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Abstract

Parametric stochastic simulators are ubiquitous in science, often featuring high-
dimensional input parameters and/or an intractable likelihood. Performing
Bayesian parameter inference in this context can be challenging. We present a neu-
ral simulation-based inference algorithm which simultaneously offers simulation
efficiency and fast empirical posterior testability, which is unique among modern
algorithms. Our approach is simulation efficient by simultaneously estimating
low-dimensional marginal posteriors instead of the joint posterior and by proposing
simulations targeted to an observation of interest via a prior suitably truncated by
an indicator function. Furthermore, by estimating a locally amortized posterior our
algorithm enables efficient empirical tests of the robustness of the inference results.
Since scientists cannot access the ground truth, these tests are necessary for trusting
inference in real-world applications. We perform experiments on a marginalized
version of the simulation-based inference benchmark and two complex and narrow
posteriors, highlighting the simulator efficiency of our algorithm as well as the
quality of the estimated marginal posteriors. Implementation on GitHub. 1

1 Introduction

Parametric stochastic simulators are ubiquitous in science [1, 2, 3] and using them to solve the
Bayesian inverse problem is of general interest. Likelihood-based methods like Markov chain Monte
Carlo (MCMC) [4, 5] or nested sampling [6] are applicable when the likelihood is tractable. It is
equally common that the likelihood is only implicitly defined by the simulator or is inefficient to
compute. For this so-called likelihood-free or simulation-based inference, the traditional approach is
Approximate Bayesian Computation (ABC) [7, 8]. See [9] for a reference.

Simulation-based inference (SBI) is closely connected to ABC and has been an open research topic
since as early as the 1980s [10]. Deep learning has accelerated progress in the field [11, 12, 13, 14].
Proposed algorithms that learn the likelihood [13] or the posterior [14, 15, 16] utilize a density
estimator. The likelihood-to-evidence ratio [11] can be learned via a classification-based technique.
Refs. [11] and [14] were brought into a unified framework by [17].

High-fidelity simulators often have many parameters and/or an intractable likelihood function, which
can make inference notoriously difficult. Practitioners are usually faced with observational data
and an expensive stochastic simulator, without access to the ground truth posterior. They want a
testably accurate posterior estimate without extreme simulation expense. With existing methods, the

1Implementation of experiments at https://github.com/bkmi/tmnre/. Ready-to-use implementation of underly-
ing algorithm at https://github.com/undark-lab/swyft/.
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Table 1: Comparison of SBI methods, including our proposed TMNRE, along with select properties.
Properties listed are intended to showcase TMNRE and do not necessarily reflect the most desirable
properties in every inference setting. For example, if cost were not a inhibiting factor a tractable joint
distribution may be more appealing than targeting marginals directly. Similarly, a fully amortized
posterior estimate is more flexible than a targeted one but remains, often, prohibitively expensive.

Property / Method Likelihood-based ABC NRE NPE SNRE SNPE TMNRE

Targeted inference 3 • 7 7 3 3 3
Simulator efficient direct marginals 7 3 • • 7 7 3
(Local) amortization 7 7 3 3 7 7 3

practitioner must choose between increased accuracy per simulation (so-called sequential methods
[13, 18]) or efficient empirical testability (so-called amortized methods [11]). We provide a method
which offers both simultaneously with a balance that can be tuned by a hyperparameter. Three
attributes contribute to this goal:

Targeted inference. Focusing simulations on the parameter regions that are most relevant for the
inference problem and target data is more efficient. This is particularly true when most
posterior density is concentrated compared to the prior’s density.

Marginal posteriors instead of the joint. Scientific insight is often based on a low dimensional
marginalization of the posterior with nuisance parameters removed [19]. The additional
information of the full joint posterior might not be worth the additional cost afforded.
Targeting marginals directly, by estimating only the marginal for the parameters of interest,
is simpler and sufficient for many scientific, parameter estimation, and bounding purposes.

Consistency checks through local amortization. Practitioners are interested in testing the quality
of inference methods [20, 21, 22]. One such test is to compare the empirical and nominal
contained mass of estimated credible regions [23]. Amortized methods learn the posterior
for any data, generated by any parameter, facilitating empirical study of the nominal credible
regions on fabricated data. Still, learning an amortized posterior is excessive if only a small
subset of parameters are consistent with a target observation.
We propose the concept of local amortization to learn the posterior on said subset, combining
simulator efficiency of targeted inference with the testability of amortization. Both are
critical components for enabling trustworthy scientific results.

Our contribution. We propose an algorithm that simultaneously achieves all three of the above
aspects: Truncated Marginal Neural Ratio Estimation (TMNRE). It approximates the marginal
likelihood-to-evidence ratio in a sequence of rounds and shines when the joint posterior is prohibitively
costly. As a basis, we adopt likelihood-to-evidence ratio estimation proposed in [11], although our
truncation scheme is applicable to other neural simulation-based inference methods which estimate
the posterior or likelihood [13, 17]. Our iterative scheme is loosely inspired by likelihood-based
nested sampling [6, 24, 25] since we generate training data drawn from a nested sequence of truncated
priors in multiple rounds. Our algorithm (a) preferentially generates simulations in relevant regions of
the parameter space, (b) allows estimation of all marginals of interest simultaneously and in parallel
from the same training data, and (c) yields posteriors that are locally amortized in a constrained
region around the posterior, enabling empirical self-consistency test of the inference results.

Related work. In Table 1, we compare the properties and features of a selection of deep-learning
based simulation-based inference methods that are directly relevant for our work. Sampling from
regions of highest probability density is baked into most likelihood-based methods [4, 5, 6, 24, 25,
26, 27, 28]. Amortization is generally not available with these methods because they sample from a
particular posterior. Approximate Bayesian Computation (ABC) is a rejection sampling technique
where proposed samples from the generative model are accepted based on a user defined distance
criterion comparing generated data to the observation of interest. Two important methods include
REJ-ABC [9] where the proposal distribution is simply the parameter prior and SMC-ABC [29, 30]
where the proposal is iteratively refined. Blum and François [31] introduce an ABC distance criterion
weighting mechanism to tune the posterior sampler as well as a proposal prior which draws from a
truncated region of true prior. It estimates the support of previously-accepted samples via support
vector machines [32] and samples from this region with rejection.
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Likelihood-free inference can be cast as a conditional density estimation problem targeting either
the posterior directly [14, 15, 16, 17] or the likelihood [13, 33]. This technique requires a density
estimator, normally implemented as a mixture density network [34] or a normalizing flow [35, 36].
Neural Likelihood Estimation (NLE) performs well on benchmark tasks but must learn a density
representation of the data in an unsupervised setting–difficult for complex data. Modern variants
of Neural Posterior Estimation (NPE) [17] have become effective enough to offer an alternative
estimation method for scientific practitioners [37].

Amortized Approximate Ratio Estimators / Neural Ratio Estimation (NRE): Binary classification
allows estimation of the likelihood ratio between two hypotheses [12, 38, 39, 40, 41, 42] and was most
famously applied to Generative Adversarial Networks [43]. Ref. [11] noted that naive application in
the likelihood-free setting was unsatisfactory because the mathematically arbitrary choice of reference
hypothesis significantly affected empirical MCMC results. Comparing likelihoods from jointly drawn
(x,θ) ∼ p(x,θ) and marginally drawn (x,θ) ∼ p(x)p(θ) samples, where x and θ refer respectively
to simulated data and simulator parameters, addresses the issue. Ref. [17] cast NRE and NPE in a
unifying framework by adapting the loss function to contrast several possible hypothetical parameters.
In this paper we refer to the algorithm described in [11] as NRE or NRE_A while the likelihood ratio
algorithm described in [17] is referred to as NRE_B.

Directly estimating the marginal posterior distribution has been mentioned [11] and explored [44, 45].
Moment networks [45] produce the (central) moments of the posterior distribution, without calculating
the density explicitly, via a hierarchy of neural networks trained on a regression problem. Ref. [45]
also introduced a method which learns marginal posteriors with normalizing flows but does not
address targeted inference or testability of estimated posteriors.

Sequential Methods: The neural likelihood-free methods generally offer a so-called sequential
formulation that targets the posterior of a particular observation xo [11, 13, 17]. Rather than drawing
samples from the prior, the simulation budget is divided between rounds and the previous round’s
posterior is used as the new proposal distribution for the next round. This method increases simulation
efficiency, but does not allow for amortization. Importantly, sequential methods can become highly
inefficient when targeting multiple marginal posteriors directly because the previous round’s marginal
posterior does not update beliefs about the other parameters. A full parameter vector is necessary to
run the simulator, thus defeating the purpose for all nuisance (marginalized-over) parameters.

2 Method

We aim to estimate any marginal posterior of interest using an approximate marginal likelihood-to-
evidence ratio. Although we normally compute every one- and two-dimensional marginal posterior
for visualization purposes, our method is not limited to this restriction. We define the object of study...

Let parametric stochastic simulator g be a nonlinear function that maps a vector of real parameters
θ = (θ1, . . . , θD) and a stochastic latent state z ∈ RNz , Nz ∈ N to an observation x = g(θ, z). We
consider a factorizable prior p(θ) = p(θ1) · · · p(θD) over the parameters. The joint posterior is given
via Bayes’ rule as p(θ | x) = p(x | θ)p(θ)/p(x), where p(x | θ) is the intractable likelihood (or
implicit distribution [10, 46]) and p(x) is the evidence. Our goal is to efficiently compute arbitrary
marginal posteriors, p(ϑ | x). Here, ϑ are the parameters of interest, and we denote all other
(nuisance) parameters by η, such that θ = (ϑ,η). The marginal posterior is obtained from the joint
distribution p(ϑ,η | x) := p(θ | x) by integrating over all components of η,

p(ϑ | x) =

∫
p(ϑ,η | x) dη =

∫
p(x | ϑ,η)p(η) dη

p(x)
p(ϑ) :=

p(x | ϑ)

p(x)
p(ϑ). (1)

where we used Bayes’ rule, prior factorizibility, and defined the marginal likelihood p(x | ϑ).

2.1 Marginal Neural Ratio Estimation (MNRE)

This paper considers the set of one- and two-dimensional marginal posteriors and their corre-
sponding parameters of interest. Given parameter vector θ ∈ RD, define the set of all pa-
rameters associated with the one dimensional marginal posteriors by Θ1 := {θ1, . . . , θD}. We
do something similar, up to symmetry, for all two dimensional marginal posteriors Θ2 :={

(θi, θj) ∈ R2
∣∣ i = 1, . . . , D, j = i+ 1, . . . , D

}
. We set our marginals of interest {ϑk} :=
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Θ1 ∪ Θ2 but in the general case, {ϑk} can be any set of marginals that the practitioner desires.
For every ϑk we use NRE [11] to estimate the corresponding marginal likelihood-to-evidence ratio

rk(x | ϑk) :=
p(x | ϑk)

p(x)
=

p(x,ϑk)

p(x)p(ϑk)
=
p(ϑk | x)

p(ϑk)
. (2)

To this end, we train binary classifiers ρ̂k,φ(x,ϑk) to distinguish jointly drawn parameter-simulation
pairs (x,ϑk) ∼ p(x,ϑk) from marginally drawn parameter-simulation pairs (x,ϑk) ∼ p(x)p(ϑk),
where φ represents the parameters of the classifier. A Bayes optimal classifier ρk would recover the
density ρk(x,ϑk) = p(x,ϑk)

p(x,ϑk)+p(x)p(ϑk) . Then the ratios of interest can be estimated by

r̂k(x | ϑk) :=
ρ̂k,φ(x,ϑk)

1− ρ̂k,φ(x,ϑk)
≈ p(x,ϑk)

p(x)p(ϑk)
= rk(x | ϑk) . (3)

We train each ratio estimator r̂k(x | ϑ) using Adam [47] to minimize the binary cross-entropy (BCE)

`k = −
∫

[p(x | θ)p(θ) ln ρ̂k,φ(x,ϑk) + p(x)p(θ) ln (1− ρ̂k,φ(x,ϑk))] dx dθ . (4)

In practice, we concatenate x with ϑk as the input to ρ̂k,φ. Since each classifier trains independently,
it is trivial to train them all in parallel using the same underlying (x,θ) pairs.

Practically, we parameterize the classifier by ρ̂k,φ(x,ϑk) = σ ◦ fk,φ(x,ϑk), where σ is the logistic
sigmoid and fk,φ is a neural network. The connection in Eq. (3) between the estimated ratio and the
classifier implies that log r̂k(x | ϑk) = fk,φ(x,ϑk). We call the above technique MNRE.

When training data is limited, we found empirically (see Sec. 3.2 below) that the MNRE approach
typically leads to conservative (i.e., not overconfident / not narrower than the ground truth) likelihood-
to-evidence ratio estimates, provided early stopping criteria are used to avoid over-fitting of the
classifier. At its core MNRE solves a simple, supervised binary classification task rather than a
complex, unsupervised density estimation problem. Classification tasks are generally easier to
train [12], and can rely on battle-tested network architectures.

2.2 Truncated Marginal Neural Ratio Estimation (TMNRE)

MNRE and NRE estimate a (marginal) likelihood-to-evidence ratio agnostic to the observed data
x or parameter θ, a so-called amortized estimate. In other words, MNRE is suitable when x ∈{
g(θ, z)

∣∣ θ ∈ Ω, z ∈ RNz
}

where Ω is the support of the prior. We propose an extension of this
algorithm that enables targeted simulation of parameters relevant to a given target observation xo,
and locally amortizes posteriors such that it enables empirical tests of the inference results. Local
amortization implies that our proposed method is suitable when x ∈

{
g(θ, z)

∣∣ θ ∈ Γ, z ∈ RNz
}

where the parameter region Γ ⊂ Ω is a function of xo and will be defined below.

We observe that values of θ which could not have plausibly generated xo evaluate to negligible
posterior density, i.e. p(θ | xo) ≈ 0, which suggests that the corresponding parameters θ do not
significantly contribute to the marginalization in Eq. (1). We denote a prior that is suitably constrained
to parameters with non-negligible posterior density p(θ | xo) by

pΓ(θ) := V −1
1Γ(θ)p(θ) , (5)

where 1Γ(θ) is an indicator function that is unity on Γ ⊂ Ω and zero otherwise, and V −1 is a
normalizing constant (which can be interpreted as the fractional volume of the truncated prior). The
subscript �Γ denotes that arbitrary symbol � is based on a prior truncated by indicator function 1Γ.

We define a rectangular indicator function 1Γrec by discarding parameters that lie in the far tails of the
one dimensional marginal posteriors of our target observation xo, using a thresholding ε� 1, via

Γrec =

{
θ ∈ Ω

∣∣∣∣ ∀d = 1, . . . , D :
p(θd | xo)

maxθd p(θd | xo)
> ε

}
. (6)

For Gaussian joint posteriors, this scheme leads to one dimensional marginal posteriors pΓ(θd | xo)
that are truncated at their approximately ±

√
−2 ln ε σ tail. In general, truncation will lead to an

approximation error that can be estimated as pΓrec(θ | xo) = p(θ | xo) +O(ε) maxθ p(θ | xo), see
Appendix C. Throughout this paper we use ε = 10−6, which corresponds to ±5.26σ for a Gaussian
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Algorithm 1 Truncated Marginal Neural Ratio Estimation (TMNRE)
Inputs: Simulator p(x | θ), factorizable prior p(θ), real observation x0, max rounds M ,

training data per round N (m), threshold ε, dimension of parameters D, mass ratio β,
classifiers ρ1(x,θ) = {σ◦fφ,d(x, θd)}Dd=1 and ρ2(x,θ) = {σ◦fφ,d(x,ϑd)}(D,D)

d=(1,1).
Outputs: Parameterized classifiers ρ1(x,θ) and ρ2(x,θ), constrained region Γrec.
1: procedure MNRE(D, θ′, ρφ)
2: while ρφ not converged do
3: φ← OPTIMIZER

(
φ,∇φ

∑
k

[
BCE(ρ̂φ,k(x,ϑk), 1) + BCE(ρ̂φ,k(x,ϑ′k), 0)

])
4: return fφ

Initialize: D(0) ← {}, Γ(0) ← supp(p(θ)), α(0) ← 0, m← 1.
1: procedure TMNRE
2: while α(m−1) ≤ β and m ≤M do
3: D(m−1)

Γ ←
{

(x(n),θ(n)) ∈ D(m−1)
∣∣∣ θ(n) ∈ Γ(m−1)

}
. Retain data in region

4: N
(m)
simulate ← N (m) − |D(m−1)

Γ | . Calculate num. necessary simulations

5: θ ← {θ(n) ∼ 1Γ(m−1)(θ)p(θ)}N
(m)
simulate

n=1 . Sample for jointly distributed pairs

6: x← {x(n) ∼ p(x | θ(n))}N
(m)
simulate

n=1 . Simulate jointly distributed pairs
7: θ′ ← {θ(n) ∼ 1Γ(m−1)(θ)p(θ)}N(m)

n=1 . Sample for marginally distributed pairs

8: D(m) ← D(m−1)
Γ ∪ {(x(n),θ(n))}N

(m)
simulate

n=1 . Aggregate training data
9: ρ1 ← MNRE(D(m), θ′, ρ1)

10: Γ(m) ←
{
θ ∈ Γ(m−1)

∣∣∣∣ ∀d :
p̂
d,Γ(m) (θd|xo)

maxθd p̂d,Γ(m) (θd|xo) > ε

}
. Find constrained region

11: α(m) ←
∫
1Γ(m)(θ)p(θ)dθ/

∫
1Γ(m−1)(θ)p(θ)dθ . Update prior mass ratio

12: m← m+ 1 . Increment counter
13: ρ2 ← MNRE(D(m), θ′, ρ2)
14: return ρ1, ρ2, Γ(m)

posterior. Those truncations do not affect the location of high-probability credible contours and have
hence no practical effect on parameter inference tasks. We provide more exemplary error estimates
for a range of cases in Appendix C.

Our algorithm defines a series of nested indicator functions 1Γ(m) whose regions have the property

Ω := Γ(1) ⊃ Γ(2) ⊃ · · · ⊃ Γ(M) ⊃ Γrec. (7)

They iteratively approximate the indicator function 1Γrec in multiple rounds m = 1, . . . ,M . This
sequence is generated with the following steps:

• We initialize Γ(1) = Ω := supp(p(θ)), meaning that we start with the unconstrained prior.

• Each round 1 ≤ m ≤ M , we train D, one dimensional ratio estimators r̂d,Γ(m)(x | θd)
using data from within the constrained region, θ ∈ Γ(m). The estimated marginal posterior
is p̂Γ(m)(θd | x) = r̂d,Γ(m)(x | θd)pΓ(m)(θd). To this end, do MNRE, setting ϑk = θk, d ∈
{1, 2, . . . , D} using the constrained prior pΓ(m)(θ) with N (m) training samples per round.

• For each round m < M , we estimate the indicator function for the next round using the
approximated posteriors, via

Γ(m+1) =

{
θ ∈ Γ(m)

∣∣∣∣ ∀d :
p̂Γ(m)(θd | xo)

maxθd p̂Γ(m)(θd | xo)
> ε

}
. (8)

• The last round is determined either when m = M or when a stopping criterion
is reached. The stopping criterion is defined by the ratio of consecutive truncated
prior masses. It is satisfied when the sequence of truncated priors have the property∫
1Γ(m)(θ)p(θ)dθ/

∫
1Γ(m−1)(θ)p(θ)dθ > β. We often set β = 0.8.
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• Using the data from this final constrained region, we can approximate any marginal posterior
of interest. In this paper, we estimate the one- and two-dimensional marginals necessary for
corner plots. We emphasize that the data already generated during the truncation phase can be
reused to learn arbitrary marginals of interest. When higher accuracy likelihood-to-evidence
ratio estimates are needed, the user can simulate from the truncated region.

We briefly address failure modes. First, this algorithm relies on the assumption that posterior estimates
p̂Γ(m)(θd | xo) from MNRE provide a good approximation of p(θd | xo). An over-confident estimate
would remove parameter ranges that are part of Γrec. In practice, we have not observed this effect,
although it is a concern with all simulation-based methods [23]. We give credit to early stopping and
a conservative choice of ε, and provide further illustration and support in Sec. 3 below. Second, since
the truncated posterior only agrees with the ground truth up to corrections of order ε, the iterative
scheme will not converge to Eq. (6); rather to a similar expression where the right-hand side of the
inequality in Eq. (6) receives additional O(ε) corrections. Although these corrections mildly affect
the truncations, they are of little practical relevance since we choose an ε which is very small. Both
failure modes are diagnosed by checking whether high probability regions of the estimated posteriors
intersect with the boundaries of the indicator function.

Algorithm 1 estimates the necessary marginal posteriors for corner plot visualization. We demonstrate
the cost-effectiveness of this algorithm in Section 3. An important limitation of Algorithm 1 is the
inaccessibility of the posterior predictive distribution. This limitation is mitigated by training a ratio
estimator on all parameters within the truncated region; however, producing an accurate joint estimate
may come with (sometimes significant) additional simulation costs.

Like sequential methods [13, 17] the number of rounds M , the training data per round N (m), and any
stopping criteria β are hyperparameters. For further discussion and default values see Appendix A,
for bound derivations and limitations see Appendix C and D. We present TMNRE in Algorithm 1.

Properties of our algorithm. We discuss the properties of our algorithm in support of Table 1.
First, our algorithm performs targeted inference by successively focusing on regions of the parameter
space that are compatible with an observation xo. Second, since training data is always drawn from
the prior, it is possible to efficiently train arbitrary marginal posteriors with the same training data
generated for round M . Third, the algorithm trains locally amortized posteriors that are valid for
parameters θ ∈ Γ(m), facilitating empirical consistency checks of the estimated posteriors within
this region. TMNRE’s properties provide a favorable cost-benefit ratio–yielding marginal insight into
the posterior without paying the price of accessing the joint posterior. The price of the joint is often
inhibiting for expensive simulators. These aspects will be demonstrated in the experiments in the
following section.

3 Experiments

First, we perform experiments to compare TMNRE to other algorithms on standard benchmarks
from the simulation-based inference literature. Next, we highlight useful aspects of our algorithm
regarding targeted inference, marginalization and local amortization with two additional experiments.
These experiments compare algorithms using performance metrics which access the ground truth
posterior. For practitioners who normally cannot access the ground truth, TMNRE offers an empirical
consistency check (see Section 3.3) to assess the quality of the estimated posterior. Such a check is
impractical for sequential methods and is one of the primary practical applications of TMNRE. Further
experiments, including application on a cosmology simulator, can be found in Appendix E.

3.1 Performance on standard tasks

We compare the performance of our algorithm with other traditional and neural simulation-based
inference methods on a selection of problems from the SBI benchmark [18]. Each task is defined by
a simulator, ten observations, a simulation budget, and 10,000 samples drawn from corresponding
reference and approximate posterior distributions. The reference samples enable quantification of
algorithmic accuracy on a range of performance metrics. We evaluate performance on all tasks except
the Bernoulli Generalized Linear Model because its prior is not factorizable. Details in Appendix A.
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Since our method estimates every one- and two-dimensional marginal posterior, we compare samples
from our approximate marginal posteriors with samples from the reference joint posterior, marginal-
ized over nuisance parameters. We quantify the results using the Classifier 2-Sample Test [48, 49].
We train a C2ST classifier for each of the

(
D
1

)
+
(
D
2

)
possible one- and two-dimensional marginals,

and report the mean values, and 95% confidence intervals, in Figure 1. We call this averaged perfor-
mance metric C2ST-ddm, see Appendix B for more detail. The results are presented as grouped by
dimensionality since difficulty increases with dimension and is reflected in the C2ST-ddm scores.
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Figure 1: Performance on marginalized posterior bench-
mark tasks. Mean and 95% confidence intervals of classifi-
cation accuracy (C2ST-ddm) for our method, TMNRE, and
other SBI methods with 10 observations / budget. one- and
two-dimensional scores are plotted. Lower scores imply bet-
ter posteriors. Our simulation budget is approximate, see
Appendix A. The plot and tasks are derivative of [18].

For comparison, we computed the
C2ST-ddm on the other benchmark
methods’ posterior samples. Unlike
our method, which was trained on
the marginals directly, the benchmark
methods were trained to estimate the
joint posterior. We note that since TM-
NRE trains a neural network for every
marginal (efficiently, in parallel), our
method has many times more param-
eters than any neural likelihood-free
inference method that directly targets
the joint. However, parameter count
is not a scarce resource in SBI. Train-
ing hyperparameters can be found in
Appendix A.

The maximum number of rounds be-
fore meeting the stopping criteria var-
ied across tasks from just one round
with no truncation up to seven rounds
on Gaussian Linear. Out of 240 runs,
five did not converge for TMNRE.

As shown in Figure 1, our method
outperformed REJ-ABC and SMC-ABC
and offers increased efficiency com-
pared to non-sequential methods on
all tasks, except Gaussian Linear. On
some tasks, TMNRE is competitive
with sequential methods. Generally,
TMNRE performs best on narrow pos-
teriors and a large simulation bud-
get. Benefits diminished on tasks with
wide posteriors like Gaussian Linear,
SLCP, and SLCP Distractors–a limi-
tation of TMNRE. Based on these re-
sults, ours is the only method, among
sequential and non-sequential tech-
niques, which offers both sufficient
accuracy and local amortization.

3.2 Efficient targeted inference: a 3-dim torus model

We define a task which highlights the effectiveness of truncating the prior, namely a simulator with a
very small torus shaped posterior. We present an ablation study of the truncation method along with a
hyperparameter scan of ε. Task details and additional experiments are presented in Appendix A.

We ran Algorithm 1 which satisfied the stopping criterion after four rounds. We performed marginal
likelihood-to-evidence ratio estimation on all one- and two-dimensional marginals for each step in the
sequence of constrained regions, using the number of samples available that round. We also trained an
estimator which used the same simulation budget but the samples were drawn from the unconstrained
prior. We analyzed the prior volume, C2ST-ddm, and the sum of one dimensional KL divergences at
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Figure 2: First through Third Panel: View of torus marginal posteriors as estimated by rejection
sampling, TMNRE, and MNRE. In some dimensions, the posterior extends the full unit cube prior
width, while in others it is very narrow. TMNRE easily finds the asymmetric details after constraining
to the relevant region while MNRE does not. Fourth Panel: The results of a hyperparameter scan of ε
on the torus task. The C2ST-ddm per simulation is reported versus ε. The mean and 95% confidence
intervals are shown over five repetitions of the experiment. Lower values indicate better performance.

each round for both methods. The posteriors are shown in Figure 2 and the performance metrics for
the ablation study, are shown in Figure 4.

We found TMNRE very accurately approximated all marginals at the maximum simulation budget.
MNRE placed mass in the correct region but missed the shape of the posterior entirely. TMNRE
improved simulation efficiency compared with MNRE as indicated by the slope of the C2ST-ddm.
The max-normalized posterior estimates at every round are plotted in Figure 3. We note that given
the limited training data in early rounds, our method predicts wider posteriors than the ground
truth. These are called conservative posterior estimates and they are the preferred failure mode for
practitioners [23]. Other SBI methods are tested on the torus in Appendix A.

To determine the effects the hyperparameter ε, we performed a grid search between 10−10 to 10−1

using TMNRE on the same simulator. We reported the performance in terms of the C2ST-ddm per
simulation in Figure 2 and repeated the experiment five times. We observe that the optimal value of ε
was 10−6 since it was the most conservative value of ε that optimized the metric.
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Figure 3: First panel: The ratio estimator for θ2 in the 3-dim torus example, for several consecutive
rounds. The estimator is conservative with limited data because each round’s estimate converges from
above to the final results (red line); i.e. the early rounds produce too-wide posteriors thus truncation
decisions are made safely. Second to Fourth Panels: Empirical versus nominal credibility for the
highest posterior density intervals (HPDI) for each θd in the 3-dim torus. The line at (above) the
diagonal implies accurate (conservative or wide) nominal credible intervals. See section 3.3.

3.3 Empirical tests of inference results through local amortization

Our algorithm locally amortizes the posterior for parameters drawn from the constrained prior pΓ(θ).
This opens the door for various experimental diagnostics to test the reliability of our trained inference
networks with simulated data (which is also possible for NRE [50], but not for sequential methods
that are exclusively targeting on one specific observation rather than a range of observations). We
demonstrate this by comparing the empirical credibility to the nominal credibility for the highest
posterior density intervals, similarly to [23] but we estimate using the truncated prior.

For the 3-dim torus example, we draw 10000 samples (x, θd) ∼ p(x | θ)pΓ(θ) from the truncated
generative model. For all samples, we generate marginal posteriors, p̂(θd | x). For those marginal
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posteriors, we then derive the frequency with which t% highest density intervals contain the true
value θd. The result is shown in Fig. 3. It provides an immediate check of the reliability of our trained
inference networks without knowing the ground truth, and provides a safeguard against overconfident
statements, which is critical for using the results of inference networks in a scientific context.
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Figure 4: Performance metrics on
MNRE and TMNRE versus simula-
tion budget. Budgets determined
by truncation algorithm. T: Prior
volume. M: According to C2ST-
ddm, TMNRE produces more accu-
rate posteriors. L: KL divergence
summed over 1-dim marginals;
same result.

This empirical test is designed to show the consistency of the
estimated nominal credible intervals across realizations of fabri-
cated data but it does not address a generative model mismatch
or access whether the estimated posterior corresponds to the
ground truth. When ε is small enough, the effects of truncation
will not significantly impact this empirical test because of the
accurate posterior estimate. Large ε, that trim the tails of the
estimated posterior aggressively, render this test unreliable be-
cause the estimated likelihood-to-evidence ratios will have inac-
curate highest density intervals. It is possible to check whether
ε is too large by observing a high-density posterior equicontour
intersecting with a truncation bound, see Appendix D.

3.4 Efficient marginal posteriors: the 10-dim eggbox

We define a posterior that, when plotted in two dimensions,
looks like a top-down view of an 2× 2 eggbox. Let θ, g(θ) ∈
RD and θk denote the kth element of θ, then the simulator for
this problem is defined gk(θ) = sin(θk ·π). To fix the posterior
shape, we set θk,o = 1

4 , k = 1, 2, . . . , D and x0 = g(θo). The
likelihood is determined by an additive noise model p(x | θ) =
N (g(θ), σ2I) with σ = 0.1. The total number of modes in our
10-dimensional model is 210 = 1024. Realistic models do not
typically feature such a regular mode structure, but this pattern
enables comparison of the various algorithm’s ability to handle
multimodal data.

Given 10,000 training samples drawn from the prior and a
D = 10 dimensional parameter space, we trained MNRE to
estimate all one- and two-dimensional marginals, the SBI [51]
implementation of NRE and SNRE on the joint, and finally a marginalized version of SNRE (SMNRE).
In SMNRE, we divided the samples across 10 rounds and each round proposed samples according to
the previous round’s posterior distribution for the predicted marginals, but the initial prior for the
nuisance parameters. Since, in a general setting, SMNRE cannot use samples from another marginal
estimator, we divided the 10,000 training samples evenly among the 55, one- and two-dimensional
marginal estimators, each estimator receiving 181 training samples. 25,000 samples from each
reported posterior are visible in Figure 5. TMNRE recovered the structure of the ground truth marginal
posteriors, providing empirical evidence that estimating marginals directly can provide high accuracy
at low simulation budgets for complex high-dimensional posteriors. Experiments using other SBI
methods are in Appendix A along with discussion of a rotated version of the problem.

Figure 5: Posteriors from the 10-dim eggbox benchmark (only 4 parameters are shown for clarity).
All methods received 10k training samples and produced 25k posterior samples. NRE and SNRE
were trained jointly, while MNRE and SMNRE were trained marginally. SMNRE cannot share training
samples between marginals so each estimator received an equal share of the total simulation budget,
181 samples. Our method recovered the structure of the ground truth, unlike NRE, SNRE, or SMNRE.
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3.5 Practitioner’s use case: cosmological inference with a simulator

Parameter inference is commonplace in astrophysics and cosmology. We are interested in a simulator
with six parameters that returns three angular power spectra, as they would be measured by an
idealized Cosmic Microwave Background (CMB) experiment. A budget of 5,000 simulations is
sufficient for MNRE to accurately estimate the corner plot, while NRE produces unconstrained and
inaccurate marginal posterior estimates. Due to space constraints, we could not include this practical
application of MNRE in the body of this paper. Please see Appendix E for details of the simulator, the
inference technique, and the results. A complete study of the topic is currently in preparation [52].

4 Discussion and conclusions

We presented Truncated Marginal Neural Ratio Estimation (TMNRE), a simulation-based inference
algorithm based on NRE. The core idea of our algorithm is to focus on most probable parameter
regions by truncating marginal posteriors in their very low-probability tails. For Gaussian posteriors
this is typically beyond 5σ and does not significantly affect the higher density contours. In addition
to performing on par or better than existing algorithms on standard benchmarks, TMNRE is better
suited to the practitioner’s needs than other algorithms because it offers simulation efficient marginal
posterior estimation and the capacity to perform efficient consistency checks through local amortiza-
tion. These features are particularly desirable to scientists whose simulators are expensive and rife
with nuisance parameters.

TMNRE uses a sequence of training and sampling rounds to automatically produce parameters with
high posterior density, i.e. relevant to a particular observation xo. The output of this sequence
is a hyperrectangular approximation to a highest posterior density region, implicitly defined by
hyperparameter ε. That implies parameters from within this constrained region are more likely to
produce data similar to xo than simulations from outside the region. Using data drawn from this
constrained region, TMNRE estimates any marginal posterior of interest directly using a marginal
likelihood-to-evidence ratio; a simpler and more practical technique than estimating the entire joint
posterior. Finally, by construction, our targeted inference method can accurately estimate posteriors
of simulations from within the constrained parameter region. This freedom facilitates fast empirical
studies of the nominal credible regions, which are of critical importance in real-life applications when
there is no ground truth posterior to compare to.

On the SBI benchmark [18], we found that TMNRE is on par with the most effective SBI algorithms,
such as SNRE [11], as measured by the C2ST performance metric, Fig. 1. We highlighted the benefits
of TMNRE using two showcase tasks: a torus-shaped posterior and a multimodal eggbox-shaped
posterior. The torus featured a very narrow posterior that TMNRE found and accurately learned while
simple MNRE failed to do so, Fig. 4. We demonstrated validity of our iterative procedure, and the
ability to perform important validation tests by testing the nominal credible intervals empirically,
Fig. 3. The eggbox’s joint posterior was challenging for NRE-based methods but MNRE efficiently
estimated the marginal posteriors, Fig. 5. Further torus and eggbox experiments are in Appendix A
and a cosmology posterior is estimated in Appendix E.

The presented algorithm is aimed at marginal posterior inference, which is a typical goal for scientific
applications, but does not allow, e.g., to evaluate the posterior predictive distribution which requires
the joint posterior. Furthermore, our algorithm particularly shines for high-dimensional problems
with complex and/or narrow posteriors, whereas we expect that simpler problems may be better suited
to other SBI methods. We address further limitations of our method in Appendix D.

We note that the hyperrectangular indicator function, defined in Eq. (8), is not optimal if some of the
parameters are strongly correlated. However, it can be straightforwardly extended to more complex
shapes. The challenge is to efficiently define the boundaries of the indicator function and sample
from within it, a problem tackled by effective nested sampling algorithms [53].

This work is primarily foundational and the societal impacts, other than the cost of training machine
learning models, would therefore be drawn from a hypothetical application. As this is an inference
method, it would be possible to apply it to biased simulators which could reinforce unethical patterns.
In general, the societal impacts are closely tied to the implications of the simulators themselves.
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