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A B S T R A C T

Three-dimensional (3D) human pose estimation involves estimating the articulated 3D joint locations of a
human body from an image or video. Due to its widespread applications in a great variety of areas, such
as human motion analysis, human–computer interaction, robots, 3D human pose estimation has recently
attracted increasing attention in the computer vision community, however, it is a challenging task due to
depth ambiguities and the lack of in-the-wild datasets. A large number of approaches, with many based on
deep learning, have been developed over the past decade, largely advancing the performance on existing
benchmarks. To guide future development, a comprehensive literature review is highly desired in this
area. However, existing surveys on 3D human pose estimation mainly focus on traditional methods and
a comprehensive review on deep learning based methods remains lacking in the literature. In this paper,
we provide a thorough review of existing deep learning based works for 3D pose estimation, summarize
the advantages and disadvantages of these methods and provide an in-depth understanding of this area.
Furthermore, we also explore the commonly-used benchmark datasets on which we conduct a comprehensive
study for comparison and analysis. Our study sheds light on the state of research development in 3D human
pose estimation and provides insights that can facilitate the future design of models and algorithms.
. Introduction

Human pose estimation is generally regarded as the task of pre-
icting the articulated joint locations of a human body from an image
r a sequence of images of that person. Due to its wide range of
otential applications, human pose estimation is a fundamental and
ctive research direction in the area of computer vision. Driven by
owerful deep learning techniques and recently collected large-scale
atasets, human pose estimation has continued making great progress,
specially on 2D images. However, the performance of 3D human
ose estimation remains barely satisfactory, which could be largely
ue to the lack of sufficient 3D in-the-wild datasets. Recently, some
ethods (Trumble et al., 2017; von Marcard et al., 2018) have been
roposed to solve this problem, and to a certain extent, these methods
ave made some progress. However, there is still significant room for
mprovement.

In this section, we will first introduce the vast number of potential
pplications of 3D pose estimation to highlight the significance of
esearch in this topic, then discuss the main challenges, and finally
escribe the scope of this survey in comparison to related work.

∗ Corresponding author.
E-mail address: zhengf@sustech.edu.cn (F. Zheng).

1 These authors contributed equally to this work.

1.1. Applications

Since 3D pose representation provides additional depth information
compared with 2D pose representation, 3D human pose estimation
enables more widespread applications. To better understand the use of
3D human pose estimation, we provide a brief description of some of
its interesting real-world applications:

• Human–Computer Interaction. A robot can better serve and help
users if it can understand 3D poses, actions and emotions of peo-
ple. For example, a robot can take timely actions when it detects
the 3D pose of a person who is prone to fall. In addition, assistant
robots can better socially interact with human users, provided
they can perceive 3D human poses. Meanwhile, it is also very
useful for computer control, i.e. as input for productive software
packages. Moreover, people can play games using their poses and
gestures through Microsoft Kinect sensors (Zhang, 2012).
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Fig. 1. Illustration of the depth ambiguity (Li and Lee, 2019).

• Autonomous Driving. Self-driving cars are required to make deci-
sions to avoid collision with pedestrians, and thus understand-
ing a pedestrian’s pose, movement and intention is very impor-
tant (Kim et al., 2019; Du et al., 2019).

• Video Surveillance. Nowadays, video surveillance is of great sig-
nificance for public safety. In this area, 3D pose estimation tech-
niques could be used to assist the re-identification task (Su et al.,
2017; Xu et al., 2018; Zheng et al., 2019), which helps video
surveillance and enables supervisors to quickly find the targets
of interest.

• Biomechanics and Medication. Human pose and movement can
indicate the health status of humans. Thus, 3D pose estimation
techniques could be used to construct a sitting posture correc-
tion system to monitor the status of users. For exercise, the
system can be used to avoid injury by providing timely feedback
of correct movement poses to users. Moreover, pose estimation
systems are also able to assist doctors for remote diagnose and
tele-rehabilitation of patients (Airò Farulla et al., 2016).

• Sports Performance Analysis and Education. The automated extrac-
tion of 3D poses from videos can help further analysis of the
performance of athletes and provide immediate feedback for their
improvement (Hwang et al., 2017). Thus, human pose estimation
can be used to evaluate and educate people in various forms of
sports such as swimming (Zecha et al., 2018), Tai Chi (Scott et al.,
2017), soccer (Rematas et al., 2018).

• Psychology. 3D human body poses can also reveal the mental
states of people and the emotion can even be recognized from
poses (Noroozi et al., 2018). Scientists can utilize pose estimation
related techniques to quantify behavior for further research (Joo
et al., 2017). As a result, human pose estimation can be used for
psychology therapy of certain mental diseases such as children
autism (Marinoiu et al., 2018).

• Try-on and Fashion. Online shopping has become more and more
popular in recent years, especially for fashion clothes. Users can
see how they look like when wearing a certain piece of clothing
on the Internet in a virtual try-on system based on 3D pose
estimation (Pons-Moll et al., 2017; Han et al., 2018).

• Others. 3D pose estimation can also be used to assist other com-
puter vision tasks such as pose transfer (Li et al., 2019a), action
recognition (Luvizon et al., 2018), human parsing (Xia et al.,
2016), person image generation (Siarohin et al., 2018), anima-
tion (Weng et al., 2019), pose search (Ferrari et al., 2009).

1.2. Challenges

Recently, 3D human pose estimation has become an increasingly
popular research topic due to its widespread application. However, it

is far from being solved because of its unique challenges in contrast

2

Fig. 2. Illustration of the correspondence of people in different views (Dong et al.,
2019).

to 2D human pose estimation, in which the main challenges include
variations of body poses, complicated backgrounds, diverse clothing
appearance and occlusions. 3D human pose estimation faces further
challenges, including a lack of in-the-wild 3D datasets, depth ambigui-
ties, a huge demand for rich posture information (such as translations
and rotations), a large searching state space for each joint (representing
a discretized 3D space), etc. We will discuss the challenges of single 3D
human pose estimation from different inputs, multi-person 3D human
pose estimation and in-the-wild datasets.

(1) Different Inputs. Generally speaking, based on different consid-
rations, various types of inputs are used to estimate 3D pose and thus
he corresponding challenges are varied as well. Visual cues, such as
hadows and objects of known size, can be used to address ambiguities
n images. However, it is very difficult to directly capture such infor-
ation from images. When ignored, using 2D joints to recover a 3D
ose becomes an ill-defined problem. For instance, as shown in Fig. 1,
ne 2D skeleton may correspond to many varied 3D poses. Actually, the
epth ambiguity could be considerably reduced by using temporal in-
ormation, multi-view images, etc. First, for recovering 3D human pose
rom a sequence of images, temporal information could be exploited
o reduce the depth ambiguity. At the same time, there are many
dditional challenges such as background variation, camera movement,
ast motion, changes of clothing, illumination changes, which may
ause the shape and appearance of people that alter dramatically over
ime. Second, when utilizing multi-view images, researchers face the
roblem how to fuse information from multiple cameras. In fact, due
o the occlusion and inaccuracy estimation of 2D poses, this is not a
rivial problem that could be simply solved by triangularization from
stimated 2D poses, especially when there are few cameras in practical
cenes.

(2) Multiple Persons. Compared with single human pose estimation,
stimating 3D poses of multiple persons is more challenging. When
stimating multi-person from a monocular image, the additional chal-
enge is the occlusion caused by nearby individuals. When estimating
D poses of multiple persons from multiple views, the main challenges
nclude the larger state space, occlusions and cross-view ambiguities, as
hown in Fig. 2. Besides, most existing methods are based on two-stage
rameworks which suffer from problems in efficiency, while single-
tage methods (Nie et al., 2019) have been proposed to solve this
roblem, they are far from mature.

(3) In-the-Wild Scenario. In addition, the lack of in-the-wild datasets
s a bottleneck for research on 3D pose estimation. For 2D human pose
stimation, it is feasible to construct large in-the-wild datasets (An-
riluka et al., 2014a; Lin et al., 2014a) by manually labeling the 2D
oses of humans in the image. However, since 3D annotations are
enerally acquired by marker-based vision systems, collecting a large-
cale in-the-wild dataset with 3D annotations is very resource-intensive.
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Fig. 3. Framework of this review.
Fig. 4. The numbers of 3D human pose estimation papers published in top conferences
(CVPR, ICCV and ECCV).

As is well-known, the most popularly used datasets such as HumanEva
and Human3.6M, are captured by motion capture systems under an
indoor environment. Thus, the algorithms trained on such datasets
inevitably confront a generalization challenge when they are used for
in-the-wild applications. To mitigate the problem, many methods have
explored, such as lifting 2D pose to 3D pose (Tome et al., 2017),
transferring knowledge (Zhou et al., 2017), utilizing weak supervision
signal (Chen et al., 2019a) and synthesizing in-the-wild images (Varol
et al., 2017). However, the in-the-wild performance of these methods
are still unsatisfactory compared with 2D pose estimation.

1.3. Scope of this survey

Previous surveys generally focus on traditional methods, such as pic-
torial models and exemplar-based approaches. Readers are encouraged
to read these review articles, in which more details have been provided.
A recent survey (Sarafianos et al., 2016) mainly focuses on the review
of work from 2008 to 2015. In that survey, the authors proposed a
rather complete taxonomy for 3D pose estimation and introduced a new
synthetic dataset as well. However, they mainly summarized classical
methods and only a few deep learning based methods were mentioned.
Furthermore, the rapid progress of deep learning in recent years has
greatly promoted the development of 3D human pose estimation. While
recent surveys do not cover these methods comprehensively or give a
summary from a specific perspective. For example, Chen et al. (2020)
merely provide a review of deep learning-based methods for monocular
human pose estimation.

Therefore, we follow the same reasonable taxonomy but instead
focus on deep learning based methods to reveal the current research
state of this field. Moreover, we observe that, in recent years, 3D human
pose estimation has gained increasing attention in the area of computer

vision community according to the numbers of published papers in top

3

computer vision conferences (CVPR,2 ICCV,3 and ECCV4), as shown
in Fig. 4 In addition, the representation of the 3D pose and datasets
are very important for human pose estimation. According to the types
of models, we classify the representations of poses to skeleton and
shape based approaches, as shown in Fig. 3. In recent years, many new
datasets have been proposed. We will discuss human pose modeling
and datasets in Section 2.

In summary, the framework of our review is shown in Fig. 3. We
cover deep learning based algorithms for estimating 3D human pose,
where the inputs ranging from a single image to a sequence of images,
from a single view to multiple views, and from a single person to
multiple persons. From the perspective of pose representation, the input
data can be divided into two types: skeleton and shape (contour).
Also, many parametric models are used to supplement the body shape,
such as SCAPE (Anguelov et al., 2005), SMPL (Loper et al., 2015),
and DensePose (Alp Güler et al., 2018). As for 3D pose estimation
of multiple people, the approaches can be classified into single-stage
methods and two-stage methods. The two-stage methods can be further
divided into top-down and bottom-up methods as shown in Fig. 3.
Specifically, the top-down methods detect each person first and then
locate their joints individually, whilst the bottom-up methods locate all
the body joints first and then assign them to the corresponding person.
In contrast, the one-stage methods (Nie et al., 2019) normally estimate
the locations of root position and joint displacements, simultaneously.

2. Human body modeling, datasets and evaluation metrics

2.1. Human body modeling

Generally, the human body structure is very complex, and different
methods adopt different models based on their specific considerations.
Nevertheless, the most commonly used models are the skeleton and
shape models. Besides, a new pose estimation is a surface-based rep-
resentation called DensePose (Alp Güler et al., 2018), which is worth
mentioning due to the extension of the existing pose representation.
Next, we will introduce them in detail.

Skeleton-Based Model: First and foremost, the skeleton model is
commonly used in 2D human pose estimation (Cao et al., 2018) and
is naturally extended to 3D. The human skeleton model is treated as
a tree structure, which contains many keypoints of the human body
and connects natural adjacent joints using edges between key joints, as
shown in Fig. 5.

SMPL-Based Model: For the shape model, recent works use the
skinned multi-person linear (SMPL) model (Loper et al., 2015), as
shown in Fig. 6, to estimate 3D human body joints (Bogo et al., 2016).
The human skin is represented as a triangulated mesh with 6890
vertices, which is parameterized by shape and pose parameters. The

2 IEEE conference on Computer Vision and Pattern Recognition
3 IEEE International Conference on Computer Vision
4 European Conference on Computer Vision
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Fig. 5. Human body skeleton from the MPI-INF-3DHP dataset, with the root joint 15,
O1 (blue): relative to first order and O2 (orange): relative to second order parents in
the kinematic skeleton hierarchy. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. The SMPL model (Loper et al., 2015). The white points are pre-defined
keypoints.

shape parameters are used to model the body proportions, height and
weight, while the pose parameters are used to model the determined
deformation of the body. The 3D pose positions can be estimated by
learning the shape and body parameters.

Surface-Based Model: Recent, a new model of the human body:
DensePose (Alp Güler et al., 2018) is recently proposed, considering
the fact that sparse correspondence of the image and keypoints is not
enough to capture the status of the human body. To address the issue, a
new dataset named DensePose-COCO is constructed, which establishes
the dense correspondences between image pixels and a surface-based
representation of the human body. This work further promotes the
development of human understanding in images and can be understood
as the next step in the line of works on extending the standard for
humans in 2D or 3D human estimation datasets, such as MPII Human
Pose (Andriluka et al., 2014b), Microsoft COCO (Lin et al., 2014b),
HumanEva (Sigal et al., 2009), Human3.6M (Ionescu et al., 2013).

2.2. Datasets

The 3D pose estimation datasets are often gathered by a motion
capture system. A previous review has analyzed the datasets from
2009 to 2015 (Sarafianos et al., 2016). The HumanEva dataset (Sigal
et al., 2009) and Human3.6M dataset (Ionescu et al., 2013) are still the
standard for 3D human pose estimation. Moreover, since there have
been many new datasets proposed recently, we will introduce these
dataset in detail in the following sections and sum up the main points
in Table 1.

HumanEva-I Sigal et al. (2010) contains 7 calibrated video se-
quences (4 grayscale and 3 color) that are synchronized with 3D body
4

poses obtained from a motion capture system. The database contains
4 subjects performing a 6 common actions, e.g. walking, jogging,
gesturing. The dataset contains training, validation and testing sets.

Human3.6M Ionescu et al. (2013) is one of the largest motion
capture datasets, which consists of 3.6 million human poses and cor-
responding images. The dataset provides accurate 3D human joint
positions and synchronized high-resolution videos acquired by a motion
capture system at 50 Hz. The dataset contains activities by 11 profes-
sional actors in 17 scenarios: discussion, smoking, taking photo, talking
on the phone, etc., from 4 different camera views.

MARCOnI (MARker-Less Motion Capture in Outdoor and Indoor
Scenes, Elhayek et al. (2016) is a comprehensive dataset that can be
used for versatile testing. The dataset is composed of 12 sequences
with different conditions, such as sensor modalities, numbers and types
of cameras, identities of actors, scene and motion complexities. All
cameras are synchronized, even the cell phone and the GoPro cameras.
This dataset provides 3D joint positions calculated by three reference
methods as follows. (1) MP: some sequences are recorded by a syn-
chronized Phasespace active-LED marker-based motion capture system
and the 3D joint locations could be captured by markers. (2) A3D:
the 2D poses of other sequences are annotated manually to calculate
ground truth 3D joint locations. (3) DMC: for sequences with enough
cameras, the dataset also provides 3D joint positions using a baseline
approach (Stoll et al., 2011).

MPI-INF-3DHP Mehta et al. (2017a) uses a commercial marker-
less motion capture system to collect data, which does not require
special suits or markers, and thus actors could wear everyday clothes
including loose clothes. There are 8 actors (4 females + 4 males),
each performing 8 action sets, each of which lasts about 1 min. The
test set consists of 2929 valid frames from 6 subjects performing 7
actions. The actions range from walking, sitting, and complex exercise
actions to dynamic actions. The number of action classes is more
than that of Human3.6M dataset. To increase the diversity of data,
each actor performs activities of both daily apparel and plain-colored
clothing sets. Moreover, the dataset increases the scope of foreground
and background augmentation by providing chroma-key masks for the
background.

Total Capture Trumble et al. (2017) is the first dataset that provides
both multi-viewpoint video (MVV), inertial measurement unit (IMU),
and skeleton annotations obtained by a commercial motion capture
system (Vicon). The dataset does not use any markers, so actors could
wear very loose clothes to increase the variation of appearance. The
XSens IMUS system (Roetenberg et al., 2009) uses 13 IMU sensors on
key body parts including head, upper/lower back, upper/lower limbs,
and feet. The dataset provides accurate background subtraction for
each pixel. It contains five kinds of actions, each of which is repeated
three times by actors. Finally, the dataset is split into several subsets
according to the subjects and action sequences, allowing for testing
both unseen subjects and seen subjects with unseen actions.

SURREAL (Synthetic hUmans foR REAL tasks, Varol et al. (2017))
is a large-scale synthetic dataset with randomly generated 3D poses,
shapes, textures, illustrations and backgrounds. The shape information
of the dataset was from the CMU motion capture (MoCap) dataset.
Next, the MoSh (Loper et al., 2014) method is explored to fit the
SMPL parameters using the raw data of the 3D MoCap markers. Then,
given the fitted parameters, the synthetic body is generated by the
SMPL model, and the real appearance image is mapped into the body
shape. Further, the texture information is obtained from 3D scans of the
subjects wearing normal clothing, largely increasing the authenticity
of the synthetic data. The background images are from a subset of
the LSUN dataset (Song and Xiao, 2015), which includes a total of
400 K images from the kitchen, living room, bedroom, and dining room.
The illumination variation uses the model of Spherical Harmonics
with 9 coefficients (Green, 2003). The SURREAL dataset is the first to
provide 3D pose annotation, part segmentation, and flow ground truth,

which can be used for multi-task training. The authors also generate
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Table 1
3D human pose datasets.

Year Dataset No. of images No. of subjects Characteristics

2010 HumanEva-I 12 sequences 4 subjects, 6 actions Indoor multi-view video, markerless motion capture
2013 Human3.6M 3.6M 11 (5 female + 6 male) One of the largest motion capture dataset; Multiple views
2014 Shelf 4 Indoor multi-view video; multiple persons; each view suffers from heavy

occlusion
2014 Campus 3 Outdoor multi-view video; multiple persons
2016 MARCOnI 12 sequences 1 or 2 per sequence Comprehensive dataset for versatile testing
2016 CMU Panoptic 1.5M Up to 8 subjects Captured in a studio with hundreds of cameras; large social interaction
2016 MPI-INF-3DHP 1.3M frames 8 (4 female + 4 male) Indoor multi-view video, markerless motion capture, data augmentation
2017 MuCo-3DHP

MuPoTS-3D
8 (4 female + 4 male) Build upon segmentation masks in MPI-INF-3DHP

2017 Total Capture 1.892M frames 5 (4 male + 1 female) Indoor multi-view video, IMU, and vicon mocap
2017 SURREAL 6M frames 145 Rendered from 3D sequences of motion capture data (Human3.6M)
2017 Unite the people 8515 images Improve SMPLify to semi-automated annotate dataset, annotate 31 segments on

the body and 91 landmarks
2018 JTA 500K frames > 21 Massive simulated dataset, 500K frames with almost 10 million pose
2018 3DPW 60 sequences 7 The only promising 3D pose in the wild dataset; 24 train, 24 test, 12 validation
the predicted body part segmentation and depth maps for samples in
the Human 3.6M dataset. Finally, the dataset is divided according to
subjects: 115 subjects are used as the training sets and 30 of them are
used as the test set.

Unite the People Lassner et al. (2017) contains 5569 training
images and 1208 test images. This dataset is collected based on the
observations that the CNNs are often applied in isolated and separated
datasets, such as MPII (Andriluka et al., 2014a), LSP (Johnson and
Everingham, 2010), and are independent of 3D body estimation. To
unite the people of multiple human datasets, the authors improve the
SMPLify method to obtain high-quality 3D human body models, and
then manually sort these body models based on the quality. This semi-
automated approach makes annotations more efficient and enables
consistent labeling by reprojecting the body model to the original
image. The denser set of annotations that predict 31 segments on the
body and 91 landmark positions enable eliminating the ambiguity of
poses and shapes in a single view. Furthermore, a regression tree model
is proposed to predict poses or shapes, which is one to two orders of
magnitude faster than SMPLify. Finally, experiments show that using 91
landmarks the pose estimators can be trained with fewer data without
requiring gender or pose assumptions.

JTA (Joint Track Auto, Fabbri et al. (2018)) is a synthetic people
tracking dataset in urban scenarios with ground-truth annotations of
3D poses, of which 256 videos are used for training and 256 videos
are used for testing. These collected videos with varying illumination
conditions and viewpoints are from the highly photorealistic video
games Grand Theft Auto V developed by Rockstar North. The distance
from the camera varies from 0.1 to 100 m, resulting in heights of
subjects varying from 20 to 1100 pixels. By accessing the game render-
ing module, 14 body parts are automatically annotated in Andriluka
et al. (2014a, 2018). Besides that, some simulated challenges including
occlusion and self-occlusion are provided as well. Occlusion denotes that
the joint is occluded by objects or other pedestrians, while self-occlusion
denotes that the joint is occluded by the owner of the joint. Besides,
each person is assigned an identifier so that the dataset can also be
used for person re-identification research.

3DPW (3D Poses in the Wild, von Marcard et al. (2018)) is the first
dataset in the wild with accurate 3D poses for evaluation. It is created
by utilizing information from IMUs and a hand-held phone camera. A
3D pose estimation method named video inertial poser (VIP) is used to
integrate the images and IMU readings of all frames in video sequences.
The VIP has been validated on the Total Capture dataset, which has an
accuracy of 26 mm and is accurate enough to create the dataset for
image-based 3D pose estimation. For tracking single subjects, 17 IMUs
would be used, while 9–10 IMUs would be used to simultaneously track
up to 2 subjects. Then, the video and IMUs data are synchronized by
a clapping motion as in Pons-Moll et al. (2011). In total, the dataset
5

contains up to 18 clothing styles and actions such as walking in cities,
going up-stairs, having coffee, or taking the bus. Compared with Total
Capture, there are more subjects in a scene.

Shelf and Campus (Belagiannis et al., 2014) The shelf dataset has
annotated the body joints of four actors interacting with each other
using cameras 2, 3, and 4. Triangulation is performed using the three
camera views for deriving the 3D ground-truth. The actor 4 (Vasilis)
is occluded in most of the camera views and thus excluded from the
evaluation. The Campus dataset has annotated the body joints of the
main three actors performing different actions for the frames that are
observed from the first two cameras. The ground-truth for the third
camera view is the result of the triangulation (between cameras 1 and
2), and then projected to camera 3.

CMU Panoptic Joo et al. (2017) provides some examples with
large social interaction. It used 480 synchronized VGA cameras, 31
synchronized HD cameras (temporally aligned with VGA cameras), and
10 RGB-D sensors for motion capture. All of the 521 cameras are
calibrated by structure from the motion approach.

MuCo-3DHP (Multiperson Composited 3D Human Pose) is cre-
ated by leveraging segmentation masks provided in MPI-INF-3DHP
dataset (Mehta et al., 2017a). To collect this dataset, per-camera com-
posites with 1 to 4 subjects are first generated in the images randomly
selected from the MPI-INF-3DHP dataset, in which each camera has 16
sequences. The composited dataset covers many kinds of inter-person
overlaps and activities. Using a commercial multi-view marker-less
motion capture system, a new filmed multi-person test set named
MuPoTS-3D (Multiperson Pose Test Set in 3D) is collected as well. In
total, this dataset comprises 20 general real-world scenes (5 indoor and
15 outdoor) for up to three subjects with challenging elements such as
drastic illuminations and lens flares for outdoor settings.

In summary, for indoor 3D human pose estimation datasets, the
Human3.6m dataset is the most common one used in recent years,
although the HumanEva dataset is still frequently employed. Besides,
the MPI-INF-3DHP is also widely used, since it has more action classes
than Human3.6m and provides chroma-key masks for foreground and
background augmentation. As for the other three indoor datasets, the
CMU Panoptic dataset is created for large social interaction capture;
the MARCOnI dataset can be used for versatile testing since it contains
sequences with different conditions; the Total Capture dataset provides
MVV, IMU, and Vicon annotations in constrained environments. How-
ever, these three datasets are less used than the first two. To evaluate
the generalization ability of 3D human pose estimation algorithms,
several in-the-wild datasets have been proposed including SURREAL,
JTA, Unite the People, MuCo-3DHP, and 3DPW. The first two are
seldom used recently while the third is widely used by SMPL based
3D pose estimation methods. The fourth dataset can generally be used
for multi-person pose estimation. To some extent, the last dataset is a
promising in-the-wild dataset, since the annotations with high accuracy
of 26 mm are obtained from the Total Capture dataset.
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2.3. Evaluation metrics

We list some of the most frequently used metrics below for reference
and detailed settings based on datasets.

MPJPE (Mean Per Joint Position Error): This metric is calculated
y

𝑀𝑃𝐽𝑃𝐸 (𝑓,) =
1
𝑁

𝑁
∑

𝑖=1
‖𝑃 (𝑓 )

𝐟 , (𝑖) − 𝑃 (𝑓 )
𝐠𝐭, (𝑖)‖2, (1)

where 𝑓 denotes a frame and  denotes the corresponding skeleton.
𝑃 (𝑓 )
𝐟 , (𝑖) is the estimated position of joint 𝑖 and 𝑃 (𝑓 )

𝐠𝐭, (𝑖) is the corre-
sponding ground truth position. All joints are considered, 𝑁 = 17.
Finally, the MPJPEs are averaged over all frames. Besides, we refer
to the resulting normalized metrics as NMPJPE. Since orientation is
left unchanged, this is a less constraining transformation than the more
commonly used procrustes alignment, to which we refer as PA-MPJPE.

PCP (Percentage of Correctly estimated Parts): The PCP metric
measures the percentage of correctly predicted parts (Ferrari et al.,
2008). As mentioned in Sarafianos et al. (2016), a body part is con-
sidered correct by the algorithm if:
‖

‖

𝑠𝑛 − �̂�𝑛‖‖ + ‖

‖

𝑒𝑛 − 𝑒𝑛‖‖
2

≤ 𝛼 ‖
‖

𝑠𝑛 − 𝑒𝑛‖‖ , (2)

where 𝑠𝑛 and 𝑒𝑛 are the ground truth start and end location of part 𝑛, �̂�𝑛
nd 𝑒𝑛 are the corresponding estimated locations, and 𝛼 is a threshold
arameter.
PCK (Percentage of Correct Keypoints): It is first used in 2D pose

stimation (Yang and Ramanan, 2012). Mehta et al. (2017a) extend
CK to the 3D space and calculate the area under the curve (AUC) when
arying the PCK threshold. A estimated joint is considered correct if its
istance to the corresponding ground truth is less than a threshold (e.g.,
50 mm). This metric is often used in the new MPI-INF-3DHP dataset.
he normalized version of PCK (NPCK) is used in Rhodin et al. (2018b),
ocabas et al. (2019).
Bone Error, Bone Std, Illegal Angle: Sun et al. (2017) propose

orresponding metrics for their bone representation of the human body
ecause they argue that absolute joint location based metrics such
s MPJPE and PCK do not consider the pose’s internal structures.
he mean per bone position error (Bone Error) measures the relative

joint location accuracy. The bone length standard deviation (Bone
td) measures the stability of bone length by computing the standard
eviation over a subject’s all testing samples. The percentage of illegal
oint angle (Illegal Angle) measures the feasibility of a joint’s rotation
ngles (Akhter and Black, 2015).
MRPE (Mean of the Root Position Error): Moon et al. (2019)

ropose this metric to evaluate the accuracy of the absolute location
f an estimated 3D human root:

𝑅𝑃𝐸 = 1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

𝐑(𝑖) − 𝐑(𝑖)∗‖
‖

‖2
, (3)

where 𝐑 and 𝐑(𝑖)∗ are the ground truth and estimated locations of the
th sample respectively, and 𝑁 is the number of testing samples.
HumanEva-I: Sigal et al. (2010) use 3D error (3D Error) metric to

valuate performance on their HumanEva dataset. The 3D error is the
ean squared distance between coordinates of estimated and ground

ruth pose.
Human3.6M: There are three main protocols for evaluating the

erformance of 3D human pose estimation algorithms in terms with
PJPE.
P1 (protocol #1, the standard protocol) uses 5 subjects (S1, S5, S6,

7, S8) for training and 2 subjects (S9, S11) for testing.
P2 (protocol #2) differs from Protocol #1 in that it uses S11 for

esting while using 6 subjects (S1, S5, S6, S7, S8 and S9) for training.
he pose error is calculated after a similarity transformation (Procrustes
nalysis) between the estimated pose and ground truth. The original

ideo is down-sampled to every 64th frame and evaluation is performed

6

on sequences from all 4 cameras and all trials. The error is averaged
over 14 joints.

P3 (protocol #3) splits the dataset in the same way as protocol
#1 (Bogo et al., 2016). However, the evaluation is only conducted on
sequences captured by the frontal camera (‘‘cam 3’’) in trial 1 and the
original video is not sub-sampled. The error is averaged over a subset
of 14 joints.

3. 3D human pose estimation based on a frame

This section will detailedly introduce 3D human pose estimation
methods which do not use temporal information, that is, only uses a
monocular image or multi-view images at a single time. Thanks to its
great advantages, e.g. suitable for indoor and outdoor use, it has been
widely studied recently.

3.1. 3D human pose estimation from a monocular image

Recovering a 3D human pose from a single image is appealing
due to the low requirement of the image, but it suffers from an ill-
defined problem that different 3D poses may correspond to the same
2D images. Besides, based on the setting, using temporal or multi-view
information to reduce the ambiguity cannot be achieved during the
recovering process. Therefore, significant research has been done and
several methods have been developed to solve these problems. In this
section, we will first introduce the methods and then illustrate some
representative works. Specifically, we will review methods from three
parts, namely directly predicting 3D poses from images, lifting from 2D
poses, and SMPL-based methods.

3.1.1. Direct 3D pose estimation
The most straightforward way to estimate 3D human poses is to

design an end-to-end network to predict the 3D coordinates of joints
for the poses. Methods that directly map input images to 3D body
joint positions can be categorized into two classes: detection-based
methods (Pavlakos et al., 2017a; Luvizon et al., 2018) and regression-
based methods (Li and Chan, 2014; Zhou et al., 2016a; Sun et al.,
2017; Tekin et al., 2017; Zhou et al., 2017; Luvizon et al., 2019).
It is worth noting that attempts have also been made to unify the
heatmap representation and joint regression (Sun et al., 2018). All of
these methods are summarized in Table 2–1).

Detection-based methods predict a likelihood heatmap for each
joint, and the joint’s location is determined by taking the maximum
likelihood of the heatmap. Pavlakos et al. (2017a) use a volume to
represent a 3D pose and then train a CNN to predict the voxel-wise like-
lihood for each joint in the volume, which greatly improves the direct
regression of joint coordinates. They adopt a coarse-to-fine prediction
scheme, which employs intermediate supervision and an iterative esti-
mation module to gradually increase the resolution of the supervision
volume. Luvizon et al. (2018) propose a multi-task framework to jointly
estimate 2D/3D poses and recognize actions, where 2D and 3D pose es-
timation is unified using volumetric heatmaps. However, such methods
rely on additional steps to convert heatmaps to joint positions, usually
by applying the argmax function, which is not differentiable. This
interfaces with the learning mechanism of neural networks. Besides, the
precision of predicted keypoints is proportional to that of the heat map
resolution, which lacks inherent spatial generalization. To achieve high
precision, the predicted heatmaps usually require a reasonable spatial
resolution, which quadratically increases the computational cost and
memory consumption.

Human pose estimation is essentially a regression problem that di-
rectly estimates the locations of joints relative to the root joint location.
Li and Chan (2014) design a simple but effective neural network with
two branches that simultaneously detect the root location and regress
the relative locations of other joints. To incorporate prior knowledge of
the geometric structure of the human body, Zhou et al. (2016a) intro-

duce a kinematic object model consisting of several joints and bones,
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Table 2
Estimating 3D human pose from a single monocular image.

(1) Direct 3D pose
estimation

Highlight Dataset Metric Code

Li and Chan (2014) Network with two branches, one detects the root location and one
regresses the relative location of other joints

Human3.6M MPJPE No

Zhou et al. (2016a) Geometric constraints and direct regression Human3.6M MPJPE No
Sun et al. (2017) Regress bones Human3.6M P2, P3 Compositional
Luvizon et al.
(2018)

Jointly 2D/3D pose estimation and action recognition; use Soft-argmax on
heatmaps

Human3.6M MPJPE Deephar

Pavlakos et al.
(2017a)

Coarse-to-fine prediction scheme based on intermediate supervision Human3.6M;
HumanEva-I;
KTH Football II

MPJPE;
reconstruction
error; PCP

C2f

Sun et al. (2018) Modify the taking-maximum operation to taking-expectation Human3.6M P2, P3 Integral

(2) Lifting 2D pose
to 3D pose

Highlights Dataset Metric Code

Park et al. (2016) Concatenate 2D pose estimation results and image features, estimate the
3D position relative to multiple root joints

Human3.6M P1 No

Tome et al. (2017) Multi-stage; jointly 2D/3D pose estimation; lifting by a unimodal Gaussian
3D pose model

Human3.6M P1, P2, P3 Lifting

Moreno-Noguer
(2017)

2D to 3D distance matrix regression Human3.6M;
HumanEva-I

P1, P2, P3; PCP No

Fish Tung et al.
(2017)

Utilize feedback from 3D re-projection and use a discriminator to judge
feasibility of the generated 3D pose

Human3.6M P1 No

Martinez et al.
(2017)

Lift 2D pose to 3D by a simple neural network Human3.6M;
HumanEva

P1, P3; 3D Error Baseline

Nie et al. (2017) Exploit body part images to predict the depth to reduce lifting ambiguity;
skeleton-LSTM utilizes the global 2D pose features; patch-LSTM utilizes the
body part images

Human3.6M;
HHOI

P2, P1; MPJPE No

Tekin et al. (2017) Fuse 3D image cues with 2D joint heatmaps in a trainable scheme Human3.6m;
HumanEva-I;
KTH Football II

P1, P3; 3D Error;
PCP

Fuse

Yang et al. (2018) Multi-source discriminator; train on images with 2D only Human3.6M; P1, P3 No
(Pavlakos et al.,
2018a)

Ordinal depth as supervision Human3.6M;
HumanEva-I;
MPI-INF-3DHP

P1, P3; 3D Error;
AUC, 3DPCK

Ordinal

Alp Güler et al.
(2018)

Estimate the pixel-wise 3D surface correspondence of the human body DensePose-COCO AP DensePose

Zhou et al. (2019) The part-centric heatmap triplet (negative, zero and positive polarity
heatmaps)

Human3.6M;
HumanEva-I;
MPI-INF-3DHP

P1, P2; 3D Error;
3DPCK, AUC

No

Wang et al. (2019a) Predict 3D poses from low-DOF to high-DOF Human3.6M;
MPI-INF-3DHP

P1, P3; 3DPCK,
AUC

No

Ci et al. (2019) Use different filters for feature extraction Human3.6M P1, P3 LCN
Sharma et al.
(2019)

Deep conditional variational autoencoder generates 3D pose samples to
reduce lifting ambiguity

Human3.6M;
HumanEva-I

P1, P2; PCP Generative

Li et al. (2019b) Generate multiple corresponding feasible 3D pose solutions for 2D joint
points

Human3.6M;
MPI-INF-3DHP

P1; 3DPCK Multi-hypo

Chen et al. (2019a) Jointly understand holistic scene and estimate 3D human pose (holistic++
scene understanding)

PiGraphs; SUN
RGB-D; WnP

Average Euclidean
distance

Coming

Zhao et al. (2019) Lifting by semantic graph convolutional network Human3.6M P1, P2 SemGCN
Habibie et al.
(2019)

Explicitly represent the 2D pose with heatmap and implicitly represent the
depth information

MPI-INF-3DHP;
Human3.6M

3DPCK, MPJPE,
AUC; P1

No

Chen et al. (2019b) Unsupervised, lift 2D joint to 3D pose, generate 2D pose after rotation
(this stage has discriminator to judge whether the image is realistic), then
lift the generated 2D to 3D again

Human3.6M;
MPI-INF-3DHP

MPJPE; 3DPCK,
AUC

No

Wandt and
Rosenhahn (2019)

Use a GAN to discriminate whether the 3D pose generated by the network
is realistic. Estimate the camera parameters

Human3.6M;
MPI-INF-3DHP

P1, P3; MJPE,
AUC, 3DPCK

RepNet

Jack et al. (2019) Learn a consistency measure between 2D observations and a proposed
world model by a neural network

Human3.6M; P1, P3 Ige-net

(3) SMPL model
based estimation

Highlights Dataset Metric Code

Bogo et al. (2016) Matching the 2D keypoints projected from the SMPL model with detected
2D keypoint; optimization based

HumanEva-I;
Human3.6M

Average Euclidean
distance (PA); P3

SMPLify

Lassner et al. (2017) Improved SMPLify by additionally matching the image silhouette and the
silhouette projected from the SMPL model

HumanEva;
Human3.6M;
UP-3D

Average error over
all joints

UP

Tan et al. (2018) Encoder–decoder (decoder takes the SMPL parameters as input and output
corresponding silhouette)

UP-3D No

Kanazawa et al.
(2018)

End-to-end deep learning scheme mapping from image to SMPL model
parameters; use a discriminator

Human3.6M;
MPI-INF-3DHP

P1, P2; P1, PCK,
AUC

HMR

Omran et al. (2018) Use a semantic segmentation CNN to the image into 12 semantic parts,
then encode the semantic part probability maps into SMPL parameters

HumanEva-I;
Human3.6M

3D Error; P3 NBF

Pavlakos et al.
(2018b)

Predict 2D heatmaps and masks first, two networks predict pose and shape
parameters individually; 3D per-vertex loss

UP-3D;
SURREAL;
Human3.6M

Mean per vertex
errors; mean per
vertex errors; P3

No
7

https://github.com/strawberryfg/Hands2017ChallengeCompositionalPoseRegression
https://github.com/dluvizon/deephar
https://github.com/geopavlakos/c2f-vol-train
https://github.com/JimmySuen/integral-human-pose
https://github.com/DenisTome/Lifting-from-the-Deep-release
https://github.com/una-dinosauria/3d-pose-baseline
https://drive.switch.ch/index.php/s/jvPwlyJUb4lxR0M
https://github.com/geopavlakos/ordinal-pose3d
https://github.com/facebookresearch/detectron2/tree/master/projects/DensePose
https://chunyuwang.netlify.com/
https://github.com/ssfootball04/generative_pose
https://github.com/chaneyddtt/Generating-Multiple-Hypotheses-for-3D-Human-Pose-Estimation-with-Mixture-Density-Network
https://yixchen.github.io/holisticpp/
https://github.com/garyzhao/SemGCN
https://github.com/bastianwandt/RepNet
https://github.com/jackd/ige/tree/master
https://github.com/Jtoo/fitting_human_smpl_model
https://github.com/classner/up
https://github.com/akanazawa/hmr
https://github.com/mohomran/neural_body_fitting
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where the bones have a fixed length and can be rotated around the
combined joint. However, the fixed length of bones does not reflect the
variability of the human skeleton, limiting the model’s generalization
ability. Sun et al. (2017) believe that it is more reasonable to regress
bones rather than joints for pose estimation, because bone representa-
tions are easier to learn and better to reflect geometric constraints, as
well as being more stable. Furthermore, to overcome the issue of the 𝐿2
loss of bones being local and independent, a compositional loss function
is employed in their work, which encodes long range interactions
between the bones. However, this method requires pose data to be
converted to the relative bone-based format. More recently, Luvizon
et al. (2019) propose the soft-argmax function to convert feature maps
to joint coordinates, resulting in a fully differentiable framework. Sim-
ilar to the soft-argmax operation, Nibali et al. (2018) introduce a new
layer, called differentiable spatial to numerical transform (DSNT), to
preserve the end-to-end differentiability and the spatial generalization
of the model.

In summary, heatmap representations suffer from a few drawbacks
in practice. The ‘‘taking-maximum’’ operation is not differentiable and
prevents training from being end-to-end. In contrast, regression ap-
proaches achieve end-to-end learning and produce continuous outputs
by replacing ‘‘taking-maximum’’ with ‘‘taking-expectation’’. However,
they are not as effective as detection-based methods. To incorporate
the merits of both, Sun et al. (2018) propose a simple and effective
integral regression approach in which the joint position is estimated as
the probability-weighted average of all positions in the heatmap. This
method allows end-to-end training and requires low computation and
storage.

3.1.2. Lifting from 2D to 3D pose
Inspired by the rapid development of 2D human pose estimation

algorithms, many works have tried to utilize 2D pose estimation results
for 3D human pose estimation to improve in-the-wild generalization
performance. For example, Martinez et al. (2017) propose a simple
baseline focusing on lifting 2D poses to 3D with a simple yet very
effective neural network, which popularizes the research on lifting
2D pose to 3D space. Other methods focus on how to fuse 2D joint
heatmaps with 3D image cues to reduce the ambiguity (Park et al.,
2016; Tekin et al., 2017; Habibie et al., 2019; Zhou et al., 2019). The
relationships between joints have been exploited by long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997; Nie et al., 2017;
Wang et al., 2019a) and Euclidean distance matrix (EDM) (Moreno-
Noguer, 2017), and graph neural networks (Zhao et al., 2019; Ci
et al., 2019). The reprojection of the generated 2D pose is often used
as supervision (Tome et al., 2017; Habibie et al., 2019; Jack et al.,
2019; Chen et al., 2019a). To produce a more realistic 3D human
pose, generative adversarial networks (GANs) are often used (Fish Tung
et al., 2017; Yang et al., 2018; Wandt and Rosenhahn, 2019). Since
the full 3D in-the-wild annotation is too difficult, some authors have
considered providing more weak supervision of depth information such
as (Pavlakos et al., 2018a; Alp Güler et al., 2018). These methods are
summarized in Table 2–2.

We firstly review the methods that focus on fusing 2D pose results
with image features containing depth cues to reduce the ambiguity.
In order to help the model to discard unnatural human 3D joint
positions, Park et al. (2016) come up with an new solution which is
concatenating 2D pose estimation results and image features. To avoid
manually designing the fusing, Tekin et al. (2017) use a fusion stream
to utilize 3D image cues and 2D joint heatmaps in a trainable scheme.
There are also some methods that focus on feature representation. For
example, Habibie et al. (2019) explicitly represent the 2D pose with
heatmap and implicitly represent the depth information. Both 2D pose
heatmap and depth feature are used to estimate 3D pose and viewpoint
parameters, and the generated 3D pose is projected to the 2D plane by
viewpoint parameters. It has been confirmed that part-centric heatmap
triplets (HEMlets) as an intermediate representation can divide the full-
body skeleton into 14 parts and model the local order information of
8

these subparts (Zhou et al., 2019). The part-centric heatmap triplet
consists of three heatmaps named negative polarity heatmap, zero
polarity heatmap, and positive polarity heatmap, respectively. In this
way, the relative depth information can bridge the gap between 2D
poses and 3D poses.

The geometric relationships between human pose joints can be uti-
lized in designing algorithms. Early, Nie et al. (2017) process 2D poses
and body part images using LSTMs, which exploit the tree structure of
the human skeleton to propagate contextual information similar to Tai
et al. (2015). Besides, Moreno-Noguer (2017) argue that the ambigu-
ity can be reduced by calculating pairwise distances of body joints
formulated by Euclidean distance matrix (EDM), which can encode
structural information and capture pairwise correlations and dependen-
cies. Another work directly predicts 3D pose joints from low degree of
freedom (DOF) to high DOF (Wang et al., 2019a). With the develop-
ment of graph neural networks (GNNs), there are many attempts in
recent works. Noted that the human pose skeleton naturally forms a
graph, Zhao et al. (2019) propose the semantic graph convolution net-
work (GCN), which learns the weight of the edges in the skeleton graph
channel-by-channel, to extract a 3D pose from the 2D joint points.
To overcome the representation limits of GCN, the locally connected
network (LCN) is proposed (Ci et al., 2019), which uses different filters
for feature extraction rather than a shared filter as in GCN. Importantly,
they also note the limitations of the natural skeleton adjacency matrix
and make it learnable, similar to Zhao et al. (2019).

An estimated 3D pose is often reprojected to the 2D space to
ensure consistency. As a common fashion, a multi-stage approach is
used to reason jointly about the 2D and 3D pose, such as (Tome
et al., 2017), where the generated 3D pose is projected to 2D to
produce 2D belief maps, which are fused with belief maps produced
by an off-the-shelf 2D estimator. As mentioned before, Habibie et al.
(2019) project the generated 3D pose to the 2D plane using estimated
viewpoint parameters. Another way is to learn the loss function rather
than manually design it, like (Jack et al., 2019). The energy function
(loss) is the sum of reprojection energy and feasibility energy. The
reprojection energy measures the consistency between a proposed 3D
pose and the ground truth by a two-layer dense network, while the
feasibility energy measures how much feasible the proposed pose is
in the real world. In an unsupervised manner, Chen et al. (2019a)
utilize the rotation invariant of the generated 3D pose. The 2D pose
is first lifted to a 3D pose, which generates a 2D pose after rotation.
Then, the generated 2D pose is lifted to 3D again. The loss between
the two 3D poses is calculated, and then the 3D pose is restored to
the 2D pose to calculate the loss between the restored 2D pose and
the input 2D pose. Similarly, Novotny et al. (2019) propose to learn
a canonicalization network that maps equivalent class members to
the canonical reconstruction to regularize the results. They reconstruct
the 3D shape by a factorization network that can factorize viewpoint
information and object deformations. The reconstruction branch is
trained by minimizing the re-projection error.

To generate realistic 3D poses, adversarial learning has been used.
For example, Fish Tung et al. (2017) propose adversarial inverse graph-
ics networks (AIGNs) composed of a generator, a renderer, and a
discriminator. The generator first predicts 2D pose heatmaps and then
predicts the camera and shape parameters from heatmaps. The renderer
is simply the reprojection function. The discriminator is used to judge
the feasibility of the generated 3D pose. Subsequently, a multi-source
discriminator is trained in Yang et al. (2018), which takes the original
image, the geometric descriptor on image-pose correspondence, the 2D
pose, and depth heatmaps as input. Recently, it has achieved good per-
formance. Wandt and Rosenhahn (2019) adopt a GAN to discriminate
whether a 3D pose generated by the network is realistic rather than
the 2D pose. In addition, they also propose a network to estimate the
camera parameters, and which they use to project the generated 3D
pose to the 2D space, as well as calculate the loss with the original 2D
pose.
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The 3D human pose estimation from a single monocular image
uffers from inherent ambiguity, and thus more supervision signals
re required. Pavlakos et al. (2018a) propose to use the ordinal depth
closer–farther relationship) annotation as weak supervision, which
eems to be a promising substitute for full in-the-wild 3D annotation.
hey augment the 2D pose datasets MPII (Andriluka et al., 2014a)
nd LSP (Johnson and Everingham, 2010) with ordinal annotations,
hich can be used in a variety of settings, including the volumet-

ic representation. Following the work of Alp Guler et al. (2017),
ensePose (Alp Güler et al., 2018) is proposed and its dataset named
ensePose-COCO is constructed, where it estimates the pixel-wise 3D

urface correspondence of the human body in an RGB image and the
OCO dataset with dense correspondences is annotated.

There is a lot of work worth mentioning from different points as
ollows. For instance, Zhou et al. (2017) regress the 2D joint heatmaps
nd the combination of intermediate feature representations of the
D pose estimator, where these multiple levels of semantic features
rovide additional clues for 3D pose estimation. Mehta et al. (2017a)
ddress the generalization problem of 3D pose estimation by transfer
earning. Their 3D prediction network (3DPoseNet) is the same as the
D pose estimation network (2DPoseNet) in several layers and adds
he 2D heatmaps prediction task as an auxiliary task. They balance the
ransferred features preservation and new pertinent features learning
hrough a learning rate discrepancy between the transferred layers
nd the new layers. Sharma et al. (2019) propose a deep conditional
ariational autoencoder (CAVE) based model to generate 3D pose
amples to reduce the depth ambiguity when lifting from 2D to 3D. The
AVE dataset is used to generate a set of 3D pose samples according to
stimated 2D pose and latent code samples. These samples are scored
sing the ordinal relationships predicted from the image by a CNN.
inally, the estimated 3D pose is computed according to these scores
nd the corresponding 3D pose samples. Wang et al. (2019b) design
knowledge distilling model for one type of non-rigid structure from
otion (NRSFM) methods. They use a 3D shape dictionary to recover

amera matrices and codes, which can be used to reconstruct the depth
nformation.

.1.3. SMPL model based methods
Early work used the SCAPE body model (Anguelov et al., 2005) and

itted it to images using manually annotated keypoints and silhouettes.
ore recent works use the SMPL model (Loper et al., 2015) and fit it

utomatically. This is done by either solving an optimization problem
o fit the model to the data (Bogo et al., 2016) or regressing the model
arameters directly using a neural network (Kanazawa et al., 2018).
ince the SMPL model incorporates prior knowledge about human
hape, it can thus be fitted with very little data. Several optimization
ethods have been proposed for 3D human pose estimation. As a
ell-known method, the SMPLify (Bogo et al., 2016) first estimates
D keypoints using DeepCut (Pishchulin et al., 2016) and then fits
he SMPL model to these keypoints. The fitting procedure is guided
y matching the 2D keypoints projected from the SMPL model and
etected 2D keypoints. Lately, the SMPLify is improved in Lassner et al.
2017) by additionally matching the image silhouette and the silhouette
rojected from the SMPL model, where the silhouette is defined to be
ll pixels of a body’s projection.

Recent methods regress the SMPL parameters directly by a variety
f networks in different tasks. For example, an end-to-end deep learning
cheme proposed by Kanazawa et al. (2018) to learn the mapping
rom image pixels to SMPL model parameters, as shown in Fig. 7.
hey also minimize the reprojection loss of keypoints, and train a
iscriminator by a large mesh database to determine if the generated
hape and pose parameters are real. Pavlakos et al. (2018b) train a
etwork called PosePrior that takes heatmaps as input and outputs pose
arameters of the SMPL model and another network to estimate the
hape parameters from the silhouette. Finally, the projected 3D pose
s matched with annotated keypoints and masks. At the same time,
9

Fig. 7. Framework of human mesh recovery (HMR) (Kanazawa et al., 2018).

an encoder–decoder architecture is designed by Tan et al. (2018) to
reduce the dependence on 3D human body shape and pose ground truth
dataset. The decoder takes as input the SMPL parameters and outputs
the corresponding silhouette. The decoder is then fixed and the whole
network is trained end-to-end on the real image and the corresponding
silhouette. By leveraging the task of semantic segmentation for body
parts and the body constraints of SMPL, Omran et al. (2018) use a
semantic segmentation CNN to segment the image into 12 semantic
parts, and they then encode the semantic part probability maps into
SMPL parameters.

For regression-based methods, they commonly suffer from mediocre
image-model alignment due to the one-shot prediction and need for a
huge amount of data. Kolotouros et al. (2019a) propose the SPIN (SMPL
oPtimization IN the loop) to combine the merits of optimization-based
and regression-based methods, where the regression results are used as
the initialization for optimization and pixel accurate optimization stage
could further exploit the supervision signal.

In addition, some methods have been developed to utilize more con-
straints and supervision signals. For example, Hassan et al. (2019) try
to exploit the context information of a 3D scene by using the constraint
that the human body model and the scene model cannot share the
same 3D space. The 3D scene is constructed by an off-the-shelf solution,
Kinect, and the signed distance field is used to penalize the body–scene
inter-penetrations. Besides, the self-penetrations of a model are also
considered by using the bounding volume hierarchies. Xu et al. (2019)
propose to exploit dense pose information to get stronger supervision,
where DensePose is used to produce the IUV maps, which represent
the body pixel-to-surface correspondence. Finally, we summarize these
methods in Table 2–3.

3.2. 3D human pose estimation from multi-view images

Multi-view images can reduce the ambiguity significantly. However,
it is challenging to fuse information from multiple views. Typical meth-
ods include fusing multi-view 2D heatmaps (Pavlakos et al., 2017b;
Tome et al., 2018; Qiu et al., 2019), enforcing multiple view consis-
tency (Rhodin et al., 2018a,b), triangulation (Kocabas et al., 2019;
Iskakov et al., 2019), and utilizing the SMPL model (Liang and Lin,
2019). We summarized these methods in Table 3.

To fuse multi-view information, different strategies have been de-
signed. For example, Pavlakos et al. (2017b) combine the 2D joint
heatmaps of each view using a 3D pictorial structures model. These
heatmaps are back projected to a common discretized 3D space and the
prior distribution is modeled by constraining the lengths of the limbs
and the data likelihood by the heatmaps. Then, a pose is estimated by
computing the mean of the joints’ marginal distribution. Commonly,
a multi-stage framework is widely used, such as (Tome et al., 2018),
to iteratively refine the 3D pose estimation from multi-view images
with 3D priors (Tome et al., 2017). In each stage, the inputs of the
CNN are multi-view images and 2D pose heatmaps from the previous
stage. Finally, the 3D poses are estimated by optimizing the latent 3D
pose prior space consistent with 2D poses inferred from 2D heatmaps
of all views. Simultaneously, this 3D pose is reprojected onto the 2D
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Table 3
3D human pose estimation from multi-view images.

Multi-view
images

Highlights Dataset Metric Code

Pavlakos et al.
(2017b)

Combine the 2D joint heatmaps of each view using a 3D pictorial
structures model

KTH Football II;
Human3.6M

PCP; MPJPE Harvesting

Tome et al.
(2018)

Extent "lifting" to multi-view and multi-stage, in each stage, the
input are multi-view images and 2D pose heatmaps from previous
stage; the 3D pose are estimated by optimizing the latent 3D pose
prior space

Human3.6M MPJPE, P3 No

Rhodin et al.
(2018b)

Use multi-view consistency by forcing the system to predict the
same pose for all views

Human3.6M;
MPI-INF-3DHP;
Ski Dataset

MPJPE, NMPJPE,
PA-MPJPE; NMPJPE,
PCK, NPCK

No

Rhodin et al.
(2018a)

Learn a geometry-aware body representation by novel view
synthesis

Human3.6M MPJPE, NMPJPE,
PA-MPJPE;

Unsupervised

Kocabas et al.
(2019)

Use epipolar geometry method to recover the 3D pose from the 2D
poses and use it as supervision

Human3.6M;
MPI-INF-3DHP

MPJPE, NMPJPE,
PA-MPJPE, mPSS;
MPJPE, NMPJPE,
PCK, NPCK, mPSS

EpipolarPose

Chen et al.
(2019a)

Learn a latent geometry representation of the 3D pose with
representational consistency (by multiplying rotation matrix)
constraint

Human3.6M;
MPI-INF-3DHP

P1, P2, P3; PCK,
AUC

No

Iskakov et al.
(2019)

Learn how to triangulate (the features maps are unprojected into
3D volumes, then the volumes from multiple views are aggregated
and processed by a 3D convolutional neural network to output 3D
heatmaps.)

Human3.6M;
Panoptic

MPJPE; MPJPE Triangulation

Liang and Lin
(2019)

SMPL; synthesize a large dataset with multiple views, different
shapes and clothes to train the model; multi-stage, where each
stage estimates the parameters view by view; each regression block
takes as input the images features and previous human body and
camera estimates, and outputs corrective values

Human3.6M;
MPI-INF-3DHP;
Synthetic

MPJPE, P3; PCK,
AUC, MPJPE;
MPJPE/Hausdorff
Distance

Shape_aware
image for each camera view to form 2D heatmaps, which are fused
with 2D heatmaps regressed by the 2D estimator. Recently, Qiu et al.
(2019) feed multi-view images into a CNN model to merge information
from other views to the current one. Furthermore, they propose a
recursive pictorial structure model to optimize the 3D poses, which can
progressively reduce the quantization error to obtain better results.

The multi-view consistency of the same pose can also be utilized
to design algorithms. For instance, the multi-view consistency is used
in Rhodin et al. (2018b) as weak supervision, by forcing the system
to predict the same pose from all views only during training. This ap-
proach greatly reduces the need for labeled data and can be applied to
the environment that 3D human pose annotations are hard to obtain as
sports. By employing a semi-supervision, an encoder–decoder network
in Rhodin et al. (2018a) first learns a geometry-aware body representa-
tion using unlabeled multi-view images and then uses a small amount
of supervision to learn a mapping from the our representation to actual
3D poses. Another approach to encoding geometry representation is to
encode the 2D pose to a latent one of the 3D pose with a representation
consistency constraint (Chen et al., 2019a). The encoder is trained using
multi-view image pairs and the latent geometry representation of one
image is multiplied by the relative rotation matrix from this image to
the other. Then a decoder takes the rotated representation as input and
tries to output the pose in the other image.

Triangulation is another fundamental method for reconstruction in
computer vision. EpipolarPose (Kocabas et al., 2019) uses the epipolar
geometry method to recover the 3D pose from the 2D poses and uses it
as a supervision signal to train the 3D pose estimation model, as shown
in Fig. 8. Iskakov et al. (2019) first propose a baseline method that
feeds the 2D joint confidences and 2D positions of all views produced
by the 2D pose detector to the algebraic triangulation module to obtain
the 3D pose. The drawback of this method is that images from differ-
ent cameras are processed independently. Therefore, a more powerful
triangulation procedure is proposed by them. During processing, the
feature maps are not projected into 3D volumes and the volumes from
10
Fig. 8. Main framework of EpipolarPose (Kocabas et al., 2019).

multiple views are aggregated and processed by a 3D CNN to output
3D heatmaps.

Previous pose and shape estimation methods using silhouette as
supervision cannot be directly applied to subjects with loose garments.
To address this problem, Liang and Lin (2019) synthesize a large
dataset with different views, shapes, and clothes, and design a model to
be shape-aware. The model architecture consisting of multiple stages,
where each stage estimates the parameters view by view. In general, it
takes the encoded image features and previous human body as input,
and camera estimates corrective values, e.g. camera parameters that
are view-specific and human body parameters that are shared from all
views.

https://github.com/geopavlakos/harvesting
https://github.com/hrhodin/UnsupervisedGeometryAwareRepresentationLearning
https://github.com/mkocabas/EpipolarPose
https://github.com/karfly/learnable-triangulation-pytorch
https://github.com/williamljb/HumanMultiView
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Table 4
3D human pose estimation from a sequence of monocular images.

Methods Highlights Dataset Metric Code

Du et al.
(2016)

Utilize height-map by a dual-stream network HumanEva;
Human3.6M

Average error;
MPJPE, PCK

No

Tekin et al.
(2016)

Directly regress a 3D pose from a spatio-temporal volume of
bounding boxes centered on the target pose’s frame

Human3.6M;
HumanEva; KTH
Multiview
Football

MPJPE; 3D Error;
PCP

No

Zhou et al.
(2016)

Sparse representation of 3D poses; impose temporal smoothness on
both pose coefficients and rotations; estimate the 3D pose sequence
by penalized maximum likelihood estimation from 2D poses

Human3.6M MPJPE Sparseness

Mehta et al.
(2017b)

Real-time; extend the 2D heatmap formulation to 3D using three
additional location-maps

Human3.6m;
MPI-INF-3DHP

MPJPE; PCK, MPJPE,
AUC

Vnect-caffe
Vnect-tf

Lin et al.
(2017)

Multi-stage refinement with LSTM to enforce temporal consistency Human3.6M;
HumanEva-I

MPJPE; 3D Error RPSM

Coskun et al.
(2017)

Learns motion and noise models of the Kalman filter by LSTM to
utilize temporal information

Human3.6M MPJPE Lstmkf

(Katircioglu
et al., 2018)

Autoencoder with large latent representation to encode joints’
dependencies; use LSTM to impose temporal constraint on the early
features

Human3.6M;
HumanEva-I; KTH
Multiview
Football II

P1, P3; 3D Error;
PCP

No

Rayat
Imtiaz Hossain
and Little
(2018)

Sequence-to-sequence model (2D pose sequence to 3D pose
sequence); impose temporal smoothness constraint on the predicted
3D pose encouraging to be close to the pose of previous frame,

Human3.6M;
HumanEva

MPJPE, P3; Mean
Reconstruction Error

Pose_3D

Lee et al.
(2018)

Use propagating LSTM networks (p-LSTMs) to infer pose in a
central-to-peripheral order; the multi-stage architecture can capture
temporal correlations

Human3.6M;
HumanEva

P1, P2; 3D Error No

Dabral et al.
(2018)

Structure-Aware PoseNet with illegal joint-angle loss and left–right
symmetry loss; Temporal PoseNet with a simple two-layer FCN to
learn complex structural and motion cues.

Human3.6M;
MPI-INF-3DHP

MPJPE, PAMPJE;
MPJPE, PCK, AUC

No

Pavllo et al.
(2019)

Capture long-term information by dilated temporal convolutions;
semi-supervised

Human3.6M;
HumanEva-I

MPJPE, NMPJPE,
PA-MPJPE; MPJVE,
MPJPE

VideoPose3D

Arnab et al.
(2019a)

Specialize the multi-frame bundle adjustment to human pose
estimation and apply it to unlabeled but real-world Youtube videos
and generate a dataset as a weak supervision signal; Huber penalty
function

Human 3.6M;
3DPW;
HumanEva;
Ordinal Depth

MPJPE, PA-MPJPE;
PA-MPJPE;
PA-MPJPE

Temporal-
Kinectics
Table 5
3D human pose estimation from a sequence of multi-view images.

Methods Highlights Dataset Metric Code

Rhodin et al.
(2016)

Sum-of-Gaussians representation; refined the model by fitting the
contours of the person

HumanEva-I 3D Error No

Joo et al.
(2017)

Volume representation; 480 synchronized VGA views; project the
center of the voxel to all 2D views to calculate the 3D joint
likelihood; refine the 3D pose temporally by computing dense 3D
point tracks (depth)

CMU Panoptic Accuracy No

Huang et al.
(2017)

Multi-view SMPLify; SMPL model fits all views independently at
each moment first; regularize the motion in time to estimate a
consistent 3D shape in the entire sequence

Human3.6M;
HumanEva

MPJPE MuVS

Trumble et al.
(2018)

Volumetric representation; use probabilistic visual hull (PVH) on
views to form volumetric reconstruction; LSTM enforce temporal
consistency on latent representation

Human3.6M;
Total Capture

MPJPE; Average per
joint error

No
4. 3D human pose estimation from image sequences

Recovering 3D human pose from a sequence of images is often the
same as marker-free human performance capturing. With the develop-
ment of technology, the number of videos is growing drastically, so
it has become appealing to extract poses from a sequence of images.
However, there are still several challenges to this. For example, the
background variation, occlusion, camera movement, fast motion, loose
clothing, illumination, may cause the shape and appearance of people
to change dramatically over time. Some methods attempt to process
11
video sequences in real-time systems, while others take the entire video
as input and output a sequence of poses.

4.1. 3D human pose estimation from a sequence of monocular images

3D human pose estimation from a sequence of monocular images
suffers from inherent depth ambiguity and is thus a ill-defined problem.
To reduce the ambiguities, the image sequence is adopted as input by
many works. The continue frames of the sequence often give multiple
shots of the same person, while the bone length and shape of the

https://github.com/chuxiaoselena/SparsenessMeetsDeepness
http://gvv.mpi-inf.mpg.de/projects/VNect/
https://github.com/XinArkh/VNect
https://github.com/MudeLin/RPSM
https://github.com/Seleucia/lstmkf_ICCV2017
https://github.com/rayat137/Pose_3D
https://github.com/facebookresearch/VideoPose3D
https://github.com/deepmind/Temporal-3D-Pose-Kinetics
https://github.com/deepmind/Temporal-3D-Pose-Kinetics
https://github.com/YinghaoHuang91/MuVS
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same person are invariant, and the movement of a person is often
regular. As the task of videos, temporal relationship need to be more
importantly learned using networks, such as LSTM (Coskun et al.,
2017; Katircioglu et al., 2018; Lin et al., 2017; Lee et al., 2018; Rayat
Imtiaz Hossain and Little, 2018), CNNs (Tekin et al., 2016; Pavllo et al.,
2019), MLPs (Dabral et al., 2018), TCNs (Cheng et al., 2019), and
GCNs (Cai et al., 2019). During training, some works penalize pose
related parameters to generate temporally smooth poses, such as (Zhou
et al., 2016; Du et al., 2016; Mehta et al., 2017b; Xu et al., 2018a; Tung
et al., 2017). Alternately, some works try to optimize the trajectory,
such as (Li et al., 2019b; Arnab et al., 2019a). We summarize the
above-mentioned methods in Table 4.

From the perspective of network architectures, some works are
described as follows. (1) An LSTM and the sequence-to-sequence model
(Sutskever et al., 2014) are widely used in modeling temporal relation-
ships of sequences. For example, the LSTM Kalman filter (LSTM-KF)
is proposed in Coskun et al. (2017), which learns motion and noise
models of the Kalman filter by LSTM in order to utilize temporal infor-
mation. In order to capture abundant temporal information, recurrent
3D pose sequence machine (RPSM) is designed in Lin et al. (2017) to
perform multi-stage refinement and capture long-range dependencies
among multiple body-parts for 3D pose estimation. RPSM also enforces
the temporal consistency of the predicted pose sequence. Similarly, the
reconstructed 3D pose is refined in a multi-stage manner. Lee et al.
(2018) first extract the 2D pose using a CNN and then employ the
proposed propagating LSTM networks (p-LSTMs) to reconstruct a 3D
pose. Additionally, Katircioglu et al. (2018) indicate that imposing the
temporal constraint on the features earlier in the network is more
effective than applying it to 3D pose predictions. Rayat Imtiaz Hossain
and Little (2018) propose a sequence-to-sequence network that takes
previous 2D poses as input and predicts a sequence of 3D poses relative
to the root node (central hip). The network is composed of LSTM units
with shortcut connections on the decoder side. The encoder of the net-
work encodes the 2D pose sequence in a fixed size vector. (2) To enforce
temporal consistency, CNNs-based structures have also been explored
to process temporal sequences. Tekin et al. (2016) propose to directly
regress the 3D pose from a spatio-temporal volume of bounding boxes
centered on the target frame. The authors also note that extracting
spatio-temporal features using 3D CNNs directly on the volume does
not improve the performance much compared to using spatial CNNs.
Recently, Pavllo et al. (2019) propose a temporal dilated convolutional
model taking 2D keypoint sequences as input to estimate 3D poses.
They capture long-term information by dilated temporal convolutions,
and overall they first predict 2D poses with the 2D keypoint detector
and then lift them to 3D poses. (3) Other network architectures have
also been explored to solve the problem of 3D human pose estimation.
For example, Dabral et al. (2018) propose the Temporal PoseNet, which
is a simple two-layer fully connected network with rectified linear units
(ReLUs). The model takes a fixed number of adjacent poses as input and
outputs the required pose, and can learn complex structural and motion
cues. To address the occlusion problem, Cheng et al. (2019) propose
an occlusion-aware 2D temporal CNN that takes incomplete keypoints
sequence of 2D poses as input to reduce the effect of the error-prone
estimation of occluded joints. Concretely, they propose to use a Cylinder
Man Model to generate 2D-3D pose pairs with occlusion labels to train
the 3D TCN and regularize the occluded joints. Nowadays, Cai et al.
(2019) represent a 2D pose sequence as a graph and design a local-to-
global network to estimate the corresponding 3D pose sequence, where
the network can capture multi-scale features and learn a temporal
constraint for the pose sequence.

Seen from implementation of these approaches, several consider-
ations are addressed, such as the temporal consistency of pose and
shape, a variety of pose reconstruction procedure. More importantly,
compared of single-time based methods, the pose or shape of a human
should be temporally consistent, which can be enforced by penaliz-
ing the corresponding parameters. For example, Zhou et al. (2016)
12
represent a 3D pose as the linear combination of pre-defined basis
poses, and impose temporal smoothness on both the pose coefficients
and rotations. Du et al. (2016) impose limb-length constraints and
enforce the temporal constraint on 3D poses when estimate 3D motion
from the estimated 2D pose sequence. Xu et al. (2018a) employ an
actor-specific template mesh, and the human motion is parameterized
with a kinematic skeleton and a medium-scale deformation field. They
estimate the skeleton deformations in a batch manner by using both
2D and 3D pose and forcing the trajectory of each skeleton parameter
to rely on a low dimensional linear subspace. That leads to temporal
smoothness and solves the flipping ambiguities, as well as refine the
surface by fitting automatically extracted monocular silhouettes. Be-
sides, dynamic motion information under the video sequences is used
by the structure-from-motion methods, i.e the motion reprojections
are forced to match the 2D optical flow vectors. Some works use a
parameterized model such as SMPL. For instance, Tung et al. (2017)
exploit the video sequence and 2D joint heatmaps to predict the SMPL
parameters with reprojection supervision. And some works consider
that the root initialization is very important for the 3D pose recon-
struction. For this purpose, Mehta et al. (2017b) first estimate both 2D
and root (pelvis) relative 3D pose using a CNN. In detail, they exploit
the predicted 2D and 3D pose, combined with the temporal history
to estimate temporally consistent global 3D pose. At present, more
works are focusing on weakly supervised and unsupervised manners.
By employing a two-stage framework, Li et al. (2019b) try to utilize
unannotated monocular videos. In the first stage, the initial predictions
are obtained from a pose estimation network with only a few annotated
videos. Then the initial predictions are used to supervise the further
training of the pose estimation network by matrix completion methods
applied to 3D trajectories. Arnab et al. (2019a) specialize the multi-
frame bundle adjustment to human pose estimation. They generate a
dataset as a weak supervision signal by applying bundle adjustment to
unlabeled but real-world Youtube videos, and propose a 3D pose and
mesh reconstruction algorithm to eliminate the estimation ambiguity.

4.2. 3D human pose estimation from a sequence of multi-view images

A few recent works fall into this category, which are introduced sep-
arately as follows. Conventional multi-view 3D human pose estimation
methods have been well studied and their performance is better than
single-view methods. However, they require expensive dense cameras
and controlled studios. We summarize these methods in Table 5.

Many methods have been proved to be highly effective in esti-
mating 2D joint points to guide model initialization, such as (Stoll
et al., 2011; Rhodin et al., 2015). These methods are based on sum-of-
Gaussians representations (Rhodin et al., 2016) and a 2D pose estimator
is used (Tompson et al., 2014). Besides, the model is refined by fitting
the contours of the person in this method. In addition, Trumble et al.
(2018) illustrate that the probabilistic visual hull (PVH, (Grauman
et al., 2003)) on views of several calibrated cameras can be used
in forming a volumetric reconstruction. And the resulting volumetric
representation with the coarse resolution is first upscaled via tricubic
interpolation and then the upscaled volume is used as input of a con-
volutional autoencoder to learn a deep representation. Then the latent
representation of pose sequences is processed by an LSTM to estimate
3D pose and enforce temporal consistency. More recently, Pavlakos
et al. (2019) introduce a strategy to utilize appearance consistency in
a video with different views, which is helpful for model-based pose
estimation. The key idea is assuming that the changes in the texture of
the person are not dramatic between frames, so the texture consistency
can be used to help reconstruct the body model.

There are also some datasets designed to address this case. We
first take the CMU Panoptic dataset as example provided by Joo et al.
(2017). It first produces 2D keypoint locations and heatmaps of all
synchronized views for all subjects using an off-the-shelf 2D pose
estimator (Wei et al., 2016). In general, the basic framework is to use
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Table 6
Methods for multi-person 3D pose estimation.

Method Highlights Input Type Dataset Metric Code

Belagiannis
et al. (2014,b)

3D pictorial structure (3DPS) model; detect the 2D pose from
all views and then create a reduced state space by
triangulation; temporal term which encourages temporal
consistency

Multi-view
video

Top-Down Campus; Shelf PCP; PCP No

Zanfir et al.
(2018)

Fit the SMPL model to the predicted 3D pose by penalizing
the cosine distance between limbs that are shared in both
SMPL and DMHS representations; dense, pixel-wise semantic
error function; Hungarian algorithm based on body shape,
appearance and motion cues to solve the person assignment
problem over time; optimize the trajectory guided by
constant velocity priors

Monocular
video

Top-Down Human3.6M;
CMU Panoptic

MPJPE; MPJPE No

Mehta et al.
(2018)

Use a fixed number of maps to encode 3D poses; exploit the
body part association to enable the inference of an arbitrary
number of people; MuCo-3DHP dataset

Monocular
single

Bottom-Up Human3.6M;
MPI-INF-3DHP

MPJPE; PCK,
AUC, MPJPE

SShot

Rogez et al.
(2019)

Generate pose candidates at different locations and then
classify and regress them

Monocular
single

Top-Down Human3.6M P1, P2, P3 LCR

Moon et al.
(2019)

Use RootNet to predict the coordinates of human root and
PoseNet to predict 3D pose relative to the root

Monocolar
single

Top-Down Human3.6M;
MuPoTS-3D

MPJPE, P2,
MRPE; AUC,
3DPCK

RootNet
PoseNet

Nie et al.
(2019)

Structured pose representation (SPR), which comprises the
root positions of subjects and corresponding body joint
displacements

Monocular
single

Bottom-Up,
Single Stage

CMU Panoptic 3DPCK SPM

Dong et al.
(2019)

Incorporate appearance information and geometric
information to solve the cross-view correspondence as a
convex optimization problem with a cycle-consistency
constraint; 3DPS model

Multi-view
single

Top-Down Campus; Shelf PCP Mvpose

Rhodin et al.
(2019)

Learn a high-level scene representation (neural scene
decomposition) to reduce the annotation labor; extend novel
view synthesis for multiple persons by exploiting appearance
similarity clues and geometry constraints

Multi-view
single

Top-Down Human3.6M MPJPE,
NMPJPE

NSD
the volume representation and project the center of the voxel to all 2D
views to calculate the 3D joint likelihood. Specifically, the node pro-
posals are calculated by non-maxima suppression (NMS) at each time
instance; then part proposals are generated using the limb connectivity
information; at last, the skeletal proposals are generated by using a
dynamic programming method on previous part proposals. The second
one is the MuVS (Multi-View SMPLify, Huang et al. (2017)) dataset that
extends SMPLify (Bogo et al., 2016) to multi-view sequence data. In the
first phase, a separate SMPL model fits all views independently at each
moment, which is less ambiguous compared to the single view. In the
second phase, the pose parameters are first initialized to the median
of all the shape parameters obtained in the first phase, and then the
motion is regularized in time to estimate a consistent 3D shape for the
entire sequence. Unlike the research in Rhodin et al. (2015), Huang
et al. (2017) explicitly use a deep CNN to segment people in the image
from the background, eliminating the need for background images.
They exploit temporal information based on discrete cosine transform
(DCT, Akhter et al. (2012)) to solve possible left and right body parts
confusion in the 2D joint estimator.

5. Multi-person 3D human pose estimation

Multi-person 3D pose estimation is more challenging than single
human 3D pose estimation, due to the problems of much larger state
space (all possible translations and rotations of the human body parts
in 3D space), occlusions, and cross-view ambiguities when not knowing
the identity of the humans in advance. In this section, we focus on
multi-person 3D pose estimation. Similar to the introduction for single
person case, these methods are reviewed and summarized in Table 6.

Compared with the single-person case, multi-person pose estimation
is very different and more complex. First of all, the difficulty lies on
how to distinguish different human joint points and body parts due to
close distance and occlusion from each other. Second, the root joint
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localization is based on different assumptions. Unlike the single-person
methods that predict root joint-relative 3D poses, the multi-person
methods predict absolute 3D poses to differentiate people in the global
3D space. Third, the number of persons leads to the decrease of calcu-
lation efficiency and the increase of errors when detecting human body
boxing boxes or joints. Existing multi-person methods typically adopt
two-stage solutions, namely the top-down strategy that employs off-
the-shelf detectors to localize person instances at first and then locates
their joints individually, and the bottom-up strategy that locates all the
body joints at first and then assigns them to the corresponding person.

5.1. 3D human pose estimation from a monocular single image

For multi-person estimation from a single monocular image, we
introduce three two-stage methods (Rogez et al., 2019; Moon et al.,
2019; Mehta et al., 2018) and a new single-stage method (Nie et al.,
2019). It has been confirmed by Rogez et al. (2019) that enabling the
network to predict the 2D and 3D poses of multiple people simultane-
ously by generating and scoring some pose proposals for each image
is a promising way to promote both the accuracy and efficiency of
pose estimation. Because this method benefits from the bypassing the
requirement of human initial localization. They first employ a pose
generator to generate pose candidates at different locations in the
image, and then use the classifier to score the proposed poses and use
a regression head to refine both the 2D and 3D pose proposals. As a
result, a location-classification-regression network (LCR-Net) is trained
in an end-to-end manner. Furthermore, recent studies on solving the
problem reveal that using new designed frameworks and pose-maps
are effective ways to figure out 3D poses among monocular images.
For example, Moon et al. (2019) propose a framework to estimate 3D
multi-person poses. They first adopt Mask R-CNN (He et al., 2017)
to detect human bounding boxes and calculate image features. And
then a RootNet and a PoseNet are employed to predict the coordinates

https://github.com/ataata107/Research-Papers-Implementations/tree/master/Single-shot%20multi%20person%203d%20body%20pose
https://thoth.inrialpes.fr/src/LCR-Net/
https://github.com/mks0601/3DMPPE_ROOTNET_RELEASE
https://github.com/mks0601/3DMPPE_POSENET_RELEASE
https://github.com/murdockhou/Single-Stage-Multi-person-Pose-Machines
https://github.com/zju3dv/mvpose
https://github.com/hrhodin/NeuralSceneDecomposition
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of human root and 3D poses relative to the roots, respectively. It is
elucidated by Mehta et al. (2018) that introducing the novel occlusion-
robust pose-maps (ORPM) can outputs a fixed number of maps to
encode the 3D poses of everyone in the picture. Inspired by the 2D
pose estimation method called part affinity fields (Cao et al., 2017), the
authors exploit the body part association to enable the inference of an
arbitrary number of people without the need for a detection bounding
box. Since two-stage methods suffer low efficiency, a single-stage
multi-person pose machine (SPM) is proposed in Nie et al. (2019) to
overcome this problem. Though it follows a one-stage pipeline, strictly
speaking, in this method, the joint points are first detected and then
the root node is used to find or distinguish the different people. There-
fore, we also consider this a type of bottom-up method. Concretely, a
structured pose representation (SPR) is explored, which comprises the
root positions of subjects and corresponding body joint displacements.
Both root positions and joint displacements are estimated by two CNN
branches based on Newell et al. (2016). Finally, the poses are recovered
from the results of these two branches. Satisfactorily, this method can
achieve high efficiency (20 fps) and accuracy on the CMU Panoptic
dataset.

5.2. 3D human pose estimation from multiple views

For multi-person 3D pose estimation from multi-view images, in-
ferring the cross-view correspondences among 2D pose predictions
is the major bottleneck due to the possible incompleteness and low
confidence of 2D poses. Thus, developing new strategies to solve this
problem is critical and tremendous efforts has been made. Dong et al.
(2019) incorporate appearance and geometric information to calculate
the affinity between the detected 2D poses of two persons. They take all
affinity matrices between two views as input and infer correspondence
matrix. This matching problem is formulated as a convex optimization
problem with a cycle-consistency constraint and is solved by using
the result of Huang and Guibas (2013). Finally, the 3D poses are
reconstructed using a 3D pictorial structures (3DPS) model (Belagiannis
et al., 2014) and the 3D pose proposals are reconstructed from all pairs
of 2D poses by triangulation for faster speed. Furthermore, a report
from Rhodin et al. (2019) has demonstrated that a high-level scene
representation for 3D human pose estimation from a single image can
further reduce the annotation labor and can help to overcome the lack
of a large dataset for pretraining the 3D pose estimator as image clas-
sification and object detection (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014). They call this representation neural scene decompo-
sition (NSD), which is formed by three aspects including the spatial
layout, the 2D shape representation, and subject-specific appearance
and 3D pose information. Specifically, the spatial layout is represented
by bounding boxes and relative depth of subjects, and is instantiated
by utilizing multi-view data for training. In a self-supervised manner,
NSD can be trained using the proposed novel view synthesis (NVS) that
exploits multi-view information by enforcing consistency when recon-
structing results from one scene to a novel view. Moreover, the authors
extend NVS for multiple persons by exploiting appearance similarity
clues and geometry constraints. In their approach, the number of people
in the scene and camera calibration are needed.

5.3. 3D human pose estimation from a sequence of monocular images

For multi-person 3D pose estimation from a monocular video, there
are a fully automatic monocular visual sensing system is designed
in Zanfir et al. (2018) for multiple people from a monocular image.
They infer the 2D pose, 3D pose, and semantic body parts of multiple
people by the deep multitask human sensing network (DMHS, Popa
et al. (2017)). Then the SMPL model is fitted to the predicted 3D pose
by penalizing the cosine distance between limbs which are shared in
both the SMPL and DMHS representations. A new error function is also
adopt in their strategy. This function measures the dense, pixel-wise
14
semantic error between the semantic segmentation from DMHS and
the projection of the SMPL model, combined with Euclidean distance,
to refine the parameters of the SMPL model. In addition, a loss is
defined as well to avoid simultaneously occupying the same 3D space
volume. Furthermore, a ground plane is been estimated based on which
most people stand but leave room for outliers who do not get in touch
with the plane. Finally, to solve the person assignment problem over
time, and then optimize the trajectory guided by constant velocity
priors on pose angles and translation variables for all people throughout
the video, they use a Hungarian algorithm based on body shape,
appearance, and motion cues.

5.4. 3D human pose estimation from a sequence of multi-view images

Compared with single human pose estimation, multi-person 3D pose
estimation from multiple views is more difficult due to the larger state
space, occlusion, and cross-view ambiguities. Belagiannis et al. (2014)
extend the pictorial structure model (PSM) used in 2D human pose es-
timation to solve this task. They first detect the 2D pose from all views
and then create a reduced state space by triangulation of corresponding
body joints to overcome the high-dimensional state space. To resolve
ambiguities after triangulation, they propose the 3D pictorial structures
(3DPS) model. As an extension, Belagiannis et al. (2014b) make the
3DPS model temporally consistent by adding a temporal term, which
encourages temporal consistency of the human poses over time.

6. Performance analysis and experiments

In this section, we will give a detailed summary of the performance
of state-of-the-art methods for the 3D human pose estimation task
on the popular datasets, e.g. HumanEva, Human3.6M, MPI-INF-3DHP,
3DPW.

6.1. Summary of performance on HumanEva

The HumanEva dataset is still widely used in the 3D pose estimation
community, therefore we summarize the performance (3D Error, mm)
of 3D pose estimation methods on this dataset in Table 7. We could ob-
serve that the 3D error reduces significantly from 77.2 mm to 13.5 mm
on the Walking sequence of HumanEva.

Only a small number of multi-view methods (Rhodin et al., 2016;
Huang et al., 2017) have reported results on this dataset in recent years.
(Sarafianos et al., 2016) note that the temporal information may not
be well utilized. The method of Pavllo et al. (2019) achieves state-
of-the-art results on almost all subjects of the three sequences, which
uses a temporal dilated convolution to extract temporal information.
The works of Tekin et al. (2016), Katircioglu et al. (2018), Rayat
Imtiaz Hossain and Little (2018), Lee et al. (2018), Pavllo et al. (2019)
explore how to utilize temporal information from the video. The per-
formance of these methods validate the effectiveness and importance
of the temporal constraint inherent in videos.

The SMPL model based methods (Bogo et al., 2016) rarely report
performances on this sequence. They do not perform well at least on
the HumanEva dataset. This may be due to the limitations of the SMPL
model, and more advanced models may be required such as the Adam
model (Joo et al., 2018).

6.2. Summary of performance on Human3.6M

The conventional methods are mainly evaluated on HumanEva, but
most recent methods also report results on the Human3.6M dataset.
Therefore, we mainly analyze the performance of the proposed 3D
human pose estimation methods on Human3.6M. The MPJPEs of these
methods are summarized in Table 8. The MPJPE reduces by about half
from 117.3 mm to 39.9 mm in Table 8–(1).
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Table 7
3D Error (mm) on the HumanEva dataset.

Method Walking Jogging Boxing

S1 S2 S3 Avg. S1 S2 S3 Avg. S1 S2 S3 Avg.

Bogo et al. (2016) 73.3 59.0 99.4 77.2 – – – – 82.1 79.2 87.2 82.8
Tekin et al.
(2016)

37.5 25.1 49.2 37.3 – – – – 50.5 61.7 57.5 56.5

Moreno-Noguer
(2017)

19.7 13.0 24.9 19.2 39.7 20.0 21.0 26.9 – – – –

Pavlakos et al.
(2017a)

22.1 21.9 29.0 24.3 29.8 23.6 26.0 26.5 – – – –

Martinez et al.
(2017)

19.7 17.4 46.8 38.0 26.9 18.2 18.6 21.2 – – –

Pavlakos et al.
(2018a)

18.8 12.7 29.2 20.2 23.5 15.4 14.5 17.8 – – – –

Katircioglu et al.
(2018)

29.3 17.3 62.6 36.4 – – – – – – – –

Rayat
Imtiaz Hossain
and Little (2018)

19.1 13.6 43.9 25.5 23.2 16.9 15.5 18.5 – – – –

Lee et al. (2018) 18.6 19.9 30.5 23.0 25.7 16.8 17.7 20.1 – – – –
Sharma et al.
(2019)

19.3 12.5 41.8 24.5 40.9 22.1 18.6 27.2 – – – –

Pavllo et al.
(2019)

13.9 10.2 46.6 23.6 20.9 13.1 13.8 15.9 23.8 33.7 32.0 29.8

Zhou et al. (2019) 13.5 9.9 17.1 13.5 24.5 14.8 14.4 17.9 – – – –
The effectiveness of utilizing multi-view and sequence images is
erified by methods in Table 8–(2) and (-3), respectively. Although the
umber of methods utilizing a multi-view video is small, these methods
ork well, see Table 8–(4). The SMPL model based methods (Arnab
t al., 2019a; Liang and Lin, 2019; Huang et al., 2017; Bogo et al., 2016;
anazawa et al., 2018; Lassner et al., 2017) are comparable to other
ethods. Liang and Lin (2019) achieve 45.1 mm MPJPE. The weakly

upervised methods (Zhou et al., 2017; Fish Tung et al., 2017; Pavlakos
t al., 2018a; Wandt and Rosenhahn, 2019) achieve impressive perfor-
ance. Ordinal depth, multi-view information, appearance consistency

f video, and 3D pose geometry structure are shown to be effective
upervision for weakly-supervised 3D human pose estimation. Although
he performance of weakly supervised methods is lower than fully
upervised approaches, they require far fewer data and can significantly
educe annotation labor.

.3. Performance analysis on MPI-INF-3DHP

The MPI-INF-3DHP dataset has more action classes than
uman3.6M. While, MPI-INF-3DHP has undergone multiple changes

o the test set annotations, which makes comparison across papers
ifficult. Therefore, we additionally investigate the training and testing
rotocols for reference. The most used metrics for this dataset are PCK,
UC, and MPJPE, which are summarized in Table 9.

Large improvements have been achieved in recent years. Liang
nd Lin (2019) even achieved 95.0 in PCK, demonstrating the effec-
iveness of utilizing the SMPL model and multi-view information. A
ew methods (Mehta et al., 2017b; Dabral et al., 2018) utilize tempo-
al constraints on this dataset, which obtain better performance than
ther works. This is because video sequences provide continuous in-
ormation, which helps reduce ambiguity. Similar methods that exploit
ulti-view images use stronger supervision and also outperform most
ethods using only a single monocular image. Besides, many works,

uch as Wandt and Rosenhahn (2019), Xu et al. (2019), use adver-
arial learning to obtain more accurate predictions. These works also
chieve state-of-the-art performance, proving that adversarial learning

s helpful.
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6.4. Summary of performance on 3DPW

The 3DPW dataset is the first in-the-wild dataset created by von
Marcard et al. (2018). Since 3DPW is a relatively new benchmark, most
literature report results on Human3.6M, but not 3DPW. Some work
is to solve the occlusion problem and the viewpoint problem, such
as (Cheng et al., 2020; Wang et al., 2020). Because of the small amount
of information in a single image, most works adopt a parametric model
like SMPL and learn to predict the shape and pose coefficients, such
as (Arnab et al., 2019b; Sun et al., 2019; Sengupta et al., 2020; Choutas
et al., 2020; Kolotouros et al., 2019b; Moon and Lee, 2020; Choi et al.,
2020; Kocabas et al., 2020; Lin et al., 2020). Some other methods
explore the temporal and shape consistency of time series to improve
the accuracy of modeling, such as (Arnab et al., 2019b; Sengupta et al.,
2020; Luo et al., 2020; Lin et al., 2020). The most popularly used
metrics for this dataset are MPJPE (mm) and PA-MPJPE (mm), which
are summarized in Table 10.

Specifically, to deal with occlusion, Cheng et al. (2020) apply
data augmentation and multi-scale spatial features for 2D keypoints
prediction in each frame, and multi-stride temporal convolutional net-
works (TCNs) to estimate 3D keypoints. To reduce camera parametric
bias, Wang et al. (2020) predict the camera viewpoint as an auxiliary
task to significantly reduce the 3D joint prediction error and improve
generalization in cross-dataset 3D human pose evaluation.

To resolve ambiguities and address the lack of real-world data in
monocular 3D pose estimation, Arnab et al. (2019b) exploit temporal
consistencies across a video with bundle adjustment. They leverage
predictions on real-world videos as a source of weak supervision to
improve existing 3D pose estimation models and retrain the single-
frame 3D pose estimator to improve performance on the real-world
dataset. Sengupta et al. (2020) use multi-frame optimization, with
forced shape consistency between frames, to obtain pseudo-ground-
truth SMPL shape and pose parameters for the sports-person in each
image. Luo et al. (2020) generate smooth and accurate 3D human pose
and motion estimates from RGB video sequences using the autoencoder
architecture. Lin et al. (2020) use a transformer encoder to jointly
model vertex–vertex and vertex–joint interactions, and outputs 3D joint
coordinates and mesh vertices simultaneously.

There are many other works based on the parametric model to

regress 3D poses or meshes. For example, Choutas et al. (2020) propose
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Table 8
Estimating 3D human pose on the Human3.6M dataset using different inputs in terms with MPJPE (mm)

(1) A single monocular
image

Dir Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg. Settings

Park et al. (2016) 100.3 116.2 90.0 116.5 115.3 150.6 117.6 106.9 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3 P1; 17 joints
(Zhou et al., 2016a) 91.8 102.4 97.0 98.8 113.4 125.2 90.0 93.8 132.2 159.0 106.9 94.4 126.0 79.0 99.0 107.3 P1; 17 joints; pre-trained on ImageNet;

randomly sample 800k frames for training
Bogo et al. (2016) 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 79.7 86.8 81.7 82.3 P3; 14 joints
Fish Tung et al. (2017) 77.6 91.4 89.9 88.0 107.3 110.1 75.9 107.5 124.2 137.8 102.2 90.3 – 78.6 – 97.2 P1; 50/3fps; detected 2D keypoints
Tome et al. (2017) 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2 173.9 85.0 85.8 86.3 71.4 73.1 88.4 P1; 17 joints; 10fps; evaluated on all trials
Lassner et al. (2017) – – – – – – – – – – – – – – – 80.7 P3; 14 joints; 10fps
Moreno-Noguer (2017) 69.5 80.1 78.2 87.0 100.7 76.0 69.6 104.7 113.9 89.8 102.7 98.4 79.1 82.4 77.1 87.3 P1; testing in all images
Mehta et al. (2017a) 57.5 68.6 59.6 67.3 78.0 56.9 69.1 100.0 117.5 69.4 82.4 68.0 55.2 76.5 61.4 72.9 P1; 17 joints; initialized from ImageNet;

extra trained on MPI-INF-3DHP
Nie et al. (2017) 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5 P2; removed some poses without synchronized images
Pavlakos et al. (2017a) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9 P1; 10fps; a single model for all actions from all views
(Tekin et al., 2017) 54.2 61.4 60.2 61.2 79.4 63.1 81.6 70.1 107.3 69.3 78.3 70.3 51.8 74.3 63.2 69.7 P1; 17 joints; monocular in all views for training and testing
Zhou et al. (2017) 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 51.4 63.2 55.3 64.9 P1; 10fps for training and testing
Martinez et al. (2017) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9 P1; 17 joints; all views; single action model
Sun et al. (2017) 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1 P1; 17 joints
Kanazawa et al. (2018) – – – – – – – – – – – – – – – 88.0 P1; 10fps
Yang et al. (2018) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6 P1; all views and joints after aligning the depth of the root joints
Pavlakos et al. (2018a) 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2 P1; 10fps; single action model for all actions
Luvizon et al. (2018) 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2 P1; 17 joints; MPII and Human3.6M for training
Lee et al. (2018) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8 P1; 10fps; all views
Zhao et al. (2019) 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6 P1; 10fps for training and testing
Habibie et al. (2019) 54.0 65.1 58.5 62.9 67.9 54.0 60.6 82.7 8.2 63.3 75.0 61.2 50.0 66.9 56.5 65.7 P1; 5fps; using 2D labeled datasets during training
Li and Lee (2019) 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7 P1; 17 joints; single action model for all views
Sharma et al. (2019) 42.9 48.1 47.8 50.2 56.1 65.0 44.9 48.6 61.8 69.9 52.6 50.4 56.0 42.1 45.1 52.1 P1; 17joints; 10fps; evaluated on all views and trials
Wang et al. (2019a) 44.7 48.9 47.0 49.0 56.4 67.7 48.7 47.0 63.0 78.1 51.1 50.1 54.5 40.1 43.0 52.6 P1; all views and joints after aligning the depth of the root joints
Wandt and Rosenhahn
(2019)

50.0 53.5 44.7 51.6 49.0 58.7 48.8 51.3 51.1 66.0 46.6 50.6 42.5 38.8 60.4 50.9 P1; 17 joints

Zhou et al. (2019) 34.4 42.4 36.6 42.1 38.2 39.8 34.7 40.2 45.6 60.8 39.0 42.6 42.0 29.8 31.7 39.9 P1; 17 joints; single action model for all views

(2) Multi-view images Dir Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg. Settings

Martinez et al. (2017) 46.5 48.6 54.0 51.5 67.5 70.7 48.5 49.1 69.8 79.4 57.8 53.1 56.7 42.2 45.4 57.0 P1; reported from Tome et al. (2018)
Pavlakos et al. (2017b) 41.2 49.2 42.8 43.4 55.6 46.9 40.3 63.7 97.6 119.0 52.1 42.7 51.9 41.8 39.4 56.9 P1; 17 joints
Tome et al. (2018) 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8 P1; 17 joints; every 5th frame for evaluation
Rhodin et al. (2018a) – – – – – – – – – – – – – – – 131.7 P1; cropped images; semi-supervised S1(full 3D ground truth)
Rhodin et al. (2018b) – – – – – – – – – – – – – – – 66.8 P1; 16 joints; 10fps
Kocabas et al. (2019) – – – – – – – – – – – – – – – 51.8 P1; fully-supervised; every 64th frame for evaluation
Pavlakos et al. (2019) – – – – – – – – – – – – – – – 110.7 P1; semi-supervised S1(full 3D ground truth)
Chen et al. (2019a) 41.1 44.2 44.9 45.9 46.5 39.3 41.6 54.8 73.2 46.2 48.7 42.1 35.8 46.6 38.5 46.3 P1; add 3D structure prior
Liang and Lin (2019) – – – – – – – – – – – – – – – 45.1 P1; 14 joints; Procrustes Aligned results
Qiu et al. (2019) 24.0 26.7 23.2 24.3 24.8 22.8 24.1 28.6 32.1 26.9 31.0 25.6 25.0 28.1 24.4 26.2 P1; single action model for all views; extra training on MPII
Iskakov et al. (2019) 18.8 20.0 19.3 18.7 20.2 19.3 18.7 22.3 23.3 29.1 21.2 20.3 19.3 21.6 19.8 20.8 P1; 17 joints; every 5th frame for the evaluation

(3) A sequence of
monocular images

Dir Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg. Settings

Du et al. (2016) 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5 P1; 17 joints; 1 out of 50 frames from all 4 cameras for training
and every 5th frame from camera 2 for testing

Tekin et al. (2016) 102.4 147.7 88.8 125.3 118.0 112.4 129.2 138.9 224.9 118.4 182.7 138.8 55.1 126.3 65.8 125.0 P1; 17 joints; all camera views for each separate action
Zhou et al. (2016) 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0 P1; 10fps; evaluated on the bounding box crops
Mehta et al. (2017b) 61.7 77.8 64.6 70.3 90.5 61.9 79.8 113.2 153.1 80.9 94.4 75.1 54.9 83.5 61.0 82.5 P1; 17 joints; evaluated on all actions
Lin et al. (2017) 58.0 68.2 63.3 65.8 75.3 61.2 65.7 98.7 127.7 70.4 93.1 68.2 50.6 72.9 57.7 73.1 P1; 2fps; trained on training samples from all 15 actions
Coskun et al. (2017) 57.8 64.6 59.4 62.8 71.5 57.5 60.4 80.2 104.1 66.3 80.5 61.2 52.6 70.0 60.1 67.3 P1; all joint positions relative to a root joint
Katircioglu et al. (2018) 69.6 93.8 69.0 96.5 103.4 83.4 85.2 116.6 147.6 87.2 120.5 95.3 55.9 85.7 64.7 91.6 P1; 17 joints; input images crops
Lee et al. (2018) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8 P1; 10fps; all views
Dabral et al. (2018) 44.8 50.4 44.7 49.0 52.9 43.5 45.5 63.1 87.3 51.7 61.4 48.5 37.6 52.2 41.9 52.1 P1; evaluated on the bounding box crops; extra trained on MPII
Rayat Imtiaz Hossain and
Little (2018)

44.2 46.7 52.3 49.3 59.9 59.4 47.5 46.2 59.9 65.6 55.8 50.4 52.3 43.5 45.1 51.9 P1; a single model for all actions

Arnab et al. (2019a) – – – – – – – – – – – – – – – 77.8 P1; 10fps
Pavllo et al. (2019) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8 P1; 17 joints; a single model for all actions

(4) A sequence of
multi-view images

Dir Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg. Settings

Trumble et al. (2017) 92.7 85.9 72.3 93.2 86.2 101.2 75.1 78.0 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3 P1; 17 joints
Huang et al. (2017) 44.3 47.0 51.8 45.0 67.7 54.6 49.3 48.9 72.8 76.5 63.7 116.2 55.4 42.9 37.2 58.2 P1; 17 joints; evaluated on all views
a body-driven attention to quickly and accurately capture the poses of
3D bodies, faces, and hands together from an RGB image. In Kolotouros
et al. (2019b), a topology of the SMPL template mesh is retained,
but instead of predicting model parameters, directly regressing the 3D
location of mesh vertices. Moon and Lee (2020) propose I2L-MeshNet,
an image-to-lixel (line+pixel) prediction network. A novel graph convo-
lutional neural network-based system (Choi et al., 2020) is explored to
estimate the 3D coordinates of human mesh vertices directly from the
2D human pose. To make use of existing large-scale motion capture
dataset (AMASS, Mahmood et al. (2019)) together with unpaired, in-
the-wild, 2D keypoint annotations, a video inference for body pose and
shape estimation (VIBE) is proposed in Kocabas et al. (2020).

6.5. Summary of performance of multiple persons

Multi-person 3D pose estimation is a problem that has not yet been
extensively addressed. In fact, several works provide their new datasets,
such as the Shelf and Campus datasets (Belagiannis et al., 2014), the
MuCo-3DHP, and MoPoTS-3D datasets (Mehta et al., 2018), the Boxing
dataset (Rhodin et al., 2019), but they have not been popularly used in
other literature.

The results on Shelf, Campus, and Boxing datasets are summarized
in Table 11. To resolve the ambiguities of mixed body parts of mul-
tiple humans after triangulation, Belagiannis et al. (2014) introduce a
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novel 3D pictorial structure model and achieves high PCP performance.
However, this 3DPS-based approach is computationally expensive due
to the huge state space. Besides, it is not robust particularly when
the number of cameras is small. Therefore, Dong et al. (2019) pro-
pose a multi-way matching algorithm to address the aforementioned
challenges and achieves better performance by a large margin. For
the Boxing dataset that comprises 8 sequences with sparring fights
between 11 different boxers, Rhodin et al. (2019) propose to learn a
neural scene decomposition (NSD) representation that is optimized for
3D human pose estimation tasks. Compared with Rogez et al. (2019),
better performance has been achieved. The 3DPCK results of the
state of the art on the MoPoTS-3D dataset are reported in Table 12.
Note that results are sequence-wised and the accuracy is obtained
for all ground truths. Notably, Moon et al. (2019) propose a fully
learning-based camera distance-aware top-down approach that consists
of human detection, 3D human root localization, and root-relative 3D
single-person pose estimation models. This method has great potential
to be further applied to 3D multi-person pose estimation.

Since previous works (Dong et al., 2019) only conduct qualitative
evaluations on the CMU Panoptic dataset, there are few comparisons
reported with different settings. For example, Nie et al. (2019) separate
10k images from the dataset to form the testing split and use the
remaining images for training, achieving 77.8% 3DPCK. Zanfir et al.
(2018) select data from 4 activities (Haggling, Mafia, Ultimatum and
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Table 9
Performance of methods estimating 3D human pose on the MPI-INF-3DHP dataset using different inputs.

(1) A single monocular image PCK AUC MPJPE Training and testing protocols

Zhou et al. (2017) 69.2 32.5 – Using its test set split; employing average PCK (with a threshold
150mm), after aligning the root joint (pelvis); moving the pelvis and
hips towards neck in a fixed ratio (0.2)

Mehta et al. (2017a) 76.5 40.8 – With weight transfer from 2DPoseNet by scene setting
Pavlakos et al. (2018a) 71.9 35.3 – Following the typical protocol (Zhou et al., 2017; Mehta et al., 2017a)
Li and Lee (2019) 67.9 – – Only using the test split
Habibie et al. (2019) 69.6 35.5 127.0 After training on Human3.6M
Chen et al. (2019b) 64.3 31.6 – After training on Human3.6M; 14 joints
Kanazawa et al. (2018) 86.3 47.8 89.8 After rigid alignment
Wandt and Rosenhahn (2019) 82.5 58.5 97.8 Using the training set of MPI-INF-3DHP
Xu et al. (2019) 89.0 49.1 83.5 Using all sequences from S1–S7 as training set and sequences from S8

as testing set; applying rigid transformations
Nibali et al. (2019) 85.4 47.0 91.3 After training on Human3.6M and MPI-INF-3DHP; 17 joints; using

universally-scaled skeletons (fixed scale of 920 mm knee–neck); Since
the scale is known, the ground truth root joint depth is not used to
find the absolute depth of the predicted skeleton

(2) Multi-view images PCK AUC MPJPE Training and testing protocols

Rhodin et al. (2018b) – – – Supervised training on MPII-3DHP S1, weakly-supervised on S2 to S8;
17 joints; known rotations; NPCK: 73.1; NMPJPE: 119.8

Kocabas et al. (2019) 77.5 – 109.0 Supervised training; following the standard protocol: The five
chest-height cameras and the provided 17 joints; NPCK: 78.1;
NMPJPE: 106.4

Chen et al. (2019a) 75.9 36.3 – After training on Human3.6M
Liang and Lin (2019) 95.0 65.0 59.0 Without synthetic training

(3) A sequence of monocular
images

PCK AUC MPJPE Training and testing protocols

Mehta et al. (2017b) 75.7 39.3 117.6 With the 3D joint position lookup in the location-maps done using the
ground truth 2D locations rather the predicted 2D locations.

Dabral et al. (2018) 76.7 39.1 103.8 Skeleton fitting is done as an optional step to fit the pose into a
skeleton of known bone lengths.
Table 10
Performance of methods estimating 3D human pose on the 3DPW dataset.

Method MPJPE PA-MPJPE Training and testing protocols

Arnab et al.
(2019b)

– 72.2 After training on its original data and 300K and 3M frames from their
Kinetics dataset

Cheng et al.
(2020)

– 71.8 Do not train on 3DPW and only use its testing set for quantitative
evaluation

Sun et al. (2019) – 69.5 Testing set for quantitative evaluation
Sengupta et al.
(2020)

– 66.8 Testing set for quantitative evaluation

Wang et al.
(2020)

89.7 – Validation set for quantitative evaluation

Choutas et al.
(2020)

93.4 60.7 Predictions for the main body area, excluding the head and hands

Kolotouros et al.
(2019b)

59.2 Validation set for quantitative evaluation; no training data from 3DPW

Moon and Lee
(2020)

93.2 58.6 Using MuCo-3DHP for the additional training dataset

Choi et al. (2020) 89.2 58.9 Trained on Human3.6M, COCO, and MuCo-3DHP
Kocabas et al.
(2020)

82.9 51.9 Trained with 3DPW training set

Luo et al. (2020) 86.9 54.7 Trained without the Human3.6M dataset and SMPL supervision
Lin et al. (2020) 77.1 47.9 Trained with 3DPW training set
Pizza) which contain multiple people interacting with each other, and
reports their pose and translation estimation errors.

7. Future potential development

Although 3D human pose estimation methods based on deep learn-
ing have achieved significant progress in recent years, challenges still
exist due to the complexity of the task. We propose several next works
worthy of attention and future directions for 3D human pose estimation
as follows.
17
• Multi-person 3D Pose Estimation. Multi-person situations are very
common in practice. However, 3D pose estimation methods still
suffer under complex environments, such as human–human in-
teractions and occlusions, while 2D multi-person pose estima-
tion methods achieve satisfactory performance. Some existing
works address these problems by using multiple views and scene
information, but they can still be improved.

• Weak Supervision. Although many 3D pose estimators perform
well on particular datasets, it remains difficult to directly general-
ize them to practical scenes. One way to solve this problem would
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Table 11
Performance of methods estimating 3D human pose of multiple persons on the Shelf, Campus and Boxing datasets.

Method Shelf@PCP Campus@PCP Boxing

Actor 1 Actor 2 Actor 3 Avg. Actor 1 Actor 2 Actor 3 Avg. MPJPE NMPJPE Detection rate

Belagiannis et al. (2014) 66 65 83 71.3 82 72 73 75.6 – – –
Belagiannis et al. (2014b) 75 67 86 76 83 73 78 78 – – –
Dong et al. (2019) 98.8 94.1 97.8 96.9 97.6 93.3 98.0 96.3 – – –
Rogez et al. (2019) – – – – – – – – 155.6 154.4 79.7
Rhodin et al. (2019) – – – – – – – – 125.4 99.7 99.8
Table 12
Performance of methods estimating 3D human pose of multiple persons on the MuPoTS-3D dataset in terms of 3DPCK.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Avg.

Rogez et al. (2017) 67.7 49.8 53.4 59.1 67.5 22.8 43.7 49.9 31.1 78.1 50.2 51.0 51.6 49.3 56.2 66.5 65.2 62.9 66.1 59.1 53.8
Mehta et al. (2018) 81.0 60.9 64.4 63.0 69.1 30.3 65.0 59.6 64.1 83.9 68.0 68.6 62.3 59.2 70.1 80.0 79.6 67.3 66.6 67.2 66.0
Rogez et al. (2019) 87.3 61.9 67.9 74.6 78.8 48.9 58.3 59.7 78.1 89.5 69.2 73.8 66.2 56.0 74.1 82.1 78.1 72.6 73.1 61.0 70.6
Moon et al. (2019) 94.4 77.5 79.0 81.9 85.3 72.8 81.9 75.7 90.2 90.4 79.2 79.9 75.1 72.7 81.1 89.9 89.6 81.8 81.7 76.2 81.8
be to leverage weak supervision, which exploits large amounts
of data with only 2D pose annotations. This would be helpful
because the 2D pose datasets are much larger than current 3D
pose datasets and incur relatively lower annotation costs.

• Model-based Methods. There are many advantages of model-based
methods, such as stability and scalability. For stability, the pre-
dictions of model-based methods are more robust than those of
skeleton-based methods, especially under occlusions or in the
wild. For scalability, model-based methods can be combined with
other methods easily. For instance, (1) more keypoint information
can be exploited and stronger supervision can be obtained by us-
ing DensePose; (2) errors can be reduced due to inter-penetrations
by exploiting scene constraints, as well as the multi-person sit-
uation; (3) spatial–temporal information can be exploited in a
straightforward way which only needs to consider the pose and
the body shape parameters; (4) the gap can be bridged between
human pose and texture of appearance, which is potentially useful
in other tasks, such as person re-identification.

• Interaction and Reconstruction between Scene Object and Human.
Advances in deep learning techniques have allowed recent work
to reconstruct the shape of a single object given only one RBG
image as input. Many works aim to capture overall object geom-
etry, such as (Popov et al., 2020; Wei et al., 2020). As known,
3D human pose estimation can be used to recover sparse joint
points (skeleton) or dense mesh points (shape). Reconstructing
object geometry can provide extra information (e.g., depth and
occlusion) to facilitate 3D human pose estimation. While, to
our knowledge, the combination of scene and human interaction
and reconstruction is still immature and has not even been paid
attention to.

• Human Pose Estimation for Scene Understanding. In an image, the
presence of a human is more attractive, so using more infor-
mation captured from them can have a better understanding
of the scene, such as visual question answering (VQA, Agrawal
et al. (2015)) in the field of cross-modal understanding. While,
existing works mainly focus on action recognition or abnormal
behavior detection (Lentzas and Vrakas, 2019) rather than the
scene understanding guided by human poses.

• Performance Improved by Neural Architecture Search. Neural ar-
chitecture search (NAS) is a hot topic in the field of artificial
intelligence in recent years, which is especially suitable for in-
dustry. It can greatly reduce the workload of manual parameter
adjustment and find a more efficient network structure. While
few works consider NAS for human activity recognition (Peng
et al., 2020). Besides, multi-objective NAS (e.g., accuracy, model
size) not only reveals the potential for human pose estimation
in theoretical exploration but also can play a role in practical
systems for pose estimation.
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8. Conclusion

In this review, we summarize the recent progress of 3D human pose
estimation from RGB images and videos. We observe that this problem
has become increasingly popular in the computer vision community
and, recently, great performance achievements have been made on the
Human3.6M, HumanEva, and MPI-INF-3DHP datasets. However, the
generalization to scenarios in the wild remains extremely challenging.
As for multiple-person cases, single-stage methods are less developed,
indicating that 3D human pose estimation in real-world scenarios is far
from being established. Most recently, a comprehensive understanding
of scenes and poses has drawn great attention. Furthermore, deep learn-
ing is very effective in solving this problem, so we can expect many
innovations in the next few years, especially when new deep learning
technologies are applied to this field. In addition, we conjecture that
research on robustness, security, and federated learning for 3D human
pose estimation will also be a promising direction in the future.
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