
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Hierarchies of Planning and Reinforcement Learning for Robot Navigation

Wöhlke, J.; Schmitt, F.; van Hoof, H.
DOI
10.48550/arXiv.2109.11178
10.1109/ICRA48506.2021.9561151
Publication date
2021
Document Version
Author accepted manuscript
Published in
2021 IEEE International Conference on Robotics and Automation (ICRA 2021)

Link to publication

Citation for published version (APA):
Wöhlke, J., Schmitt, F., & van Hoof, H. (2021). Hierarchies of Planning and Reinforcement
Learning for Robot Navigation. In 2021 IEEE International Conference on Robotics and
Automation (ICRA 2021): May 31-June 4, 2021, Xi'an, China (pp. 10682-10688). IEEE.
https://doi.org/10.48550/arXiv.2109.11178, https://doi.org/10.1109/ICRA48506.2021.9561151

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.48550/arXiv.2109.11178
https://doi.org/10.1109/ICRA48506.2021.9561151
https://dare.uva.nl/personal/pure/en/publications/hierarchies-of-planning-and-reinforcement-learning-for-robot-navigation(600426c6-6a65-4820-9bac-e86e6f4fa4d7).html
https://doi.org/10.48550/arXiv.2109.11178
https://doi.org/10.1109/ICRA48506.2021.9561151

Hierarchies of Planning and Reinforcement Learning for Robot
Navigation

Jan Wöhlke1,2, Felix Schmitt1, and Herke van Hoof2

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICRA48506.2021.9561151

Abstract— Solving robotic navigation tasks via reinforcement
learning (RL) is challenging due to their sparse reward and
long decision horizon nature. However, in many navigation
tasks, high-level (HL) task representations, like a rough floor
plan, are available. Previous work has demonstrated efficient
learning by hierarchal approaches consisting of path planning
in the HL representation and using sub-goals derived from
the plan to guide the RL policy in the source task. However,
these approaches usually neglect the complex dynamics and
sub-optimal sub-goal-reaching capabilities of the robot during
planning. This work overcomes these limitations by proposing a
novel hierarchical framework that utilizes a trainable planning
policy for the HL representation. Thereby robot capabilities
and environment conditions can be learned utilizing collected
rollout data. We specifically introduce a planning policy based
on value iteration with a learned transition model (VI-RL). In
simulated robotic navigation tasks, VI-RL results in consistent
strong improvement over vanilla RL, is on par with vanilla
hierarchal RL on single layouts but more broadly applicable to
multiple layouts, and is on par with trainable HL path planning
baselines except for a parking task with difficult non-holonomic
dynamics where it shows marked improvements.

I. INTRODUCTION

In recent years, applying reinforcement learning (RL)
to sequential decision making problems, has led to some
remarkable successes like playing games with super-human
performance [25], [28] and mastering robotic manipulation
[16] or locomotion [26] tasks. However, application of RL to
robotic navigation tasks like avoiding obstacles and adapting
the motion to environmental influences, in order to reach a
goal, is still challenging. This is due to the long decision
horizon and the naturally sparse reward that is only received
for successful goal-reaching. Frequently used proxy rewards
such as negative Euclidean distance to the goal can result in
undesired side effects, like trapping the robot at obstacles.
Therefore, several orthogonal concepts have been suggested
to improve data-efficiency in sparse reward RL, including
curriculum learning [30], [31], [29], advanced exploration
[32], [34], or intrinsic motivation [33], [35]. Our approach
is related to hierarchical RL (HRL) [22], [11], [23], [24]
tackling long decision horizons by using a hierarchal policy.

In these “vanilla” HRL approaches, abstraction is mainly
achieved temporally by choosing different time scales for the
hierarchy levels. Furthermore, the literature mainly focused
on solving single instance tasks, like a specific environment
layout [11]. In real world robotic navigation tasks, the

1Bosch Center for Artificial Intelligence, Renningen,
Germany. JanGuenter.Woehlke@de.bosch.com,
Felix.Schmitt@de.bosch.com

2UvA-Bosch Delta Lab, University of Amsterdam, Amsterdam, Nether-
lands. h.c.vanhoof@uva.nl

Fig. 1: Our Hierarchical Planning and RL Framework

environment layout or goal location might be different each
time. At the same time, we often have additional information
such as a rough floor plan with the goal location available.
Using sampling-based planners [8], [9] to obtain waypoints
led to impressive real world results [10] but a simulator that
accurately represents the full navigation state space needs to
be queried during planning.

While the task might be very complex in the original,
continuous “low-level” (LL) state and action space, including
the full robot and environment dynamics, we observe that
the task is much easier in an abstract “high-level” (HL)
floor plan representation where we can easily determine
positional sub-goals. In these cases, previous work [40], [45]
has demonstrated efficient learning by hierarchal approaches
consisting of planning in the abstract HL representation
and guiding the RL agent in the source task by sub-goals
derived from the plan. However, they did not adapt the HL
planning to the LL policy capabilities. In robotic navigation
tasks, it is not realistic to assume that the robot can always
reach a proposed sub-goal since the given HL representation
might neglect important information about the robot or
environmental dynamics as well as the current capabilities
of the LL policy that affects the sub-goal-reaching.

Formalizing the assumptions about continuous state and
action space robotic navigation tasks given a rough floor
plan of the environment, we derive a novel hierarchical
framework (see Fig. 1) that overcomes these limitations
by utilizing a trainable reactive policy for planning in the
HL representation instead of purely conducting shortest
path planning. This has the benefit that failures of the LL
policy to reach the sub-goals are considered by adapting the
HL planning utilizing gathered rollout data. Differentiable
planning modules approximating value iteration (VI) [1],
[5] suggest simple integration with RL but have limitations
with respect to stability with longer planning horizons [1]
or properties of the assumed transition model [5]. Therefore,

ar
X

iv
:2

10
9.

11
17

8v
2

 [
cs

.R
O

]
 5

 N
ov

 2
02

1

we additionally present a HL planning policy based on exact
VI featuring a learned transition model.

The key contributions of our work are:
• Proposing a novel HRL framework derived from stated

assumptions regarding domain knowledge combining
planning in a HL state space with sub-goal guided RL
in the original state space. This framework encompasses
both the previous shortest path HL planning approaches
as well as novel, trainable HL policies.

• Presenting a novel framework instance employing value
iteration in the HL state space using a transition model
learned from data gathered during LL RL (VI-RL).

• A detailed analysis in which scenarios and specific
implementation learned HL policies provide benefits
over pure shortest path plans.

We will work out these contributions by investigating the
following research hypothesis:

H.1: Hierarchically combining planning in an abstract
HL representation with goal-conditioned RL significantly
increases the data-efficiency over flat “vanilla” RL in con-
tinuous dynamics, sparse reward, long horizon tasks.

H.2: Learning a HL transition model reflecting the RL
policy’s capabilities is necessary to handle environmental
influences, or complex, non-holonomic dynamics.

H.3: Transition models should consider both the HL state
and action (chosen sub-goal); purely state-dependent models
are insufficient to model non-holonomic constraints.

II. RELATED WORK

First ideas to generate sub-goals and hierarchically com-
bine policies date back more than two decades [20], [21],
[19]. Recent HRL approaches like Option Critic [22], Feudal
Networks (FuN) [23], or HiRO [11] make use of these
ideas combining them with modern neural network policy
architectures and RL algorithms: FuN and HiRO combine
a HL policy that set sub-goals at a low frequency with a
LL policy that receives intrinsic rewards for reaching these
sub-goals. However, conventional HRL approaches do not
consider available additional task knowledge.

Using sampling-based planners on a given map with reach-
ability estimators learned from training experience to set sub-
goals for local RL navigation policies were proposed in [8]
(PRM) and [9] (RRT). However, an accurate simulator of the
environment that allows for evaluating configurations in the
original state space is necessary to execute the planning.

Several works combine planning on an abstract level with
LL RL. They use different abstract HL representations like a
symbolic representation [45], [47], an abstract representation
based on a predicate logic [40], or skills learned in an
unsupervised fashion [46]. The approaches presented in [40],
[45] do not adapt their HL planning to the LL RL policy
capabilities. In [46], the skills are not further updated in the
target task and might therefore be bound to the environment
and specific conditions under which they were discovered.
While in [47] the HL planning is adapted, the approach was
only demonstrated for discrete state and action spaces but not
for complex continuous ones relevant for robotic navigation.

Instead of pre-defining the HL representation, several
works suggest ways to generate them from data: [41] built
an abstract representation of the task by connecting collected
experience in the replay buffer to a graph using a learned
reachability estimator. A series of sub-goals is then planned
by searching the obtained graph for the shortest path to the
goal. This requires that the goal state can be connected to the
obtained experience. In navigation tasks with large layouts
where the goals state can be far away from experienced
states or novel layouts this is not necessary feasible. Other
approaches for learning plannable representations [36], [37],
[38], [39] struggle with similar challenges. Nevertheless,
combining this orthogonal line of work with our hierarchical
framework could be interesting future research.

Instead of learning a HL representation, various work
in robotic navigation has focused on using an a-priori
provided map. In [44] a base-level map is segmented to
obtain a higher-level map representation for planning. Value
iteration (VI) is carried out on different levels. In [42]
sub-environments are dynamically constructed as series of
spatial-based state abstractions such that a tessellation of
the environment results. Gupta et al. [43] map first-person
views to a top-down belief map of the world to apply a
differentiable neural network planner on it. These works do
not consider the continuous LL state space underlying robotic
navigation problems and specifically for [44] do not learn the
transition model for VI but assume an optimistic one.

It is, however, crucial to adapt the planning to the robot
capabilities and the environmental dynamics, using rollout
data, when combining sub-goal planning with RL. Here,
differentiable planning modules [1], [6], [5], [7] address
this issue. Requiring a discrete, ideally grid-like, environ-
ment representation, they enable learning value-function-
based planning via backpropagation. The Value Iteration
Network (VIN) [1] is a CNN architecture to approximate
several recursions of VI planning. It has been generalized
to arbitrary graphs [2] and multiple levels of hierarchical
planning [3]. The instability issues, especially with respect
to long planning horizons, due to the recurrent structure are
addressed in [4] and [5]. MVProp [5] mitigates unstable
iteration by moving all trainable parameters into purely state-
dependent propagation factors (normalized to [0, 1]). This
implicit assumption on the transition dynamics can harm the
performance, for example in non-holonomic navigation tasks.

III. PROBLEM STATEMENT

In this work, we consider MDPs m sampled from a
distribution of Markov Decision Processes (MDPs) M. All
MDPs m share the same state and action space S and A,
the same goal-based reward function r (s, gm) with a goal
gm sampled from a goal space gm ∼ Sg,m ⊆ S , and the
same time horizon T as well as discount factor γ. Each
MDP m has initial states s0 sampled from an initial state
space s0 ∼ S0,m ⊆ S. Furthermore, each MDP has its own
dynamics Pm, but we assume that the dynamics are locally
the same, i.e. the probability of a state transition is given by

the same function of MDP instance specific features values
Pm (s′|a, s) = f (φs,m, φs′,m, φa,m).

The task is to find a goal-conditioned policy π (a|s, gm)
that maximizes the expected returns under the distribution
of MDPs, the goal and initial state distributions, and the
dynamics:

max
π(a|s,gm)

Em∼M,gm∼Sg,m,s0∼S0,m,Pm,π

[
T∑
t=0

γtr (st, gm)

]
(1)

We focus on sparse reward signals, which are common for
robotic navigation problems. Therefore, the reward function
is of the following form: r (s, gm) = Id(s,gm)≤ε + c with
d (·, ·) being a (weighted) distance function, ε the tolerance,
and c a constant to potentially offset the reward signal.

Assumptions on Domain Knowledge: We will first ex-
plain at a robotic navigation task example the additional
assumptions made to utilize a rough floor plan in our
hierarchical framework. Afterwards, we will formally state
them. As we will see later, these assumptions can often be
fulfilled in practical applications and making use of them
enables solving Eq. 1 more data-efficiently (see Sec. V).

τ

zg

z

N (z)

(x, y)

Fig. 2: Exemplary High-Level State Space Illustration

Imagine an ant-like robot navigating a continuous dynam-
ics environment as depicted in Fig.2. Given a rough floor
plan, we can obtain an abstract, finite HL state space Z by
partitioning the map into the shown grid of cells. Localizing
the robot in x, y coordinates, the corresponding grid cell
(shown in blue) determines the current HL state z (Asm.1). In
order to plan the next sub-goal, we need to have knowledge
about local HL state neighborhood relations. In our example,
all adjacent grid cells are the neighboring HL states N (z)
(Asm.2). Given a sub-goal zg in the HL state space (shaded
in red), we need a way to condition our local LL sub-goal
navigation policy acting in the original continuous state space
on the HL sub-goal. Therefore a target vector τ (green) is
calculated by taking the difference between the center of a
grid cell and the robots’ x, y coordinates such that s+τ (s, z)
is the LL sub-goal (Asm.3). The HL state neighborhood
N (z) must contain at least all directly reachable HL states.
Else there is a risk that the only existing route to the
goal is missed due to the state space abstraction (Asm.4).
To take into account and learn the robots capabilities for
navigating various layouts, we need to be able to model
HL state transitions using local features. In case of our
grid representation, integer values indicating the presence
or absence of obstacles or the terrain type for the (eight)

neighboring grid cells z′ ∈ N (z) can serve as such local
map features ψz,m (Asm.5).

In summary, we formally assume:
Asm.1: There exists a finite HL state space Z with known

z = fZ (s).
Asm.2: The neighbors N (z) of a HL state z are known.
Asm.3: There exists a function returning for a state s and

a HL state z a target vector τ (s, z) = fτ (s, z) such that
fZ (s+ τ (s, z)) = z.

Asm.4: N (z) ⊂ Z contains at least all HL states directly
reachable from z.

Asm.5: Local features ψ of any HL state are available.
The probability of transitioning from z to z′ ∈ N (z) under
any policy conditioned on a goal zg = fZ (g) can be approx-
imated: pPm,π(a|s,g) (z

′|z, zg) ≈ g
(
ψz,m, ψz′,m, ψzg,m

)
.

IV. HIERARCHICAL POLICY AND LEARNING
FRAMEWORK

We introduce a novel policy and learning framework that
efficiently solves Eq. 1 by utilizing the domain knowledge
formalized in the assumptions stated above. It consists of:
• A goal-conditioned HL policy ω (zg|z, gm) that selects a

HL sub-goal zg ∈ N (z) from the set of neighbors. This
policy generally operates at a lower frequency than the
LL state space transitions: A new sub-goal zg is selected
if either the previous is reached or the number of time
steps exceeds a threshold Tzg � T .

• A sub-goal-conditioned LL policy π (a|s, fτ (s, zg) + s)
pursuing the sub-goals τ(s, zg)+s set by the HL policy,
instead of the MDP goal state gm. In order to generalize
across sub-goals as well as MDPs m, we model this pol-
icy by a function of the target vector and state features
π (a|s, fτ (s, zg) + s) = h (a, fτ (s, zg) , ψz,m).

We assume only some domain knowledge, like a rough
floor plan, to be given. The complex continuous LL dynamics
of the robot interacting with its environment are unknown.

In order to handle these unknowns, we introduce a hi-
erarchical framework that allows training the HL sub-goal
planning and the LL policy jointly using the same experience.

A. Learning the Low-Level (LL) Policy

During a rollout {(st, at, rt, st+1)t=1,...,T } in the envi-
ronment, we track the corresponding HL states and actions
{(zt, zg,t, zt+1)t=1,...,T } as well as the time steps when a
new HL sub-goal zg,i is selected {(ti)i=1,...,n}. We train a
LL sub-goal conditioned policy πθ (a|s, fτ (s, zg) + s) with
parameters θ using the following intrinsic sub-goal-returns:

R̂i =

ti+1∑
t=ti

γt−tiIfZ(st+1)=zg,t , (2)

An optimal LL policy with respect to these intrinsic rewards
results in recursive optimality [18]. This means that the LL
policy is only “locally” optimal with respect to its sub-goal
zg . Even with an optimized HL policy the combined HL +
LL policy can be sub-optimal with respect to Eq. 1 but will
due to Asm.2 not miss an existing path to the goal. However,

smaller “sub-episodes” of maximum length Tzg improve the
data-efficiency and enable generalization across layouts [18].
While we employ TRPO [14] for LL policy optimization, in
our experiments, any other RL algorithm can be used as well.

B. Learning the High-Level (HL) Policy

Value iteration planning with explicit dynamics model
(learning) [VI-RL]: The discrete nature and small size
of the HL state space Z and the HL action space Zg
combined with the known neighbor relations render value
iteration (VI) tractable. To apply VI, we derive the HL
reward function rZ (z) = Iz=fZ(gm)+c from the given goal-
based reward function of the MDP. Furthermore, we need a
model of the HL state transitions pπθ (z

′|z, zg) that takes into
account the dynamics induced by the sub-goal-conditioned
LL policy πθ (a|s, fτ (s, zg) + s). We consider two different
approaches for obtaining such a model:

Optimistic Model [VI-RL OM]: Similar to [40], [44] this
model optimistically assumes that a sub-goal zg always
results in a transition to the corresponding HL neighbor:
pπθ (z

′|z, zg) ≈ Iz′=zg . Using this model results in pure
shortest path planning in grid-world domains.

Learned Model [VI-RL]: Using the collected HL transition
data {

(
zti , zg,ti , zti+1

)
i=1,...,n

}, we can learn a state feature-
based model pπθ (z

′|z, zg) ≈ ĝλ
(
ψz,m, ψz′,m, ψzg,m

)
, with

parameters λ, of the transitions. As we assumed these
features to govern the HL dynamics, expressive models
like deep neural networks should be able to closely ap-
proximate the dynamics. This has the benefit that the HL
policy takes into account the LL policy capabilities. We
train the model to maximize the sum of the log-likelihoods
log ĝλ

(
ψz,m, ψz′,m, ψzg,m

)
regarding the observed data.

Using the reward function rZ and the HL dynamics model
pπθ , we employ VI to obtain value functions V (z) , Q (z, zg)
that are used by the HL policy for sub-goal selection:
ω (zg|z, gm) = Izg=argmaxz′∈N(z)Q(z,z′). During training,
we employ an epsilon-greedy-variant of this policy for roll-
outs and use a replay-buffer for de-correlating training data,
which we empirically found to result in more robust training.
See Alg. 1 for algorithmic implementation details of VI-RL.

Differentiable planning module with implicitly learned
dynamics model (MVPROP-RL): In RL tasks with a
discrete, grid-like state space representation, a differentiable
recursive architecture like MVProp [5] can be used to ap-
proximate the value function. In our setting, we can therefore
employ MVProp to approximate the HL value function
Vπ (z) with a model T V̂ Kλ (z) with T being the time horizon.
V̂ Kλ (z) is the result of K recursions where the value of

neighboring states is propagated to state z based on a state-
dependent propagation factor pλ(z) representing simplified
transition dynamics. We train the model T V̂ Kλ (z) with
collected data {

(
zti , zg,ti , zti+1

)
i=1,...,n

} using similar to
[5] a TD-0 loss (but omitting the importance weighting,
which we empirically found unnecessary): l (z, z′, λ) =((
r (z) +

(
1− IfZ(gm)=z

)
γT V̂ Kλtarget

(z′)
)
− T V̂ Kλ (z)

)2
.

Algorithm 1: VI-RL with LL TRPO Policy
Input: Distribution of MDPs M, domain knowledge

(Z , functions fZ (s), fτ (s, z), and N (z),
and features ψz,m), HL transition model ĝλ,
LL goal-conditioned policy πθ, HL and LL
experience buffers DH , DL, LL horizon Tzg .

1 for j = 1 to jmax do
2 while |DL| < TRPO batch size do
3 # Sample environment, start, and goal
4 m ∼M, s0,m ∼ U (S0,m) , gm ∼ U (Sg,m)
5 # Conduct value iteration (VI)
6 V (z) , Q (z, z′) = VI (Z,N (z) , ĝλ, gm)
7 # Obtain HL policy
8 ω (zg|z, gm) = Izg=argmaxz′∈N(z)Q(z,z′)

9 # Carry out RL episode
10 t = 0, i = 0 t0 = 0, zt0 = fZ (s0,m)
11 zg,t0 ∼ epsilon-greedy (ω (zt0))
12 while t < T and d (st, gm) > ε do
13 at ∼ πθ (st, fτ (st, zg,ti))
14 st+1 ∼ Pm (st, at), rt = IfZ(st+1)=zg,ti
15 DL ← {st, at, rt, st+1}
16 if (fZ (st) = zg,ti) ∨

(
t− ti = Tzg

)
then

17 # Sub-goal reached
18 ti+1 = t, zti+1

= fZ (st+1)
19 DH ← {zti , zg,ti , zti+1

}
20 zg,ti+1

∼ epsilon-greedy
(
ω
(
zti+1

))
21 i← i+ 1

22 # Update transition model using Adam [48]
23 λj+1 ← Adam (λj , DH)

24 # Update RL policy
25 θj+1 ← TRPO(θj , DL), DL ← ∅

We obtain the HL policy as ω (zg|z, gm) =
Izg=argmaxz′∈N(z) V̂

K
λ (z′). Similar to VI-RL we employ

an epsilon-greedy exploration and a replay-buffer.

V. EXPERIMENTAL EVALUATION

So far, we formalized assumptions for robotic navigation
tasks given a rough floor plan and formulated a framework
that aims at accelerating learning by utilizing this domain
knowledge. In the following, we empirically investigate the
research hypotheses stated in Sec. I.1

A. Environments

We consider three simulated continuous dynamics robotic
navigation domains, depicted in Fig. 3, which demonstrates
the broad feasibility of the assumptions (Sec. III). The use
of simulation enables us to perform the number of training
rollouts and independent trainings (seeds) required by RL.

Four Rooms: A continuous dynamics (x, y-position and
-velocity) point mass robot needs to navigate through the

1Code is planned to be made available at
https://github.com/boschresearch/Hierarchies-of-Planning-and-
Reinforcement-Learning-for-Robot-Navigation is planned

(a) Four Rooms
T = 100, Tzg = 2

(b) MuJoCo Ant Mazes
T = 2000, Tzg = 20

(c) Vehicle Parking
T = 100, Tzg = 2

Fig. 3: Simulation Environments Overview

environment in Fig. 3a. Starting positions are sampled in
the top left, whereas goal locations are sampled in the
upper part of the bottom right room. The continuous x, y-
accelerations are the LL control inputs. The discrete HL
state representation results from tiling the layout into the
shown 21 × 21 tiles. The top-right room features terrain
that uniformly slows down the robot motion. For the HL
transition model of VI-RL, we train an MLP architecture. It
receives HL state features, the terrain information (free, wall,
terrain) for the eight neighbors, and an integer indicating the
relative neighbor chosen as sub-goal, as inputs. A vector of
transition probabilities for the eight neighbors is the output.

MuJoCo Ant Mazes: A MuJoCo [13] ant robot with
complex continuous dynamics needs to navigate one of 25
randomly sampled 6 × 6 block environments with different
obstacle structure. We obtain the HL state space by sub-
dividing each block into four tiles (24 × 24 overall). The
resolution is a hyper-parameter to be reasonably chosen
considering robot dimensions and sub-goal horizon Tzg .

Vehicle Parking [17]: A non-holonomic bicycle dynamics
vehicle needs to park in a randomly selected slot, starting in
the middle of the parking lot. Unlike the other domains, the
robot orientation ϑ is part of the goal specification and an
integral part of the state and action space. We obtain a 3D HL
state space by tiling the x, y-position into 24× 12 tiles and
the orientation into eight 45° segments. With no obstacles,
any HL position has identical (terrain) features. Therefore,
we remove these from the input of the HL transition model
of VI-RL. Instead, we augment the in- and output to account
for the ϑ segments. For MVPROP(-RL), we use a 3D-CNN.
The robot receives a sparse reward for successfully parking.

B. Baselines

Vanilla RL (BSL): A flat, non-hierarchical architecture,
using the goal-conditioned RL policy with a target vector to
the final MDP goal gm instead of a sub-goal target vector.

RRT-Waypoints (RRT-WP): Inspired by [9], an RRT
planner generates a path of waypoints from start to goal in
2D x, y-space using the map. The LL goal-conditioned RL
policy is trained to reach the waypoint selected as sub-goal.

HiRO [11] is a state-of-the-art HRL approach. It uses a
conventional MLP HL policy, trained via off-policy RL (TD3
[15]) and operating in the continuous state space like the
LL policy. The LL policy is trained to follow target vectors
generated (at the same frequency as in VI-/MVPROP-RL) by
the HL. While in [11] both policy levels use distance-based
reward shaping, we provide the HL policy with the environ-
mental sparse rewards to ensure comparability with the other
approaches and avoid trapping the robot at obstacles.

Aiming for a fair comparison, we use the same number of
hierarchy levels (except BSL) and the same goal-conditioned
LL TRPO [14] policy architecture for all approaches.

C. Simple Point-Mass Navigation

In order to investigate under which circumstances learning
HL transition dynamics implicitly (MVPROP-RL) or ex-
plicitly (VI-RL) is necessary (see research hypothesis H.2),
we conduct experiments in a simplistic environment with
a focus on the relative effects of environmental conditions
instead of absolute performance. We compare the goal-
reaching probability across training for Four Rooms domain
with (Fig. 4b) and without (Fig. 4a) the hard-to-traverse
terrain in the top-right room. The distance-wise shortest paths
from the starts to the goals traverse the top-right room. With
the terrain, however, the optimal policy takes the “longer”
routes through the bottom-left room. Looking at the results,
vanilla RL (BSL) is not able to reach the goals (H.1). VI-RL
and MVPROP-RL, like HIRO HER, achieve 100% goal-
reaching. Using the capacious transition model necessary
for the more difficult realistic tasks (e.g. Sec. V-D), VI-
RL learns a bit slower. Comparing VI-RL with the learned
transition model to VI-RL OM with the optimistic model,
it turns out that the performance is similar without the
terrain, whereas the goal-reaching of VI-RL OM drops to
less than 20% with the terrain, because the episodes ‘time
out’ while crossing the terrain. We witness a less severe
performance drop of RRT-WP. Due to the sampling-based
planning, by chance, a path through either the top-right or
bottom-left room is found, resulting in 50% goal-reaching.
In conclusion, these evaluations in the simplistic environment
show that learning the HL transition dynamics is crucial for
reacting to environmental conditions, like terrain-type, which
is necessary in realistic set-ups (H.2).

D. Robotic Maze Navigation

In real application, a robot needs to be able to navigate a
broad range of environment layouts. Therefore, we evaluate
the algorithms on the MuJoCo Ant Mazes environment,
featuring 25 maze layouts randomly picked for every rollout.
We excluded HiRO as it was not designed to solve multiple
task instances2. The results are depicted in Fig. 4c. VI-RL
and MVPROP-RL perform similar, clearly outperforming
the vanilla RL baseline BSL (see research hypothesis H.1).
Surprisingly, using the optimistic model (OM) does not
decrease the VI-RL performance, despite the very complex

2Additional experiments showed that replacing the HL MLP policy with
a CNN does not successfully enable HiRO to handle multiple layouts.

(a) Four Rooms (No Terrain) (b) Four Rooms (c) MuJoCo Ant Mazes

Fig. 4: Maze Navigation; Line: Mean across 10 Seeds; Shaded Area: Standard Error

ant dynamics. It is apparently similarly difficult to move the
ant in any specific direction throughout the training. Hence,
purely planning the shortest path is sufficient in this static
setting (H.2). In this light, the slower learning of RRT-WP is
explained by the RRT only approximating the shortest path.

E. Non-Holonomic Vehicle Parking

As previously stated, learning Vehicle Parking adds the
difficulty of non-holonomic dynamics to the learning task,
involving a tight coupling of location and orientation. These
non-holonomic constraints must be taken into account during
HL planning, in order to master the task (see research hy-
pothesis H.3). The results are depicted in Fig. 5. Apart from
VI-RL, basically, all other approaches are not able to signif-
icantly increase the goal-reaching probability in reasonable
time. VI-RL quickly picks up the pace and reaches over 80%
goal-reaching probability. This task provides another yet very
different example to the Four Rooms with terrain domain
where learning the transition dynamics is crucial: The purely
shortest path planning of VI-RL OM does not consider the
non-holonomic constraints and therefore does not provide
effective guidance (H.2). Furthermore, the experiment shows
the limitations of the assumptions underlying the transition
model of MVProp [5]: Only learning state-dependent prop-
agation factors p that do not take into account to which
specific neighboring HL state the robot shall transition is
not sufficient. Without any obstacles in this environment,
in principal, all HL states are traversable, however, specific
transitions like going ‘north’ while the robot orientation is
‘west’ may be difficult to execute. In contrast, the learned
HL transition model in VI-RL explicitly takes these non-
holonomic constraints into account and hence is able to guide
the LL policy to reach the goal (H.3).

VI. CONCLUSION

In this work, we formalized the domain knowledge typ-
ically available in robotic navigation tasks, like a rough
floor plan of the environment, into assumptions. Based on
these, we derived a novel framework combining planning in
a high-level (HL) state space with sub-goal guided RL in the
original continuous state space. Furthermore, we presented a

Fig. 5: Vehicle Parking; Line: Mean across 10 Seeds;
Shaded Area: Standard Error

novel, specific instance of our framework building on value
iteration planning in the HL state space using a transition
model learned from data gathered during RL (VI-RL).

In several difficult sparse reward robotic navigation tasks,
we examined several research hypotheses with the following
outcomes: (H.1) Hierarchically combining planning and RL
enables handling random task instances while achieving sig-
nificant data-efficiency gains over non-hierarchical RL. (H.2)
Comparing different HL planning approaches, we found that
in static 2D navigation environments learning HL transition
models is, surprisingly, often not necessary and pure shortest
path planning performs equally well. However, learning the
dynamics becomes crucial when the navigation needs to
take into account environmental influences like the terrain
type. (H.3) In the practically relevant non-holonomic vehicle
parking task featuring a more complex HL state space, we
uncovered limitations of the optimistic model as well as the
purely state-dependent transition model of MVProp planning.
Our novel algorithm VI-RL overcomes these limitations by
employing a transition model accounting for the selected HL
sub-goal state and significantly outperforms all baselines.

In future work, an interesting direction of research could
be to also learn the transformation of the original state space
into the HL state space instead of designing it based on
the domain knowledge. This way, the presented approaches
could be even more broadly applicable.

REFERENCES

[1] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, Value Iteration
Networks, Advances in Neural Information Processing Systems, 2016,
p.2154–2162.

[2] S. Niu, S. Chen, H. Guo, C. Targonski, M. Smith, and J. Kovačević,
Generalized Value Iteration Networks: Life Beyond Lattices, AAAI,
2018.

[3] D. Schleich, T. Klamt, and S. Behnke, Value Iteration Networks on
Multiple Levels of Abstraction, Robotics: Science and Systems, 2019.

[4] L. Lee, E. Parisotto, D. Chaplot, E. Xing, and R. Salakhutdinov,
Gated Path Planning Networks, International Conference on Machine
Learning, 2018, p.2947–2955.

[5] N. Nardelli, G. Synnaeve, Z. Lin, P. Kohli, P. Torr, and N. Usunier,
Value Propagation Networks, International Conference on Learning
Representations, 2019.

[6] J. Oh, S. Singh, and H. Lee, Value Prediction Network, Advances in
Neural Information Processing Systems, 2017, p.6118–6128.

[7] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, Universal
Planning Networks, International Conference on Machine Learning,
2018.

[8] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser,
and J. Davidson, PRM-RL: Long-Range Robotic Navigation Tasks
by Combining Reinforcement Learning and Sampling-Based Planning,
International Conference on Robotics and Automation, 2018, p.5113–
5120.

[9] H. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, Rl-RRT:
Kinodynamic Motion Planning via Learning Reachability Estimators
from RL Policies, IEEE Robotics and Automation Letters, vol. 4, no.
4, 2019, p.4298–4305.

[10] A. Francis, A. Faust, H. Chiang, J. Hsu, J. Kew, M. Fiser, and T. Lee,
Long-Range Indoor Navigation with PRM-RL, IEEE Transactions on
Robotics, 2020.

[11] O. Nachum, S. Gu, H. Lee, and S. Levine, Data-Efficient Hierarchical
Reinforcement Learning, Advances in Neural Information Processing
Systems, 2018, p.3303–3313.

[12] O. Nachum, S. Gu, H. Lee, and S. Levine, Near-Optimal Representa-
tion Learning for Hierarchical Reinforcement Learning, arXiv preprint
arXiv:1810.01257, 2018.

[13] E. Todorov, T. Erez, and Y. Tassa, Mujoco: A Physics Engine for
Model-Based Control, International Conference on Intelligent Robots
and Systems, 2012, p.5026–5033.

[14] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, Trust
Region Policy Optimization, International Conference on Machine
Learning, 2015, p.1889–1897.

[15] S. Fujimoto, H. van Hoof, and D. Meger, Addressing Function Ap-
proximation Error in Actor-Critic Methods, International Conference
on Machine Learning, 2018, p.1582–1591.

[16] M. Andrychowicz, F. Wolski, A. Ray, J.Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, Hindsight Ex-
perience Replay, Advances in Neural Information Processing Systems,
2017, p.5048–5058.

[17] E. Leurent, An Environment for Autonomous Driving Decision-
Making, GitHub, 2018.

[18] M. Ghavamzadeh and S.Mahadevan, Hierarchically Optimal Average
Reward Reinforcement Learning, International Conference on Ma-
chine Learning, 2002, p.195–202.

[19] R. Sutton, D. Precup, and S. Singh, Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning,
Artificial intelligence, Elsevier, vol. 112, no. 1-2, 1999, p.181–211.

[20] J. Schmidhuber, Learning to Generate Sub-Goals for Action Se-
quences, Artificial Neural Networks, 1991, p.967–972.

[21] P. Dayan and G. Hinton, Feudal Reinforcement Learning, Advances
in Neural Information Processing Systems, 1993, p.271–278.

[22] P. Bacon, J. Harb, and D. Precup, The Option-Critic Architecture,
AAAI, 2017.

[23] A. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D.
Silver, and K. Kavukcuoglu, FeUdal Networks for Hierarchical Rein-
forcement Learning, International Conference on Machine Learning,
2017, p.3540–3549.

[24] A. Levy, G. Konidaris, R. Platt, and K. Saenko, Learning Multi-Level
Hierarchies with Hindsight, International Conference on Learning
Representations, 2019.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, and others,
Human-Level Control through Deep Reinforcement Learning, Nature,
Nature Publishing Group, vol. 518, no. 7540, 2015, p.529.

[26] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, High-
Dimensional Continuous Control Using Generalized Advantage Esti-
mation, International Conference on Learning Representations, 2016.

[27] S. Levine, C. Finn, T. Darrell, and P. Abbeel, End-to-End Training
of Deep Visuomotor Policies, The Journal of Machine Learning
Research, JMLR.org, vol. 17, no. 1, 2016, p.1334–1373.

[28] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A.
Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, and others,
A General Reinforcement Learning Algorithm that Masters Chess,
Shogi, and Go through Self-Play, Science, American Association for
the Advancement of Science, vol. 362, no. 6419, 2018, p.1140–1144.

[29] J. Wöhlke, F. Schmitt,and H. van Hoof, A Performance-Based
Start State Curriculum Framework for Reinforcement Learning, Au-
tonomous Agents and MultiAgent Systems, 2020, p.1503–1511.

[30] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, Reverse
Curriculum Generation for Reinforcement Learning, Conference on
Robot Learning, 2017, p.482–495.

[31] P. Klink, H. Abdulsamad, B. Belousov, and J. Peters, Self-Paced
Contextual Reinforcement Learning, Conference on Robot Learning,
2019.

[32] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, Deep Exploration
via Bootstrapped DQN, Advances in Neural Information Processing
Systems, 2016, p.4026–4034.

[33] D. Pathak, P. Agrawal, A. Efros, and T. Darrell, Curiosity-Driven Ex-
ploration by Self-Supervised Prediction, Computer Vision and Pattern
Recognition Workshops, 2017, p.16–17.

[34] Z. Hong, T. Shann, S. Su, Y. Chang, T. Fu, and C. Lee, Diversity-
Driven Exploration Strategy for Deep Reinforcement Learning, Ad-
vances in Neural Information Processing Systems, 2018, p.10489–
10500.

[35] N. Haber, D. Mrowca, S. Wang, L. Fei-Fei, and D. Yamins, Learning
to Play With Intrinsically-Motivated, Self-Aware Agents, Advances in
Neural Information Processing Systems, 2018, p.8388–8399.

[36] T. Kurutach, A. Tamar, G. Yang, S. Russell, and P. Abbeel, Learning
Plannable Representations with Causal InfoGAN, Advances in Neural
Information Processing Systems, 2018, p.8733–8744.

[37] D. Corneil, W. Gerstner, and J. Brea, Efficient Model-Based Deep Re-
inforcement Learning with Variational State Tabulation, International
Conference on Machine Learning, 2018, p.1049–1058.

[38] T. Kipf, E. van der Pol, and M. Welling, Contrastive Learning
of Structured World Models, International Conference on Learning
Representations, 2019.

[39] E. van der Pol, T. Kipf, F. Oliehoek, and M. Welling, Plannable Ap-
proximations to MDP Homomorphisms: Equivariance under Actions,
Autonomous Agents and MultiAgent Systems, 2020, p.1431–1439.

[40] M. Eppe, P. Nguyen, and S. Wermter, From Semantics to Execution:
Integrating Action Planning with Reinforcement Learning for Robotic
Tool Use, arXiv preprint arXiv:1905.09683, 2019.

[41] B. Eysenbach, R. Salakhutdinov, and S. Levine, Search on the Replay
Buffer: Bridging Planning and Reinforcement Learning, Advances in
Neural Information Processing Systems, 2019, p.15246–15257.

[42] A. Ma, M. Ouimet, and J. Corts, Hierarchical Reinforcement Learning
via Dynamic Subspace Search for Multi-Agent Planning, Autonomous
Robots, 44, 2020, p.485?503.

[43] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, Cog-
nitive Mapping and Planning for Visual Navigation, IEEE Conference
on Computer Vision and Pattern Recognition, 2017, p.2616–2625.

[44] Z. Zivkovic, B. Bakker, and B. Krose, Hierarchical Map Building and
Planning Based on Graph Partitioning, IEEE International Conference
on Robotics and Automation, 2006, p.803–809.

[45] K. Yamamoto, T. Onishi, and Y. Tsuruoka, Hierarchical Reinforcement
Learning with Abductive Planning, arXiv preprint arXiv:1806.10792,
2018.

[46] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman,
Dynamics-Aware Unsupervised Discovery of Skills, arXiv preprint
arXiv:1907.01657, 2019.

[47] D. Lyu, F. Yang, B. Liu, and S. Gustafson, SDRL: Interpretable and
Data-Efficient Deep Reinforcement Learning Leveraging Symbolic
Planning, AAAI, vol. 33, 2019, p.2970–2977.

[48] D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization,
arXiv preprint arXiv:1412.6980, 2014.

http://arxiv.org/abs/1810.01257
http://arxiv.org/abs/1905.09683
http://arxiv.org/abs/1806.10792
http://arxiv.org/abs/1907.01657
http://arxiv.org/abs/1412.6980

	I Introduction
	II Related Work
	III Problem Statement
	IV Hierarchical Policy and Learning Framework
	IV-A Learning the Low-Level (LL) Policy
	IV-B Learning the High-Level (HL) Policy

	V Experimental Evaluation
	V-A Environments
	V-B Baselines
	V-C Simple Point-Mass Navigation
	V-D Robotic Maze Navigation
	V-E Non-Holonomic Vehicle Parking

	VI Conclusion
	References

