toward-adult   car-behind-adult   adult-in front of-car

Prediction
child-chase-adult  adult-hug-child adult-next to-child

Figure 6: Success and failure cases on VidOR. For the left example, we detect all the ground truth relation instances and
successfully predict the long-range relation chase. The middle case needs temporal context information to detect an adult
cleaning a horse. Our method’s detection proves its ability to detect long-range relations. In the right example, our approach
detects behind and toward relations. But since the object detector wrongly recognizes car as truck, the final triplet
predictions are wrong even though the relation predicates are correct. Incorrect object categories also lead to imprecise
semantic features, which may contribute to the missing of a relation prediction. We provide more qualitative results and
example videos with success and failure in the supplemental material.

vided code. As expected, Liu et al. [30] surpasses Xie et
al. [53] for long duration relations as they are designed to
be effective beyond short-snippets. Our method is beyond
both Liu et al. and Xie et al. for all durations. Compared to
Xie et al. [53] who do not consider long-range relations,
our method’s performance gain increases as the relation
length increases. We conclude our approach is beneficial
for encoding multi-modal features for relation detection es-
pecially at long-range. Besides, we have split the predi-
cates in VidOR into two super categories: action-based and
spatial-based relations, following [37]. We obtain a mAP of
7.33% for action-based relations and a mAP of 12.89% for
spatial-based relations, while the state-of-the-art by Xie et
al. [51] obtains a mAP of 6.25% for action-based relations
and a mAP of 11.23% for spatial-based relations. We show
some success and failure cases in Figure 6.

Video relation query-by-primitive-examples. In Fig-
ure 7 we show three search cases, where for each case three
primitive examples are given as input. We use the VidOR
validation set for the search. The results show that we can
find relevant video relations in space and time across many
videos, simply by providing a few primitive examples, fur-
ther highlighting the importance of compositions for video
relations.

7. Conclusion
We propose an approach to video relation classification

and detection that operates on pairs of object tubelets from
the start. By doing so we no longer have to scatter the video
into snippets or individual object tubelets and gather them
at the end. To represent all pairs of object tubelets appear-
ing in a video, we propose Social Fabric: an encoding built
on a composition of data-driven interaction primitives, akin
to the classical codebook approach. We use the encoding
in a two-stage network, that first suggest proposals that are
likely interacting and then fine-tunes and predicts it most

Primitive Query 

adult-throw-child

+ +

++

kangaroo-push-kangaroo

adult-drive-motorcycle

Top Rank

+ +

Figure 7: Query-by-primitive-examples. We use three ex-
amples of primitives as query. Among the VidOR validation
set, the relation whose primitive weights are closest to the
three examples is selected. e.g., in third row, three exam-
ples represent primitives of “subject touches object”, “sub-
ject and object moving away” and “subject and object are
person”. And the top ranked relation we return is adult,
throw, child.

likely predicate label. Experiments demonstrate the benefit
of early video relation modeling, our encoding, as well as
the two-stage architecture, leading to a new state-of-the-art
on two video relation benchmarks. We also show how the
encoding enables spatio-temporal video search by query-
by-primitive-examples.
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